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Rough volatility models

Empirical studies indicate volatility is rougher than BM: Gatheral et al.
(2018); Bennedsen et al. (2016), . . .

Subsequent development of stochastic models with this feature:
Gatheral et al. (2018); Guennoun et al. (2017); Bayer et al. (2016);
Bennedsen et al. (2016); El Euch and Rosenbaum (2016, 2017), . . .

Rough Volatility Literature (sites.google.com/site/roughvol/home/risks-1)
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Features of rough volatility models

These models are able to

• match roughness of time series data
• fit implied volatility smiles remarkably well
• admit in some cases microstructural justification

Mathematically, this rests on fractional Brownian motion in the
tradition of Kolmogorov (1940), Mandelbrot and Van Ness
(1968), . . .

Sergio Pulido Affine Volterra Processes 5/80



Vol. is rough SVEs Convolution basics Existence solns. SVEs Affine Volterra Examples SPDEs Laplace rep. Conclusions References

Rough Heston model

The Heston model is the stock price model

dSt
St

=
√
VtdBt

where the volatility follows a CIR process

Vt = V0 +

∫ t

0

λ(θ − Vs)ds+

∫ t

0

σ
√
VsdWs

El Euch and Rosenbaum (2016) study the rough Heston model
obtained by replacing the CIR process by the rough CIR process

Vt = V0 +

∫ t

0

(t− s)α−1

Γ(α)

(
λ(θ − Vs)ds+ σ

√
VsdWs

)
where α ∈ ( 1

2 , 1)
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Roughness of time series data

Figure: S&P vol. vs. simulated paths of Heston and rough Heston
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The volatility skew

Figure: ATM implied vol. skew
∣∣∣ ∂σBS∂k

(τ, k)
∣∣∣
k=0

: Heston vs. rough Heston

calibration
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Rough Heston model

Inspired by the Riemann–Liouville fractional Brownian motion
introduced by Lévy (1953)

Hölder continuous paths of any order less than H = α− 1
2

Microstructural foundation as scaling limit of Hawkes processes

But:

Existence and uniqueness is non-trivial: El Euch and Rosenbaum
(2016) construct the rough CIR using Hawkes processes

NOT A SEMIMARTINGALE, NOT MARKOVIAN !

. . . not clear how to usefully describe its law

Warmup: The standard Heston model
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Characteristic function of the (standard) Heston model I

The Heston model is tractable because (logSt, Vt) is affine

This gives explicit characteristic function and option prices via
Fourier methods:

E[eu logST ] = eφ(T )+ψ(T )V0

for u ∈ iR and S0 = 1

(φ, ψ) solve the Riccati equations

φ′ = λθψ φ(0) = 0

ψ′ =
1

2
(u2 − u) + (uρσ − λ)ψ +

σ2

2
ψ2 ψ(0) = 0
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Characteristic function of the (standard) Heston model II

Proof:

1 Define
Mt = eφ(T−t)+ψ(T−t)Vt+u logSt .

2 Apply Itô:

dMt

Mt
= −

{(
φ′ − λθψ

)
+

(
ψ′ −

[
1

2
(u2 − u)− · · ·

])
Vt

}
dt+(local mgle.)

3 M is a martingale because Reψ ≤ 0

4 Since ψ(0) = φ(0) = 0, MT = eu logST and

E[eu logST ] = E[MT ] = M0 = eφ(T )+ψ(T )V0
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What about the rough Heston model?

Remarkably, El Euch and Rosenbaum (2016) obtain an analogous
result for the rough Heston model
Notation: Dαh(t) = 1

Γ(1−α)
d
dt

∫ t
0
(t− s)−αh(s)ds

Theorem (El Euch and Rosenbaum (2016))

Assume we are given a solution ψ of the “fractional Riccati equation”

Dαψ =
1

2
(u2 − u) + (uρσ − λ)ψ +

σ2

2
ψ2

and define φ and χ by

φ′ = λθχ, φ(0) = 0; χ′ = Dαψ, χ(0) = 0

Then
E[eu logST ] = eφ(T )+χ(T )V0

Proof: Rather involved. Uses the Hawkes approximation
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Questions

1 Can the proof of this result be simplified?

2 Can the Hawkes approximation be avoided?

3 What about the joint characteristic function of (logST , VT )?

4 What about conditional characteristic function?

5 What about more general specifications: higher dimensions, other
kernels?
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Stochastic Volterra Equations (SVEs)

Equations of interest (in R):

Xt = X0 +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs (1)

Initial condition: X0 ∈ R
Kernel: K ∈ L2

loc(R+)

Martingale driver: W = (Wt)t≥0 a Brownian motion

Coefficients: b, σ real continuous with linear growth

|b(x)| ∨ |σ(x)| ≤ cLG(1 + |x|) (2)

Remark: Solutions to (1) will be understood to have continuous paths
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Examples of Kernels

1 Exponential kernel:

K(t) = exp(−γt), (γ = 0⇒ K ≡ 1)

Observation: In this case we can rewrite (1) as

Xt = X0 +

∫ t

0

(b(Xs)− γ(Xs −X0))ds+

∫ t

0

σ(Xs)dWs (3)

2 Fractional kernel:

K(t) =
tα−1

Γ(α)
, α ∈

(
1

2
, 1

)

3 Gamma kernel:

K(t) = exp(−γt) t
α−1

Γ(α)

Remark: Case 1 - Markovian structure of (1). Cases 2-3 non-Markovian
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Examples of SVEs

1 Volterra Brownian motion: b(x) ≡ 0, σ(x) ≡ σ constant

Xt = X0 + σ

∫ t

0

K(t− s)dWs

Observation: Fractional kernel ⇒ Riemann–Liouville fractional

Brownian motion – Lévy (1953)

2 Volterra Ornstein–Uhlenbeck process: b(x) = λ(θ− x), σ(x) ≡ σ

Xt = X0 + λ

∫ t

0

K(t− s)(θ −Xs)ds+ σ

∫ t

0

K(t− s)dWs
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Examples of SVEs (cont.)

3 Volterra square root/CIR process: b(x) = λ(θ − x), σ(x) = σ
√
x

Xt = X0 +λ

∫ t

0

K(t− s)(θ−Xs)ds+σ

∫ t

0

K(t− s)
√
XsdWs (4)

Remark: Delicate questions of existence of (nonnegative) solutions

4 Volterra Heston model: The price process S satisfies

dSt = St
√
VtdBt

where V , the square volatility process, is a Volterra CIR process
as in (4), and d〈B,W 〉 = ρdt

Remark: K a fractional kernel ⇒ Rough Heston Model (El Euch and

Rosenbaum (2016))
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Function and measure convolution

For a (real) kernel K and a measure L (of locally bounded variation)
on R+ we write

(K ∗ L)(t) = (L ∗K)(t) =

∫
[0,t]

K(t− s)L(ds)

Example: L(ds) = δ0(ds)⇒ (K ∗ L)(t) = K(t)

If F is a function on R+ we write

(K ∗ F )(t) = (K ∗ (Fds))(t) =

∫ t

0

K(t− s)F (s)ds

Example: K(t) = tα−1, F (t) = t−α, α ∈
(

1
2
, 1
)
, then

(K ∗ F )(t) = Γ(α)Γ(1− α)
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Convolution with local martingales

Let M be a one-dimensional continuous local martingale then

(K ∗ dM)t =

∫ t

0

K(t− s)dMs

is well-defined as long as
∫ t

0
|K(t− s)|2d〈M〉s <∞

(e.g. K ∈ L2
loc(R+) and 〈M〉t =

∫ t
0
asds for some locally bounded process a)

Observation:

(K ∗ dM)t is the final value of (the martingale)

Nu = E[(K ∗ dM)t|Fu] =

∫ u

0

K(t− s)dMs, 0 ≤ u ≤ t

but in general Ns 6= (K ∗ dM)s for s < t
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Associativity of the convolution

Lemma (Associativity of convolution)

Assume

1 K ∈ L2
loc(R+)

2 L a measure on R+ of locally bounded variation

3 M be a continuous local martingale with 〈M〉t =
∫ t

0
asds for some

locally bounded process a

Then
(L ∗ (K ∗ dM))t = ((L ∗K) ∗ dM)t, t ≥ 0 (5)
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Stochastic Fubini Theorem

The previous lemma is a consequence of

Theorem (Stochastic Fubini – Veraar (2012))

(X,Σ, µ) a σ-finite measure space, M a continuous local martingale,
ψ(t, x, ω) progressively measurable s.t.

∫
X

(∫ T

0

|ψ(x, t, ω)|2d〈M〉t(ω)

) 1
2

µ(dx) <∞, a.s.

Then∫
X

(∫ T

0

ψ(x, t, ω)dMt

)
µ(dx) =

∫ T

0

(∫
X

ψ(x, t, ω)µ(dx)

)
dMt
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Conditions on K for existence of solutions of SVEs

1 Behaviour around zero:

K ∈ L2
loc(R+) and ∃γ ∈ (0, 2] s.t.

∫ h
0
K(t)2dt = O(hγ)

and
∫ T

0
(K(t+ h)−K(t))2dt = O(hγ) for every T <∞

(6)

2 Existence of a resolvent of the first kind:

∃L of locally bounded variation s.t.
K ∗ L = L ∗K ≡ 1

(7)

Definition (Resolvent of the first kind)

The function L is known as the resolvent of the first kind
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Comments on the conditions for K

Condition (6)
Locally Lipschitz kernels K clearly satisfy (6) with γ = 1
K(t) = tα−1 with α ∈ ( 1

2 , 1] satisfies (6) with γ = 2α− 1

Condition (7)
K ≡ 1, then L(ds) = δ0(ds)
K(t) = 1

Γ(α) t
α−1, α ∈ ( 1

2 , 1), then L(t) = 1
Γ(1−α) t

−α

Theorem (Theorem 5.5.4, Gripenberg et al. (1990))

K completely monotone and not identically zero, then

L(ds) = cδ0(ds) + l(s) ds

with l a completely monotone function

Recall: K is completely monotone if

(−1)n
dn

dtn
K(t) ≥ 0, ∀n ∈ N

Examples: tα−1 with α ∈ ( 1
2
, 1), and e−βt with β > 0
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Strong solutions of SVEs: Lipschitz case

Theorem (Strong existence SVEs, Lipschitz coefficients)

Assume that

1 b and σ are Lipschitz continuous

2 K satisfy (6)

Then (1) admits a unique continuous strong solution X for any
initial condition X0 ∈ R

The proof parallels that of Proposition 2.1 in Mytnik and Salisbury
(2015), using a Picard iteration scheme and the following two
lemmas
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Lemma: Existence of Hölder continuous versions

Lemma (Hölder continuous version)

Assume

1 K satisfies (6)

2 X = K ∗ (bdt+ dM), b predictable and M a continuous local

martingale with 〈M〉t =
∫ t

0
asds for some predictable a

3 T ≥ 0 and p > 2/γ s.t. supt≤T E[|at|p/2 + |bt|p] <∞

Then X admits a Hölder continuous version on [0, T ] of any order
α < γ/2− 1/p and for this version

E
[(

sup
0≤s<t≤T

|Xt −Xs|
|t− s|α

)p]
≤ c sup

t≤T
E[|at|p/2 + |bt|p] (8)

for all α ∈ [0, γ/2− 1/p), where c is a constant that only depends on p,
K, and T
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Lemma: Finite moments of solutions of SVEs

Lemma (Moment bound)

Assume

1 b and σ are continuous and satisfy the linear growth condition (2)
for some constant cLG

2 X be a continuous solution of (1) with initial condition X0 ∈ R

Then for any p ≥ 2 and T <∞ one has

sup
t≤T

E[|Xt|p] ≤ c

for some constant c that only depends on |X0|, K|[0,T ], cLG, p and T
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Main existence theorem for SVEs

Theorem (Weak existence SVEs – linear growth – Abi Jaber et al. (2017))

Consider the SVE (1) compactly written as

X = X0 +K ∗ (b(X)dt+ σ(X)dW )

Assume that:

1 b and σ are continuous and satisfy the linear growth condition (2)

2 K satisfies (6)

3 K admits a resolvent of the first kind (see (7))

Then (1) admits a continuous weak solution for any initial
condition X0 ∈ R
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Stability of SVEs

Lemma (Stability of SVEs)

Assume that

1 K admits a resolvent of the first kind L – see (7)

2 Xn be a weak solution of (1) with coefficients bn and σn that
satisfy (2) with a common constant cLG.

3 bn → b and σn → σ locally uniformly for some coefficients b and σ

4 Xn ⇒ X for some continuous process X

Then X is a weak solution of (1)
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Resolvent of the first kind and SVEs

Assume:

1 X a continuous process

2 dZ = b dt+ σ dW a continuous semimartingale with b, σ, and
K ∗ dZ continuous

3 K admits a resolvent of the first kind L – see (7)

Then
X −X0 = K ∗ dZ ⇐⇒ L ∗ (X −X0) = Z. (9)

In this case, for any F ∈ L2
loc(R+) such that F ∗ L is right-continuous

and of locally bounded variation

F ∗ dZ = (F ∗ L)(0)X − (F ∗ L)X0 + d(F ∗ L) ∗X dt⊗ P-a.e. (10)
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SVEs - the semimartingale case

Important consequence:

K(0) <∞
K ′ ∈ L2

loc(R+)

K ′ ∗ L right-continuous and of locally bounded variation

Then (1) becomes

dXt = ((K′∗L)(0)X−(K′∗L)X0+d(K′∗L)∗X)dt+K(0)(b(X)dt+σ(X)dW )

so X is a semimartingale.

Remark: In particular when K(t) = exp(−γt) this agrees with (3)
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Conditions for an invariance result of SVEs on R+

State space: E = R+

Extra conditions on K:
1 K satisfies (6)
2

K is nonnegative, not identically zero, non-increasing and
continuous on (0,∞), and its resolvent of the first kind L
is nonnegative and non-increasing in that s 7→ L([s, s+ t])

is non-increasing for all t ≥ 0

(11)

Conditions on the coefficients:
1 b and σ are continuous and satisfy the linear growth condition (2)
2 Inward pointing condition:

x = 0 implies b(x) ≥ 0 and σ(x) = 0 (12)
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An invariance result of SVEs on R+

Theorem (SVEs on R+ – Abi Jaber et al. (2017))

Under the conditions above on K, b and σ, the SVE (1) admits an
R+-valued continuous weak solution for any initial condition X0 ∈ R+

Remarks:

Observe that (12) is independent of K!

For a Volterra square root process as in (4) with b(x) = λ(θ − x)
and σ(x) = σ

√
x the conditions are satisfied if λθ ≥ 0
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Affine Volterra processes

State space E ⊆ Rd

Affine diffusion and drift coefficients

a(x)= A0 +A1x1 + · · ·+Adxd

b(x)= b0 + b1x1 + · · ·+ bdxd

with Ai ∈ Sd, bi ∈ Rd, and a(x) � 0 on E

σ : Rd → Rd×d continuous with σ(x)σ(x)> = a(x) on E

Matrix-valued kernel K ∈ L2
loc(R+,Rd×d)

Definition (Affine Volterra process)

A continuous E-valued solution X of the stochastic Volterra equation

Xt = X0 +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs

is called an affine Volterra process (of convolution type)
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Affine Volterra processes: Examples

Xt = X0 +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs

Example: For usual affine diffusions, take K(t) ≡ id

Example: The volatility process in the rough Heston model by
El Euch and Rosenbaum (2016) is obtained with

K(t) =
1

Γ(α)
tα−1

Example: More generally, the full rough Heston model uses d = 2
and the kernel

K(t) =

(
1 0
0 1

Γ(α) t
α−1

)
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The one-dimensional case

For simplicity we suppose d = 1 so that

b(x) = β − λx and σ(x)2 = α+ ax (13)

for some real parameters β, λ, α, a

Existence: Weak existence of a solution such that α+aXt ≥ 0 for all t if

α+ aX0 ≥ 0, aβ + λα ≥ 0

Important functions:

Rφ(y) = βy +
α

2
y2, RΨ(y) = −λy +

a

2
y2 (14)
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Fourier–Laplace transform

Theorem (Fourier–Laplace transform – Abi Jaber et al. (2017))

X be a solution of (1) with b(x) and σ(x) as in (13) and K ∈ L2
loc(R+).

Fix T > 0 and v ∈ C, and assume that the Riccati–Volterra equation

ψ = vK +K ∗ RΨ(ψ) (15)

has a solution ψ ∈ L2(0, T ). Then the process

Mt = exp

(
v E [XT | Ft] +

1

2

∫ T

t

(α+ aE[Xs | Ft])ψ(T − s)2ds

)
(16)

is a local martingale on [0, T ], and satisfies

dMt

Mt
= ψ(T − t)σ(Xt)dWt (17)

If M is a true martingale, the Fourier–Laplace transform of XT is
E[exp (vXT ) | Ft] = Mt
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Uniqueness in law

We can extend to the previous result to show a formula of the form

E [exp (vXT + (f ∗X)T ) | Ft] = Mt

where f ∈ L1
loc(R+) and

Mt = exp

(
E[XT + (f ∗X)T | Ft] +

1

2

∫ T

t

(α+ aE[Xs | Ft])ψ(T − s)2ds

)
where ψ solves

ψ = vK +K ∗ (RΨ(ψ) + f)

Remark: Existence Riccati Volterra eqn. ⇒ Uniqueness in law!
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Unconditional Fourier–Laplace transform

Taking t = 0 in the previous theorem one can show that

E[exp (vXT )] = M0 = exp(φ(T ) + χ(T )X0) (18)

where
φ′ = RΦ(ψ), χ′ = RΨ(ψ) (19)

and
φ(0) = 0, χ(0) = v

Recall: RΦ,RΨ defined in (14)
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Characteristic function: Short derivation

Proof.

1 Ansatz: Fix T and consider the semimartingale Mt = eYt , where

Yt = φ(T − t) + χ(T )X0 −
∫ t

0

χ′(T − s)Xsds+

∫ t

0

ψ(T − s)dZs

with Zt =
∫ t

0
b(Xs)ds+

∫ t
0
σ(Xs)dWs

2 Itô yields

dMt

Mt
=
(
−φ′ +RΦ

)
dt

+
(
−χ′ +RΨ

)
Xtdt+ (dWt term)

a local martingale by (19)

3 By “martingale condition”, a martingale

4 Def. of Y and (15) yield YT = φ(0) + χ(0)XT = vXT . Hence

E[evXT ] = E[MT ] = M0 = eφ(T )+χ(T )X0
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The classical case

Classical case: K ≡ 1, χ = ψ and (18) is the classical exponential
affine formula in terms of the Riccati equations (19)

In this case we have the exponential affine formula for the
conditional Fourier–Laplace transform

E [exp(vXT ) | Ft] = exp(φ(T − t) + ψ(T − t)Xt) (20)

where φ, ψ = χ satisfy (19)

Variation of constants:

E[Xs | Ft] = exp(−λ(s− t))Xt + β

∫ s−t

0

exp(−λr) dr, s ≥ t

ψ(t) = v exp(−λt) +
a

2

∫ t

0

exp(−λ(t− s))ψ2(s)ds

These formulas can be used to show the equivalence between (16)
and (20)
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Forward process: Definition

General case:

E[Xs | Ft] = X0+

∫ s

0

K(s−u)(β−λE[Xu | Ft])du+

∫ t

0

K(s−u)σ(Xu)dWu

Observation: The martingale property of
∫ ·

0
K(s− u)σ(Xu)dWu follows

from the moment bounds for X

In order to find E[Xs | Ft] explicitly we need a variation of
constants analogue

The same applies for the Riccati Volterra equation (15) in order to
simplify the linear term

Definition (Forward process)

We call
ξt(T ) = E[XT | Ft]

the forward process of X
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Resolvent of second kind

Definition (Resolvent of the second kind)

For K ∈ L1
loc(R+), the resolvent, or resolvent of the second kind,

corresponding to K is the kernel R ∈ L1
loc(R+) such that

K ∗R = R ∗K = K −R (21)

Remarks:

Rather than (21), it is sometimes required K ∗R = R ∗K = R−K
in the definition of resolvent. We use (21) to remain consistent with
Gripenberg et al. (1990)

The resolvent always exists and is unique

The resolvent R allows to derive a variation of constants
formula
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Resolvent of the second kind : Examples

The kernel λK admits a resolvent of the second kind
Rλ ∈ L2

loc(R+):

(λK) ∗Rλ = Rλ ∗ (λK) = λK −Rλ

Example: If K ≡ 1 then Rλ(t) = λe−λt

Example: If K(t) = 1
Γ(α) t

α−1 then

Rλ = fα,λ

is the so-called Mittag-Leffler density function
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Table: Resolvents of the first and second kind

K(t) R(t) L(dt)

(Const.) c ce−ct c−1δ0(dt)

(Fract.) c t
α−1

Γ(α)
ctα−1Eα,α(−ctα) c−1t−α

Γ(1−α)
dt

(Exp.) ce−λt ce−λte−ct c−1(δ0(dt) + λ dt)

(Gamma) ce−λt t
α−1

Γ(α)
ce−λttα−1Eα,α(−ctα) c−1e−λt

Γ(1−α)
d
dt

(t−α ∗ eλt)(t)dt

Table: Some kernels K and their resolvents R and L of the second and first
kind. Here Eα,β(z) =

∑∞
n=0

zn

Γ(αn+β)
denotes the Mittag–Leffler function, and

the constant c may be an invertible matrix.
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Variation of constants

Lemma (Variation of constants)

Assume

1 X a continuous process

2 F a continuous function on R+

3 B ∈ R
4 Z =

∫
b dt+

∫
σ dW a continuous semimartingale with b, σ, and

K ∗ dZ continuous

Then

X = F + (KB) ∗X +K ∗ dZ ⇐⇒ X = F −RB ∗F +EB ∗ dZ

where RB is the resolvent of −KB and EB = K −RB ∗K
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Forward process: Main result

Proposition (Forward process)

Let Rλ be the resolvent of λK. The forward process

ξt(T ) = E[XT | Ft]

satisfies
dξt(T ) = λ−1Rλ(T − t)σ(Xt)dWt

with initial condition

ξ0(T ) = X0

(
1−

∫ T

0

Rλ(s)ds

)
+ β

∫ T

0

λ−1Rλ(s)ds

If λ = 0, interpret λ−1Rλ = K, and note that Rλ = 0 in this case

This proposition + Variation of constants in Riccati Volterra Eqn.
⇒ Fourier–Laplace formula
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Exponential affine formula w.r.t. the past: Preliminaries

Notation:

1 Shift:
∆hf(t) = f(t+ h).

2 Rλ the resolvent of λK and Eλ = λ−1Rλ = K −Rλ
3 Πh = (∆hEλ) ∗ L−∆h(Eλ ∗ L)

4 πh = ∆hψ ∗ L−∆h(ψ ∗ L)

Assumption on the kernel: K is continuous on (0,∞), admits a
resolvent of the first kind L, and that one has the total variation bound

sup
h≤T
‖∆hK ∗ L‖TV(0,T ) <∞, T ≥ 0 (22)
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Exponential affine formula w.r.t. the past

Theorem (Affine w.r.t past – Abi Jaber et al. (2017))

Under the above conditions, the following hold with h = T − t:
1 Forward process:

E[XT | Ft] = (1∗Eλ)(h)β+(∆hEλ∗L)(0)Xt−Πh(t)X0+(dΠh ∗X)t
(23)

2 Fourier–Laplace transform: Suppose that ψ solves the Riccati
Volterra equation (15) then

E[exp(vXT ) | Ft] = exp(Yt) (24)

where

Yt = φ(h) + (∆hψ ∗ L)(0)Xt − πh(t)X0 + (dπh ∗X)t

and φ(h) =
∫ h

0
RΦ(ψ(s))ds
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Back to Volterra Heston

Let ξt(s) = E[Vs | Ft] and Q(u, z) =
1

2
(u2 − u) + σρuz +

σ2

2
z2

Theorem (Volterra Heston Fourier–Laplace formula)

Consider the Volterra–Heston model. Fix T > 0 and u ∈ C, and assume
that the Riccati–Volterra equation

ψ = K ∗ (Q(u, ψ)− λψ) (25)

has a solution ψ ∈ L2(0, T ). Then the auxiliary process

Mt = exp

(
u log(St) +

∫ T

t

ξt(s)Q(u, ψ(T − s))ds

)
(26)

is a local martingale on [0, T ]. If it is a true martingale, the
Fourier–Laplace transform of log(ST ) is E[exp(u log(ST )) | Ft] = Mt
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Variance and integrated variance processes

Extension to variance and integrated variance:

E

[
exp

(
u log(ST ) + vVT + w

∫ T

0

Vs ds

) ∣∣∣ Ft] = Mt

where

Mt = exp

(
u log(St) + vξt(T ) + w

∫ T

0

ξt(s)ds+

∫ T

t

ξt(s)Q(u, ψ(T − s))ds
)

and ψ solves
ψ = vK +K ∗ (Q(u, ψ)− λψ + w)

Remark:

dMt

Mt
= u

√
VtdBt + σψ(T − t)

√
VtdWt

Gatheral and Keller-Ressel (2018): If the Laplace-transform
formula above holds ⇒ (logS, V ) is Volterra Heston
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Fractional calculus and the rough Heston model

Power law kernel K(t) = tα−1/Γ(α) used in the rough Heston
model

Riemann–Liouville fractional integral: Iαf = K ∗ f
Riemann–Liouville fractional derivative: Dαf = d

dtI
1−αf

The Riccati Volterra equation (25) is

Dαψ = Q(u, ψ)− λψ

which is precisely the fractional Riccati equation derived by
El Euch and Rosenbaum (2016)

Fourier–Laplace formula: See (18)

E[eu log(ST )] = exp

(
u log(S0) + λθ

∫ T

0

ψ(s)ds+ V0 I
1−αψ(T )

)
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Riccati Volterra equations: Existence result

Theorem (Volterra equation of quadratic growth; Abi Jaber et al. (2017))

Assume that g ∈ L2
loc(R+,C), p( · , 0) ∈ L1

loc(R+), and that for all
T ∈ R+ there exist a positive constant ΘT and a function
ΠT ∈ L2([0, T ],R+) such that

|p(t, x)− p(t, y)| ≤ ΠT (t)|x− y|+ ΘT |x− y|(|x|+ |y|), ∀x, y, t ≤ T
(27)

The Volterra integral equation

ψ = g +K ∗ p( · , ψ) (28)

has a unique non-continuable solution ψ ∈ L2
loc([0, Tmax))

Remark: In the Lipschitz case

p( · , ψ) = G( · )q( · , ψ), q Lipschitz and q( · , 0), G ∈ L2
loc(R+)

we have a unique global solution, i.e. Tmax =∞
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Deterministic Volterra equations: Invariance result

Theorem (Invariance of Linear Volterra equation)

Assume K ∈ L2
loc(R+) satisfies (6) and the shifted kernel ∆hK satisfy

(11) for all h ∈ [0, 1]. Let u, v ∈ R, F ∈ L1
loc(R+) and G ∈ L2

loc(R+) be
such that u, v, F ≥ 0. Then the linear Volterra equation

χ = Ku+ v +K ∗ (F +Gχ) (29)

has a unique solution χ ∈ L2
loc(R+) with χ ≥ 0

Observation: Proof uses a stability result for Volterra integral equations
to reduce to the case χ continuous – see Abi Jaber et al. (2017)
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Volterra–Ornstein–Uhlenbeck process

With σ(x) ≡ σ constant we obtain

Xt = X0 + λ

∫ t

0

K(t− s)(θ −Xs)ds+

∫ t

0

K(t− s)σdWs

This is a Gaussian process: If Eλ = K −Rλ ∗K with Rλ the resolvent
of λK

Xt =

(
1−

∫ t

0

Rλ(s)ds

)
X0 +

(∫ t

0

Eλ(s)ds

)
λθ +

∫ t

0

Eλ(t− s)σdWs

The Riccati–Volterra equation has an explicit solution: ψ = uEλ

The quadratic variation of the process Y = log(M) is deterministic

〈Y 〉t =

∫ t

0

ψ(T − s)σσ>ψ(T − s)>ds

Thus the martingale condition holds and we have the Fourier–Laplace
formula
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Volterra square-root process

With σ(x) = σ
√
x we obtain:

Xt = X0 +λ

∫ t

0

K(t−s)(θ−Xs)ds+

∫ t

0

K(t−s)σ
√
XsdWs (30)

Inward-pointing drift condition:

λθ ≥ 0

Assumption on the kernel: K satisfies (6) and the shifted kernels
∆hKi satisfy (11) for all h ∈ [0, 1]
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Volterra square-root process

Theorem (Volterra square-root process – Abi Jaber et al. (2017))

The stochastic Volterra equation (30) has a unique in law
R+-valued weak solution for any initial condition X0 ∈ R+

The paths of X are Hölder continuous of any order less than
H = 1/2− γ
For any u ∈ C with Reu ≤ 0, the Riccati–Volterra equation

ψ(t) = uK(t) +

∫ t

0

K(t− s)RΨ(ψ(s))ds

has a unique global solution ψ ∈ L2
loc(R+) with Reψ ≤ 0

The martingale condition holds, as does the affine transform
formula
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Volterra Heston model

X = (logS, V ) with state space R× R+, where

dSt
St

=
√
Vt dBt

Vt = V0 +

∫ t

0

K(t− s)
(
λ(θ − Vs)ds+ σ

√
Vs dWs

)
with d〈B,W 〉t = ρ dt

Riccati–Volterra equation:

ψ = u2K +K ∗
(

1

2

(
u2

1 − u1

)
+ (ρσu1 − λ)ψ +

1

2
σ2ψ2

)
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Volterra Heston model

Theorem (Volterra Heston model – Abi Jaber et al. (2017))

Under the same assumptions of the previous theorem

The stochastic Volterra equation has a unique in law
R× R+-valued continuous weak solution (logS, V ) for any initial
condition (logS0, V0) ∈ R× R+

The paths of V are Hölder continuous of any order less than
H = 1/2− γ
For any u ∈ (C2)∗ such that

Reu1 ∈ [0, 1] and Reu2 ≤ 0

the Riccati–Volterra equation has a unique global solution
ψ ∈ L2

loc(R+,C), which satisfies Reψ ≤ 0

The martingale condition holds, as does the affine transform
formula

The process S is a martingale
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Musiela parameterization of the forward curve

Musiela parametrization of the forward process:

ũt(x) = ξt(t+ x) = E[Xt+x | Ft]

= ξ0(t+ x) +

∫ t

0

λ−1Rλ(T − s)σ(Xs)dWs, t, x ≥ 0

Observation: The variable x is time to maturity

Modified Musiela parametrization of the forward process

ut(x) = E
[
Xt+x −

∫ t+x

t

K(t− s+ x)b(Xs) ds
∣∣∣ Ft]

We have

ut(x) = X0 +

∫ t

0

K(t−s+x)b(Xs) ds+

∫ t

0

K(t−s+x)σ(Xs) dWs

(31)
Observation: No need to have an affine drift / No use of Rλ
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SPDEs - Infinite dimensional affine process

The process ut(x) in (31) is a mild solution of the SPDE

dut(x) = (∂xut(x) +K(x)b(ut(0)))dt+K(x)σ(ut(0))dWt (32)

The SPDE (32) suggests that the process {ut( · )}t≥0 is an infinite
dimensional Markov process

In the affine case (13), we expect an exponential affine formula:

E
[
e
∫∞
0 h(x)uT (x)dx

∣∣∣ Ft] = eφ(T−t)+
∫∞
0 Ψ(T−t,x)ut(x)dx (33)

where φ(τ) and Ψ(τ, x) are solutions of appropriate Riccati
equations

Abi Jaber and El Euch (2018a) treats the rough Heston case
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Riccati PDE

Riccati equations:

∂tφ(t) = Rφ
(∫∞

0
Ψ(t, y)K(y)dy

)
(34)

Ψ(t, x) = h(x− t)1{x≥t} +RΨ

(∫∞
0

Ψ(t− x, y)K(y)dy
)
1{x<t} (35)

with φ(0) = 0 and Rφ, RΨ as in (14)

Heuristic PDE:

∂tΨ(t, x) = −∂xΨ(t, x) +RΨ

(∫ ∞
0

Ψ(t, y)K(y) dy

)
δ0(x)

with initial condition Ψ(0, x) = h(x)

Relation to Riccati Volterra equation:

ψ(t) =

∫ ∞
0

Ψ(t, x)K(x)dx (36)
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Laplace representation of the kernel

Assume that K is the Laplace transform of some measure µ,
that is,

K(t) =

∫ ∞
0

e−xtµ(dx), t > 0. (37)

Examples:

K(t) = 1⇒ µ = δ0

K(t) = tα−1/Γ(α)⇒ µ(dx) =
x−α

Γ(α)Γ(1− α)
dx, α ∈ (

1

2
, 1)

Theorem (Bernstein–Widder theorem)

K is completely monotone on (0,∞) ⇔ there exists µ positive such
that (37) holds
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Mixture of mean-reverting processes

For simplicity assume X0 = 0

Representation as a mixture of mean reverting processes:
Suppose X satisfies (1) (with X0 = 0), then

Xt =

∫ ∞
0

ut(x)µ(dx) (38)

where

ut(x) =

∫ t

0

e−x(t−s)b(Xs)ds+

∫ t

0

e−x(t−s)σ(Xs)dWs (39)

Observation: {ut(x)}t≥0 is a semimartingale, even if X is not!
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Infinite dimensional system of SDEs

We have

dut(x) = (−xut(x) + b(Xt))dt+ σ(Xt)dWt

Plugging (38) into this expression gives

dut(x) =

(
−xut(x) + b

(∫ ∞
0

ut(y)µ(dy)

))
dt+ σ

(∫ ∞
0

ut(y)µ(dy)

)
dWt

(40)

Affine case: Plugging (13) into this expression gives

dut(x) =

(
β − xut(x)− λ

∫ ∞
0

ut(y)µ(dy)

)
dt+

√
α+ a

∫ ∞
0

ut(y)µ(dy)dWt

(41)

Gaussian case a = 0 is treated by Carmona et al. (2000); Harms
and Stefanovits (2018)
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Approximation with finite dimensional Markov processes

Useful for numerical purposes: Replace µ by an approximation µn
that is supported on finitely many points x1, . . . , xn

µ(dx) ≈
n∑
i=1

ciδxi(dx)

The system (40) then becomes an SDE for the n-dimensional
Markov process {ut(x1), . . . , ut(xn)}t≥0. For i = 1, . . . , n

dut(xi) =

(
−xiut(xi) + b

(
n∑
i=1

ciut(xi)

))
dt

+ σ

(
n∑
i=1

ciut(xi)

)
dWt

(42)

Approximate Volterra process: X ≈
∑n
i=1 ciut(xi) – see

Abi Jaber and El Euch (2018b), Cuchiero and Teichmann
(2018)
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Approximation with f.d. Markov processes (cont.)

The process

Xn
t =

n∑
i=1

ciut(xi)

solves the SVE

Xn
t = Kn ∗ (b(Xn

t )dt+ σ(Xn
t )dWt)

with

Kn(t) =

n∑
i=1

cie
−txi

If K satisfies (6) and ‖Kn −K‖L2 → 0, then (Xn)n is tight and
its limit points satisfy (1) – see Abi Jaber and El Euch (2018b)
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Fourier–Laplace transform and Riccati equations

In the affine case (42) suggests that the process {ut( · )}t≥0 is an
affine Markov process, possibly infinite-dimensional

Fourier–Laplace formula:

E
[
e
∫∞
0 h(x)uT (x)µ(dx)

∣∣∣ Ft] = eφ(T−t)+
∫∞
0 Ψ(T−t,x)ut(x)µ(dx) (43)

Riccati equations: φ(τ) and Ψ(τ, x) solutions to

∂tφ(t) = Rφ
(∫∞

0
Ψ(t, y)µ(dy)

)
, φ(0) = 0

∂tΨ(t, x) = −xΨ(t, x) +RΨ

(∫∞
0

Ψ(t, y)µ(dy)
)
, Ψ(0, x) = h(x)

(44)

Relation to Riccati Volterra equation:

ψ(t) =

∫ ∞
0

Ψ(t, x)µ(dx)
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Summary

Brownian paths are too smooth for volatility modeling – Motivation
for rough volatility models, e.g. rough Heston model

Affine Volterra processes generalize known rough volatility models

Existence, invariance results despite lack of Markov /
semimartingale property - Using the theory of convolution equations

Affine transform formulas + Riccatica Volterra equations: full
justification for Volterra OU, CIR and Heston

Infinite dimensional lifts: Forward curve and Laplace
representation
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Future research

Modeling with Volterra equations beyond rough volatility

Numerical methods for SVEs and the Riccati–Volterra equations

Statistics of stochastic Volterra equations

Hedging and optimal investment, or in general control problems, in
these models (or infinite dimensional lifts)

Boundary attainment for Volterra square-root processes

Non-convolution kernels K(t, s)

Jumps

Etc.
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