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m Arbitrage-free semimartingale market model S

risk averse A risk loving L
utility Ua utility Uy
capital x capital x

Ua < Up
I Maximize expected utility from terminal wealth !
E [Ua(:)] — max E[UL(-)] — max
optimal Xﬁ optimal X7L-

m ? Relation between X7A- and X% ?

In certain market models

X7L- stochastically dominates X2, i.e.,

. . : d
X3 + “risk premium” + “noise” @ Xk
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Definition

X,Y two random variables on (2, F,P).

Y (monotone convex) stochastically dominates X, (X <. Y), iff
forall K e R

E[(X - K)4] <E[(Y — K)s]

TFAE:
m X =Y

2 Y DX+ 74 where

Z >0 (“risk premium”),
E [e|]X + Z] = 0 ("noise")
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Complete Market

m M*(S) = {equivalent local martingale measures} = {Q}
m Duality:

dQ dQ
U//4(X74) = yAﬁa Ul/_(X!I:) = yLﬁv ya,yL > 0 (1)

Theorem (DW09)

In a complete 1-period market model, XA <. XL e,
xt@xaiz4c

Corollary

d
In a complete market, X2 <. XL, ie., XL @) X2 +Z+e

Main idea of proof: Extensive use of (1)
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m [ME(S)>1
m Duality (Kramkov-Schachermayer99, Schachermayer01,
reasonable elasticity):

Ua(XF) =Va,  UL(XF) = DL,

where Y,V solve dual problem related to original
optimization problem.

BUT: no nice relation between Y4 and ), as in a complete
market.
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Counterexample: 1-Period Model, 2 stocks

m Incomplete market, agents A, L with power utility
m Two stocks:

m ‘risky” red stock: should be bought by L

m “secure” blue stock: should be bought by A

IK: E [(XA - K)+} ZE [(XL - K)+]

0 5 10 5w » %
m Similar counterexample for 2-Period model with one risky
stock & one risk-free stock and power utility
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Incomplete Market: Our Approach

Incomplete markets

In general: X% does not stochastically dominate Xﬁ

m To check stochastic dominance in incomplete markets, we
consider

special market models (stochastic volatility model, exponential
Lévy model)
special utility functions (power utilities U(x) = ’{1_—_;)
m — exponential Lévy model and power utilities
N-period exponential Lévy model
“essentially” 1-period model

result for continuous time Lévy model by taking limit
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m Agents A, L with power utility functions Uga, U
m Risk-free stock S° = 1, AL,, i.i.d. random variables

Sk= H (1+ALy)=E&(L)y, n=1,...,N, risky stock,

m=1
m wealth process X; evolves according to

s Uy 3 ™
N TN
X() =X X1 Xg/\"'/—\XN

Xi = 7T,'X,'71(1 + ALi) + (1 - 71'i))<i71

Proposition (Samuelson69)

Optimal strategy (m;)N_, of N-period problem is given by
m; = m* € R (7* optimal strategy for corr. 1-period problem).
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m Agents A,L with power utility functions Ua, U
stochastic initial capital-distributions pa, p1; satisfying

HA ¢ fiL-

m One stock S, one risk-free stock normalized to 1, possibly
incomplete market:

mﬁxE [Ui(mrx + (1 —m)x - S)],

where x is initial capital distributed according to pa, resp., pig.

Proposition

fta =c po implies XA < XL
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m N-period Exponential Lévy model:

* * *
Xo =X X1 e XN
T 7rz ¥

T
LTh N TaseA

* *
Ayl Th ywA . L
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m N-period Exponential Lévy model:

* * *
XO = x Xl VL XN
L un un
X=Xt TAOXP = XET T X = X

Corollary

The optimal terminal wealths Xﬁ, X,f, of the N-period Lévy
problem satisfy X7} <c X§.
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Time-continuous Exponential Lévy Model: |dea of Proof

SP=1, risk-free stock
ds?

—1 = dLs, risky stock,
=

m (L:): is Lévy process (stationary, independent increments,
cadlag Markov process).
m Approximate (S;); by step function t — Hgﬂ”(l + AlLp)
We have shown:
Result holds in N-period exponential Lévy model

X{ <e XK

Optimal payoffs Xy of N-period models converge in L! to
optimal payoffs X7 in continuous time model

E [|X,{,‘ - X74|] -0 E [|X,\L, - X¢|] -0
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Exponential Lévy: Main Result & Future Plan

In a time-continuous exponential Lévy model: X7 <. XL, ie.,

h_r . " ‘" M 1 d
X2+ “risk premium” + “noise @ Xk

future plan (should work...):
m Independence of increments was crucial.
m Stationarity of increments was not crucial.

m Attain results for models with conditionally independent
increments, e.g.: BNS
(Kallsen&Muhle-Karbel0)
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m Complete markets: Result Xﬁ <c X-,L- holds for all complete
markets and any utility function Uy < U,.
m Incomplete markets: Xﬁ =c X-% does generally not hold
(counterexample)
m Result holds in exponential Lévy models with power utilities
m Future plan: Result holds in models with conditionally
independent increments and power utilities
m “Strong” numerical evidence suggests that result holds in
stochastic volatility models with correlation
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