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Stochastic Portfolio Theory (SPT)

A rich and flexible framework introduced by Bob Fernholz for
analyzing portfolio behavior and equity market structure.



Two important components of SPT

Research in SPT focuses on two main areas.

1. Abstract markets: building models that reflect properties of
real equity markets.

2. Arithmetics of returns: relevance of logarithmic returns, the
role of diversification, constructing relative arbitrages.

In this mini course we will see only a very short overview of abstract
markets. Instead we focus on some aspects of relative arbitrage.



General setup

• A probability space (Ω,F ,P) equipped with a
right-continuous filtration F.

• d ∈ N : number of assets at time zero. E.g., d = 505 (S&P
500) or d = 8000.

• Nonnegative continuous semimartingales S1(·), · · · , Sd(·),
representing the capitalization (stock-price, multiplied by the
number of shares outstanding) of each company.

• For example, Si (·) might be an Itô process of the form

dSi (t) = Si (t)

[
bi (t)dt +

N∑
ν=1

σi ,ν(t)dWν(t)

]
,

where W (·) denotes an N–dimensional vector of independent
Brownian motions.

• For simplicity, there is no traded bond.
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Market weights

• Let Σ(t) denote the total market capitalization at time t; i.e.:

Σ(t) = S1(t) + · · ·+ Sd(t).

• We shall assume, throughout, that S1(t) + · · ·+ Sd(t) > 0.

• Then the relative market weights µ1(·), · · · , µd(·) of each
asset are given by

µi (t) =
Si (t)

Σ(t)

and take values in

∆d =

{(
x1, · · · , xd

)′ ∈ [0, 1]d :
d∑

i=1

xi = 1

}
.
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An important empirical property of equity markets
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Figure: The capital distribution curve — Market weights µi (·) against
ranks on logarithmic scale, 1929 - 1999 — Thanks to Bob Fernholz!



Abstract market models, I

• It is not easy to write down tractable mathematical models for
S1(·), · · · ,Sd(·) whose capital market curves (and especially
their dynamics) resemble the empirical ones.

• In financial mathematics very good and helpful models have
been developed that yield realistic dynamics for
one-dimensional stock dyncamics.
(Samuelson-Black-Scholes-Merton, stochastic volatility, rough
volatility, ...).

• Unfortunately, just combining such models does not yield
realistic market models.



Abstract market models, II

• The two most important market models in SPT:
• volatitility-stabilized market model:

d log Si (t) =
α

2µi (t)
dt +

1
√
µi

dWi (t),

where α > 0, with the alternative representation

dSi (t) =
1 + α

2
(S1(t) + · · · Sd(t))dt +

√
Si (t)(S1(t) + · · · Sd(t))dWi (t).

• rank-based models: drift and volatility of Si depend also on
the relative rank that the i-th company takes in the market.

• Lots of interesting mathematical properties and questions.
E.g, relationships to Bessel processes, the Wright-Fisher
diffusion model of population genetics, interacting particle
systems, asymptotics for d ↑ ∞, ...

• However, no time left here to discuss this further :-(
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Returns: An MBA overview

• The classical definition of return on an investment is

Return =
final value − initial value

initial value
.

• Suppose we wish to calculate the average annual return of an
investment over several years, where the annual returns are
given by r1, r2, . . . , rn.

• Several common methods are available.

1. Arithmetic return:
1

n

(
(1 + r1) + · · ·+ (1 + rn)

)
− 1.

2. Geometric return: n
√

(1 + r1)× · · · × (1 + rn)− 1.

3. Logarithmic return:
1

n

(
log(1 + r1) + · · ·+ log(1 + rn)

)
.
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Some remarks on computing the average returns

1. Arithmetic return:
1

n

(
(1 + r1) + · · ·+ (1 + rn)

)
− 1.

Used in Modern Portfolio Theory. Compatible with the linear
models used to calculate the Sharpe ratio and beta. But leads
to absurd estimates in some cases.

2. Geometric return: n
√

(1 + r1)× · · · × (1 + rn)− 1.
Sometimes very difficult to compute.

3. Logarithmic return:
1

n

(
log(1 + r1) + · · ·+ log(1 + rn)

)
. Used

in stochastic portfolio theory.

Jensen’s inequality yields

arithmetic return ≥ geometric return ≥ logarithmic return.
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The dynamics of return
Let S(t) represent the price of a stock at time t. Assume that

dS(t) = S(t)
[
b(t)dt + σ(t)dW (t)

]
.

Then b is called the rate of return of S .

• Itô’s formula implies that

d log S(t) = g(t)dt + σ(t)dW (t),

where
g(t) = b(t)− 1

2
σ2(t).

g is called the rate of log-return, or growth rate, of S .

• The process g determines the long-term behavior of S :

lim
T↑∞

1

T

(
log S(T )−

∫ T

0
g(t)dt

)
= 0

(under appropriate assumptions).
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Portfolio return and log-return

Suppose we have assets S1, . . . ,Sd and a portfolio π with weights
π1(t) + · · ·+ πd(t) = 1 and value V π(t) at time t. Then the
portfolio return satisfies

dV π(t)

V π(t)
=
∑
i

πi (t)
dSi (t)

Si (t)

(Markowitz (1952)).

The analogous equation for log-return is

d logV π(t) =
∑
i

πi (t)d log Si (t) + γ∗π(t)dt,

where γ∗π is called the excess growth rate of the portfolio (Fernholz
and Shay (1982)).
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The dynamics of portfolio log-return

d logV π(t) =
dV π(t)

V π(t)
− 1

2
σ2π(t)dt

=
∑
i

πi (t)
dSi (t)

Si (t)
− 1

2
σ2π(t) dt

=
∑
i

πi (t)
(
d log Si (t) +

1

2
σ2i (t)dt

)
− 1

2
σ2π(t) dt

=
∑
i

πi (t)d log Si (t) + γ∗π(t)dt,

with γ∗π(t) =
1

2

(∑
i

πi (t)σ2i (t)− σ2π(t)
)
.



The excess growth rate
The excess growth rate measures the efficacy of diversification in a
portfolio.

γ∗π(t) =
1

2

(∑
i

π(t)σ2i (t)− σ2π(t)
)

=
1

2

(
weighted average variance − portfolio variance

)
≥ 0 for a long-only portfolio.

• The excess growth rate is higher for portfolios of volatile
stocks with low correlation. If all else is equal, a higher excess
growth rate will increase the long-term performance of a
portfolio.

• The formulas assume an implicit rebalancing to the target
weights π(t) at an infinitesimal time scale reflecting the
underlying Brownian motion. Without rebalancing, there’s no
excess growth.
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Decomposition of portfolio log-return
There is a natural decomposition of the log-return of a portfolio
into two components. For the interval [0,T ],

Log-return =

∫ T

0

∑
i

πi (t) d log Si (t) +

∫ T

0
γ∗π(t)dt.

Hence the log return of a portfolio is not only the average of the
log returns of its constituents but an additional term appears. (In
financial marketing, this phenomenon is sometimes called “volatility
harvesting,” “volatility pumping,” “smart beta, ” ”volatility
capture,” ”rebalancing premium,” or ”diversification premium”)

There are hundreds (probably thousands) of empirical papers that
somehow discuss this effect. Also, the popular press (e.g., FT
Alphaville) likes to report about these “surprising” observations.

The first question of this mini course is: how can we construct
portfolios with a high log-return, that are additionally tractable.
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An Excursion: Rank-based analysis of logarithmic returns

Let us briefly look at the “size effect” of the top 1000 stocks.
Accordingly, let rt(i) be the rank of Si (t), and define the average
rank-based growth rates gk over [0,T ] by

gk =
1

T

∫ T

0

∑
1{rt(i)=k}d log Si (t).



Estimated g k , 1964–2012 (relative)
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Recalling the setup

• d ∈ N : number of assets at time zero.

• Nonnegative continuous semimartingales S1(·), · · · , Sd(·), the
capitalizations, such that

∑
i Si (·) > 0.

• No bond.

• Relative market weights µ1(·), · · · , µd(·), given by

µi (t) =
Si (t)

Σ(t)
, where Σ(t) = S1(t) + · · ·+ Sd(t).

and taking values in

∆d =

{(
x1, · · · , xd

)′ ∈ [0, 1]d :
d∑

i=1

xi = 1

}
.

• No frictions; in particular, “small investor” and no trading
costs (!)
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Trading strategies

For an Rd–valued predictable process ϑ(·) write

V ϑ(t; S) :=
d∑

i=1

ϑi (t)Si (t).

Definition
Suppose that ϑ(·) ∈ L (S) (ϑ(·) is integrable with respect to S(·))
and that

V ϑ(T ;S)− V ϑ(0;S) =

∫ T

0

〈
ϑ(t),dS(t)

〉
holds. Then ϑ(·) is called trading strategy (with respect to S(·))
and we write ϑ(·) ∈ T (S) .
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Change of numéraire

Recall

V ϑ(t; S) :=
d∑

i=1

ϑi (t)Si (t); V ϑ(t;µ) :=
d∑

i=1

ϑi (t)µi (t).

Proposition

An Rd–valued process ϑ is a trading strategy with respect to S if
and only if it is a trading strategy with respect to µ.

In particular, T (S) = T (µ) and

V ϑ(· ;S) = Σ(·)V ϑ(· ;µ) .

Notational convention below: V ϑ(·) := V ϑ(· ;µ).



Arbitrage relative to the market

Definition
A trading strategy ϕ(·) is a relative arbitrage with respect to the
market portfolio over the time horizon [0,T ] if

V ϕ(0;S) = Σ(0); V ϕ(t;S) ≥ 0;

and

P (V ϕ(T ;S) ≥ Σ(T )) = 1; P (V ϕ(T ; S) > Σ(T )) > 0.

Alternatively:

V ϕ(0;µ) = 1; V ϕ(t;µ) ≥ 0

and

P
(
V ϕ(T ;µ) ≥ 1

)
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Deflator

Some results below require the notion of a deflator for µ(·).

Definition
A deflator is a continuous, adapted, strictly positive process Z (·)
with Z (0) = 1 for which

all products Z (·)µi (·) , i = 1, · · · , d are local martingales.



Warming up ...



From integrands to trading strategies
• Given: ϑ(·) ∈ L(µ).
• Recall

V ϑ(·) =
d∑

i=1

ϑi (·)µi (·).

• Consider the quantity

Qϑ(·) = V ϑ(·)− V ϑ(0)−
∫ ·
0

〈
ϑ(t), dµ(t)

〉
,

which measures the “defect of self-financibility” of ϑ(·).
• If Qϑ(·) = 0 fails, the process ϑ(·) is not a trading strategy.
• However, for any c ∈ R,

ϕi (·) = ϑi (·)− Qϑ(·) + c

is a trading strategy and satisfies

V ϕ(·) = V ϑ(0) + c +

∫ ·
0

〈
ϑ(t),dµ(t)

〉
.
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Regular functions

Definition
A continuous function G : supp (µ)→ R is regular if

1. there exists a measurable function

DG =
(
D1G , · · · ,DdG

)T
: supp (µ)→ Rd

such that the process ϑ(·) ∈ L(µ) with

ϑi (·) = DiG
(
µ(·)

)
, i = 1, · · · , d ;

2. the continuous, adapted process

ΓG (·) = G
(
µ(0)

)
− G

(
µ(·)

)
+

∫ ·
0

〈
ϑ(t),dµ(t)

〉
has finite variation on compact intervals.
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Lyapunov functions

Definition
We call a regular function G a Lyapunov function if the process
ΓG (·) is non-decreasing.

Remark:
Assume there exists a deflator Z (·) for µ(·) and G is nonnegative a
Lyapunov function for µ(·). Then

Z (·)G
(
µ(·)

)
= Z (·)

(
G (µ(0)) +

∫ ·
0

d∑
i=1

DiG
(
µ(t)

)
dµi (t)

)

−
∫ ·
0

ΓG (t)dZ (t)−
∫ ·
0
Z (t)dΓG (t)

is a P–local supermartingale, thus also a P–supermartingale as it is
nonnegative.
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An example for regular and Lyapunov functions

Example

For instance, if G is of class C2, in a neighbourhood of ∆d , Itô’s
formula yields

ΓG (·) = − 1

2

d∑
i=1

d∑
j=1

∫ ·
0

D2
ijG
(
µ(t)

)
d
〈
µi , µj

〉
(t)

with D2
ijG = ∂2G

∂xi ∂xj
.

Therefore, G is regular; if it is also concave,

then G becomes a Lyapunov function.
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Functionally generated strategies (additive case)
For a regular function G consider the trading strategy ϕ(·) with

ϕi (·) = DiG (µ(·))− Qϑ(·) + c

with c = G
(
µ(0)

)
−
∑d

j=1 µj(0)DjG
(
µ(0)

)
.

Definition
We say that the trading strategy ϕ(·) is additively generated by
the regular function G .

Proposition

The value process generated by the strategy ϕ(·) is given by

Vϕ(·) = G
(
µ(·)

)
+ ΓG (·).

and

ϕi (·) = DiG
(
µ(·)

)
+ ΓG (·) + G

(
µ(·)

)
−

d∑
j=1

µj(·)DjG
(
µ(·)

)
.
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Functionally generated strategies (multiplicative case)
For a regular function G such that 1/G (µ(·)) is locally bounded,
consider

ϑ̃i (·) = ϑi (·)× exp

(∫ ·
0

dΓG (t)

G
(
µ(t)

)) = DiG (µ(·))× exp

(∫ ·
0

dΓG (t)

G
(
µ(t)

))
and the trading strategy ψ(·) with

ψi (·) = ϑ̃(·)− Qϑ̃(·) + c

Definition
We say that the trading strategy ψ(·) is multiplicatively generated
by the regular function G .

Proposition (Master equation of Fernholz, 1999, 2002)

The value process generated by the strategy ψ(·) is given by

Vψ(·) = G
(
µ(·)

)
exp

(∫ ·
0

dΓG (t)

G
(
µ(t)

)) > 0.
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Functionally generated arbitrage (additive case)

Theorem
Fix a Lyapunov function G : supp (µ)→ [0,∞) satisfying
G (µ(0)) = 1, and suppose that for T∗ > 0 we have

P
(
ΓG (T∗) > 1

)
= 1.

Then the additively generated strategy ϕ(·) strongly outperforms
the market over every time-horizon [0,T ] with T ≥ T∗.

Idea of proof:

Vϕ(T ) = G
(
µ(T )

)
+ ΓG (T ) ≥ ΓG (T∗) > 1.
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An important remark

As long as the market model µ(·) satisfies

P
(
ΓG (T∗) > 1

)
= 1

the arbitrage strategy

ϕi (·) = DiG
(
µ(·)

)
+ ΓG (·) + G

(
µ(·)

)
−

d∑
j=1

µj(·)DjG
(
µ(·)

)
.

does not depend on the model parameters or the time horizon.



Functionally generated arbitrage (multiplicative case)

Theorem
Fix a Lyapunov function G : supp (µ)→ [0,∞) satisfying
G (µ(0)) = 1, and suppose that for T∗ > 0 and ε > 0 we have

P
(
ΓG (T∗) > 1 + ε

)
= 1 .

Then there exists a constant d > 0 such that the trading strategy
ψ(d)(·), multiplicatively generated by the regular function

G (d) =
G + d

1 + d

strongly outperforms the market over every time-horizon [0,T ]
with T ≥ T∗.
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Example: entropy function

• Consider the (nonnegative) Gibbs entropy function

H(x) =
d∑

j=1

xj log

(
1

xj

)
.

• Assuming that either µ(·) ∈∆d
+ or the existence of an SDF

Z (·), H is a Lyapunov function with nondecreasing

ΓH(·) =
1

2

d∑
j=1

∫ ·
0

1{µj (t)>0}
d
〈
µj
〉
(t)

µj(t)
.

• So-called cumulative excess growth of the market.

• If
P
(
ΓH(t) ≥ η t , ∀ t ≥ 0

)
= 1

for some real constant η > 0 , then arbitrage exists over any
time-horizon [0,T ] with T > H(µ(0))

η .
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Cumulative excess growth of the market
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Figure: Cumulative Excess Growth ΓH(·) for the U.S. Equity Market,
during the period 1926 –1999. — Thanks to Bob Fernholz!



Discussion: entropy function

Recall:

ΓH(·) =
1

2

d∑
j=1

∫ ·
0

d
〈
µj
〉
(t)

µj(t)
;

P
(
ΓH(t) ≥ η t , ∀ t ≥ 0

)
= 1.

• Under this condition there exists one (horizon-independent)
trading strategy, which is an arbitrage over any time-horizon
[0,T ] with

T >
H(µ(0))

η
.

• Fernholz & Karatzas (2005) asked whether then there is also
arbitrage possible over any time horizon.
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Concave functions are Lyapunov

Theorem
A continuous function G : supp (µ)→ R is Lyapunov if it can be
extended to a continuous, concave function on

1. ∆d
+ = ∆d ∩ (0, 1)d and

P
(
µ(t) ∈∆d

+ , ∀ t ≥ 0
)

= 1;

2.

{(
x1, · · · , xd

)T ∈ Rd :
∑d

i=1 xi = 1

}
;

3. ∆d , and there exists a deflator Z (·).
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Functions based on rank

• “Rank operator” R : ∆d 7→Wd , where

Wd =
{(

x1, · · · , xd
)
∈∆d : 1 ≥ x1 ≥ x2 ≥ · · · ≥ xd−1 ≥ xd ≥ 0

}
.

• Process of market weights ranked in descending order, namely

µ(·) = R(µ(·)).

• Then µ(·) can be interpreted again as a market model;
however, without a deflator.

Theorem
Consider a function G : supp (µ)→ R, which is regular for µ(·).
Then G = G ◦R is a regular function for µ(·).
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Remarks on the proof that a concave function is Lyapunov

Dellacherie & Meyer:

A paper from 1972:

Also, Rockefeller has a proof.
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On the process ΓG (·)
• If there exists a stochastic discount factor, then the process

ΓG (·) is independent of the choice of the supergradient.

• Bouleau (1981, 1984): If G is twice continuously
differentiable in some “open” A ∈∆d ,

ΓG (·) =
1

2

d∑
i ,j=1

∫ ·
0
1A(µ(t))Di ,jG (µ(t))d〈µi , µj〉(t)

+

∫ ·
0
1∆d\A(µ(t))dΓG (t).

• Our conjecture: quadratic covariation:

ΓG (·) =
1

2

d∑
i ,j=1

[DiG (µ(·)), µj(·)].
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Recalling the setup

• d ∈ N : number of assets at time zero.

• No bond.

• Relative market weights modeled by nonnegative continuous
semimartingales µ(·) = (µ1(·), · · · , µd(·)) taking values in

∆d =

{(
x1, · · · , xd

)′ ∈ [0, 1]d :
d∑

i=1

xi = 1

}
.

• No frictions; in particular, “small investor” and no trading
costs (!)



Recalling regular functions

• Regular function: a continuous mapping G : ∆d → R that
satisfies a generalized Itô rule:

G (µ(·)) = G (µ(0)) +

∫ ·
0

d∑
i=1

DiG (µ(t))dµi (t)− ΓG (·),

where ΓG (·) which has finite variation on compact
time-intervals.

• If G is smooth (we will assume this from now on) then

ΓG (·) = −1

2

d∑
i=1

d∑
j=1

∫ ·
0
D2
i ,jG

(
µ(t)

)
d
〈
µi , µj

〉
(t).

• If ΓG (·) is nondecreasing then G is called Lyapunov function.
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Functionally generated trading strategies
• Additive generation: The process ϕG (·) with components

ϕG
i (·) := DiG

(
µ(·)

)
+ ΓG (·) + G

(
µ(·)

)
−

d∑
j=1

µj(·)DjG
(
µ(·)

)
is a trading strategy with Vϕ

G
(·) = G (µ(·)) + ΓG (·).

• Multiplicative generation: Assume that 1/G (µ(·)) is locally
bounded and define the process

ZG (·) := G
(
µ(·)

)
exp

(∫ ·
0

dΓG (t)

G
(
µ(t)

)) > 0.

Then the process ψG (·) with components

ψG
i (·) := ZG (·)

(
1+

1

G
(
µ(·)

)(DiG
(
µ(·)

)
−

d∑
j=1

DjG
(
µ(·)

)
µj(·)

))
, i = 1

is a trading strategy with Vψ
G

(·) = ZG (·).
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Example: quadratic function
Consider

Q(x) := 1−
d∑

i=1

x2i , x ∈∆d .

• Q takes values in [0, 1− 1/d ].

• The corresponding aggregated measure of cumulative
volatility is given by

ΓQ(·) =
∑
i

〈µi 〉(·).

• The additively generated strategy equals

ϕQ
i (·) = DiQ

(
µ(·)

)
+ ΓQ(·) + Q

(
µ(·)

)
−
∑
j

µj(·)DjQ
(
µ(·)

)
= −2µi (·) +

∑
j

〈µj〉(·) + 1 +
∑
j

µ2j (·).
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Relative arbitrage

Definition
Given a real constant T > 0, we say that a trading strategy ϑ(·) is
a relative arbitrage with respect to the market over the time
horizon [0,T ] if V ϑ(0) = 1, V ϑ(·) ≥ 0, and

P
(
V ϑ(T ) ≥ 1

)
= 1, P

(
V ϑ(T ) > 1

)
> 0.

If in fact P
(
V ϑ(T ) > 1

)
= 1 holds, this relative arbitrage is called

strong.
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Strong relative arbitrage over sufficiently long time horizons

Theorem
Suppose that G : ∆d → [0,∞) is a regular function with
G (µ(0)) > 0 such that

P
(

the mapping [0,∞) 3 t 7→ ΓG (t)− ηt is nondecreasing
)

= 1

for some η > 0. Then strong relative arbitrage with respect to the
market exists, over any time horizon [0,T ] with

T >
G (µ(0))

η
.



Arbitrage over arbitrary time horizons??

Consider the condition

P
(

the mapping [0,∞) 3 t 7→ ΓG (t)− ηt is nondecreasing
)

= 1

for some η > 0.

Does there exist arbitrage with respect to the market
portfolio over time horizon [0,T ] , for any T > 0?

Answer: Under additional assumptions, yes. In general, no.
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Outline of the rest of this lecture

P
(

the mapping [0,∞) 3 t 7→ ΓG (t)− ηt is nondecreasing
)

= 1

for some η > 0.

1. Existence of short-term relative arbitrage
1.1 Existence of strong relative arbitrage

• One asset with sufficient variation

1.2 Existence of short-term relative arbitrage, not necessarily
strong

• Time-homogeneous support
• A strict nondegeneracy condition

1.3 The case of d = 2 assets

2. Lack of short-term relative arbitrage



One asset with sufficient variation

Theorem
Suppose there exists a constant η > 0 such that 〈µ1〉(t) ≥ ηt
holds on the stochastic interval [[0,D∗[[ with

D∗ := inf

{
t ≥ 0 : µ1(t) ≤ µ1(0)

2

}
.

Then, given any real number T > 0 there exists a long-only
trading strategy ϕ(·) which is strong relative arbitrage with respect
to the market over the time horizon [0,T ].

Some intuition why the theorem could be true:

• µ1(·) is bounded by above from one.

• There needs to be a very large drift that forces µ(·) to not
become larger than one.

• Hence, an arbitrage strategy should under-invest into asset 1.
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Proof

• It suffices to argue that the market ν(·) = µ(· ∧D∗) allows for
arbitrage.

• For q ≥ 1, consider the regular function

F (x) := xq1 , x ∈∆d .

• F generates multiplicatively the strategy

ψF
1 (·) =

(
q

ν1(·)
+ 1− q

)
ZF(·); ψF

i (·) =
(
1− q

)
ZF(·), i ≥ 2,

where

Vψ
F

(·) = ZF(·) =
(
ν1(·)

)q
exp

(
−1

2
q
(
q − 1

) ∫ ·
0

(
ν1(t)

)−2
d〈ν1〉(t)

)
.
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Proof (cont’d)
• Introduce now the trading strategy

ϕi (·) = 1 +
(
ν1(0)

)q −ψF
i (·), i = 1, · · · , d

with associated wealth process

V ϕ(·) = 1 +
(
ν1(0)

)q − ZF (·).

• In particular, note V ϕ(0) = 1 and V ϕ(·) ≥ 0.
• On the event {D∗ ≤ T} we have

V ϕ(T ) ≥ 1 +
(
ν1(0)

)q − (ν1(T )
)q

= 1 +
(
ν1(0)

)q − (ν1(0)

2

)q

> 1;

• On the event {D∗ > T}, for sufficiently large q, we have

V ϕ(·) ≥ 1 +
(
ν1(0)

)q − exp

(
−1

2
q(q − 1)〈ν1〉(T )

)
≥ 1 +

(
ν1(0)

)q − (exp
(
−η

2
(q − 1)T

))q
> 1.
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Outline of this section

P
(

the mapping [0,∞) 3 t 7→ ΓG (t)− ηt is nondecreasing
)

= 1

for some η > 0.

1. Existence of short-term relative arbitrage
1.1 Existence of strong relative arbitrage

• One asset with sufficient variation

1.2 Existence of short-term relative arbitrage, not necessarily
strong

• Time-homogeneous support
• A strict nondegeneracy condition

1.3 The case of d = 2 assets

2. Lack of short-term relative arbitrage



Time-homogeneous support

Theorem
Suppose that for a given generating function G and appropriate
real constants η > 0 and h ≥ 0,

P
(

the mapping [0,∞) 3 t 7→ ΓG (t)− ηt is nondecreasing
)

= 1

is satisfied, along with the lower bound

P
(
G (µ(t)) ≥ h, t ≥ 0

)
= 1

and the “time homogeneous support” property

P
(
G
(
µ(t)

)
∈
[
h, h+ε

)
, for some t ∈ [0,T ]

)
> 0, for all T > 0, ε > 0.

Then arbitrage relative to the market exists over the time horizon
[0,T ], for every real number T > 0.
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Proof

• Fix T > 0 and introduce the regular function

G ? := (G − h)
3

ηT
,

and denote

Γ?(·) := ΓG?

(·) =
3

ηT
ΓG (·).

• Introduce the stopping time

τ := inf

{
t ∈

[
0,

T

2

]
: G
(
µ(t)

)
< h +

ηT

3

}
.

• Then

P

(
τ ≤ T

2

)
> 0.
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Proof (cont’d)
• Let ϕ?(·) := ϕG?

(·) denote the additively generated trading
strategy and consider

ϕi (·) := 1 +
(
ϕ?i (·)− G ?(µ(τ))− Γ?(τ)

)
1[[τ,∞[[.

• Then

Vϕ(t) = 1 +
(
G ?(µ(t)) + Γ?(t)− G ?(µ(τ))− Γ?(τ)

)
1[[τ,∞[[(t)

≥ 1[[0,τ [[(t) +
3

ηT

(
ΓG (t)− ΓG (τ)

)
1[[τ,∞[[(t)

≥ 1[[0,τ [[(t) +
3(t − τ)

T
1[[τ,∞[[(t).

• Hence, Vϕ(·) ≥ 0 and Vϕ(T ) ≥ 3/2 on the event
{τ ≤ T/2}; moreover, Vϕ(T ) = 1 holds on {τ > T/2}.

• Since P(τ ≤ T/2) > 0the trading strategy ϕ(·) is relative
arbitrage.
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• Time-homogeneous support
• A strict nondegeneracy condition

1.3 The case of d = 2 assets

2. Lack of short-term relative arbitrage



Some necessary notation

Recall

ΓQ(·) =
d∑

i=1

〈µi 〉(·).

Then we have 〈
µi , µj

〉
(·) =

∫ ·
0
αi ,j(t)dΓQ(t).

Consider the sequence of stopping times

Dn := inf

{
t ≥ 0 : min

1≤i≤d
µi (t) <

1

n

}
.
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A strict nondegeneracy condition

Theorem
Suppose that for a given generating function G and η > 0,

P
(

the mapping [0,∞) 3 t 7→ ΓG (t)− ηt is nondecreasing
)

= 1.

Moreover, suppose that there exists a deflator for µ(·) and that the
d − 1 largest eigenvalues of the matrix-valued process α(·) are
bounded away from zero on [[0,Dn[[ uniformly in (t, ω), for each
n ∈ N.

Then relative arbitrage with respect to the market exists over
[0,T ], for every real number T > 0.

Attention: If we replace “strict nondegeneracy” by nondegeneracy,
then the theorem is not correct.
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Outline of the proof

• By contradiction. Assume that µ(·) is a martingale under an
equivalent measure.

• Then prove that G (µ(·)) reaches the minimum of G with
positive probability arbitrarily close, arbitrarily fast. (repeated
changes of measures)

• This then contradicts the time-homogeneous support property
of the previous result.
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The case of two assets

Proposition

Assume that d = 2 and that that for a given generating function
G and η > 0,

P
(

the mapping [0,∞) 3 t 7→ ΓG (t)− ηt is nondecreasing
)

= 1.

Then strong arbitrage relative to the market can be realized by a
long-only trading strategy over the time horizon [0,T ], for any
given real number T > 0.

Idea of proof (does not necessarily yield strong arbitrage):
• Recall 〈

µi , µj
〉
(·) =

∫ ·
0
αi ,j(t) dΓQ(t).

• Note µ2(·) = 1− µ1(·), hence 〈µ1, µ2〉 = −〈µ1〉(·).
• Hence, α1,1(·) = α2,2(·) = 1/2 and α1,2(·) = α2,1(·) = −1/2,

so the eigenvalues of the matrix α(·) are then indeed 0 and 1.
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Recalling the setup

• d ∈ N : number of assets at time zero.

• Relative market weights modeled by nonnegative continuous
semimartingales µ(·) = (µ1(·), · · · , µd(·)) taking values in

∆d =

{(
x1, · · · , xd

)′ ∈ [0, 1]d :
d∑

i=1

xi = 1

}
.

• The condition we study:

P
(

the mapping [0,∞) 3 t 7→ ΓG (t)− ηt is nondecreasing
)

= 1

for some η > 0.

• E.g., if G (x) = Q(x) = 1−
∑d

j=1 x
2
j , then

ΓQ(t) =
d∑

j=1

〈
µj
〉
(t).
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The goal

• Goal: Construct process µ(·) with each component a
martingale such that ΓQ(t) = t, t ∈ [0,T ∗] for some T ∗ > 0.

• This then yields a counterexample since then no arbitrage is
possible with respect to the market, but

P
(

the mapping [0,T ∗) 3 t 7→ ΓG (t)− t is nondecreasing
)

= 1.

• The process µ(·) is not allowed to have full support
(otherwise, we know by previous results that short-term
arbitrage is possible).

• For d = 2, such a construction is impossible.
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An Itô diffusion
• Consider d = 3 (three assets).
• Consider SDEs:

dv1(t) =
1√
3

(v2(t)− v3(t))dΘ(t);

dv2(t) =
1√
3

(v3(t)− v1(t))dΘ(t);

dv3(t) =
1√
3

(v1(t)− v2(t))dΘ(t).

• Define r(v) =

√∑3
i=1

(
vi − 1

3

)2
.

• If v1(0) + v2(0) + v3(0) = 1, then Itô’s formula yields

〈v1〉(t) + 〈v2〉(t) + 〈v3〉(t) = r2(v(t)) = r2(v(0))et .

• A solution:

vi (t) =
1

3
+ δet/2 cos

(
Θ(t) + 2π

(
u +

i − 1

3

))
.
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An Itô diffusion
• Consider d = 3 (three assets).
• Consider SDEs:

dv1(t) =
1√
3

(v2(t)− v3(t))dΘ(t);

dv2(t) =
1√
3

(v3(t)− v1(t))dΘ(t);

dv3(t) =
1√
3

(v1(t)− v2(t))dΘ(t).

• Define r(v) =

√∑3
i=1

(
vi − 1

3

)2
.

• If v1(0) + v2(0) + v3(0) = 1, then Itô’s formula yields
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An Itô diffusion (cont’d)
• A slight modification:

dv1(t) =
1√

3r(t)
(v2(t)− v3(t))dΘ(t);

dv2(t) =
1√

3r(t)
(v3(t)− v1(t))dΘ(t);

dv3(t) =
1√

3r(t)
(v1(t)− v2(t))dΘ(t).

• Assume that

(v1(0), v2(0), v3(0)) 6=
(

1

3
,

1

3
,

1

3

)
.

• Now,

〈v1〉(t) + 〈v2〉(t) + 〈v3〉(t) = r2(v(t)) = t.

• Market model µ(·): stopped version of v(·).
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An Itô diffusion (cont’d)
• A slight modification:

dv1(t) =
1√

3r(t)
(v2(t)− v3(t))dΘ(t);

dv2(t) =
1√

3r(t)
(v3(t)− v1(t))dΘ(t);

dv3(t) =
1√

3r(t)
(v1(t)− v2(t))dΘ(t).

• Assume that

(v1(0), v2(0), v3(0)) 6=
(

1

3
,

1

3
,

1

3

)
.

• Now,

〈v1〉(t) + 〈v2〉(t) + 〈v3〉(t) = r2(v(t)) = t.

• Market model µ(·): stopped version of v(·).
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Possible extensions

• It is possible to modify the model for µ(·) such that the
covariance matrix has two positive eigenvalues (instead of
one) – however, we know that it is not possible that both
positive eigenvalues are bounded away from zero uniformly.

• For a general Lyapunov function G , construct a market model
µ(·) with each component a martingale such that ΓG (t) = t,
t ∈ [0,T ∗] for some T ∗ > 0.
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