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Optimal Transport in Mathematics

@ Optimal transport, first introduced by G. Monge in his work
“Théorie des déblais et des remblais" (1781).

@ Has recently spread out in various mathematical domains
as highlighted by the last Fields medallist C. Villani. Let us
cite

@ Analysis of non-linear (kinetic) partial differential equations
arising in statistical physics such as McKean-Vlasov PDE.

Mean-field limits, convergence of particle’s methods.

Optimal fundamental inequalities (Poincaré, (Log)-Sobolev,

Talagrand...)

Study of Ricci flows in differential geometry.

e o



Optimal Transport in Quantitative Finance

@ Despite these large ramifications with analysis and
probability, optimal transport has not yet attracted the
attention of practitioners in financial mathematics.

@ However, various long-standing problems in quantitative
finance can be tackled using the framework of optimal
transport. In particular,

o Calibration of (hybrid) models on market smiles using
particle’s method.

o Computation of efficient model-independent bounds for
exotic options.

= Leads to a nice modification of optimal transport [“Martingale
version" of MK]



Optimal Transport in a Nutshell (1)

@ Payoff c depending on two assets Sy, S».

@ The distributions of S; and S, are known from Vanilla
options

P/(K) = 9gC/(T,K)
@ Monge-Kantorovich'

MK, = inf EP[c(Sy, S
¢ P,Sy~P!, Sy~ P2 [ ( ! 2)]

'Sy ~ P! means Law(S;) = P



Optimal Transport in a Nutshell (2): Kantorovich duality

@ (Linear) duality (Minimax):

MK;= sup  EF'[u(Sy)] + B [ua(S2)]
ug(),ua(-)

U (S1) + U2(S2) < ¢(St, Sz) , P! x PP as

@ The dual bound can be statically replicated by holding
European options with payoffs uy(S1) and ux(S,) with
market prices EF [u1(S;)] and E¥*[u5(S,)]. The intrinsic
value of the portfolio u1(S1) + uz(Sy) is lower than the
payoff ¢(Sy, So).



Martingale Optimal Transport (1)

@ Payoff ¢(Sy,, ..., St,) depending on one asset evaluated at
t1 <. < tn.

@ No-arbitrage condition: S; is required to be a (local)
positive martingale 2.

@ The distribution of S;, is known from Vanilla options at ;.
@ Primal (Lower bound):

P = |nf }EP[C(SH Stn)]

St/‘ N[Pji’]E][P;71 [S[[]:Sf,'71

2We take zero interest rate, no dividends for the sake of simplicity. This can
be easily relaxed.



Martingale Optimal Transport (2)

@ Feasibility of {P: S, ~P',E} [S;]=S;_,]}: Convex order
[Kellerer].

@ Convex order: P! < P2 if EF'[(S;, — K)T] < EF*[(Sy, — K)T].

@ Dual®:

(U/'())1<:<n( ())1<:<n§ [I /)]

n

> ui S,)+ZA (Si,...,S8-1)(Si— Si—1) < ¢(S1,...,Sn)
i=1 i=1

@ Financial interpretation: sub-hedging strategy €p static
portfolio of Vanillas.

3@ Markov assumption: A;(Sy, ..., Si—1) = Ai(Si_1)




“Martingale version" of MK duality

Theorem (Beiglbéck, PHL, Penkner)

Assume thatP', ... P" are Borel probability measures on R
such thatP! < ... <P". Letc: R — (—oo,o0] be a lower
semi-continuous function such that

c(S1,--,Sn) = K- (1+St[+... +[Snl) (1)

on R for some constant K. Then there is no duality gap, i.e.
P=D= 1\7IT(C. Moreover, the primal value P is attained, i.e.
there exists a martingale measure P with marginals (P, ..., P")
such that P = EF[c]. The dual supremum is in general not
attained.




MK, versus MK,

@ MK, > MK, = tight bounds.

MK¢ MK¢
infp 5, ~P1 5y~ P2 E7[¢(S1, Sp)] infp s, ~P1 5~ P2 E[S,|S;]=5; B’ [c(Sy, S,)]
SUPy, up 7 [0n (1] + EF [0(S,)] SUPyy 0 BT 04(S1)] + B [up(S2)]
u1(S1) + Ua(S) < (S, S2) u1(S1) + Ua(Sp) + A(S1)(S2 — S1) < ¢(S1, Sp)
sup, EZ [u(Sp)] + EF [WO(SI | supy EF [u(Sp)] + EF [(e(Sy, ) — u(-)™™(Sp)] ®

@ Important results in optimal transport are derived for the
quadratic cost ¢(Sy, Sz) = |S2 — S1|2 [see Brenier’s
Theorem].

@ In the Martingale version, the quadratic cost is degenerate:

EF[(S, — $1)?] = E¥*[S2] — EF'[S2] V P mart. & Sj ~ P!

— Important results in MK need to be rewritten for MK!

4UC(S1) = iI’Tfs2 C(S1782) - U(Sz)
Sfenv: Jargest convex function smaller than or equal to f




Optimal Transport on the real line

We note F; the cumulative distribution associated to P4. Let
c(Sy, S2) = ¢(S; — Sy) be a C! strictly concave.

Proposition
The upper bound is given by [Fréchet copula]

1
MKy — / c(F; 1 (u), Fy ' (u))du
0

The (optimal) upper bound is reached for

bo(y) = /OyC/(F1_1F2(Z)7Z)dZ
th(x) = c(x,Fy Fi(x)) - U(F;y ' Fi(x))




Brenier’s theorem

Let ¢(Sy, Sz) = ¢(Sz — Sy) be a C! strictly convex.

Theorem (Brenier)

There exists a unique optimal transference plan for the MK
transportation problem and it has the form

P*(S1,82) = 5(S2 — T(Sy))P(Sy), TuPy =P,

and T(x) = x — V¢~ (V) for some c-concave function «. The
optimal lower bound is given by

MK = / ~ olx, T(x))P' (x)dx
0

On the real line, T(x) = F; F1(x): monotone rearrangement
map.



Martingale version of Brenier’s theorem (1) [Hobson-Neuberger],
[Beiglbock-Juillet]

Let ¢(Sy, S2) = ¢(S, — Sy) be a C' function such that ¢’ is
strictly concave. Suppose P! < P2,

Theorem (Beiglbdck-Juillet)

There exists a unique optimal transference plan for MK¢:

T2(S1) — S
T2(S1) — Th(S1)

St = T1(S1) \ p
T2(S1) - T1(31)) PS1)

P*(Sy, Sp) = (5(82 — T1(S1))

+6(S2 — T2(S1))

The optimal upper bound is given by

/°° (T2(x) — x) e(x, T1(x)) + (x = T1(x)) c(x, T2(x))
0 To(x) — T1(x)

P'(x)dx




Explicit characterization of 71, 7, [PHL]

@ The maps (Ty, T») are solutions of the equations
(T1(x) < x < Ty(x), Ty, T, C' functions)

7' ey, Ta) — €1y, Th(¥))

—1 -1 _
(T (0.%) = oz (0. ) = /r;‘(x) To(y) — T1(y) »
LT ') = T (%) B , 70 - T B i
0 ey e T T T o)

@ Semi-static superreplication:

_ 770 oy, Toa) — o1 (v, T (¥))
= e w0 - [ AT
(e, Ty () = (T3 () (x = Ta(x)) = (6(x, Ta(x)) — ta(To(x)) (x — T3(x))
T1(x) = Ta(x)
(e, Ty (%) = ta(T3 (1)) — (c(x, Ta(x)) — ta(To(x))
T () — To(x)

duy(x)
dx

uy(x) =

A(x) =




@ Spread option (S, — Sy)T [Fréchet]:

MK, = / OO(T(X) —Xx)TP'(x)dx , T(x) = Fy 'Fi(x)
0

@ Forward-start options [Hobson-Neuberger] (S;, — St,)*:

e [T (Ta(x) — Xx) (x — T1(X)) 14
Mie = /0 To(x) — T1(x) P (X

® Variance swap c(Sy, Sy) = In® g2 [PHLI:
1

* (Ta(x) = x)In® B 4 (x — Ty(x)) In® 22X
J 720~ [ (0 P (a



Optimal Transport and Hamilton-Jacobi (1)

Here ¢(S1, Sz) := ¢(S»> — Sy), cis strictly concave.

Theorem (see Villani, Topics in Optimal Transport, AMS)

MK, = sup —EF' [1(0, S1)] + E¥*[u(1, )]

where the supremum is taken over all continuous viscosity
solutions u to the following HJ equation:

owu(t,x) +c*(Vu) =0, c*(p) := sn;p{pq —c(q)}

Proof uses Hopf-Lax’s formula:
—U(O, X) = Ir})f C(y - X) - U(1,y)

Guess: Martingale optimal transport — HJB.
See Nizar’s talk: Generalization of Mikani-Thiellen approach.



Hopf-Lax’s formula: Reminder

@ Dynamic programming:

1 . 1 .
u(t,x):slgpu(1,x+/t C(s)ds)—/t c(é(s))ds

@ Maximization over ¢:  is a constant g.

u(t,x)=supu(l,x+q(1—-1t)—c(q)(1 -1
q

© Sety = x+ q(1 —t). Get the Hopf-Lax solution:

u(t, x) = supu(1, y) — c(ﬁ “X-p
y —t

©Q Fort =0, —u(0, ") is the c-transform of u(1,):
_U(O’X) = |9f C(y - X) - U(1 7y)



Time-continuous limit

@ Robust super-hedging price of a payoff given vanilla
options (St ~ pj, () = EF[A]):

.
Un(§) :==inf{Up - 34,3\ U0+/ A4dSs
0
n n
+D (S = > (M) = €, VP Mart.}
i=1 i=1

Measures are singular: Quasi-sure analysis (see Nizar’s talk)



Duality in continuous-time

Theorem (Galichon, PHL, Touzi)

Let¢ € UC(Qs,) be such that ¢+ € LY(P) for all P Mart.. Then,
for all yv = (u;)i € M(R4.) in convex order:

Up(§) = inf sup{ZmHEPs Zx(st,

Ai GAUC P Mart. i—1

Robust version of [Kramkov, Schachermayer] duality.
If we can apply formally a min-max duality,

Ur(€)= sup  E°[¢]

PeMart. St,»'\“/J«i

= Martingale optimal transport problem.
= Give models calibrated to vanilla options.



Models calibrated to Vanillas: Some examples

@ Local volatility model [Dupire]:
dfi = opc(t, fr)dW;
ooe(t, F)? = 22%2((2’?)
@ Local stochastic volatility models:
dfi = o(t f)ardW;
oe(t, )2 = o(t, f)?E[&E|f = f]
Equivalent to

o = owe(t, )t

\ El&3|f]

= Non-linear McKean SDEs for which optimal transport
shows up again! [see Tanaka’s approach for Boltzmann
equation]

aw;



Definition

aX; = b(t, Xt,Pt)dt—i- 0'(['7 Xt,Pt) - dW;

with W; a d-dimensional Brownian motion and P; = Law(X}).

@ Example: McKean-Vlasov SDEs:

b= (b(t.x. ). [ Bty yixo)dy

i=1,...,

UE{U;(t,X,IF’t)}i:1 ..... nj=1,.d = /Uf(hX,Y)P(t;Y\Xo)dy



Existence result

Theorem (Sznitman)

Letb: Rt x R" x Po(R") = R" and o : R x R" x Py — R™d
be Lipschitz continuous functions for the sum of canonical
metric on R" and the MK metric d on the set P, of probability
measures with finite second order moments. Then the
non-linear SDE

dXt = b(t7 Xtv]P)t) + U(tv Xtv]Pt)th b XO eR"

where Ps denotes the probability distribution of Xs admits an
unique solution such that E(sup;r |X¢|P) < oo for all p > 2.

Open problem: Existence of LSVMs?
Proof: fixed point.



Monte-Carlo simulation: interacting particle system

@ Replace P; by its empirical measure: Let X, ... XV be i.i.e.
with law Py PY = § S5, 6. Note that PY' is a random
probability measure.

@ N interacting bosons (i.e. symmetric):

SN s(nf —Inf)
S (@)2s(nl —Inf))

dfl = flow(t, f[)\l a,dw}
— Needs to be replaced §(-) by a regularizing kernel.

@ Propagation of chaos for McKean-Vlasov SDEs: If at t = 0,
X(’)’N are independent particles then as N — oo, for any
fixed t > 0, the Xt”N are asymptotically independent and

their empirical measure PN converges in distribution
towards the true measure P;.



Algorithm [Guyon-PHL]

@ Initialize k = 0 and set o(t, f) = 227 for all
t € [kA, (k + 1)A].

@ Simulate the N processes {f{,al}i—1 _n from t = kKA to
(k + 1)A using a discretization scheme such as Euler.

© Compute the local volatility o((k + 1)A, f) on a space-grid
f € [f730, 172] using

O'Dup(t7 f)

SN (@)2o (1)
Sy (i 1)

o(t,f) =

Seto(t,f)=o((k+1)A,f)forallt € [(k+1)A, (k+2)A].
©Q k:= k+ 1. lterate step 2 and 3 up to the maturity date T.

Convergence issue: prove the propagation of chaos for
LSVMs?



Local Bergomi model

> DAX market smiles (30-May-11):

Fit of the market smile for T = 4Y

‘ 2710 particles

\ 2712 particles
«==2M3 particles |
=Mkt
——No calibration

\ Approx




Local stochastic volatility model: Existence under question

@ The existence of LSV models for a given market smile is
not at all obvious although this seems to be a common
belief in the quant community.

@ Checked our algorithm with a volatility-of-volatility
o = 350%. Our algorithm converge with N = 213 particles
but the market smile is not properly calibrated:

Fit of the market smile for T = 4y
VolVol = 350%




Digression: Talagrand-like inequality

@ Talagrand inequality:
2
T(\) : VP! Wy(P',P?)? < XH(]P>1|]P>2)
Relative entropy:
0 pr. dP . . 0
H(PP") = E'[In W] , P is absolutely continuous w.r.t. P’

= +o00, otherwise

@ Villani-Otto, Ledoux-al: LSI(A) — T(A) [Proof: dual
expression for the Talagrand inequality + contraction of HJ ]

@ A similar dual expression appears in mathematical finance
= (Martingale) Weighted Monte-Carlo.



(Martingale) Weighted Monte-Carlo [Avellaneda-al], [PHL]

@ Consider instruments c;, a=1,..., N, with bid/ask
market prices c,/Ca:

Cc, < EP[Ca] < Ca

@ M(Py,...,Pplcy, ..., cn): the set of all martingale
measures P on (RY)" with prescribed marginals {P;}i—1__»
and satisfying (2).
@ Primal:
P, = sup{Ef[c] : P € M(Py,...,Pylcy,...,cn) , H(P,P?) < A}
@ Some particular limits:
P, = MK,
PO = inf{H(P,P°) :P e M(Py,...,Pslcy,...,cn)}



(Martingale) Weighted Monte-Carlo [PHL]

D, = inf _
(Ui(-))1<i<n(Ai(-))1<i<nNERT Ag€RT ,CERT

n ‘ N B
D EP U]+ (RaCa — Aucy)
i=1 a=1

_|_C ()\ +1In EPO[eC_1 (0*22:1 (Ka*Aa)Ca*Xxg U= AI(S/*SI—1))]>



(Martingale) Weighted Monte-Carlo [PHL]

There is no duality gap D) = P,. The supremum is attained by
the optimal measure P* given by

dP* o) (=20 (Ra—A3)ca= S0y up =374 AF(S—Si-1))

apo Epo[e(C*)A(c—zg:1(K;—A;)ca—zf:1 U= A;ﬂ(s,—s,-,1))]

where ((uf()1<i<n (87 (Di<i<n Ny, Ry, C*) achieves the
infimum in D).




P..: Semi-Infinite Linear Programming Approach

@ Dual:
inf EP ull + /\ - /\ C
(Ui( ))1</<n (A())2<I<n /\a>o/\ >OZ [ I] Z ala —

subject to the constraints
SRS IYCEERED LRVSLEE

@ Deltas A; are decomposed over a finite-dimensional basis:
Ai(So, -+, Si—1) = Y _[A1Pep(So, -+, Sic1)
b

@ Similarly, European options with payoffs u; are
decomposed over a finite set of call options:

S) =Y ul’(Si— K°)*



P..: Semi-Infinite Linear Programming Approach

@ Leads to a semi-infinite linear program:

U = min c'x A(S)x > B(S)V S e (Ry)?
X n

@ Our algorithm will produce an upper bound

Dbasis > D=P



Dealing with oo constraints: Cutting-plane method

Let G ¢ (R,)?, |G| < oo be a given initial grid and (ex) a
sequence of non-negative numbers converging to 0. Let
TOL > 0 be a suitable convergence tolerance and set k = 0.

@ Solve the relaxed finite-dimensional LP: optimal solution
X=X

U > min cfx
XERN

A(S)x > B(S)VSe G
© Determine the constraint violation:
0= minSGRg A(S)x* — B(S)
© If 5§ > —TOL then stop. Otherwise add the constraints
A(S)x* — B(S) < d + ek
©Q Gotostep 1.



Algorithm for the risk-neutral WMC: calibration and pricing

@ Simulate Monte-Carlo paths under the measure PP.

© Solve the non-linear programming problem (2) using for
example a gradient-based optimization routine (Note that
this problem is strictly convex and admits an unique
solution.

© The exotic option price with payoff ¢ is given by D,. Note
that the optimal measure P* as given by Equation (2) can
be used to value any exotic options depending on
(S1,---, Sn).



Pricing variance swap on an illiquid stock (1)

@ Assumption: Diffusion — VS = —2E([In S7].
@ Input: finite set of strikes (with K = 0).
@ Dual:

n
min v+ wiC(K); 1/+Zw,~(8—K,~)+2—%InS, VSe

i=1 i=1

@ Input: Smile DAX 5/07/2011 T = 1.5Y , static replication:
34.06.

Strike range | Lower | Upper | Mid

[0.15—-2.50] | 33.32 | 34.74 | 34.06
[0.50 —1.50] | 30.99 | 40.35 | 35.67
[0.80 —1.20] | 27.20 | 54.94 | 41.07
[0.90 —1.10] | 24.89 | 62.87 | 43.88




llliquid Fx smile

@ Input: Smile 1 & 2, ATM smile 3, call spread on 3.
@ Dual:
2 n o
min v+ > Wl0(K) +wsC¥(SY) + ACS®

(W)j=t,2ii=1,....n Vw3, A =1 i=1

2 n
2D I CE ISR
j=1 i=1

+A ((S? - 0.9553S") " — (S? —1.0553S")") > (S — KS")*

@ Fact: constraints are piecewise linear w.r.t. Sy, So:
Extremal points: prob. with a discrete support.



lliquid Fx smile (1)

> oaTM = 27
> Call Spread: ¢(0.95) = 25.5,5(1.05) = 28.5

lliquid Fx Smile
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35.00

tle

s Ti

w—Smile1
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A

30.00 : —Smile2

A Smile3
25.00
20.00

15.00

05 06 0.7 0.8 09 1 11 12 13 14 15
Axis Title



Cliquet: (g—f — K)+

@ Eurostock implied volatilities(2-Feb-2010). t; = 1 year and
b = 1.5 years.

@ Parameters for the Bergomi model: o = 2.0, 6 = 22.65%,
ki =4, ko = 0.125, p = 34.55%, psx = —76.84%,
psx = —86.40%.

40.00 4

30.00

20.00 A

10.00

0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40




Asian option with monthly returns 1Y (1)

@ Input: DAX 5/09/2011.

@ Parameters for the Bergomi model: 6 = 25%, k; = 8,

ko = 0.3, p = 0%, psx = —80%, psx = —48%.

LV 8.36%

Bergomi © 9.23%

Bergomi+LV 8.71%
Upper/Lower 9.42%/5.47%

Minimal entropy martingale 8.32%
WMC 8.84%/7.51%

Scalibrated on VS
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