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Optimal Transport in Mathematics

Optimal transport, first introduced by G. Monge in his work
“Théorie des déblais et des remblais" (1781).
Has recently spread out in various mathematical domains
as highlighted by the last Fields medallist C. Villani. Let us
cite

Analysis of non-linear (kinetic) partial differential equations
arising in statistical physics such as McKean-Vlasov PDE.
Mean-field limits, convergence of particle’s methods.
Optimal fundamental inequalities (Poincaré, (Log)-Sobolev,
Talagrand...)
Study of Ricci flows in differential geometry.



Optimal Transport in Quantitative Finance

Despite these large ramifications with analysis and
probability, optimal transport has not yet attracted the
attention of practitioners in financial mathematics.
However, various long-standing problems in quantitative
finance can be tackled using the framework of optimal
transport. In particular,

Calibration of (hybrid) models on market smiles using
particle’s method.
Computation of efficient model-independent bounds for
exotic options.

⇒ Leads to a nice modification of optimal transport [“Martingale
version" of MK]



Optimal Transport in a Nutshell (1)

Payoff c depending on two assets S1, S2.
The distributions of S1 and S2 are known from Vanilla
options

Pi(K ) = ∂2
KC i(T ,K )

Monge-Kantorovich1

MKc = inf
P,S1∼P1,S2∼P2

EP[c(S1,S2)]

1S1 ∼ P1 means Law(S1) = P1



Optimal Transport in a Nutshell (2): Kantorovich duality

(Linear) duality (Minimax):

MKc = sup
u1(·),u2(·)

EP1
[u1(S1)] + EP2

[u2(S2)]

u1(S1) + u2(S2) ≤ c(S1,S2) , P1 × P2 a.s

The dual bound can be statically replicated by holding
European options with payoffs u1(S1) and u2(S2) with
market prices EP1

[u1(S1)] and EP2
[u2(S2)]. The intrinsic

value of the portfolio u1(S1) + u2(S2) is lower than the
payoff c(S1,S2).



Martingale Optimal Transport (1)

Payoff c(St1 , . . . ,Stn ) depending on one asset evaluated at
t1 < . . . < tn.
No-arbitrage condition: St is required to be a (local)
positive martingale 2.
The distribution of Sti is known from Vanilla options at ti .
Primal (Lower bound):

P = inf
Sti∼P

i ,EP
ti−1

[Sti ]=Sti−1

EP[c(St1 , . . . ,Stn )]

2We take zero interest rate, no dividends for the sake of simplicity. This can
be easily relaxed.



Martingale Optimal Transport (2)

Feasibility of {P : Sti ∼ Pi ,EP
ti−1

[Sti ] = Sti−1 ]}: Convex order
[Kellerer].
Convex order: P1 ≤ P2 if EP1

[(St1 −K )+] ≤ EP2
[(St2 −K )+].

Dual3 :

D = inf
(ui (·))1≤i≤n,(∆i (·))1≤i≤n

n∑
i=1

EPi
[ui (Si )]

n∑
i=1

ui (Si ) +
n∑

i=1

∆i (S1, . . . ,Si−1)(Si − Si−1) ≤ c(S1, . . . ,Sn)

, P1 × . . .× Pn a.s.

Financial interpretation: sub-hedging strategy
⊕

static
portfolio of Vanillas.

3⊕ Markov assumption: ∆i (S1, . . . ,Si−1) = ∆i (Si−1)



“Martingale version" of MK duality

Theorem (Beiglböck, PHL, Penkner)

Assume that P1, . . . ,Pn are Borel probability measures on R+

such that P1 ≤ . . . ≤ Pn. Let c : Rn
+ → (−∞,∞] be a lower

semi-continuous function such that

c(S1, . . . ,Sn) ≥ −K · (1 + |S1|+ . . .+ |Sn|) (1)

on Rn
+ for some constant K . Then there is no duality gap, i.e.

P = D ≡ M̃Kc . Moreover, the primal value P is attained, i.e.
there exists a martingale measure P with marginals (P1, . . . ,Pn)
such that P = EP[c]. The dual supremum is in general not
attained.



MKc versus M̃Kc

M̃Kc > MKc =⇒ tight bounds.
MKc M̃Kc

infP,S1∼P1,S2∼P2 EP[c(S1, S2)] infP,S1∼P1,S2∼P2,E[S2|S1 ]=S1
EP[c(S1, S2)]

supu1,u2
EP1

[u1(S1)] + EP2
[u2(S2)] supu1,u2,∆ EP1

[u1(S1)] + EP2
[u2(S2)]

u1(S1) + u2(S2) ≤ c(S1, S2) u1(S1) + u2(S2) + ∆(S1)(S2 − S1) ≤ c(S1, S2)

supu EP2
[u(S2)] + EP1

[uc (S1)]4 supu EP2
[u(S2)] + EP1

[(c(S1, ·)− u(·))conv(S1)] 5

Important results in optimal transport are derived for the
quadratic cost c(S1,S2) = |S2 − S1|2 [see Brenier’s
Theorem].
In the Martingale version, the quadratic cost is degenerate:

EP[(S2 − S1)2] = EP2
[S2

2 ]− EP1
[S2

1 ] ∀ P mart. ⊕ Si ∼ Pi

=⇒ Important results in MK need to be rewritten for M̃K!
4uc(S1) ≡ infS2 c(S1,S2) − u(S2)
5f conv: largest convex function smaller than or equal to f



Optimal Transport on the real line

We note F1 the cumulative distribution associated to P1. Let
c(S1,S2) = c(S2 − S1) be a C1 strictly concave.

Proposition
The upper bound is given by [Fréchet copula]

MKc =

∫ 1

0
c(F−1

1 (u),F−1
2 (u))du

The (optimal) upper bound is reached for

û2(y) =

∫ y

0
c′(F−1

1 F2(z), z)dz

û1(x) = c(x ,F−1
2 F1(x))− û2(F−1

2 F1(x))



Brenier’s theorem

Let c(S1,S2) = c(S2 − S1) be a C1 strictly convex.

Theorem (Brenier)
There exists a unique optimal transference plan for the MKc
transportation problem and it has the form

P∗(S1,S2) = δ (S2 − T (S1))P1(S1),T#P1 = P2

and T (x) = x −∇c−1(∇ψ) for some c-concave function ψ. The
optimal lower bound is given by

MKc =

∫ ∞
0

c(x ,T (x))P1(x)dx

On the real line, T (x) = F−1
2 F1(x): monotone rearrangement

map.



Martingale version of Brenier’s theorem (1) [Hobson-Neuberger],
[Beiglböck-Juillet]

Let c(S1,S2) = c(S2 − S1) be a C1 function such that c′ is
strictly concave. Suppose P1 ≤ P2.

Theorem (Beiglböck-Juillet)

There exists a unique optimal transference plan for M̃Kc :

P∗(S1,S2) =

(
δ(S2 − T1(S1))

T2(S1)− S1

T2(S1)− T1(S1)

+δ(S2 − T2(S1))
S1 − T1(S1)

T2(S1)− T1(S1)

)
P1(S1)

The optimal upper bound is given by∫ ∞
0

(T2(x)− x) c(x ,T1(x)) + (x − T1(x)) c(x ,T2(x))

T2(x)− T1(x)
P1(x)dx



Explicit characterization of T1, T2 [PHL]

The maps (T1,T2) are solutions of the equations
(T1(x) ≤ x ≤ T2(x), T1,T2 C1 functions)

c2(T−1
1 (x), x)− c2(T−1

2 (x), x) =

∫ T−1
1 (x)

T−1
2 (x)

c1(y, T2(y))− c1(y, T1(y))

T2(y)− T1(y)
dy

P2(x) =
T2T−1

1 (x)− T−1
1 (x)

T2T−1
1 (x)− x

P1(T−1
1 (x))|T

′−1
1 (x)| +

T−1
2 (x)− T1T−1

2 (x)

x − T1T−1
2 (x)

P1(T−1
2 (x))|T

′−1
2 (x)|

Semi-static superreplication:

du2(x)

dx
= c2(T−1

1 (y), x)−
∫ T−1

1 (x)

0

c1(y, T2(y))− c1(y, T1(y))

T2(y)− T1(y)
dy

u1(x) =
(c(x, T1(x))− u2(T1(x))) (x − T2(x))− (c(x, T2(x))− u2(T2(x))) (x − T1(x))

T1(x)− T2(x)

∆(x) =
(c(x, T1(x))− u2(T1(x)))− (c(x, T2(x))− u2(T2(x)))

T1(x)− T2(x)



Examples

Spread option (S2 − S1)+ [Fréchet]:

MKc =

∫ ∞
0

(T (x)− x)+P1(x)dx , T (x) = F−1
2 F1(x)

Forward-start options [Hobson-Neuberger] (St2 − St1)+:

M̃K2 =

∫ ∞
0

(T2(x)− x) (x − T1(x))

T2(x)− T1(x)
P1(x)dx

Variance swap c(St2 ,St1) = ln2 St2
St1

[PHL]:

∫ ∞
0

(T2(x)− x) ln2 T1(x)
x + (x − T1(x)) ln2 T2(x)

x
T2(x)− T1(x)

P1(x)dx



Optimal Transport and Hamilton-Jacobi (1)

Here c(S1,S2) := c(S2 − S1), c is strictly concave.

Theorem (see Villani, Topics in Optimal Transport, AMS)

MKc = sup−EP1
[u(0,S1)] + EP2

[u(1,S2)]

where the supremum is taken over all continuous viscosity
solutions u to the following HJ equation:

∂tu(t , x) + c∗(∇u) = 0 , c∗(p) := sup
q
{pq − c(q)}

Proof uses Hopf-Lax’s formula:

−u(0, x) = inf
y

c(y − x)− u(1, y)

Guess: Martingale optimal transport =⇒ HJB.
See Nizar’s talk: Generalization of Mikani-Thiellen approach.



Hopf-Lax’s formula: Reminder

1 Dynamic programming:

u(t , x) = sup
ζ̇

u(1, x +

∫ 1

t
ζ̇(s)ds)−

∫ 1

t
c(ζ̇(s))ds

2 Maximization over ζ̇: ζ̇ is a constant q.

u(t , x) = sup
q

u(1, x + q(1− t))− c(q)(1− t)

3 Set y = x + q(1− t). Get the Hopf-Lax solution:

u(t , x) = sup
y

u(1, y)− c(
y − x
1− t

)(1− t)

4 For t = 0, −u(0, ·) is the c-transform of u(1, ·):

−u(0, x) = inf
y

c(y − x)− u(1, y)



Time-continuous limit

Robust super-hedging price of a payoff given vanilla
options (Sti ∼ µi , µ(λ) := Eµ[λ]):

Uµ
n (ξ) := inf{U0 : ∃∆,∃λ : U0 +

∫ T

0
∆sdSs

+
n∑

i=1

λi (Sti )−
n∑

i=1

µi (λi ) ≥ ξ , ∀ P Mart.}

Measures are singular: Quasi-sure analysis (see Nizar’s talk)



Duality in continuous-time

Theorem (Galichon, PHL, Touzi)

Let ξ ∈ UC(ΩS0) be such that ξ+ ∈ L1(P) for all P Mart.. Then,
for all µ := (µi)i ∈ M(R+) in convex order:

Uµ
n (ξ) = inf

λi∈ΛµUC

sup
P Mart.

{ n∑
i=1

µi(λi) + EP[ξ − n∑
i=1

λi(Sti )
]}
.

Robust version of [Kramkov, Schachermayer] duality.
If we can apply formally a min-max duality,

Uµ
n (ξ) = sup

P∈Mart. , Sti∼µi

EP[ξ]

⇒ Martingale optimal transport problem.
⇒ Give models calibrated to vanilla options.



Models calibrated to Vanillas: Some examples

Local volatility model [Dupire]:

dft = σloc(t , ft )dWt

σloc(t , f )2 = 2
∂tC(t , f )

∂2
f C(t , f )

Local stochastic volatility models:

dft = σ(t , ft )atdWt

σloc(t , f )2 = σ(t , f )2E[a2
t |ft = f ]

Equivalent to

dft = σloc(t , f )
at√

E[a2
t |ft ]

dWt

=⇒ Non-linear McKean SDEs for which optimal transport
shows up again! [see Tanaka’s approach for Boltzmann
equation]



McKean SDEs

Definition

dXt = b(t ,Xt ,Pt )dt + σ(t ,Xt ,Pt ) · dWt

with Wt a d-dimensional Brownian motion and Pt = Law(Xt ).

Example: McKean-Vlasov SDEs:

b ≡
(

bi(t , x ,Pt )
)

i=1,...,n
=

∫
bi(t , x , y)p(t , y |X0)dy

σ ≡ {σi
j (t , x ,Pt )}i=1,...,n;j=1,...d =

∫
σi

j (t , x , y)p(t , y |X0)dy



Existence result

Theorem (Sznitman)

Let b : R+ × Rn × P2(Rn)→ Rn and σ : R+ × Rn × P2 → Rn×d

be Lipschitz continuous functions for the sum of canonical
metric on Rn and the MK metric d on the set P2 of probability
measures with finite second order moments. Then the
non-linear SDE

dXt = b(t ,Xt ,Pt ) + σ(t ,Xt ,Pt )dWt , X0 ∈ Rn

where Ps denotes the probability distribution of Xs admits an
unique solution such that E(supt≤T |Xt |p) <∞ for all p ≥ 2.

Open problem: Existence of LSVMs?
Proof: fixed point.



Monte-Carlo simulation: interacting particle system

Replace Pt by its empirical measure: Let X 1
t , . . .X

N
t be i.i.e.

with law Pt : PN
t = 1

N
∑N

i=1 δX i
t
. Note that PN

t is a random
probability measure.
N interacting bosons (i.e. symmetric):

df i
t = f i

t σloc(t , f i
t )

√√√√ ∑N
j=1 δ(ln f j

t − ln f i
t )∑N

j=1(aj
t )

2δ(ln f j
t − ln f i

t )
ai

tdW i
t

→ Needs to be replaced δ(·) by a regularizing kernel.
Propagation of chaos for McKean-Vlasov SDEs: If at t = 0,
X i,N

0 are independent particles then as N →∞, for any
fixed t > 0, the X i,N

t are asymptotically independent and
their empirical measure PN

t converges in distribution
towards the true measure Pt .



Algorithm [Guyon-PHL]

1 Initialize k = 0 and set σ(t , f ) =
σDup(0,f )

a0
for all

t ∈ [k∆, (k + 1)∆].
2 Simulate the N processes {f i

t ,a
i
t}i=1,...,N from t = k∆ to

(k + 1)∆ using a discretization scheme such as Euler.
3 Compute the local volatility σ((k + 1)∆, f ) on a space-grid

f ∈ [f min
k∆ , f max

k∆ ] using

σ(t , f ) =
σDup(t , f )√∑N

j=1(a(j)
t )2δt,N (f (j)

t −f )∑N
j=1 δt,N (f (j)

t −f )

Set σ(t , f ) ≡ σ((k + 1)∆, f ) for all t ∈ [(k + 1)∆, (k + 2)∆].
4 k := k + 1. Iterate step 2 and 3 up to the maturity date T .

Convergence issue: prove the propagation of chaos for
LSVMs?



Local Bergomi model

B DAX market smiles (30-May-11):
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Local stochastic volatility model: Existence under question

The existence of LSV models for a given market smile is
not at all obvious although this seems to be a common
belief in the quant community.
Checked our algorithm with a volatility-of-volatility
σ = 350%. Our algorithm converge with N = 213 particles
but the market smile is not properly calibrated:
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Conjecture: LSVM exists only for a range of volatility-of-volatility
parameters.



Digression: Talagrand-like inequality

Talagrand inequality:

T(λ) : ∀P1 W2(P1,P2)2 ≤ 2
λ

H(P1|P2)

Relative entropy:

H(P|P0) = EP[ln
dP
dP0 ] , P is absolutely continuous w.r.t. P0

= +∞ , otherwise

Villani-Otto, Ledoux-al: LSI(λ) −→ T(λ) [Proof: dual
expression for the Talagrand inequality + contraction of HJ ]
A similar dual expression appears in mathematical finance
⇒ (Martingale) Weighted Monte-Carlo.



(Martingale) Weighted Monte-Carlo [Avellaneda-al], [PHL]

Consider instruments ca , a = 1, . . . ,N, with bid/ask
market prices ca/ca:

ca ≤ EP[ca] ≤ ca

M(P1, . . . ,Pn|c1, . . . , cN): the set of all martingale
measures P on (Rd

+)n with prescribed marginals {Pi}i=1,...,n
and satisfying (2).
Primal:

Pλ ≡ sup{EP[c] : P ∈M(P1, . . . ,Pn|c1, . . . , cN) , H(P,P0) ≤ λ}

Some particular limits:

P∞ = MKc

P0 = inf{H(P,P0) : P ∈M(P1, . . . ,Pn|c1, . . . , cN)}



(Martingale) Weighted Monte-Carlo [PHL]

Dual:

Dλ ≡ inf
(ui (·))1≤i≤n,(∆i (·))1≤i≤n,Λa∈R+,Λa∈R+,ζ∈R+

n∑
i=1

EPi
[ui ] +

N∑
a=1

(
Λaca − Λaca

)
+ζ
(
λ+ lnEP0

[eζ
−1(c−

∑N
a=1(Λa−Λa)ca−

∑n
i=1 ui−

∑n
i=1 ∆i (Si−Si−1))]

)



(Martingale) Weighted Monte-Carlo [PHL]

Theorem
There is no duality gap Dλ = Pλ. The supremum is attained by
the optimal measure P∗ given by

dP∗

dP0 =
e(ζ∗)−1(c−

∑N
a=1(Λ

∗
a−Λ∗a)ca−

∑n
i=1 u∗i −

∑n
i=1 ∆∗i (Si−Si−1))

EP0 [e(ζ∗)−1(c−
∑N

a=1(Λ
∗
a−Λ∗a)ca−

∑n
i=1 u∗i −

∑n
i=1 ∆∗i (Si−Si−1))]

where
(

(u∗i (·))1≤i≤n, (∆∗i (·))1≤i≤n,Λ
∗
a,Λ
∗
a, ζ
∗
)

achieves the
infimum in Dλ.



P∞: Semi-Infinite Linear Programming Approach

Dual:

inf
(ui (·))1≤i≤n,(∆i (·))2≤i≤n,Λa≥0,Λa≥0

n∑
i=1

EPi
[ui ] +

∑
a

(
Λaca − Λaca

)
subject to the constraints

n∑
i=1

ui +
n∑

i=2

∆i(Si − Si−1) +
∑

a

(
Λa − Λa

)
ca ≥ c

Deltas ∆i are decomposed over a finite-dimensional basis:

∆i(S0, · · · ,Si−1) =
∑

b

[∆i ]
beb(S0, · · · ,Si−1)

Similarly, European options with payoffs ui are
decomposed over a finite set of call options:

ui(Si) =
∑

b

[ui ]
b(Si − K b)+



P∞: Semi-Infinite Linear Programming Approach

Leads to a semi-infinite linear program:

U = min
x∈Rn

c†x A(S)x ≥ B(S) ∀ S ∈ (R+)d

Our algorithm will produce an upper bound

Dbasis ≥ D = P



Dealing with∞ constraints: Cutting-plane method

Let G ⊂ (R+)d , |G| <∞ be a given initial grid and (εk ) a
sequence of non-negative numbers converging to 0. Let
TOL > 0 be a suitable convergence tolerance and set k = 0.

1 Solve the relaxed finite-dimensional LP: optimal solution
x = x∗

U ≥ min
x∈Rn

c†x

A(S)x ≥ B(S) ∀ S ∈ G

2 Determine the constraint violation:
δ = minS∈Rd

+
A(S)x∗ − B(S)

3 If δ > −TOL then stop. Otherwise add the constraints
A(S)x∗ − B(S) < δ + εk

4 Go to step 1.



Algorithm for the risk-neutral WMC: calibration and pricing

1 Simulate Monte-Carlo paths under the measure P0.
2 Solve the non-linear programming problem (2) using for

example a gradient-based optimization routine (Note that
this problem is strictly convex and admits an unique
solution.

3 The exotic option price with payoff c is given by Dλ. Note
that the optimal measure P∗ as given by Equation (2) can
be used to value any exotic options depending on
(S1, · · · ,Sn).



Pricing variance swap on an illiquid stock (1)

Assumption: Diffusion→ VS = − 2
T E[ln ST ].

Input: finite set of strikes (with K = 0).
Dual:

min
(ωi )i=1,...,n,ν

ν +
n∑

i=1

ωiC(Ki ) ; ν +
n∑

i=1

ωi (S − Ki )
+ ≥ − 2

T
ln S , ∀ S ∈ R+

Input: Smile DAX 5/07/2011 T = 1.5Y , static replication:
34.06.

Strike range Lower Upper Mid
[0.15− 2.50] 33.32 34.74 34.06
[0.50− 1.50] 30.99 40.35 35.67
[0.80− 1.20] 27.20 54.94 41.07
[0.90− 1.10] 24.89 62.87 43.88



Illiquid Fx smile

Input: Smile 1 & 2 , ATM smile 3, call spread on 3.
Dual:

min
(ωj

i )j=1,2;i=1,...,n,ν,ω3,∆
ν +

2∑
j=1

n∑
i=1

ωj
iC

j (Ki ) + ω3C3(S3
0) + ∆CS3

ν +
2∑

j=1

n∑
i=1

ωj
i (S

j − K j
i )+ + ω3(S2 − S3

0S1)+

+∆
(
(S2 − 0.95S3

0S1)+ − (S2 − 1.05S3
0S1)+

)
≥ (S2 − KS1)+

Fact: constraints are piecewise linear w.r.t. S1,S2:
Extremal points: prob. with a discrete support.



Illiquid Fx smile (1)

B σATM = 27
B Call Spread: σ(0.95) = 25.5, σ(1.05) = 28.5
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Cliquet:
(

S2
S1
− K

)+

Eurostock implied volatilities(2-Feb-2010). t1 = 1 year and
t2 = 1.5 years.
Parameters for the Bergomi model: σ = 2.0, θ = 22.65%,
k1 = 4, k2 = 0.125, ρ = 34.55%, ρSX = −76.84%,
ρSX = −86.40%.
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Asian option with monthly returns 1Y (1)

Input: DAX 5/09/2011.
Parameters for the Bergomi model: θ = 25%, k1 = 8,
k2 = 0.3, ρ = 0%, ρSX = −80%, ρSX = −48%.

LV 8.36%

Bergomi 6 9.23%

Bergomi+LV 8.71%

Upper/Lower 9.42%/5.47%

Minimal entropy martingale 8.32%

WMC 8.84%/7.51%

6calibrated on VS
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