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Introduction

@ General approach to reduce the variance in estimating
path-dependent payoff.

@ Could work for other simulations involving numerical
approximations (high-dimensional problems, sensitivities,
SPDE).

Advantages:

Balances the tradeoff between discretisation bias and sample error.
in terms of criteria of computational effort to achieve an ¢ RMS
error (equivalent to variance reduction ratio).

o For standard method with discretisation scheme: O(N;h, 1),
after optimising O(¢3) to achieve ¢ RMS error.

@ For multilevel: once the variance convergence rate 8 > 1,

O(s72).
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Multilevel MC approach

Multilevel Approach for geometric Brownian SDEs

Given a scalar SDE driven by a Brownian diffusion
dS(t) = a(S, t)dt + b(S, t) dW/(t),

to estimate E[P] := E[f(S(T))] where the path-dependent payoff
P can be approximated by P, using 2/ uniform timesteps, we use

L
E[P] = E[Po] + Y E[P—Pi_1].
I1=1

E[P,— P, 1] is estimated using N simulations with same W(t) for
both P/ and P/ 1,
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Multilevel MC approach

Using independent samples for each level, the variance of the
combined estimator is

L L ~ ~
S _ V[P/*P/_l] />0
\Y% =S "Ny, V) = - ’
DRI SRS M
L
and the computational cost is proportional to E N, hfl

1=0

Hence, the variance is minimised for a fixed computational cost by
choosing N, to be proportional to v/ V) hy.
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Multilevel MC approach

MLMC Theorem

Theorem

Let P be a functional of the solution of a stochastic o.d.e., and 13/
the discrete approximation using a timestep hy =2~/ T.

there exist independent estimators \A// based on N; Monte Carlo
samples, with computational complexity (cost) C;, and positive
constants o> %, B, c1, cp, c3 such that

) [EIP - Pl| < i hp
o IE[ﬁo:lv =0
i) E[Y)] = S
E[P/ = P/_l], />0
i) V[Y)] < e N71h)
iV) C/ <c N/ hl_l
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Multilevel MC approach

there exists a positive constant cs such that for any € < e~ 1 there
are values L and N, for which the multilevel estimator

L
V=3 W
1=0

~ 2
has Mean Square Error MSE = E [(Y - E[P]) } < g2
with a computational complexity C with bound

e 2, 8>1,
C<{ cae?(loge)?, pB=1,
e 2-1=-Ale < B<1.
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Multilevel MC approach

Using Milstein discretization for a European call option where
payoff is Lipschitz , first order strong convergence gives

VIP—P] = O(h?) = V| =x h?

and hence total cost to achieve ¢ RMS error is O(¢72) instead of
usual O(e73).
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Extension to jump-diffusion SDEs with constant jump rate

Jump-diffusion SDEs

To capture the characteristics of fat-tail return distribution and the
volatility smile effect, Merton introduced jump-diffusion SDEs to
model stock price:

dS(t) = a(S(t—), t)dt + b(S(t—), t)dW; + c(S(t—), t)dJ,

where the jump item J; is a compound Poisson process

N(t)

Z(Y,- — 1), the jump magnitude Y; satisfies some probability
i=1

distribution, and N(t) is a Poisson process with intensity A,
independent of the Brownian motion.
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Extension to jump-diffusion SDEs with constant jump rate

A jump-adapted Milstein discretisation

To do path simulation of jump-diffusion SDEs, the jump times
need to be added into the discretisation time grid. We use the
so-called jump-adapted approximation proposed by Platen in 1982
[Pla82], which uses superposition of jump times and the fixed-time
grid as the time grid.

In the particular case of ¢(S(t—), t) = S(t—), we propose a
jump-adapted Milstein scheme:

§;+1:§n+ahn+bAWn+%%b(AW37hn) :
o c(5(t-). t)
~ Sy 1+ ——3-=(Yi—1)), whentp1€];
5n+1 _ +1 ( S(t—) ( )) +1
St otherwise.
where J = {71, 72,...,Tm} is jump time set.
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Extension to jump-diffusion SDEs with constant jump rate

Multilevel for jump diffusion when rate is constant

@ use jump-adapted discretisation, adding jump times to
standard uniform timestep discretisation times

@ Milstein approximation of pure diffusion model between
jumps, with conditional Brownian interpolation within each
timestep for barrier and lookback options

@ jump intervals are exponential random variables; the same
values are used for coarse and fine paths
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Extension to jump-diffusion SDEs with constant jump rate

"Midpoint” construction in multilevel approach

AW=AW AW
coarse grid
AW awf AW
i ml m2
jump or f.|xed-—t|me J st first jump or fixed-time grid
yefore midpoint grid after midpoint
Y ¥
'mMpdnﬂj{ﬁ;:Avw AW midpoint
m ml m2

construction
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Extension to jump-diffusion SDEs with constant jump rate

Numerical results European vanilla call under

2
ds(t)/S(t—) = (r — %)dt + odW; + ds,

T=1, 5(0)=100, r=0.05, 0=0.2,
log Y ~ N(—0.1,0.2), A=2; P =exp(—rT) max(S(T)—K,0)

10
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Extension to jump-diffusion SDEs with constant jump rate
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Figure: european vanilla option
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Extension to jump-diffusion SDEs with constant jump rate

Numerical results for variance rate of path-dependent
options

Option numerics for jump-diffusion | proved rate for plain diffusion
Lipschitz | O(h?) Oo(H?)

Asian O(h?) O(h?)

lookback | O(h?) o(h*~9)

barrier O(h3/?) o(h3/279)

digital O(h3/?) o(h3/279)

Table: V; convergence observed numerically for const rate
jump-diffusion SDEs— matches results for standard diffusion
(proved by Giles, Debrabant & RéBler), numerical analysis is yet to
be done.

Yuan Xia Mike Giles Multilevel path simulation for jump-diffusion SDEs



General jump-diffusion SDEs

General jump-diffusion SDEs

There are several directions to generalise the Merton’s model.

@ Introduce dependency between parameters. As a particular
example, we can let jump rate rely on the stock price, namely
A = A(S(t—), t), which is called state-dependent intensity.

@ Replace the jump-diffusion SDE with SDE driven by Lévy

processes which allows infinite frequency of jump within
limited time (done by Dereich &Heidenreich in [DH10]).

The first case is relatively complex for Multilevel implementation
because jump times differ in fine and coarse grids due to bias
introduced to the approximated intensity by the discretisation
scheme.
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General jump-diffusion SDEs

Two approaches for state-dependent intensity

We can have two methods to cope with state-dependent intensity.

@ Thinning method;
In the literature, the case of bounded state-dependent
intensity is discussed by Glasserman & Merener where they
use a thinning approach to simulate the jump-diffusion SDEs
exactly.

e Cumulative intensity method.
For the unbounded case, we have the cumulative distribution
function of jump times. Thus an inverse transform for the
cumulative intensity can be adopted.
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General jump-diffusion SDEs

Thinning method

The idea of thinning is use a constant rate Poisson process to
generate candidate jump time, then accept them with a probability
based on current jump rate.

By the terminology of marked point process, the jump part can be

written as
N(t)
F(V) = [ F(S(t). 2)u(dz,de)
i=1 z€EE"
1
[ [ (S(-)2)ta (2. de)d
0 JzeE*
where A =[0, A(‘C’(;_)’t)], 0<t<T
sup

in which p(-,-) is a random counting measure with intensity

A(S(t—), t), and p*(dz,dt) represents the random measure with
intensity Asyp.
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General jump-diffusion SDEs

Thinning Algorithm

Hence we can have acceptance-rejection procedure:

O Generate the jump-adapted time grid using Poisson process
with constant rate Agyp;

@ Simulate each interval of time grid using appropriate
discretisation scheme;

© When the endpoint 7 is a jump time, generate a uniform
random number U ~ [0, 1]

o lfp= )\(5()\7'—),7')

sup
@ Otherwise neglect the effect of jump.

> U, accept 7 add jump to the state value;

Yuan Xia Mike Giles Multilevel path simulation for jump-diffusion SDEs



General jump-diffusion SDEs

Adopting multilevel

Thinning is easy to incorporate into Multilevel framework:
Numerical result for European call
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General jump-diffusion SDEs

Multilevel treatment

The variance convergence rate is approximately 1. What's wrong?

Jump candidates may not be accepted in both fine and coarse
grids. Similar to the case of digital option, the proportion of those
path where jumps differ is O(h), giving an O(1) value for

P, — P,_1, which leads to V, = O(h).

To improve convergence rate: we change the probability density
under which the expectation is taken to force the fine and coarse
path to jump simultaneously.
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General jump-diffusion SDEs

Multilevel treatment

Write the estimator

Ef[P)] — Ec[Pi—1] = EqlP [ Rr — Pi-1 [ [ Rl

in the measure Q, the acceptance probability for a candidate jump

is % The Radon-Nikodym derivatives are
. 1 ) 1
2ps, if U< =< ; 2pPc, if U< =
_ 2 _ 2
Rf = 1 R. = 1
in which the probabilities are
)‘f(S(T_)a T) )‘C(S(T_)a T)
pr = DV Pc = A U
sup sup
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General jump-diffusion SDEs

Numerical result, change of measure
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General jump-diffusion SDEs

Numerical result, change of measure
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Figure: european vanilla option
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General jump-diffusion SDEs

Conclusion

Multilevel approach can be extended to scalar jump-diffusion
SDEs by using jump-adapted schemes.

The variance convergence order is maintained in the constant
rate case.

Extra amendment is needed in the state-dependent rate case
by thinning and change of measure.

Furthermore we have successfully used the cumulative
intensity method to cope with the case of unbounded intensity.

Plan to apply to variance gamma and other processes.

Thanks beneficial discussion with Peter Tankov.
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General jump-diffusion SDEs
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General jump-diffusion SDEs
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