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Motivation

y surface

Motivation

Why don't we just delta-hedge options ?

o Daily P&L of delta-hedged short option position is:
d?pP [5S2
_ 2 a2
P&L = 5 G 0°ot
o Write daily return as: "55_" = 0;Z;+/6t. Total P&L reads:
d?p 5
P&L = — 252 | (a,?z,? 2) ot
@ Variance of daily P&L has two sources: 1o Autocorrelation function of daily volatilities
- basket of financial stocks
80%
o the Z; have thick tails Y
o the o; are correlated and oo | %
volatile N
. .. . 40% o
° Delta.—hedgmg not sufficient in \ + Autocorrelation of daily volatilies
practice 20% Ay Exponential fit tau = 45 days
> Options are hedged with "
options ! 50 Days 10 150 200
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Motivation

@ Implied volatilities of market-traded options (vanilla, ...) appear in pricing
function P(t,S,0,p,...).

> Other sources of P& L:

d?p [5S2 P
_ 2 00" ~2 _ A
P&L = S sz {52 log (51} dﬁéa
1d’P ., d?°P ___.
— {5 152 60 + de&(SS(S(r

o Dynamics of implied parameters generates P&L as well
o Vanilla options should be considered as hedging instruments in their own
right

> Using options as hedging instruments:

o lowers exposure to dynamics of realized parameters, e.g. volatility
o generates exposure to dynamics of implied parameters
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Motivation Examplel: barrier option
Ex

olatility surface

Example 1: barrier option

In the Black-Scholes model, a barrier option with payoff f can be statically
replicated by a European option with payoff g given by:
. £(S) ifS<L
[ f(S) fS<L : o
Barrier: { 0 5> 1 European payoff: 3 (é>‘7—2—1 . <L?2) .
In our example f(S) =1 and L = 120. European payoff is approximately
double European Digital.

—— American digital ——American binary

——American binary 10
——Double Euro binary

-1 © ——Dpouble Euro binary ~——Double Euro digital
12 05

o Gamma / Vega well hedged by double Euro digital — are there any residual

risks ?
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Motivation

@ When S hits 120, unwind double Euro digital. Value of Euro digital
depends on implied skew at barrier.

@ Value of double Euro digital:

D— Put; ;¢ — Put; ¢ dPutyk

2e dK

L

dPut)  dPutf(K,0x)  dPutf®  dPutB® doy

dK dK dK do  dK

dPutls doy

D= D%(a) doe dK

2~ no sensitivity

L

> Barrier option price depends on scenarios of implied skew at barrier !

Lorenzo Bergomi Stochastic Volatility Modelling: A Practitioner's Approach



Motivation Examplel ption
Example 2 : cliquet
olatility

Example 2

surface

. cliquet

@ A cliquet involves ratios of future spot prices — ATM forward option pays

%12
o In Black-Scholes model, price is given by: Pgs(012,7,...)
o S does not appear in pricing function 77

o Cliquet is in fact an option on forward volatility. For ATM cliquet
(k =100%):

P357

\/—012\/ Ty —

> Price of cliquet depends on dynamics of forward implied volatilities

Lorenzo Bergomi
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Motivation

II volatility surface
orward variances

Modelling the full volatility surface

o Natural approach: write dynamics for prices of vanilla options as well

Stoxx50 smile — 22/07/2010
dS = (r — q)Sdt 4+ oSdW;?
dCKT = rCKT dt + o dWKT ©

Better: write dynamics on implied “

‘ l
vols directly (P. Schénbucher) *1 N l

7 16/04/15
17/07/14
7/10/13
/7101713

A 19/04/12
/21107711
'\' 21710110

dS = (r — q)Sdt + oSdW;?
doXT = xdt + e dWKT

e drift of #X7 imposed by condition that CK7 be a (discounted) martingale
e How do we ensure no-arb among options of different K/ T ??

Other approach: model dynamics of local (implied) volatilities (R
Carmona & S. Nadtochiy, M. Schweizer & J. Wissel)

o drift of local (implied) vols is non-local & hard to compute

So far inconclusive — try with simpler objects: Var Swap volatilities

Lorenzo Bergomi
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Motivation

volatility surface

Forward variances

1 2 2
i+ AT
_tZI < ) — 0]

° Ut : Var Swap implied vol for maturity T, observed at t

o If S; diffusive ¢/ also implied vol of European payoff —21In (%)

@ Long T, —t VS of maturity Ty, short T1 — t VS of maturity T;. Payoff at T:

D ( ’+1>2_<(T2—t) O D ( 'H)z (Ta= TV

where discrete forward variance V,172 is defined as:

(Ty—t) 6 o’ (T, - t) o

TiTy _
Ve B T,—T

@ Enter position at t, unwind at t 4+ Jt. P&L at T, is:
PaL = (T-Ty) (V2 -viT)

No 6t term in P&L: > V172 has no drift.

Lorenzo Bergomi Stochastic Volatility Modelling: A Practitioner's Approach



Motivation Examplel: barrier option
Example 2 : cliquet

Modelling the full volatility surface
Forward variances

@ Replace finite difference by derivative: introduce continuous forward
variances ¢/ :
d 2
T AT
0t = a7 ((T—t) T¢ )
CT is driftless:

dgf = e dw/

o {7 easier to model than ¢KT 77

o The §T are driftless
o Only no-arb condition: ET >0

> Model dynamics of foward variances
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Motivation

volatility surface

Full model

@ Instantaneous variance is gtT:t. Simplest diffusive dynamics for S; is:

dSe = (r — q)Sedt +1/(1S:dZ?

@ Pricing equation is:

dP 7t o d*P
dt +r- )SEJF 2° ds?

T (T (dgidgy) d°P T (dSedgy) d°P
*5/ / dt 07°6C" d“d”./t gt dsagedl = P

o Dynamics of S / {T generates joint dynamics of S and X7

> Even though VSs may not be liquid, we can use forward variances to drive
the dynamics of the full volatility surface.

o Can we come up with non-trivial low-dimensional examples of stochastic
volatility models ?
@ How do we specify a model — what do require from model ?
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Motivation

g atility surface
Forward variances

Historical motivations

Traditionally other motivations put forward — not always relevant from
practitioner’s point of view — for example:

o Stoch. vol. needed because realized volatility is stochastic, exhibits
clustering, etc.

> We don't care about dynamics of realized vol — we're hedged. What we
need to model is the dynamics of implied vols.

@ Stoch. vol. needed fo fit vanilla smile

> Not always necessary to fit vanilla smile — usually mismatch can be
charged as hedging cost
> Beware of calibration on vanilla smile:

o OK if one is able to pinpoint vanillas to be used as hedges.
o Letting vanilla smile — through model filter — dictate dynamics of implied
vols may not be reasonable.
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Motivation

Forward variances

Connection to traditional approach to stochastic volatility modelling

Traditionally stochastic volatility models have been specified using the
instantaneous variance:

o Start with historical dynamics of instantaneous variance:
dvV = u(t,S,V,p)dt+a()dW:
@ in "risk-neutral dynamics", drift of V; is altered by "market price of risk":
dvV = (u(t,S,V,p)+A(t, S, V))dt + a()dW;

@ a few lines down the road, jettison "market price of risk" and conveniently
decide that risk-neutral drift has same functional form as historical drift —
except parameters now have stars:

dV = u(t,S,V,p*)dt +a()dW,

o eventually calibrate (starred) parameters on smile and live happily ever
after.

> V is in fact wrong object to focus on — drift issue is pointless:

Vi=(l — dVi= —t|  dt +edW
T=t
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The Heston model

The Heston model

Among traditional models, the Heston model (Heston, 1993) is the most
popular:
{ dVi = —k(Vy — Vo)dt + o/ V;dZ;

dSt = (r - q)Stdt—i- vV VtStth

@ It is an example of a 1-factor Markov-functional model of fwd variances:
gT and &7 are functions of Vi:

il = Efvy] = Vot (Vi — Vp)e k(T-0)

—k(T—t)

AT2 T _
0" = 15 [, Gdt = VO""(VL‘_VO)%

o Look at term-structure of volatilities of ¢ (Tt . Dynamics of (Tt is given by:

72 1—e™ k(T—t)
d[U’t ] = *dt + WU’V thZt
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Volatilities of volatilities

The Heston model

Volatilities of volatilities

@ Term-structure of volatilities of volatilities:

T—t<t Vol(o]) ~ 1-5+

1
k
b ovel@]) = i

T—t>

1R

@ Term-structure of historical volatilities of volatilities for the Stoxx50 index:

60% -
Vols of vols - Stoxx50
50% -
40% -
30% -
20% | e Stoxx50 Tl
—--k=2 T
10% | ——-k=0.43
—— Power law; exp =-0.35
0% : )
0 0.5 1 1.5 2 2.5 3

Lorenzo Bergomi Stochastic Volatility Modelling: A Practitioner's Approach



of volatilities
The Heston model ture of skew

Term-structure of skew

@ ATM skew in Heston model: at order 1 in volatility-of-volatility o

_ 1 doT — _p7_
T=t<% dWk|_r = iyv;

_ 1 doT _ _po 1
T=t> % dnk|e_p = ay%KT-0)

> Short-term skew is flat, long-term skew decays like 1/(T —t)

o Market skews of indices display >~ 1/+/T — t decay:

o 95-105 skew Stoxx50 22/07/10 | |2 | 95-105 skew SP500 22/07/10
5
4
3
2
1 Stoxxs0 1« sps00 ) .

1]
—1/5qrt(T) —1/sqrt(T)
0 1 2 3 4 5 6 0 1 2 3 4 5
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The Heston model

Relationship of skew to volatility

@ ATM skew in Heston model at order 1 in volatility-of-volatility ¢ :

1 A~KT
T—t< —: a7 o 27{30
k dinK|, _, 4 Vi 40atm

> In Heston model short-term skew is inversely proportional to short-term
ATM vol

o Historical behavior for Stoxx50 index: (left-hand axis: &aTm, right-hand axis:

Gk=95 — Ok=105) 70 Stoxx 50 20
+ 3-month ATM vol .. 18

60 - -
- 3-month 95/105 skew s 16

8

6

4
¥

2

0

May-01 May-03 May-05 May-07 May-09

> Maybe not reasonable to hard-wire inverse dependence of skew on 0aTm.
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The Heston model

Smile of vol-of-vol

Smile of vol-of-vol

@ In Heston model short ATM vol is normal:
am ~VV = doam = *dt+gdz

o Historical behavior for Stoxx50 index: (left-hand axis: daTm, right-hand axis:

6-month vol of Fatm)

70 Stoxx 50 200
+ 3-month ATM vol .

60 - -
6-month sliding vol of 3-month ATM vol s

50
40 |
30

20

10

0 T T T
Oct-01 Oct-03 Sep-05 Sep-07

> Oatm seems log-normal — or more than log-normal — rather than normal.
@ Other issue: in Heston model VS variances are floored:
1_ e Kk(T-1) k(T —t)—1+e*(T-1)
— = 0

k(T —t) k(T —t)

T2
ol =Vo+ (Vi — W)

Lorenzo Bergomi Stochastic Volatility Modelling: A Practitioner's Approach



The Heston model

Smile of vol-of-vol

Smile of vol-of-vol — VIX market

@ VIX index is published daily: it is equal to the 30-day VS volatility of the
S&P500 index: VIX; = g1 4

@ VIX futures have monthly expiries - their settlement value is the VIX index
at expiry

Nov  Dec an

@ VIX options have same expiries as futures
Fi = Ec[o}"3%] CK = E[(6]77 — K) ]

VIXfutures - 22/07/2010 160%
34%

| Smiles of VIX futures - 22/07/2010
32% 140%

0% 120% -
=Aug - 10
o e / ug

——Sep-10
80%

b / Oct-10

24% 60% 1 ——Nov - 10

22% 40% —Dec-10
20%

20% -+ !

N N N N N 0% i T !
& & & ¢ & 20% 30% 40% 50% 60%
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The Heston model
S vol
Smile of vol-of-vol

So what do we do ?

@ From a practitioner's point of view, question is: what do we require from a
model ?

@ Which risks would we like to have a handle on 7

forward skew
volatilities-of-volatilities, smiles of vols-of-vols
correlations between spot and implied volatilities

@ In next few slides an example of how to proceed to build model that
satisfies (some of) our requirements
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Practitioner’'s approach — an example

Practitioner’s approach — an example

@ Start with dynamics of fwd variances — we would like a time-homogeneous
model

e Start with 1-factor model:
T _ T t
di, =w(T —t){, dU;y — <> B +/ —17)dUz

o For general volatility function w, curve of CT depends on path of U

o Choose exponential form: w(T —t) = we k(T-1)

t t
(/ W(T —1)dUy = we *(T-1) /’e*k“*ﬂduf
0 0

o Model is now one-dimensional — curve of CT is a function of one factor
For T —t> % at order 1 in w:

R 1 dokT
vol(6]) KT=0 and TNk S
K=F

1
k(T —t)

> No flexibility on term-structure of vols-of-vols and term-structure of ATM
skew
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Practitioner’'s approach — an example

@ Try with 2 factors:
dz] = wg][(1—0)e T DgwX +ge R (T-qw,Y]

o Expression of fwd variances:

2 2
T _ T wx] —SE[x]
i = qlew—% [xe 7]

with XtT given by:

xf =1 —0)e(T-t)x, 4 gek(T-t)y,
dX; = —ki Xedt + dWX
dY, = —ko Yedt +dW)Y

@ Dynamics is low-dimensional Markov — fwd variances are functions of 2
easy-to-simulate factors:
1 T2

Ty,
Vr”:ﬁrdﬁ
v Il

@ Log-normality of CT can be relaxed while preserving Markov-functional
feature
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Practitioner’'s approach — an example

By suitably choosing parameters, it is possible to mimick power-law behavior
for:

@ Term-structure of vol-of-vol

o for flat term-structure of VS vols, volatility of VS volatility is given by:

. w? 1—e kT 2 1—ehT 2
VO|(0'T)2 = T[(l *9)2 <I(17T) +92 <k277—)

l_efle l_ekaT

kT ko T }

+20,0(1—0)

@ Term-structure of ATM skew

o for flat term-structure of VS vols, at order 1 in w, skew is given by:

d(ATKT
dinK

w kT —(1—ehT) ko T — (1 —e k)
> {(1 O T sy T T

F
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Practitioner’'s approach — an example

@ Term-structure of volatilities of VS vols

e Sett | Set2 | Set3
Volatilty ot VSival v 130.0% 137.0% 125.0%)
0 28%  29%  32%
Ky 80 120 45
K 035 030 060
pxv 0% o0%  -70%
02 log /log
0
02 1 2 3
04
slope ~-0.35
06
08
4
) 6 12 18 24
Maturity (months) 1.2

@ Term-structure of ATM skew

95%-105% skew.

— Actual
—— Approximate

> Note that factors have no intrinsic
meaning — only vol/vol and spot/vol
correlation functions do have physical
significance.

]
0.35 Skew o —
0% Dgy = —70%, psy =— 36% T

05 1 15 2

>> It is possible to get slow decay of vol-of-vol and skew
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Conclusion

Conclusion

@ Models for exotics need to capture joint dynamics of spot and implied
volatilities

o Calibration on vanilla smile not always a criterion for choosing model &
model parameters

o We need to have direct handle on dynamics of volatilities
o Some parameters cannot be locked with vanillas: need to be able to choose
them
o Availability of closed-form formulzae not a criterion either

e Wrong / unreasonable dynamics too high a price to pay
o What's the point in ultrafast mispricing 7

@ So far, models for the (1-dimensional) set of forward variances. Next
challenge: add one more dimension.

@ One fundamental issue: in what measure does the initial configuration of
asset prices — e.g. implied volatilities — restrict their dynamics ?
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