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The Nature of the Minicourse

FSR is an interdisciplinary topic: ideas from economics,
social policy, finance, physics, computer science, other
sciences, mathematics, probability and statistics.

A new active field!

This minicourse is based on the draft monograph “Contagion!
The Spread of Systemic Risk in Financial Networks”,
available for download at
http://ms.mcmaster.ca/tom/tom.html

Audience participation will be highly valued!
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Contagion! SR in Financial Networks
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Systemic Risk: a Definition?

Quotation (Bank for International Settlements 1994)

The risk that the failure of a participant to meet its contractual
obligations may in turn cause other participants to default with a
chain reaction leading to broader financial difficulties.

Quotation (Kaufman 1995)

The probability that cumulative losses will accrue from an event
that sets in motion a series of successive losses along a chain of
institutions or markets comprising a system. . . . That is, systemic
risk is the risk of a chain reaction of falling interconnected
dominos.
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Assessing These Definitions

J. B. Taylor [2009] argued that these and others are not good
definitions of SR.

Any SR crisis also causes damage outside the network,
through its failure to efficiently perform its key function of
providing liquidity, credit and services.

He says: “To some people, virtually everything is systemic.
To others, it remains very rare.”

He also says, without a proper definition, public policy
intending to identify “SIFIs” will fail: “we will make things
worse by enshrining an inoperative concept. ”
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Systemic Risk: S. L Schwarcz’ definition

Quotation
The risk that

1 an economic shock such as market or institutional failure
triggers (through a panic or otherwise) either:

I the failure of a chain of markets or institutions or;
I a chain of significant losses to financial institutions,

2 resulting in increases in the cost of capital or decreases in its
availability, often evidenced by substantial financial-market
price volatility.

Cascades of shocks to banks plus general drop in liquidity
Correlation versus Contagion
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Systemic Network Risk: Overview

Andrew G Haldane’s 2009 talk “Rethinking the Financial
Network” is a brilliant summary of the nature of networks. He
compares the 2002 SARS epidemic to the 2008 collapse of
Lehman Bros. In both cases:

an external event strikes;

panic ensues and system seizes up;

“collateral damage” is wide and deep;

in hindsight, trigger event was modest;

dynamics was chaotic.

Manifestation of a complex adaptive system
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2007-2008 Crisis Schematic
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Bank Failures: Sept 2008
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More Bank Failures: Sept-Oct 2008
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Haldane: Rethinking the Financial Network

Quotation (Haldane 2009, p. 3)

Both events [the failure of Lehman Brothers and the unfolding of
the SARS epidemic] were manifestations of the behavior under
stress of a complex, adaptive network. Complex because these
networks were a cats-cradle of interconnections, financial and
non-financial. Adaptive because behavior in these networks was
driven by interactions between optimizing, but confused, agents.
Seizures in the electricity grid, degradation of ecosystems, the
spread of epidemics and the disintegration of the financial system:
each is essentially a different branch of the same network family
tree.

Tom Hurd, McMaster University Contagion! 11 / 103



Complexity and Stability

What went wrong with the financial network?

increasing complexity;

decreasing diversity.

These two facts imply fragility and ring alarm bells for ecologists,
engineers, geologists.
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Global Financial Network 1985

(line denotes link strength as fraction of total GDP)
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Global Financial Network 2005
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Connectivity and Stability

Highly connected networks may be “robust yet fragile”:

In a network, connections may be either shock absorbers or
shock amplifiers;

There may be a “tipping point” that separates these two
regimes.

A fat-tailed “degree distribution” (the number of links per
node) implies robustness to random shocks but vulnerability
to shocks that target highly connected nodes.
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Feedback and Stability

How do agents respond to a crisis?

Epidemics: “hide” vs “flight”;

Finance: “hoard liquidity” vs “sell assets”.

In finance, both responses are rational, but make the systemic
problem worse. Government intervention is important to provide
liquidity when it is most needed!
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Uncertainty and Stability

Networks generate chains of claims. At times of stress, these
chains can amplify uncertainties about true counterparty
exposures.

In good times, counterparty risk is small, and thus
“Knightian” uncertainty is small: stability improves with
connectivity;

In bad times, counterparty risk can be large and uncertain,
due to the complicated web: stability declines with
connectivity.
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Innovation and Stability

Financial innovation, particularly “securitization”, created
instability.

CDOs, MBSs, RMBSs and similar high dimensional products
became pervasive internationally;

The structure of these contracts was opaque, not transparent;

They dramatically expanded the size and scope of the
precrisis bubble (see Shin 2009, “Securitisation and Financial
Stability”);

They dramatically increased the connectedness and
complexity of the network;

“Adverse selection” made them hard to evaluate.

“With no time to read the small-print, the instruments were
instead devoured whole. Food poisoning and a lengthy loss of
appetite have been the predictable consequences. ”
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Diversity and Stability

In ecosystems, biodiversity is known to improve stability;

In “Great Moderation” period, financial diversity has been
reduced;

Pursuit of returns lead to many agents following similar
strategies: portfolio correlations grew to > 90%.

Risk management regulation (a la Basel II) lead to similar
risk management strategies for banks;

As a result, bank balance sheet became increasingly
homogeneous;

Finance became almost a “monoculture”, and vulnerable to “viral
infection”.
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Haldane: Summary

Networks arising in ecology, engineering, the internet,
finance, etc are complex and adaptive;

They typically are “robust yet fragile”;

There is a role for intervention to create more stable
networks;

Key determinants for financial stability may be deduced by
studying other types of networks.

What properties of the financial network most influence stability?
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Aim of the Book

Main Aim
1 Inspired by Haldane’s challenge and ideas from Network

Science, to crystallize a basic modelling structure for systemic
risk research.

2 Must enable mathematical tractability.

3 Must also be scalable and flexible to account for multiplicities
of “bank” types, “interaction” types , and channels of
contagion.
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Network Science: Self-Organized Criticality

Four different types of cascading events that arise in nature or
society:

Floods caused by systems of dams and reservoirs or
interconnected valleys.

Snow avalanches in mountainous regions.

Forest fires in areas susceptible to a lightning bolt or a lit
match.

Cascades of load shedding in power grids.

Is SR an example of this too?
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Self-Organized Criticality (SOC)

One of the mechanisms by which complexity arises in nature.

Concept and name originated in Bak, Tang and Wiesenfeld’s
1987 paper “Self-organized criticality: an explanation of 1/f
noise”, which introduces the “BTW sandpile model”.

See also: Per Bak (1996). “How Nature Works: The Science
of Self-Organized Criticality.” New York: Copernicus.

Quotation (Wikipedia)

Self-organized criticality (SOC) is a property of dynamical
systems which have a critical point as an attractor. Their
macroscopic behaviour thus displays the spatial and/or temporal
scale-invariance characteristic of the critical point of a phase
transition, but without the need to tune control parameters to
precise values.

Tom Hurd, McMaster University Contagion! 23 / 103



Self-Organized Criticality

Question
Does SOC Exist in Financial Markets?
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Nature of Banking Balance Sheets

Long before the Crisis, Hyman Minsky and others argued that
long periods of stable financial growth lead to evolving financial
practises that make financial instability more likely.

Quotation (Minsky )

Stability–even of an expansion–is destabilizing in that more
adventuresome financing of investment pays off to the leaders, and
others follow.
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From “Liquidity and Leverage” by Tobias Adrian and Hyun Song
Shin 2009.

Quotation (Adrian and Shin)

In a financial system in which balance sheets are continuously
marked to market, asset price changes appear immediately as
changes in net worth, eliciting responses from financial
intermediaries who adjust the size of their balance sheets. We
document evidence that marked-to-market leverage is strongly
procyclical.
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Balance Sheet Arithmetic: a Household

Suppose household is worth A = 100 (asset)...

and mortgage value is D = 90 (debt):

then net worth E = A−D = 10 (equity)

and leverage L = A/E = 10.

Assets Liabilities

100 10
90

What happens to leverage as total assets A fluctuate?
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Leverage for a Passive Investor

Figure: Leverage for a Passive Investor
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Quarterly percentage changes in household leverage and asset
value for period 1963-2006
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Investment Banks
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Active Balance Sheets: Constant Leverage

Commercial bank that maintains L = 10:

Assets Liabilities

securities 100 equity 10
debt 90

Suppose asset value rises: A→ 101...

new leverage: L = 101/11 = 9.18...

raise debt by 9: D → 99...

buy 9 units of new assets: A→ 110...

new leverage L = 110/11 = 10.

1% rise in security values leads to increase of 10% in assets:

demand curve is upward sloping!
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Imperfectly liquid markets

If increase in demand leads to increase in security price:

Figure: Leverage Spiral in an Upturn
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Imperfectly liquid markets: (ctd)

If decrease in demand leads to decrease in security price:

Figure: Leverage Spiral in a Downturn
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Growth of the Investment Bank and Hedge Fund

Sectors
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My Interpretation of SOC

Something like “sand piling” seems to happen in financial
markets.

Interpreting Minsky: a long period of stability allows network
to build into a critical state.

Critical systems exhibit power law statistics and universality.

Eventually a dramatic “correction” hits, triggering a crisis.

Scientists study SOC in very large or infinite systems using
stochastic methods.
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Stylized Bank Balance Sheet

Assets external assets Ȳ interbank assets Z̄

Liabilities external debt D̄ interbank debt X̄
∣∣ equity Ē

Table: An over-simplified bank balance sheet.
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Random Financial Network (RFN)...

...is a random object representing the possible states of the
financial network at an instant in time.

We think of it as three layers of mathematical structure.

Base level, the skeleton is a random graph (N , E) whose
nodes/vertices v ∈ N represent financial institutions or
“banks”.

Directed edges/links ` = (wv) ∈ Edir may represent the
presence of a non-negligible interbank exposure Ω̄wv between
a debtor bank and its creditor bank.

More generally, undirected edges ` ∈ Eun might represent
counterparty relationships, and Ω` will be some measure of
its strength.
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Random Financial Network (ctd)

Conditioned on a realization of the skeleton, the second layer
is a collection of random balance sheets, i.e. (Ȳv, Z̄v, D̄v, X̄v)
for each bank.

Conditioned on a realization of the skeleton and balance
sheets, the third level is a collection of random exposures Ω̄`

for each link ` ∈ E .

Constraints (directed case):

Z̄v =
∑
w

Ω̄wv, X̄v =
∑
w

Ω̄vw .

Remark
Ȳv, Z̄v, D̄v, X̄v, Ω̄` can be multi-dimensional variables.
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Assortative Configuration Skeletons

Given node-edge degree distribution pair (P,Q) and size N :
1 Draw a sequence of N node-degree pairs
X = ((j1, k1), . . . , (jN , kN)) independently from P , and accept
draw if and only if

∑
n∈[N ] jn =

∑
n∈[N ] kn. Label the nth

node with kn out-stubs and jn in-stubs. Number of out-stubs,
in-stubs and edges are
e+
k =

∑
n k1(kn = k), e−j =

∑
n j1(jn = j) and

E =
∑

k e
+
k =

∑
j e
−
j .

2 Conditioned on X, the result of Step 1, choose an arbitrary
ordering `− and `+ of the E in-stubs and E out-stubs. For
each permutation σ ∈ S[E], select the matching sequence or
wiring W of “edges” ` = (`− = `, `+ = σ(`)), labelled by
` ∈ [E], with probability weighted by the factor∏

`∈[E]

Qkσ(`)j` .
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Studies of Specific Financial Systems

“Simulation methods to assess the danger of contagion in
interbank markets” by Christian Upper (2011) reviews 15
precrisis studies of specific financial systems.
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15 Precrisis Studies
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Channels for Contagion: Liability Side
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Channels for Contagion: Asset Side
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Assumptions These Studies Make

Upper 2011 identifies the type of assumptions implicit in such
studies.

1 Banks have limited liability.
Virtually all banking systems feature institutions whose
liabilities are either explicitly or implicitly guaranteed by the
government or by other players.

2 Nonbank liabilities are senior to interbank liabilities.
This is an open issue. Falsely assuming that all interbank
claims are junior to claims by non-banks will overstate both
the possibility and the severity of contagion.

3 Losses on interbank assets are shared equally across lenders.
In fact, biases can go into either direction.

4 Nonbank assets can be sold at their book value.
Failing banks liquidate their assets, which would tend to
depress prices and thus increase the severity of contagion.
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Further Assumptions

5 Banks spread their lending as evenly as possible given the
assets and liabilities reported in the balance sheets of all
other banks.
This is far from true.

6 Contagion is only driven by domestic exposures.
Assuming away contagion from abroad will lead to an
underestimation of both the possibility and the severity of
contagion.
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Summary of Upper 2011

He identifies two major shortcomings:

An exaggerated focus on scenarios involving idiosyncratic
failure of a single bank, rather than a market shock;

More important is the absence of “behavioural” foundations
that preclude different channels for contagion. These studies
assume “Banks sit tight as problems of their counterparties
mount”. We have seen that “asset hoarding” and “selling
assets” are both rational responses that make systemic risk
higher.

Most critics would also add: These papers focus too much on
“insolvency” and underestimate the effects of “illiquidity”.
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Channels of Systemic Risk (SR)

Piecing things together, we identify four important channels of
SR:

1 Correlation e.g. Subprime assets

2 Default Contagion e.g. default of Lehman

3 Liquidity Contagion e.g. the freezing of repo markets

4 Firesales or Market Illiquidity e.g. sales of ABS

In addition,

1 Rising Haircuts

2 Confidence and Herd Behaviour

3 Rollover Risk

4 Central Clearing Party Failure

5 . . .
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Eisenberg-Noe 2001 Network Model

Eisenberg-Noe 2001 model is a prototype:

1 Describes an abstract payment system with “entities”
connected by a network of payment obligations.

2 It asks what should result in an ideal clearing system when
some agents have insufficient assets to cover their obligations.

3 It has become a standard model of default cascades.
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Balance Sheets

Assets Liabilities

Unsecured
Interbank

Assets
Z̄

External
Assets

Ȳ

External
Deposits

D̄

Unsecured
Interbank
Liabilities

X̄

Equity
Ē

Tom Hurd, McMaster University Contagion! 49 / 103



Balance Sheets

The assets Av of bank v
1 external assets Yv

2 internal (Interbank) assets Zv

The liabilities of the bank v
1 external debts Dv

2 internal (Interbank) debt Xv

3 equity or net worth, defined by Ev = Yv + Zv −Dv −Xv ≥ 0

Promised payments: Ω`, ` = (v, v′), the amount v owes v′.

Constraints

Zv′ =
∑
v

Ωvv′ , Xv =
∑
v′

Ωvv′ ,
∑
v′

Zv′ =
∑
v

Xv

Debt ratios: Πvw = Ωvw/Xv.
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1 2 · · · N X̄ D̄ Ē
1 0 Π12X̄1 · · · Π̄1N X̄1 X̄1 D̄1 Ē1

2 Π̄21X̄2 0 · · · Π̄2N X̄2 X̄2 D̄2 Ē2
...

...
...

. . .
...

...
...

...
N Π̄N1X̄N Π̄N2X̄N · · · 0 X̄N D̄N ĒN

Z̄ Z̄1 Z̄2 · · · Z̄N

Ȳ Ȳ1 Ȳ2 · · · ȲN

Table: The matrix of interbank exposures contains the values
Ω̄vw = Π̄vwX̄v. The first N rows of this table represent different banks’
liabilities and the first N columns represent their assets.
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Static default cascade assumptions

Definition
A defaulted bank is a bank with E ≤ 0. A solvent bank is a bank
with E > 0.

We describe the cascade as if it proceeds in daily steps:

Assumptions
1 Prior to the cascade, all banks are in the normal state, not

insolvent.

2 The crisis commences on day 0 triggered by the default of
one or more banks;

3 Balance sheets are recomputed daily on a mark-to-market
basis;

4 Banks respond daily on the basis of their newly computed
balance sheets;

5 All external cash flows, interest payments, and external asset
price changes are ignored throughout the cascade.
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EN 2001 Liquidation Mechanism

Assumptions

1. External debt is senior to interbank debt and all interbank debt
is of equal seniority; 2. No bankruptcy charges; and 3. Ȳv ≥ D̄v.

Let pv be amount available to pay v’s internal debt

pv is split amongst creditor banks in proportion to
Πvw = Ωvw/Xv: bank w receives Πvwpv.

Given p = [p1, . . . , pN ], the clearing conditions are

pv = F (EN)
v (p) := min(Xv,Yv +

∑
w

Πwvpw −Dv)

p = min(X,Y + ΠT ∗ p−D)
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Vector and matrix notation

For vectors x = [xv]v=1,...,N , y = [yv]v=1,...,N ∈ RN

x ≤ y means ∀ v, xv ≤ yv,

x < y means x ≤ y, ∃ v : xv < yv,

min(x, y) = x ∧ y = [min(xv, yv)]v=1,...,N

max(x, y) = x ∨ y = [max(xv, yv)]v=1,...,N

(x)+ = max(x, 0),

(x)− = max(−x, 0)

For x ≤ y, the hyperinterval [x, y] is {z : x ≤ z ≤ y}. Any
hyperinterval, with the above operations ∧,∨, is a complete
lattice1.

1A “lattice” (partially ordered set with “meet” ∨ and “join” ∧) that is
closed under sup and inf.
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EN Main Theorem

Theorem

Corresponding to every financial system (Ȳ, Z̄, D̄, X̄, Ω̄) satisfying
Assumptions 2,

1 There exists a greatest and a least clearing vector p+ and p−.

2 Under all clearing vectors, the value of the equity at each node
is the same, that is, if p′ and p′′ are any two clearing vectors,

(Ȳ + Π̄T ∗ p′ − D̄− X̄)+ = (Ȳ + Π̄T ∗ p′′ − D̄− X̄)+
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Proof of Part (1)

Knaster-Tarski Fixed Point Theorem states: “the fixed point set
of a monotone mapping on a complete lattice is a complete
lattice”.
Note:

1 FEN is monotonic: x ≤ y implies FEN(x) ≤ FEN(y).

2 Since also FEN(0) ≥ 0 and FEN(X̄) ≤ X̄, it maps the
hyperinterval [0, X̄] into itself.

3 [0, X̄] is a complete lattice.

Conclude that the set of clearing vectors, being the fixed points of
the mapping FEN , is a complete lattice, hence nonempty, and
with maximum and minimum elements p+ and p−.
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Proof of Part (2)

Show: for any clearing vector p′,

(Ȳ + Π̄T ∗ p′ − D̄− X̄)+ = (Ȳ + Π̄T ∗ p+ − D̄− X̄)+

1 By monotonicity, p′ ≤ p+ implies

(Ȳ + Π̄T ∗ p′ − D̄− X̄)+ ≤ (Ȳ + Π̄T ∗ p+ − D̄− X̄)+

2 Because there are no bankruptcy charges,

Ȳ + Π̄T ∗ p′ − D̄− p′ ≤ Ȳ + Π̄T ∗ p+ − D̄− p+

3 Inner product this equation with 1 = [1, . . . , 1] noting
1 ∗ Π̄T = 1:

1 ∗ (Ȳ + Π̄T ∗ p′ − D̄− p′) = 1 ∗ (Ȳ + Π̄T ∗ p+ − D̄− p+)

Flaw: when X̄v = 0 we have defined Π̄T
wv = 0, invalidating the

condition 1 ∗ Π̄T = 1. However for this v, pv = 0, and hence it is
still true that 1 ∗ Π̄T ∗ p = 1 ∗ p.
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N = 4 bank network

1

2
3

4

1

2

3
1

1

1

Exercise: 1. Solve the EN clearing algorithm in Section 2.2.2 of
my book in the case when Ȳ − D̄ = (1/2, 1/2, 1/2, 1).
2. Show that only when Ȳ − D̄ = 0 can the system have multiple
clearing vectors, of the form p = λ[1, 1, 1, 0] with λ ∈ [0, 1].
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Cases with Ȳv < D̄v

1 Write Ȳ − D̄ = (Ȳ − D̄)+ − (Ȳ − D̄)−.

2 Express the clearing condition in terms of q = [q1, . . . , qN ]T

where qv denotes the amount bank v has available to pay
both the excess external debt (Ȳv − D̄v)

− and the interbank
debt X̄v:

q = min((Ȳ − D̄)+ + Π̄T ∗ p , (Ȳ − D̄)− + X̄)

p = (q− (Ȳ − D̄)−)+ .

Tom Hurd, McMaster University Contagion! 60 / 103



Reduced Form Cascade Mapping

1 Different balance sheet specifications lead to identical
cascades: find a reduced set of balance sheet data.

2 Initial default buffer ∆
(0)
v := ∆̄v of bank v is its nominal

equity:

∆(0)
v := Ēv = Ȳv +

∑
w

Ωwv − D̄v − X̄v (1)

3 p
(n)
v is amount available to pay X̄v at cascade step n,
p

(0)
v = X̄v.

4 Threshold function h(x) = (x+ 1)+ − x+

5 nth step of E-N cascade is
p

(n)
v = X̄v h(∆

(n−1)
v /X̄v)

q
(n)
v = ((Ȳv − D̄v)

− + X̄v) h(∆
(n−1)
v /((Ȳv − D̄v)

− + X̄v))

∆
(n)
v = ∆̄v −

∑
w Ωwv(1− p(n)

w /X̄w))

= ∆̄v −
∑

w Ωwv(1− h(∆
(n−1)
w /X̄w))

(2)
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1 The mark-to-market equity is the positive part of the default
buffer, E

(n)
v = (∆

(n)
v )+.

2 Default of bank v occurs at the first step that ∆
(n)
v ≤ 0.

3 As n→∞, the monotone decreasing sequence p(n) converges
to the maximal fixed point p+.

4 Cascade mapping: p(n−1) 7→ p(n) = F (p(n−1)|∆̄,Ω)

Fv(p) = X̄v h

(
∆̄v/X̄v −

∑
w

Π̄wv(1− p(n−1)
w /X̄w)

)
5 It depends parametrically only on the initial equity buffers ∆̄

and the interbank exposures Ω.

p+ = G+(∆̄,Ω)

6 If instead of starting the cascade at the initial value
p

(0)
v = X̄v, we had begun with p

(0)
v = 0, we would obtain a

monotone increasing sequence p(n) that converges to the
minimal fixed point p− := G−(∆̄,Ω).

Tom Hurd, McMaster University Contagion! 62 / 103



1 The scaled variable ∆/X̄ has the interpretation of a bank’s
“distance-to-default”,

2 Threshold function h determines both the fractional loss on
interbank debt and on total debt when ∆ is negative.

3 Amount of external debt that bank v eventually repays
requires (Ȳv − D̄v):

q+
v = ((Ȳv − D̄v)

− + X̄v) h(∆+
v /((Ȳv − D̄v)

− + X̄v));

∆+
v = ∆̄v −

∑
w

Ωwv(1− p+
w/X̄w))
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Eisenberg-Noe 2001

Balance Sheet of a degree-type (3, 2) Bank

Assets Liabilities

Unsecured
Interbank

Assets
Z̄

External
Assets

Ȳ

External
Deposits

D̄

Unsecured
Interbank
Liabilities

X̄

Equity
Ē
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Gai-Kapadia 2010 Default Cascade Assumptions

“Contagion in financial networks” aims to provide a stylized
analytical model of default cascades.

1 Balance sheets as in EN 2001; ∆̄ = Ȳ + Z̄− D̄− Z̄.

2 Limited Liability: banks default the first time ∆ ≤ 0.

3 Zero recovery of defaulted interbank loans: the worst case
scenario, might be natural during a crisis, but not after.

4 Losses on external debt: not modelled.

5 Initial shocks cause one or more banks to have ∆̄ ≤ 0.
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Gai-Kapadia Default Cascade Mapping

After n steps, p
(n)
v , ∆

(n)
v have the same interpretation as before.

1 Begin with p
(0)
v = X̄v, ∆

(0)
v = ∆̄v .

2 Let Dn be the set of defaulted banks after step n.

3 Step n: like EN with new h̃(x) = 1{x≤0}:

∆(n)
v = ∆̄v −

∑
w

Ω̄wv

(
1− h̃(∆(n−1)

w /X̄w)
)

= ∆̄v −
∑
w

Ω̄wv1{w∈Dn−1}

p(n)
v = X̄vh̃(∆(n)

v /X̄v)

= X̄vh̃

(
∆̄v −

∑
w

Ω̄wv

(
1− p(n−1)

w /X̄w

))

4 Clearing vector condition from ∆ = ∆̄−
∑

w Ω̄w·(1− h̃(∆w)).
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Watts 2002-style Random Cascade Model

1 Skeletons: N →∞ sequence of undirected Gilbert
G(N, z/(N − 1)) graphs with mean degree z.

2 Default buffers are integer random variables, ∆̄v ∈ Z+.
Conditioned on the skeleton they are independent with
distributions that depend only on kv:

P[∆̄v ≤ x|kv = k] := Dk(x) :=
∑

0≤y≤x

dk(y)

3 We assume that v defaults, either initially if ∆̄v = 0, or as
soon as at least ∆̄v neighbours default.

Let Dn denote the set of defaulted nodes after n cascade steps.
Initially defaulted nodes are

D0 = {v|∆̄v = 0}.

Then for n > 0, v ∈ Dn means ∆̄v ≤
∑

w∈Nv 1(w ∈ Dn−1).
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Percolation and Cascades

The right kind of connectivity turns out to be both necessary and
sufficient for large scale cascades to propagate in a network.

1 First we outline percolation theory on random graphs and its
relation to Galton-Watson branching processes.

2 Then we introduce bootstrap percolation.This proves to be
the precise concept needed for unravelling and understanding
the growth of simple network cascades.

3 These principles are illustrated by the Watts model of
information cascades.
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Extinction Theorem

Theorem

The extinction probability η ∈ [0, 1] is the smallest fixed point of g.

1 If EX > 1, then η < 1, which says that with positive
probability 1− η the population will survive forever.

2 If EX ≤ 1, then apart from a trivial exception, η = 1 and the
population becomes extinct almost surely.

Case (1), when survival is possible, is called the supercritical case.
The case of almost sure extinction subdivides: case EX < 1 is
called subcritical, and the case EX = 1 and g

′′
(1) > 0 is called

critical.
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Percolation Theorem (Molloy-Reed, Janson, ...

Theorem

Consider the random configuration multigraph sequence G∗(N,d)
satisfying Assumptions. Let g(x) be its asymptotic generating
function and let C be the largest cluster. Then the following
asymptotic properties hold:

1 If
∑

k k(k − 2) Pk > 0, then there is a unique ξ ∈ (0, 1) such
that g∗(ξ) = ξ and

P[v ∈ C] P−→ 1− g(ξ) > 0 , (3)

P[v ∈ C ∩ Nk]
P−→ Pk(1− ξk), for every k ≥ 0 , (4)

P[` ∈ C] P−→ (1− ξ2) > 0 . (5)

2 If
∑

k k(k − 2) Pk ≤ 0, then unless P2 = 1, P[v ∈ C] P−→ 0.
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Cascade Dynamics = Bootstrap Percolation?

1 Bootstrap Percolation is a dynamic version of percolation
introduced in 1979 by Chalupa, Leath and Reich for
magnetic systems on regular lattices.

2 It follows the growth of connected clusters of nodes v ∈ N
that become “activated” when the number of its active
neighbours exceeds a threshold.

3 Exact analytic asymptotics are sometimes possible.

4 Watts’ 2002 Information Cascade Model is a basic example of
Bootstrap Percolation.
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Watts 2002-style Toy Random Cascade Model

1 Skeletons: N →∞ sequence of undirected Gilbert
G(N, z/(N − 1)) graphs with mean degree z.

2 Default buffers are integer random variables, ∆̄v ∈ Z+.
Conditioned on the skeleton they are independent with
distributions that depend only on kv:

P[∆̄v ≤ x|kv = k] := Dk(x) :=
∑

0≤y≤x

dk(y)

3 We assume that v defaults, either initially if ∆̄v = 0, or as
soon as at least ∆̄v neighbours default.

Let Dn denote the set of defaulted nodes after n cascade steps.
Initially defaulted nodes are

D0 = {v|∆̄v = 0}.

Then for n > 0, v ∈ Dn means ∆̄v ≤
∑

w∈Nv 1(w ∈ Dn−1).
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The WOR property of the Watts model

Proposition

Let the Watts model be specified by (N , E , {∆̄v}) and the
sequences {Dn

v , D
n
v,w}n=−1,0,1,... defined by the recursive equations

Dn
v = 1(v ∈ Dn) = 1

(
∆̄v ≤

∑
w′∈Nv

Dn−1
w′

)

Dn
v,w = 1(v ∈ Dn WOR w) = 1

(
∆̄v ≤

∑
w′∈Nv

Dn−1
w′,v1(w′ 6= w)

)
.

with D−1
v , D−1

v,w, D̃
−1
v,w = 0. Then for all n ≥ 0 and (v, w) ∈ E

Dn
v = 1

(
∆̄v ≤

∑
w′∈Nv

Dn−1
w′,v

)
Tom Hurd, McMaster University Contagion! 73 / 103



Watts model setup

Define for n ≥ 0 and all k:

1 p
(n)
k = E[v ∈ Dn|kv = k];

2 p̂
(n)
k := P[w ∈ Dn WOR v|w ∈ Nk ∩Nv].

3 π̂(n) := P[w ∈ Dn WOR v|v ∈ ∩Nw ∩Nk (which happens to
be k independent)
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Watts model: Main Result

Proposition

Consider the Watts model in the limit as N →∞ with initial
adoption probabilities p

(0)
k = p̂

(0)
k = dk(0). Then (p

(n)
k ) and (p̂

(n)
k )

for n ≥ 1 are given by the recursion formulas

p
(n)
k = Gk(p̂(n−1)) :=

k∑
x=0

Dk(x) Bin(k, π̂(n−1), x) (6)

p̂
(n)
k = Ĝk(p̂(n−1)) :=

k−1∑
x=0

Dk(x) Bin(k − 1, π̂(n−1), x) (7)

where

π̂(n−1) =
∑
k′

p̂
(n−1)
k

k′Pk′

z
(8)
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Watts model: Formal proof

1 Requires two properties of the model: (i) LT property of the
skeleton as long as N is sufficiently large, and
(ii) conditional independence of the thresholds ∆̄,
conditioned on the skeleton.

2 By the original definition of the set Dn,

p
(n)
k = P

[
∆̄w ≤

∑
w′∈Nw

1(w′ ∈ Dn−1)|w ∈ Nk

]
Problem: terms in the sum are not conditionally independent.

3 Instead use:

p
(n)
k = P

[
∆̄w ≤

∑
w′∈Nw

1(w′ ∈ Dn−1 WOR w)|w ∈ Nk

]
where the terms are k independent Bern(π̂(n−1)) random
variables.

4 This leads to equation (6).
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Watts model: Formal proof

1 Similarly, for random links (v, w)

p̂
(n)
k := P[w ∈ Dn WOR v|w ∈ Nv ∩Nk]

= P
[
∆̄w ≤

∑
w′∈Nw\v

1(w′ ∈ Dn−1 WOR w)|w ∈ Nv ∩Nk

]
.

where now there are k − 1 independent Bern(π̂(n−1)) random
variables in the sum, leading to (7).

2 Finally, one can show (8) to finish off the formal proof.
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Watts model: a Simple Rigorous proof

We need a bounded degree assumption: K : Pk = 0 for k > K.
Fix N, n and consider

pn,Nk := E[
1

N

∑
v∈[N ]

1(v ∈ Dn, kv = k)] = E[E[1(1 ∈ Dn, k1 = k)|N , E ]]

where 1 denotes the first node.
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Configuration Probabilities for ACG Skeletons

Theorem

Consider the ACG sequence with (P,Q) (satisfying some weak
conditions). For any fixed finite configuration g rooted to v ∈ Njk,
with M added nodes and L ≥M edges, labelled by the node
bidegree sequence X = (jm, km)m∈[M ], the joint probability
p = P[wm ∈ Njmkm ,m ∈ [M ], g|v ∈ Njk, X] conditioned on X
converges with high probability as N →∞:

p
P−→

∏
m∈[M ], out-edge

Pkm|jmQjm|km′

∏
m∈[M ], in-edge

Pjm|kmQkm|jm′ , if g is a tree

p = o(1), if g has cycles .
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Liquidity Cascade Models

Concerned with interbank liquidity rather than defaults.

1 Large fractions of bank liabilities are either insured deposits
or uninsured wholesale funding (e.g. money markets).

2 Wholesale funding is prone to run (“rollover risk”); insured
deposits tend to be free of rollover risk.

3 To guard against runs and other contingencies, banks keep
reserves of liquid securities such as cash, treasury bills, Fed
Reserve bonds, etc.

4 Liquid assets can be used in several ways to deal with
liquidity demands, e.g. as collateral for repo borrowing.

5 Let ȲL denote such liquid assets.

6 Write ȲL = (Σ̄)+: as long as Σ̄ is positive, it works as a
liquidity buffer.

7 Let the remaining assets and liabilities be as before.
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Illiquidity Cascades: Balance Sheets

Assets Liabilities

Unsecured
Interbank

Assets
Z̄

Fixed
Assets

ȲF

External
Deposits

D̄

Unsecured
Interbank
Liabilities

X̄

Default
Buffer

∆

Liquid
Assets

ȲL = Σ

Ωw1v

Ωw2v

Ωw3v

Ωvw′
1

Ωvw′
2

Tom Hurd, McMaster University Contagion! 81 / 103



Gai-Kapadia 2010 Liquidity Cascade Model

“Liquidity Hoarding, Network Externalities, and Interbank
Market Collapse”

1 Designed to explain the dramatic shrinking of the interbank
lending market in 2007/2008.

2 This occurred seemingly without regard to counterparty
defaults.

3 They explain this event as precautionary hoarding of
interbank lending by banks concerned about their own
liquidity buffer, and the possibility of other banks’ illiquidity.
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Illiquidity Cascade: Gai-Kapadia 2010b

1 At time 0, some banks experience deposit withdrawals that
deplete their liquidity buffer Σv := YL

v (allowing it to go
negative).

2 Bank v with Σv ≤ 0 reacts by hoarding liquidity; its debtor
banks w ∈ N+

v each receive a liquidity shock.

3 Under 100% hoarding, cascade mapping at step n is

Σ(n)
v = Σ(0)

v −
∑

w∈N+
v

Ω̄vw(1− h̃(Σ(n−1)
w /Z̄w))

4 Formally identical to GK 2010 Default Cascade under
interchange of assets and liabilities.
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Generalized Liquidity Cascade

1 As in GK 2010b, each bank keeps “cash” (a “first line”
reserve of liquid external assets) ȲL = (Σ̄)+ to absorb
liquidity shocks.

2 Stress buffer Σ is kept positive during normal business.

3 When the stress buffer becomes non-positive, i.e. bank is
“stressed”, bank meets further withdrawals by liquidating
first interbank assets Z̄ (i.e. while bank is “stressed”), and
finally the illiquid fixed assets ȲF (when bank is “illiquid”).

4 A fictitious sink bank 0 represents external agents that
borrow amounts Ω̄0v with equal liquidation priority as
interbank assets: Z̄v =

∑N
w=0 Ω̄wv.

5 Unlike GK 2010b, bank only liquidates interbank assets
incrementally.
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Generalized Liquidity Cascade

1 Banks’ balance sheets are given by notional amounts
(ȲF , Z̄, ȲL, D̄, X̄, Ē, Ω̄).

2 At the onset of the liquidity crisis, all banks are hit by
withdrawal shocks ∆Dv that reduce the initial stress buffers
Σ

(0)
v = ȲL

v −∆Dv of at least some banks to below zero,
making them stressed.

3 Stressed banks then liquidate assets first from Z̄, inflicting
additional liquidity shocks to their debtor banks’ liabilities.

4 A stressed bank that has depleted all of Z̄ will be called
“illiquid”, and must sell external fixed assets ȲF in order to
survive.
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Generalized Liquidity Cascade

1 Some thought reveals that this model is precisely equivalent
to the extended EN 2001 model.

2 The role of assets and liabilities, and stress and default
buffers, are interchanged: ȲF ↔ D̄, Z̄↔ X̄, ȲF ↔ Ē, ∆↔ Σ.

3 GK 2010b model arises by replacing h by h̃.

4 S. K. Lee 2013 model arises by taking ȲL
v = 0, which also has

the effect of making all the banks initially stressed since the
initial stress buffers are Σ

(0)
v = −∆Dv ≤ 0.
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Asset Fire Sale Cascades

(c.f. Cifuentes et al 2005 and Caccioli et al 2012)

A1 A2 A3 A4

B1 B2 B3 B4 B5

Figure: A bipartite graph with 5 banks (blue nodes) co-owning 4
assets (red nodes).
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Asset Fire Sales

Banks v ∈ N = {1, 2, . . . , N}, Assets a ∈M = {1, 2, . . . ,M}. Let
s̄av be amount of asset a held by bank v.
On the nth cascade step:

1 When default buffer ∆
(n)
v hits a threshold, v begins to

liquidate assets.

2 Amount s
(n)
av of asset a held by bank v after n cascade steps is

determined by ∆
(n)
v .

3 The new mark-to-market price is determined by the total
amount sold through an inverse demand function

p(n+1)
a = d−1

a (
∑
v

(s̄av − s(n)
av ))

4 Banks mark-to-market to compute their new buffers ∆
(n+1)
v .
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Asset Fire Sale Cascades

1 Complex cascades result even with no interbank sector Ω̄ = 0.

2 Each blue node v is governed by a buffer variable ∆
(n)
v

3 Each red node a is governed its price p
(n)
a , which can be

considered as a buffer variable.

4 One buffer per node!

5 Global cascades can start either in banks or in assets: once it
starts it doesn’t matter much where it started.
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Extensions of the Watts/GK Model

1 General degree distributions: Poisson random graph
model fails to capture most features of real world social
networks. Easy to analyze Watts with arbitrary Pk.

2 Mixtures of directed and undirected edges:
Percolation results can be proved in networks with both
directed and undirected edges and arbitrary two-point
correlations. Extending to Watts is easy.

3 Assortative graphs: For general assortativity, with
non-independent edge-type distributions Qkj limiting default
probabilities are fixed points of a vector valued cascade
mapping G : RK → RK.

4 Random edge weights: Even purely deterministic
dependence between link-strength and edge-degree requires
analysis of random link weights. Then, p∞k are fixed points of
another vector-valued cascade mapping G : RK → RK.
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Random Financial Network (RFN)...

...is a random object representing the possible states of the
financial network at an instant in time.
Base level, the skeleton is a random directed graph (N , E)
whose nodes N represent “banks” and whose edges represent
the presence of a non-negligible “interbank exposure”
between a debtor bank and its creditor bank.
Conditioned on a realization of the skeleton, the second layer
is a collection of random balance sheets, i.e. (Ȳv, Z̄v, D̄v, X̄v)
for each bank.
Conditioned on a realization of the skeleton and balance
sheets, the third level is a collection of random exposures Ω̄`

for each link ` ∈ E .
Constraints:

Z̄v =
∑
w

Ω̄wv, X̄v =
∑
w

Ω̄vw .
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The LTI Property

Our dependence hypothesis becomes the following definition.

Definition

[Locally Tree-like Independence] A random financial network
(RFN) (N , E , ∆̄, Ω̄) is LTI when:

1 The skeleton graph is an infinite (directed, indirected or
mixed) configuration graph (N , E), with arbitrary node and
edge type distributions {P,Q}.

2 Conditioned on (N , E), the buffer random variables
∆̄v, v ∈ N and exposure random variables Ω̄`, ` ∈ E form a
mutually independent collection. Moreover, the buffer
distribution of ∆̄v depends only on the type τv of v and the
exposure distribution of Ω̄` depends only on the type τ` of `.
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LTI Dependence Structure

1 Probability space (Ω′,F ,P), where

F = G ∨ F∆ ∨ FΩ.

2 Dependence of ∆̄v only on the type of the node v: it holds
that there are Borel functions Djk such that

E[∆̄v ≤ x|F \ σ(∆̄v), v ∈ Njk] = Djk(x) (9)

3 In exactly the same way, for Ω̄ it holds that there are Borel
functions Wkj such that

E[Ω̄` ≤ x|F \ σ(Ω̄`), ` ∈ Ekj] = Wkj(x) (10)
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GK Assumptions

1 Banks have limited liability and receive a zero recovery of
defaulted interbank liabilities.

2 The skeleton graph is a directed ACG (N , E) with {Pjk, Qkj}
with a finite set of possible degrees K = {0, 1, . . . , K} and
mean degree z =

∑
jk kPjk.

3 Conditionally on (N , E), banks’ capital buffers ∆̄v are a
collection of independent non-negative random variables with

P[∆̄v ≤ x|v ∈ Njk] = Djk(x), x ≥ 0 . (11)
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GK Assumptions (ctd)

4. Each interbank exposure Ω̄` depends randomly on its edge
type (k`, j`). Conditionally on the skeleton, they form a
collection of independent positive random variables,
independent as well from the default buffers ∆̄v. Their
cumulative distribution functions (CDFs) and probability
distribution functions (PDFs) are

Wkj(x) = P[Ω̄` ≤ x|` ∈ Ekj],
wkj(x) = W ′

kj(x) , (12)

with Wkj(0) = 0.

5. The remaining balance sheet quantities are freely specified.
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GK Cascade Mapping Theorem

Proposition

Consider the LTI sequence of GK financial networks
(N,P,Q, ∆̄, Ω̄). Let p

(0)
jk = Djk(0) and π

(0)
k′ = P[w ∈ D0|kw = k′].

Then the following formulas hold with high probability as
N →∞:...
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Proposition

1 π̃
(0)
j = P[w ∈ Dn−1|w ∈ N−v , v ∈ Njk] =

∑
k′ π

(0)
k Qk′|j

2 For any n = 1, 2, . . . , the quantities π̃
(n−1)
j , p

(n)
jk , π

(n)
k satisfy

p
(n)
jk = 〈Djk, (w̃

(n−1)
j )~j〉 , (13)

π
(n)
k =

∑
j′

p
(n)
j′k Pj′|k (14)

where the PDFs w̃
(n−1)
j (x) are given by (??).

3 The new probabilities ~π(n) are a vector valued function
G(~π(n−1)) which is explicit in terms of the specification
(N,P,Q, ∆̄, Ω̄).

4 The cascade mapping G maps [0, 1]K+1 onto itself, and is
monotonic. Since π(0) = G(0), the sequence π(n) converges to
the least fixed point ~π∗ ∈ [0, 1]K+1, that is

~π∗ = G(~π∗) . (15)
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Experiment 1: Benchmark Specification

1 The skeleton graph comprises N = 1000 banks taken from
the Poisson random directed graph model with mean in and
out degree z, and thus
P = Bin(N, z/(N − 1))× Bin(N, z/(N − 1)) and Q = Q+Q−.

2 Capital buffers and assets are identical across banks, with
∆v = 4% and Zv = 20%.

3 Exposures are equal across the debtors of each bank, and so
Ωwv = 20

jv
.

4 Monte Carlo simulations were performed with Nsim = 1000.
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Experiment 1 Results: Mean Cascade Size
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Figure: The mean cascade size in the benchmark GK model, as a
function of z. The solid curve shows the analytic fixed point
probability starting from a uniform seed density of dk,0 = 10−2.
Crosses show the Monte Carlo simulation mean with error bars, when
the initial seed is a random set of 10 banks.
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Experiment 1 Results: Cascade Frequency
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Figure: The frequency of global cascades in the benchmark GK model,
as a function of z. The solid curve shows the analytic frequency
starting from a uniform seed density of dk,0 = 10−3. Crosses show the
MC simulation results, with single initial seed.
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Frequency and Size of Global Cascades

How the frequency of global cascades in large random networks is
related to extended in-component of the giant vulnerable cluster.
We define:

vulnerable directed edge: edge whose weight is sufficient to
exceed the default buffer of its downstream node.

EV ⊂ E , the set of vulnerable directed edges;

Es, the largest strongly connected set of vulnerable edges (the
giant vulnerable cluster of EV );

Ei and Eo, the in-component and out-component of the giant
vulnerable cluster.

1− bk := P[` ∈ Ei|k` = k], a conditional probability of an edge
being in Ei;
ak,jk′ = P[∆̄v ≤ Ω̄wv|` ∈ E−v , k` = k, v ∈ Njk′ ], the conditional
probability of an edge being vulnerable.
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Zoology of Components of Directed Graphs

Figure: The connected components of the World Wide Web in 1999.
(Source: Broder et al 2000.)
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Frequency and Size of Global Cascades

How the frequency of global cascades in large random networks is
related to extended in-component of the giant vulnerable cluster.
We define:

vulnerable directed edge: edge whose weight is sufficient to
exceed the default buffer of its downstream node.

EV ⊂ E , the set of vulnerable directed edges;

Es, the largest strongly connected set of vulnerable edges (the
giant vulnerable cluster of EV );

Ei and Eo, the in-component and out-component of the giant
vulnerable cluster.

1− bk := P[` ∈ Ei|k` = k], a conditional probability of an edge
being in Ei;
ak,jk′ = P[∆̄v ≤ Ω̄wv|` ∈ E−v , k` = k, v ∈ Njk′ ], the conditional
probability of an edge being vulnerable.
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