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Introduction to affine processes.

Part I : General results on affine processes

Affine diffusions on Rd

Affine diffusions on Rd I

t ≥ 0, Xx
t = x +

∫ t

0
b(Xx

s )ds +

∫ t

0
σ(Xx

s )dWs.

Assumptions : domain D ⊂ Rd,
∀x ∈ D, there exists a unique solution s.t.P(∀t ≥ 0,Xx

t ∈ D) = 1 ;
bi(x), (σ(x)σ>(x))i,j ∈ C0.

Definition 1
X is affine if there exists functions φ(t,u) and ψ(t,u) taking
respectively their values in C and Cd with C0 time derivatives such
that

∀u ∈ iRd, 0 ≤ t ≤ T, x ∈ D, E[eu>Xx
T |Xx

t ] = eφ(T−t,u)+ψ(T−t,u)>Xx
t
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Introduction to affine processes.

Part I : General results on affine processes

Affine diffusions on Rd

Affine diffusions on Rd II

Theorem 2
If X is affine, there exists matrices a, α1, . . . , αd ∈Md(R) and vectors
b, β1, . . . , βd ∈ Rd such that

b(x) = b +
d∑

i=1

xiβi, σ(x)σ>(x) = a +
d∑

i=1

xiαi.

(Part of Thm 10.1 in Filipović (2009)). To have a more precise
statement, we need to specify the domain D.
Question : On which domain D can we define affine processes ?
R, R+, S+

d (R), symmetric cones on Euclidean Jordan Algebras, and
any product of these sets [Faraut and Koranyi (1994), Grasselli and
Tebaldi (2008), Cuchiero, Keller-Ressel, Mayerhofer, Teichmann
(2016).]
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Introduction to affine processes.

Part I : General results on affine processes

Affine diffusions on Rd

Affine diffusions on Rd III
D = Rm

+ × Rn with m + n = d.

Theorem 3
If X is an affine diffusion on D, iff there exists a, α1, . . . , αd ∈ S+

d (R) and
vectors b, β1, . . . , βd ∈ Rd satisfying

akl = 0 if k ≤ m or l ≤ m,
αi = 0, i > m and for i ≤ m, (αi)kl = 0 if k ≤ m, k 6= i or l ≤ m, l 6= i,
b ∈ Rm

+ ×Rn, for i ≤ m, (βi)l ≥ 0 if l ≤ m, l 6= i, for i > m, (βi)l = 0 if
l ≤ m.

such that

b(x) = b +
d∑

i=1

xiβi, σ(x)σ>(x) = a +
d∑

i=1

xiαi.
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Part I : General results on affine processes

Affine processes

Affine processes

On D = Rm
+ × Rn : Duffie, Filipović, Schachermayer (2003).

Time-inhomogeneous, Filipović (2005)
On D = S+

d (R) : Cuchiero, Filipović, Mayerhofer, Teichmann
(2011).
On general symmetric cones : Cuchiero, Keller-Ressel,
Mayerhofer, Teichmann (2016).
Regularity of affine processes : Keller-Ressel, Teichmann,
Schachermayer (2013).
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Introduction to affine processes.

Part II : A quick tour of affine models in finance

Basic affine processes used in finance

Ornstein-Uhlenbeck processes

D = Rd, x, a ∈ Rd, K ∈Md(R), Σ ∈ S+
d (R), W d-dimensional

Brownian motion.

t ≥ 0,Xx
t = x +

∫ t

0
(a− KXx

s )ds + ΣWt.

This is a Gaussian process, and in particular
Xx

t ∼ Nd(xe−Kt +
∫ t

0 eK(s−t)dsa,
∫ t

0 eK(s−t)Σ2eK>(s−t)ds). The law of
(Xx

t ,
∫ t

0 Xx
s ds) is also a Gaussian vector. Explicit Laplace transform and

moments.

Aurélien Alfonsi (CERMICS) 29-30 August 2018 13 / 109

Introduction to affine processes.

Part II : A quick tour of affine models in finance

Basic affine processes used in finance

The CIR process, first properties
D = R+, x, a ∈ R+, k ∈ R, σ ≥ 0.

t ≥ 0,Xx
t = x +

∫ t

0
(a− kXx

s )ds + σ

∫ t

0

√
Xx

s dWs.

Theorem 4
There exists a unique nonnegative C0 process Xx that solves this SDE.

Proposition 5

When a > 0, the density of Xx
t is given by

p(t, x, z) =
∞∑

i=0

e−dtx/2(dtx/2)i

i!
ct/2

Γ(i + 2a
σ2 )

(ctz
2

)i−1+ 2a
σ2

e−ctz/2, z > 0.

where ct = 4
σ2ζk(t) and dt = cte−kt, i.e. ctXt chi-square distr. with degree 4a

σ2

and noncentrality dtx.
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Introduction to affine processes.

Part II : A quick tour of affine models in finance

Basic affine processes used in finance

The CIR process : joint characteristic function
Set of convergence :

Dt =

{
(u, v) ∈ R, E

[
exp

(
uXx

t + v
∫ t

0 Xx
s ds
)]

<∞
}
.

Proposition 6

Let γv =
√

k2 − 2σ2v and ψ0 = k+γv
σ2 . The set of convergence is given by

Dt =

{
(u, v) ∈ R, s.t. v ≤ k2

2σ2
,

2
ζ−γv (t)

> σ
2u− (k + γv)

}

⋃{
(u, v) ∈ R, s.t. v >

k2

2σ2
, ∀s ∈ [0, t], cos

(
|γv|

s
2

)
− σ2u− k
|γv|

sin
(
|γv|

s
2

)
> 0

}
.

For (u, v) ∈ Dt, we have E
[
exp

(
uXx

t + v
∫ t

0 Xx
s ds
)]

=

=


 e

γv+k
2 t

1− σ2
2 (u− ψ0)ζ−γv (t)




2a
σ2

exp

(
x

[
ψ0 +

(u− ψ0)eγvt

1− σ2
2 (u− ψ0)ζ−γv (t)

])
.
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Part II : A quick tour of affine models in finance

Basic affine processes used in finance

The CIR process : further properties I

Explicit characteristic function of (Xx
t ,
∫ t

0 Xx
s ds, 1/Xx

t ,
∫ t

0 (1/Xx
s )ds) :

Hurd and Kuznetsov (2006), Craddock and Lennox (2009).
Feller condition. Let x > 0 and τ0 = inf{t ≥ 0,Xx

t = 0}with
inf ∅ = +∞. Then, τ0 = +∞ a.s. if, and only if

2a ≥ σ2 (1)

When σ2 > 2a, we have τ0 <∞ a.s. if, and only if k ≥ 0.
Let x ≥ 0, k ∈ R, σ > 0, and p ∈ N∗ independent
Ornstein-Uhlenbeck processes dYi

t = − k
2 Yi

tdt + σ
2 dWi

t,
Yi

0 =
√

x/p, for 1 ≤ i ≤ p. Then Xt =
∑p

i=1(Yi
t)

2 solves

dXt =

(
p
σ2

4
− kXt

)
dt + σ

√
XtdWt.
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Part II : A quick tour of affine models in finance

Basic affine processes used in finance

The CIR process : further properties II

“Remove the linear drift by a time change” :

Xx
t =x +

∫ t

0
(a− kXx

s )ds +

∫ t

0
σ
√

Xx
s dWs,

X̃x
t =x + at +

∫ t

0
σ

√
X̃x

s dWs, x ∈ R+, t ≥ 0.

The processes (e−ktX̃x
ζ−k(t))t≥0 and (Xx

t )t≥0 have the same law. (
ζk(t) = (1− e−kt)/k)
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Part II : A quick tour of affine models in finance

Basic affine processes used in finance

CIR and Wright-Fisher/Jacobi processes I
The Wright-Fisher process is valued in D = [0, 1] and defined by

Xx
t = x +

∫ t

0
(a− kXx

t )dt +

∫ t

0
σ
√

Xx
t (1− Xx

t )dWt, t ≥ 0,

with x ∈ [0, 1], 0 ≤ a ≤ k and σ ∈ R.
The Jacobi process is valued in D = [−1, 1] and defined by

Xx
t = x +

∫ t

0
(a− kXx

t )dt +

∫ t

0
σ
√

1− (Xx
t )2dWt, t ≥ 0, (2)

with x ∈ [0, 1],−k ≤ a ≤ k and σ ∈ R.
Xx is a Jacobi process iff (1 + Xx)/2 is a Wright-Fisher process.
If Xx is a Jacobi process with a = 0, (Xx)2 is a Wright-Fisher
process.
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Part II : A quick tour of affine models in finance

Basic affine processes used in finance

CIR and Wright-Fisher/Jacobi processes II
Explicit moments. For Jacobi processes,

d
dt
E[(Xx

t )m] = mE[a(Xx
t )m−1−k(Xx

t )m]+
m(m− 1)σ2

2
E[(Xx

t )m−2−(Xx
t )m].

By using the family of Jacobi orthogonal polynomials

Pγ,δn (x) =
1
2n

n∑

k=0

(
n + γ − 1

k

)(
n + δ − 1

n− k

)
(x− 1)n−k(x + 1)k,

with γ = (k− a)/σ2, δ = (k + a)/σ2 :
E[Pγ,δn (Xt)] = E[Pγ,δn (X0)]e−n(n+γ+δ−1)σ2t/2.
Belong to the class of polynomial process (Cuchiero,
Keller-Ressel and Teichmann (2012)), which includes affine
processes.
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Part II : A quick tour of affine models in finance

Basic affine processes used in finance

CIR and Wright-Fisher/Jacobi processes III
Proposition 7
Let B1 and B2 two independent real Brownian motions. Let b1, b2, z1, z2 ≥ 0
and σ > 0 such that σ2 ≤ 2(b1 + b2) and z1 + z2 > 0. We consider the
following CIR processes

Zi
t = zi + bit +

∫ t

0
σ
√

Zi
sdBi

s, i = 1, 2.

Then, Yt = Z1
t + Z2

t is a CIR process that never reaches 0, and we define

t ≥ 0, Xt =
Z1

t

Yt
, φ(t) =

∫ t

0

1
Ys

ds.

Then, φ is bijective on R+ and the process (Xφ−1(t), t ≥ 0) is a
Wright-Fisher diffusion with parameters a = b1, k = b1 + b2 and σ that is
independent of (Yt, t ≥ 0).
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Part II : A quick tour of affine models in finance

Basic affine processes used in finance

Proposition 8
Let B1 and B2 two independent real Brownian motions. Let b2, z2 ≥ 0,
z̃1 ∈ R and σ > 0 such that σ2 ≤ 4b2 and z2 + (z̃1)2 > 0. Let
Z̃1

t = z̃1 + σ
2 B1

t , Z1
t = (Z̃1

t )2 and Z2 be the following CIR process

Z2
t = z2 + b2t +

∫ t

0
σ
√

Z2
s dB2

s .

Then, Yt = Z1
t + Z2

t is a CIR process that never reaches 0, and we define

t ≥ 0, X̃t =
Z̃1

t√
Yt
, φ(t) =

∫ t

0

1
Ys

ds.

Then, φ is bijective on R+ and the process (X̃φ−1(t), t ≥ 0) is a Jacobi
diffusion with parameters a = 0, k = b2/2 and σ/2 that is independent of
(Yt, t ≥ 0).

Aurélien Alfonsi (CERMICS) 29-30 August 2018 21 / 109

Introduction to affine processes.
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Basic affine processes used in finance

Hawkes processes I
We start with the simplest form of Hawkes processes : Nt is a unit
jump process, with intensity λt s.t.

dλt = (a− kλt)dt + dNt,

with a ≥ 0, k ∈ R. Self-exciting process with exponential kernel :

λt = λ0e−kt + aζk(t) +

∫ t

0
e−k(t−s)dNs.

Characteristic function : u1,u2 ∈ iR, t ≤ T

E[eu1NT+u2λT |Ft] = eφ(u,T−t)+u1Nt+ψ2(u,T−t)λt ,

with −∂tφ+ aψ2 = 0, −∂tψ2 − kψ2 + eu1+ψ2 = 0. (Blackboard)
Example of mutually exciting Hawkes processes→ Blackboard.
Initially used to model Earthquakes. Application in Credit Risk
and Microstructure.
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Basic affine processes used in finance

Hawkes processes II
Multi-exponential kernels : Nt is unit jump process with intensity
λt =

∑p
i=1 αiλ

i
t, with

ki, αi > 0, i = 1, . . . , p, θ > 0

dλi
t = ki

(
θ

pαi
− λi

t

)
dt + dNt, so that

λi
t = (λi

0 −
θ

pαi
)e−kit +

θ

pαi
+

∫ t

0
e−ki(t−s)dNs.

λt =
∑p

i=1(αiλ
i
0 − θi/p)e−kit + θ +

∫ t
0 ϕ(t− s)dNs.

Hawkes process with kernel ϕ(u) =
∑p

i=1 αie−kiu. The process
(N, λ1, . . . , λp) is affine.
Extension to completely monotone kernels. Application : Market
microstructure, survey by Bacry, Mastromatteo and Muzy (2015).
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Basic affine processes used in finance

Wishart processes

Wishart processes have initially been introduced and studied by Bru
in her phD thesis on Escherichia Coli (1987), and have recently been
extended by Cuchiero, Filipovic, Mayerhofer and Teichmann (2009).
A Wishart process (Xt)t≥0 of dimension d is defined on nonnegative
symmetric matrices S+

d (R) and solves the following SDE :

dXt = (αaTa + bXt + XtbT)dt +
√

XtdWta + aTdWT
t

√
Xt, t ≥ 0,

X0 = x ∈ S+
d (R).

Here, α ∈ R, a, b ∈Md(R) and
√

Xt is the square root of the
nonnegative matrix Xt : if Xt = Otdiag(Λ1

t , . . . ,Λ
d
t )O−1

t ,
√

Xt := Otdiag(
√

Λ1
t , . . . ,

√
Λd

t )O−1
t . Wt denotes a d× d matrix whose

components are independent standard Brownian motions.
d = 1 CIR diffusion : dXt = (αa2 + 2bXt)dt + 2a

√
XtdWt, t ≥ 0.
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Basic affine processes used in finance

Existence, uniqueness and properties

We have the following results (Bru (1991), Cuchiero and al. (2009),
Mayerhofer and al. (2011)) :

When α ≥ d + 1, the SDE has a unique strong solution on the
positive symmetric matrices S+,∗

d (R).
When d− 1 < α < d + 1, the SDE has a unique weak solution
on S+

d (R).
Explicit characteristic function :

∀v ∈ Sd(R),E[exp(iTr(vXt))] =
exp(Tr[iv(Id − 2iqtv)−1mtxmT

t ])

det(Id − 2iqtv)α/2 ,

where qt =
∫ t

0 exp(sb)aTa exp(sbT)ds,mt = exp(tb).
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Basic affine processes used in finance

Wishart processes and Matrix Ornstein-Uhlenbeck
processes

Let Zt be a standard Brownian process inMd,d′(R). We define an
Ornstein-Uhlenbeck process Y onMd,d′(R) as follows :

dYt = bYtdt + adZt, Y0 = y0,

where a, b ∈Md(R).

Proposition 9
When d′ ≥ d− 1, Xt = YtY>t is distributed as a Wishart process and we
have

X ∼WISd(y0y>0 , d
′, b, a>). (3)

Rk : When d′ ∈ {1, . . . , d− 2}, we remark that the process X is still
defined. This gives a way to define Wishart processes for
α ∈ {1, . . . , d− 2}. In this case, Xt is a matrix of maximal rank d′ and
is never invertible.
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Part II : A quick tour of affine models in finance

Basic affine processes used in finance

Affine diffusions on S+
d (R) (Cuchiero et al. (2009))

dXt = (ᾱ+ B(Xt))dt +
√

XtdWta + aTdWT
t

√
Xt,X0 = x ∈ Sd(R).

ᾱ ∈ Sd(R), a ∈Md(R) and B : Sd(R)→ Sd(R) is a linear mapping
such that Tr(B(x)z) ≥ 0 if Tr(xz) = 0 for x, z ∈ S+

d (R).
Wishart SDE if ᾱ = αaTa, B(x) = bx + xbT.

If ᾱ− (d + 1)aTa ∈ S+
d (R), unique strong solution.

If ᾱ− (d− 1)aTa ∈ S+
d (R), unique weak solution.

Characteristic function : E[exp(Tr(uXx
T))] = exp(φu(T) + Tr(ψu(T)x))

with

ψ′u(t) = B∗(ψu(t)) + 2ψu(t)a>aψu(t) ; ψu(0) = u
φ′u(t) = Tr(αψu(t)) ; φu(0) = 0.

In general, no explicit solution→ numerical integration.
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Part II : A quick tour of affine models in finance

Interest-rate models

Vasicek (1977) I

Short rate model : drt = k(θ − rt)dt + σdWt. Bank-account
dB(t) = rtB(t)dt.
Zero-coupon price :

P(t,T) = E[exp(−
∫ T

t
rsds)|Ft] = PVas(rt,T − t),

with

PVas(r, t) = AVas(t) exp
(
−rBVas(t)

)
, r ≥ 0, t ≥ 0, (4)

AVas(t) = exp
[(

σ2

2k2 − θ
)

(t− ζk(t))− σ2

4k
ζk(t)2

]
and BVas(t) = ζk(t).
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Interest-rate models

Vasicek (1977) II
T-forward measure : dPT

dP = e−
∫ T

0 rsds

PVas(r0,T)
.

For t ≤ T, rt ∼ N (mt,T,Σ
2
t ) under the T-forward probability

measure with

mt,T = r0e−kt+

(
kθ − σ2

k

)
ζk(t)+

σ2

k
e−k(T−t)ζ2k(t) and Σ2

t = σ2ζ2k(t).

Explicit prices for call/put options on Zero-Coupon bonds (and
thus for floorlets/caplets) :

E[e−
∫ T0

0 rsds(PVas(rT0 ,T1 − T0)− K)+]

= PVas(r0,T1)Φ

(
r?(T1 − T0)−mT0,T1

ΣT0

)

− KPVas(r0,T0)Φ

(
r?(T1 − T0)−mT0,T0

ΣT0

)
.
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Interest-rate models

Cox-Ingersoll-Ross model (1985)
Short rate model : drt = k(θ − rt)dt + σ

√
rtdWt. Bank-account

dB(t) = rtB(t)dt.
Zero-coupon price :

P(t,T) = E[exp(−
∫ T

t
rsds)|Ft] = PCIR(rt,T − t),

with

PCIR(r, t) = ACIR(t) exp
(
−rBCIR(t)

)
, r ≥ 0, t ≥ 0,

ACIR(t) =

(
2γe

γ+k
2 t

γ − k + (γ + k)eγt

) 2kθ
σ2

, BCIR(t) =
2(eγt − 1)

γ − k + (γ + k)eγt ,

where γ =
√

k2 + 2σ2.

Again, explicit T-forward measure and law of rt under this measure :
=⇒ explicit prices for floorlets/caplets.
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Interest-rate models

The Linear Gaussian Model
El Karoui et al. (1991) and El Karoui and Lacoste (1992) : Short rate
model : rt = ϕ+

∑d
i=1 Yi

t with

Yt = y +

∫ t

0
κ(θ − Ys)ds +

∫ t

0

√
VdZs,

where κ = diag(κ1, . . . , κd) with 0 < κ1 < · · · < κd, V is a semidefinite
positive matrix of order d and θ ∈ Rd.

Zero Coupon prices :

E

[
exp

(
−
∫ T

t
rsds

)
|Ft

]
= exp(E(T − t) + B(T − t)>Yt),

where B(τ) = −(κ>)−1(Id − e−κ
>τ )1d and

E(τ) = −ϕτ +
∫ τ

0 B(s)>κθ + B(s)>VB(s)
2 ds for τ ≥ 0.

Explicit prices for caplets/floorlets.
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Interest-rate models

Affine Term-Structure Models

rt = ϕ+
∑p

i=1 Yi
t with Y affine diffusion on (R+)m × Rn,

m + n = d : Duffie and Kan (1996), Duffie and Singleton (1999),
Dai and Singleton (2000), ...
Typical results : Y is an affine process iff
E[exp

(
−
∫ T

0 r0ds
)

] = exp(φ(T) + ψ(T)>Y0).

Recent extensions based on Wishart processes : Gnoatto (2012)
rt = a + Tr[BXt] where X is a Wishart proc., Ahdida, A. Palidda
(2017) : replace V in the LGM by a Wishart process to generate
smile.
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Black-Scholes-Merton model (1973)

Affine structure on the log-price Xt = log(St)

XT = X0 + rT + σWT.
Explicit call/put option prices.
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The Heston model (1993) I

We use again the log-price Xt = log(St).
Parameters a ≥ 0, ρ ∈ [−1, 1], k ∈ R.
{

Xx
t = Xx

0 +
∫ t

0 (r− 1
2 Vu)du +

∫ t
0

√
Vu(ρdW1

u +
√

1− ρ2dW2
u)

Vt = V0 +
∫ t

0 (a− kVu)du + σ
∫ t

0

√
VudW1

u
, t ≥ 0.

The infinitesimal generator is given by

Lf (x, v) = (r− v
2

)∂xf (x, v) + (a− kv)∂vf (x, v) +
σ2

2
v∂2

v f (x, v)

+
v
2
∂2

x f (x, v) + ρσv∂x∂vf (x, v)

and is affine with respect to (x, v).
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The Heston model (1993) II

We work with the following SDE : t ≥ 0,
{

(Xx
t )1 = x1 +

∫ t
0 (r− λ(Xx

s )2)ds +
∫ t

0

√
(Xx

s )2(ρdW1
s +

√
1− ρ2dW2

s )

(Xx
t )2 = x2 +

∫ t
0 (a− k(Xx

s )2)ds + σ
∫ t

0

√
(Xx

s )2dW1
s

.

λ = 1/2 : Heston model. We can show that under dP̃
dP |FT = e−rTST

S0
,

(Xx
t ,Vt)t∈[0,T] follows the same SDE with λ = −1/2 and k− ρσ

instead of k.
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The Heston model (1993) III
Proposition 10
The characteristic function is given by

u ∈ iR2, E[exp(u>Xx
t )] = exp(φu(t) + ψu(t)>x),

φu(t) =

(
ru1 + a(Ψ− 2

√
∆

σ2 )

)
t− 2a

σ2 log

(
exp(−

√
∆t)− g

1− g

)
,

(ψu(t))1 = u1, (ψu(t))2 = u2 + (Ψ− u2)
1− exp(

√
∆t)

1− g exp(
√

∆t)
,

with ∆ = (ρσu1 − k)2 − σ2(u2
1 − 2λu1), Ψ = k−ρσu1+

√
∆

σ2 and

g = k−ρσu1+
√

∆−σ2u2

k−ρσu1−
√

∆−σ2u2
. These formulas are valid when ∆ 6= 0, considering

that exp(−
√

∆t)−g
1−g = 1 and 1−exp(

√
∆t)

1−g exp(
√

∆t)
= 0 when the denominator of g is

zero.
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The Heston model (1993) IV
Remarks :

When ∆ = 0, one has the following formulas

φu(t) = (ru1 + aΨ) t− 2a
σ2 log

(
1 +

σ2

2
t(Ψ− u2)

)
,

(ψu(t))1 = u1, (ψu(t))2 = u2 + (Ψ− u2)2 σ2t
2 + σ2t(Ψ− u2)

.

Correct formula, especially for the complex logarithm (Lord ans
Kahl (2010)).
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The Heston model (1993) V

Corollary 11

The price of a European call option in the Heston model is given by

C(T,K) =S0

(
1
2

+
1
π

∫ ∞

0
<
(

e−iv log(K)Φ̃(v)

iv

)
dv

)

− Ke−rT
(

1
2

+
1
π

∫ ∞

0
<
(

e−iv log(K)Φ(v)

iv

)
dv
)
,

where Φ(v) (resp. Φ̃(v)) is given by the previous formulas with u1 = iv,
u2 = 0, k and λ = 1/2 (resp. k− ρσ and λ = −1/2).

Aurélien Alfonsi (CERMICS) 29-30 August 2018 40 / 109



Introduction to affine processes.

Part II : A quick tour of affine models in finance

Equity models

The Heston model (1993) VI
Explosion of moments : Andersen and Piterbarg (2007).

Corollary 12

For p ∈ R, we set v(p) = (k ρσ − 1
2 )p + (1− ρ2)

p2

2 . We also define
γ̄v =

√
|k2 − 2σ2v| for v ∈ R. In the Heston model, the moment of order p is

finite at time t > 0, i.e. E[Sp
t ] <∞, if, and only if one of these three

condition holds.
1 v(p) ≤ k2

2σ2 and ρσp ≤ k + γ̄v(p),

2 v(p) ≤ k2

2σ2 , ρσp > k + γ̄v(p) and t < 1
γ̄v(p)

log
(

1 +
2γ̄v(p)

ρσp−(k+γ̄v(p))

)
,

3 v(p) > k2

2σ2 , and t < 2
γ̄v(p)

arctan
(
γ̄v(p)

ρσp−k

)
+ π1{ρσp−k<0}.

In particular, v(1) ≤ k2

2σ2 and ρσ ≤ k + γ̄v(1) which gives E[St] = ertS0.

Large deviations and asymptotics on the smile : Jacquier with Forde,
Lee and Roome (2009,2011,2012,2013).
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Pricing with the Fourier Transform : general principle

Goal : calculate E[f (XT)], XT : Ω→ Rd.

Assumption E[eiu>XT ] is known explicitly or can be computed
quickly.

Under suitable conditions, f (x) = 1
(2π)d

∫
Rd f̂ (u)e−iu>xdu, with

f̂ (u) = 1
(2π)d

∫
Rd f (x)eiu>xdx, and thus

E[f (XT)] =
1

(2π)d

∫

Rd
f̂ (u)E[e−iu>XT ]du.

In practice very efficient for d = 1 (Pricing with FFT, Carr and
Madan (1999)), can be competitive for d = 2, 3 but suffers then
from the curse of dimensionality.
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Multi-asset Wishart stochastic volatility model I
Gourieroux and Sufana (2004) have proposed the following model
for d assets :

t ≥ 0, 1 ≤ l ≤ d, Sl
t = Sl

0 + r
∫ t

0
Sl

udu +

∫ t

0
Sl

u(
√

XudBu)l,

where

Xt = X0+

∫ t

0

(
αa>a + bXu + Xub>

)
du+

∫ t

0

(√
XudWua + a>dW>u

√
Xu

)

is a Wishart process. B Brownian motion on Rd indep of W.
Laplace transform obtained by a system of ODEs,
Instantaneous quadratic covariation matrix between the
log-prices :

〈d log(Sk
t ), d log(Sl

t)〉 = (Xt)k,ldt.

d = 1 : Heston model with zero correlation.
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Multi-asset Wishart stochastic volatility model II

Da Fonseca, Grasselli and Tebaldi (2007) extended this model,
assuming :

Sl
t = Sl

0 + r
∫ t

0
Sl

udu +

∫ t

0
Sl

u(
√

Xu[
√

1− ‖ρ‖2
2dBu + dWuρ])l,

with ρ ∈ Rd such that ‖ρ‖2
2 = ρ>ρ =

∑d
i=1 ρ

2
i ≤ 1.

The model is still affine :

〈d(Xt)i,j, d(Yt)m〉 = [(a>ρ)j(Xt)i,m + (a>ρ)i(Xt)j,m]dt.
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Introduction

The simulation of affine diffusions is :
obvious for Ornstein-Uhlenbeck processes !
more involved for CIR, affine diffusions on Rm

+ × Rn, and
Wishart processes. This is our goal here.
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First considerations on the CIR simulation

Exact simulation
We recall the probability density function :

p(t, x, z) =
∞∑

i=0

e−dtx/2(dtx/2)i

i!
ct/2

Γ(i + 2a
σ2 )

(ctz
2

)i−1+ 2a
σ2

e−ctz/2, z > 0,

with ct = 4
σ2ζk(t) , dt = cte−kt,

the Γ(α, β) with shape α > 0 and rate β > 0 :

βα

Γ(α)
zα−1e−βz, z > 0.

Proposition 13

Let N be a Poisson random variable with parameter dtx/2 and Z be such
that the conditional law of Z given N is Γ

(
N + 2a

σ2 ,
ct
2

)
. Then, Z and Xx

t
have the same law.
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Exact simulation without the Poisson r.v.

Proposition 14

Suppose that 4a
σ2 ≥ 1. Let G ∼ N (0, 1). We consider an independent random

variable Z ∼ Γ
( 2a
σ2 − 1

2 ,
ct
2

)
when 4a

σ2 > 1 and set Z = 0 if σ2 = 4a. Then,
(e−kt/2√x + (σ/2)

√
ζk(t)G)2 + Z and Xx

t have the same law.

Proposition 15

(Shao (2012)) Let U ∼ U([0, 1]) and Z ∼ Γ
( 2a
σ2 ,

ct
2

)
be independent random

variables that are independent from X̃, CIR process with ã = a + σ2/2

instead of a. Then, 1U≤e−dtx/2 Z + 1U>e−dtx/2 X̃
x+ 2

dt
log(U)

t and Xx
t have the

same law.

But the simulation of Gamma r.v. is still longer than one Gaussian r.v.
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The Euler scheme for the CIR process

We use the following parametrization of the CIR :

Xx
t = x +

∫ t
0 (a− kXx

s )ds + σ
∫ t

0

√
Xx

s dWs, t ∈ [0,T]
x ≥ 0, a > 0, k ∈ R, σ > 0.

Time discretization : tn
i = iT

n , i = 0, . . . ,n.

Euler scheme : X̂n
tn
i+1

= X̂n
tn
i

+ (a− kX̂n
tn
i
) T

n + σ
√

X̂n
tn
i

(Wtn
i+1
−Wtn

i
)

︸ ︷︷ ︸
may be large and<0

It is thus not well defined =⇒ need to introduce bespoke schemes
for the CIR.
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“Corrections” of the Euler scheme.
Deelstra and Delbaen (1998) :

X̂n
t0

= x, X̂n
ti+1

= X̂n
ti
+(a−kX̂n

ti
)

T
n

+σ

√(
X̂n

ti

)+

(Wti+1−Wti), 1 ≤ i ≤ n−1.

Higham and Mao (2005) :

X̂n
t0

= x, X̂n
ti+1

= X̂n
ti

+ (a− kX̂n
ti
)

T
n

+ σ
√
|X̂n

ti
|(Wti+1 −Wti).

Berkaoui, Bossy and Diop (2008) :

X̂n
t0

= x, X̂n
ti+1

=

∣∣∣∣X̂n
ti

+ (a− kX̂n
ti
)

T
n

+ σ
√

X̂n
ti
(Wti+1 −Wti)

∣∣∣∣ .

Lord, Koekkoek and Van Dijk (2010) :

X̂n
t0

= x, X̂n
ti+1

= X̂n
ti

+ (a− k(X̂n
ti
)+)

T
n

+ σ

√(
X̂n

ti

)+

(Wti+1 −Wti).
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Correction of the Milstein scheme
Milstein scheme for the CIR :

X̂n
ti+1

= X̂n
ti

+ (a− kX̂n
ti
)

T
n

+ σ
√

X̂n
ti
(Wti+1 −Wti)

+
σ2

4
((Wti+1 −Wti)

2 − T
n

)

= X̂n
ti

+ (a− σ2

4
− kX̂n

ti
)

T
n

+

(√
X̂n

ti+1
+
σ

2
(Wti+1 −Wti)

)2

.

Well defined for σ2 ≤ 4a and k ≤ 0.
A. (2005) uses the following correction for σ2 ≤ 4a and n ≥ kT/2

X̂n
ti+1

=

((
1− kT

2n

)√
X̂n

ti
+
σ(Wti+1 −Wti)

2(1− kT
2n )

)2

+ (a− σ2/4)
T
n
.
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Correction of the Milstein scheme
Milstein scheme for the CIR :

X̂n
ti+1

= X̂n
ti

+ (a− kX̂n
ti
)

T
n

+ σ
√

X̂n
ti
(Wti+1 −Wti)

+
σ2

4
((Wti+1 −Wti)

2 − T
n

)

= (a− σ2

4
− kX̂n

ti
)

T
n

+

(√
X̂n

ti+1
+
σ

2
(Wti+1 −Wti)

)2

.

Well defined for σ2 ≤ 4a and k ≤ 0.
A. (2005) uses the following correction for σ2 ≤ 4a and n ≥ kT/2

X̂n
ti+1

=

((
1− kT

2n

)√
X̂n

ti
+
σ(Wti+1 −Wti)

2(1− kT
2n )

)2

+ (a− σ2/4)
T
n
.
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Implicit Euler schemes
On the CIR diffusion (Brigo and A., 2005) :

X̂n
ti+1

=



σ(Wti+1 −Wti ) +

√
σ2(Wti+1 −Wti )

2 + 4(X̂n
ti

+ (a− σ2
2 ) T

n )(1 + k T
n )

2(1 + k T
n )




2

.

Well-defined for σ2 ≤ 2a.

On the square root d
√

Xx
t =

(
a−σ2/4
2
√

Xx
t
− k
√

Xx
t

)
dt + σ

2 dWt (A.

2005) :

X̂n
ti+1

=




σ
2 (Wti+1 −Wti ) +

√
X̂n

ti
+

√
(σ2 (Wti+1 −Wti ) +

√
X̂n

ti
)2 + 4(1 + kT

2n )
a−σ2/4

2
T
n

2(1 + kT
2n )




2

.

Well-defined for σ2 ≤ 4a.
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Strong convergence results
It has been shown that all these schemes converges strongly to the
CIR, i.e.

E
[

max
0≤i≤n

|X̂n
ti
− Xx

ti
|
]
→ 0,

some of them with a cv rate.
Best known strong cv rates for the implicit scheme on the square root
(A. (2013) and Neuenkirch and Szpruch (2014)) :

Theorem 16

Let x > 0, 2a > σ2 and T > 0. Then,

2a > σ2 :∀p ∈ [1,
2a
σ2 ),∃Kp > 0,

(
E
[

max
0≤i≤n

|X̂n
ti
− Xx

ti
|p
])1/p

≤ Kp

√
T
n
,

a > σ2 :∀p ∈ [1,
4a

3σ2 ),∃Kp > 0,
(
E
[

max
0≤i≤n

|X̂n
ti
− Xx

ti
|p
])1/p

≤ Kp
T
n
.
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Empirical strong cv rate in fct of σ2/2a
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Common shortcoming of these schemes

All of these schemes can be written for some ϕ :

X̂n
tn
i+1

= ϕ(X̂n
tn
i
,T/n,Wtn

i+1
−Wtn

i
).

These schemes have not the same convergence behaviour, but
most of them bring satisfactory convergence properties only for
σ2 ≤ 4a.
For σ2 � 4a, none of them has a fast convergence.
Heuristic reason : the larger is sigma, the more the CIR spend
time around zero where the square-root derivative blows up.
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Example of CIR paths I
x = 0.04, k = 0.5, a = 0.02 and σ = 0.1, i.e. σ2 = a/2.
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Example of CIR paths II
σ = 0.2 i.e. σ2 = 2a
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Example of CIR paths III
σ = 0.4 i.e. σ2 = 8a

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
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Example of CIR paths IV
σ = 1 i.e. σ2 = 25a
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A recent result by Hefter and Jentzen (2017)

Theorem 17
Let a, σ > 0 such that σ2 > 2a. There exists c > 0 such that for all n ≥ 1,

inf
ϕ:Rn→R mesurable

E[|Xx
T − ϕ(WT/n,W2T/n . . . ,WT)| ≥ cN−2a/σ2

.

=⇒ To get efficient schemes for large values of σ, it is wise to
consider schemes that approximates the law rather than the path for
a given W.

Andersen (2008) has proposed an ad-hoc scheme that works well
without restriction on σ, but no convergence result is given.
We present here a framework to analyze the weak error, and
high order schemes for the weak error.
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Introduction

To discretize an SDE dXt = b(Xt)dt + σ(Xt)dWt, the most
common choice is to use the Euler-Maruyama scheme :

X̂ti+1 = X̂ti + b(X̂ti)(ti+1 − ti) + σ(X̂ti)(Wti+1 −Wti).

It is basically used to compute expectations with a Monte-Carlo
algorithm.
To speed up the computation, one may desire to consider
sharper schemes. To do so, one way is to find a better pathwise
approximation by using iterated stochastic Taylor expansions
(Milstein scheme and further expansions). However, a concrete
implementation of these schemes is not easy in general.
An alternative is to approximate the law of the SDE increments.
We will use this point of view here.
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Assumptions

t ≥ 0, Xx
t = x +

∫ t

0
b(Xx

s )ds +

∫ t

0
σ(Xx

s )dWs.

Assumptions : domain D ⊂ Rd, ∀x ∈ D,P(∀t ≥ 0,Xx
t ∈ D) = 1 ;

bi(x), (σ(x)σ∗(x))i,j ∈ C∞pol(D), sublinear growth :
‖b(x)‖+ ‖σ(x)‖ ≤ K(1 + ‖x‖)

C∞pol(D) = {f ∈ C∞(D,R),∀α ∈ Nd,∃Cα > 0, eα ∈ N∗,∀x ∈ D,
|∂αf (x)| ≤ Cα(1 + ‖x‖eα)}

Associated operator :
Lf (x) =

∑d
i=1 bi(x)∂if (x) + 1

2

∑d
i=1
∑d

j=1
∑dW

k=1 σi,k(x)σj,k(x)∂i∂jf (x).
Remark : f ∈ C∞pol(D) =⇒ Lf ∈ C∞pol(D).
This framework embeds affine diffusions (i.e. when b(x) and σσ∗(x)
affine functions of x).
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Notations for discretization schemes

Definition 18
A family of transition probabilities (p̂x(t)(dz), t > 0, x ∈ D) on D is
s.t. p̂x(t) is a probability law on D for t > 0 and x ∈ D. We note X̂x

t a r.v.
with law p̂x(t)(dz).

Associated discretization scheme on the regular time grid tn
i = iT/n :

(X̂n
tn
i
, 0 ≤ i ≤ n) sequence of D-valued r.v. s.t. : X̂n

tn
i+1

is sampled
according to p̂X̂n

tni

(T/n)(dz).

Example (Euler) : X̂x
t = x + b(x)t + σ(x)Wt, p̂x(t) : law of X̂x

t .
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Talay-Tubaro Theorem (1990) I
If

1 f : D→ R s. t. u(t, x) = E[f (Xx
T−t)] is defined on [0,T]× D, solves

for t ∈ [0,T], x ∈ D, ∂tu(t, x) = −Lu(t, x), and has “good bounds”
on all its derivatives ∂l

t∂αu, i.e.

∀l ∈ N, α ∈ Nd, ∃Cl,α, el,α > 0, ∀x ∈ D, t ∈ [0,T], |∂ l
t∂αu(t, x)| ≤ Cl,α(1+‖x‖el,α).

2 the scheme is a potential weak νth-order discr. scheme for L :

E[f (X̂x
t )] = f (x) +

ν∑

k=1

1
k!

tkLkf (x) + Remainder ”O(tν+1)”

and (X̂n
tn
i
, i = 0, . . . ,n) has uniformly bounded moments.

then, |E[f (X̂n
tn
n
)]− E[f (Xx

T)]| ≤ K/nν .
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Talay-Tubaro Theorem (1990) II

Proof : E[f (X̂n
tn
n
)]− E[f (Xx

T)] = E[u(tn
n, X̂n

tn
n
)]− u(0, x) =

∑n−1
i=0 E

[
u(tn

i+1, X̂
n
tn
i+1

)− u(tn
i , X̂

n
tn
i
)
]

Remark : Talay-Tubaro theorem is originally stated

for the Euler-Maruyama scheme X̂x
t = x + b(x)t + σ(x)Wt which

is a first-order scheme :

E[f (X̂x
t )] = f (x) + tLf (x) + ”O(t2)”.

This can be easily checked by a Taylor expansion of f around x. It
also gives an expansion of the weak error.

for b, σ ∈ C∞ with bounded derivatives, which ensures (1).
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Composition of discretization schemes I
X̂1,x

t , X̂2,x
t : potential νth-order schemes for L1, L2.

X̂
2,X̂1,x

λ1 t

λ2t : scheme that amounts to first use the scheme 1 with a time
step λ1t and then the scheme 2 with a time step λ2t. Probability law :
p̂2(λ2t) ◦ p̂1

x(λ1t)(dz) =
∫
D p̂2

y(λ2t)(dz)p̂1
x(λ1t)(dy)

Proposition 19

E[f (X̂
2,X̂1,x

λ1 t

λ2t )] =
∑

l1+l2≤ν

λl1
1 λ

l2
2

l1!l2!
tl1+l2 Ll1

1 Ll2
2 f (x) + ”O(tν+1)”

(= [I + λ1tL1f + ...+ (λ1t)ν

ν! Lν1 f ][I + λ2tL2f + ...+ (λ2t)ν

ν! Lν2 f ] + ”O(tν+1)”)
Csq : a scheme acts on f “as” the operator I + tLf + ...+ tν

ν! L
ν f + Rem.

Comp. of schemes = Comp. of operators (in the reverse order).
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Composition of discretization schemes II

Proof : Tower property of the conditional expectation :

E[f (X̂
2,X̂1,x

λ1 t

λ2t )] = E[E[f (X̂
2,X̂1,x

λ1 t

λ2t )|X̂1,x
λ1t]]

We have E[f (X̂
2,X̂1,x

λ1t

λ2t )|X̂1,x
λ1t] =

∑ν
l=0

(λ2t)l

l! Ll
2f (X̂1,x

λ1t) + ”O(tν+1)”

and E[Ll
2f (X̂1,x

λ1t)] =
∑ν−l

k=0
(λ1t)k

k! Lk
1Ll

2f (x) + ”O(tν+1−l)” .
When L1L2 = L2L1, λ1 = λ2 = 1,

E[f (X̂2,X̂1,x
t

t )] =
ν∑

l=0

tl

l!
(L1 + L2)lf (x) + ”O(tν+1)”,

i.e. X̂2,X̂1,x
t

t is a potential νth-order schemes for L1 + L2.
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Recursive construction of 2nd order schemes

Theorem 20

p̂1
x, p̂2

x : potential 2nd order schemes for L1,L2. Then,

p̂2(t/2) ◦ p̂1(t) ◦ p̂2
x(t/2) (Strang 1968) (5)

1
2
(
p̂2(t) ◦ p̂1

x(t) + p̂1(t) ◦ p̂2
x(t)
)

(6)

are potential second order schemes for L1 + L2.

Proof for (6) : (I + tL1 + t2/2L2
1 + ...)(I + tL2 + t2/2L2

2 + ...) =
I + t(L1 + L2) + t2/2(L2

1 + L2
2 + 2L1L2) + ...

Remark : By a recursive application of these rules, we can get from
m potential second order schemes for L1, . . . ,Lm, a potential second
order schemes for L = L1 + L2 + · · ·+ Lm, provided that the
composition is well-defined.
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A general method to split an operator L

Let I ⊂ {1, . . . , dW}. Suppose that b(x) = bI(x) + bIc
(x). Let

(WI
t)i = (Wt)i if i ∈ I and (WI

t)i = 0 otherwise,
(WIc

t )i = (Wt)i if i 6∈ I and (WIc

t )i = 0 if i ∈ I (Wt = WI
t + WIc

t ).
Then,

L = LI + LIc

where LI (resp. LIc
) is the operator associated to

dXI
t = bI(XI

t)dt + σ(XI
t)dWI

t (resp. dXIc

t = bIc
(XIc

t )dt + σ(XIc

t )dWIc

t )

Remark : When the original diffusion associated to L is defined on a
domain D $ Rd, one has to take care that the diffusions associated to
LI and LIc

are not necessarily well defined on D.
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The scheme of Ninomiya and Victoir (2008) I
It is a splitting that gives a 2nd-order scheme by solving only ODEs.
Assume that σ(x) is s.t. the operators Vkf (x) =

∑d
i=1 σi,k(x)∂if for

k = 1, . . . , dW , V0f (x) =
∑d

i=1 bi(x)∂if (x)− 1
2

∑d
i,j=1

∑dW
k=1 ∂jσi,kσj,k∂if (x)

are well defined on D and satisfy the same assumptions as L on D.
Then, we have

L = V0 +
1
2

dW∑

k=1

V2
k .

Let vk s.t. Vkf (x) =: vk(x).∇f . We assume that
∃K > 0, ‖vk(x)‖ ≤ K(1 + ‖x‖) and that X0(t, x) (resp. Xk(t, x),
k = 1, . . . , dW) is a D-valued solution to the ODE

dX0(t, x)

dt
= v0(X0(t, x)), t ≥ 0 (resp.

dXk(t, x)

dt
= vk(Xk(t, x)), t ∈ R)

that starts from x ∈ D at t = 0.
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The scheme of Ninomiya and Victoir (2008) II
Theorem 21
X0(t, x) (resp. Xk(

√
tN, x) where N ∼ N (0, 1), for k = 1, . . . , dW) is an

exact scheme for the ODE (resp. SDE) associated to the operator V0 (resp.
1
2 V2

k ) and is in particular a potential νth-order scheme. Moreover,

1
2
(
p̂0(t/2) ◦ p̂m(t) ◦ · · · ◦ p̂1(t) ◦ p̂0

x(t/2) + p̂0(t/2) ◦ p̂1(t) ◦ · · · ◦ p̂m(t) ◦ p̂0
x(t/2)

)

is a potential second order scheme on D for L.

Remarks : • To get a 2nd order scheme for L, it is not necessary to
solve exactly the ODEs X0 and Xk. A third (resp. sixth) order scheme
enough to approximate X0 (resp. Xk). [Refined in Al Gerbi, Clément,
Jourdain (2016)].
• If Y is s.t. E[Yq] = E[Nq] for q = 1, . . . , 5, Xk(

√
tY, x) is a potential

2nd-order scheme for 1
2 V2

k : the same result holds replacing N by Y.
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NV’s scheme for the CIR
LCIRf (x) = (a− σ2

4
− kx)∂xf (x)

︸ ︷︷ ︸
V0

+
σ2

4
∂xf (x) +

1
2
σ2x∂2

x f (x)
︸ ︷︷ ︸

V2
1/2, V1=σ

√
x∂x

• X′0(t, x) = a− σ2

4 − kX0(t, x), X(0, x) = x
 X0(t, x) = xe−kt + (a− σ2/4)ψk(t) with ψk(t) = 1−e−kt

k is an exact
scheme for V0.
• (
√

x + σ
2

√
tN)2 := X1(

√
tN, x) with N ∼ N (0, 1) is an exact scheme

for V2
1/2.

(5) =⇒ X̂x
t = ϕ(x, t,

√
tN) with

ϕ(x, t,w) = X0(t/2,X1(w,X0(t/2, x))) =

e−
kt
2

(√
(a− σ2/4)ψk(t/2) + e− kt

2 x + σ
2 w
)2

+ (a− σ2/4)ψk(t/2) is a

potential 2nd order scheme for the CIR.
Problem : when a < σ2/4, D = R+ is not stable by the scheme for V0
and the composition is not well-defined.
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A second-order scheme without restriction on σ I

Our guideline is to preserve nonnegativity. (A. 2010)

We replace the standard Gaussian N by a bounded r.v. that
matches the five first moments : E[Yq] = E[Nq] for q = 1, . . . , 5.
When x is large enough, ϕ(x, t,

√
tY) ≥ 0 and

E[f (ϕ(x, t,
√

tY))] = f (x) + tLCIRf (x) +
t2

2
L2

CIRf (x) + ”O(t3)”.

For small values of x, we consider an ad-hoc positive scheme
that matches the two first moments of the CIR.
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A second-order scheme without restriction on σ II

Scheme for the “large values” :
We take Y s.t. P(Y = ±

√
3) = 1

6 , and P(Y = 0) = 2/3 and have
ϕ(x, t,

√
tY) ≥ 0 iff x ≥ K2(t), where

K2(t) = 1{σ2>4a}e
kt
2


(

σ2

4
− a)ψk(t/2) +



√

e
kt
2 [(

σ2

4
− a)ψk(t/2)] +

σ

2

√
3t




2
 = O(t).

The scheme composition is then well defined and we get :

∀x ≥ K2(t),E[f (ϕ(x, t,
√

tY))] = f (x) + tLCIRf (x) +
t2

2
L2

CIRf (x) + ”O(t3)”.
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A second-order scheme without restriction on σ III

Scheme near 0 :
For 0 ≤ x < K2(t), we take a scheme that takes two values
0 ≤ x−(t, x) < x+(t, x) with respective probabilities 1− π(t, x) and
π(t, x) s.t.

π(t, x)x+(t, x)i + (1− π(t, x))x−(t, x)i = E((Xx
t )i), i = 1, 2.

π(t, x) = 1−
√

1−E(Xx
t )

2/E((Xx
t )

2)

2 , x−(t, x) =
E(Xx

t )

2(1−π(t,x)) , x+(t, x) =
E(Xx

t )

2π(t,x) .

Why is it sufficient to match the two first moments there ?
From a Taylor expansion of f in 0 :

|E[f (Xx
t )]− E[f (X̂x

t )]| = E|
∫ Xx

t
0

(x−y)2

2 f (3)(y)dy−
∫ X̂x

t
0

(x−y)2

2 f (3)(y)dy| ≤
CE[(X̂x

t )
3 + (X̂x

t )
q+3 + (Xx

t )
3 + (Xx

t )
q+3] ≤ C′t3 for x ≤ K2(t) = O(t).
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A second-order scheme without restriction on σ IV

We thus get a potential 2nd order scheme, changing scheme whether
x ≤ K2(t) or not. We can check that we have bounded moments and
good bounds on the derivatives of u(t, x) = E[f (Xx

T−t)] when
f ∈ C∞pol(D) (A. 2005). From slide 5, we get :

Theorem 22

The scheme (X̂n
tn
i
, 0 ≤ i ≤ n) starting from X̂n

tn
0

= x ∈ R+ is well defined and
nonnegative. One has,

∀f ∈ C∞pol(R+),∃C > 0,∀n ∈ N, |E[f (X̂n
tn
n
)]− E[f (Xx

T)]| ≤ C/n2.
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A second-order scheme for a time-dependent CIR I

Let a : R+ → R+ and k, σ : R+ → R. We consider :

Xx
t = x +

∫ t

0
(a(s)− k(s)Xx

s )ds +

∫ t

0
σ(s)

√
Xx

s dWs, x, t ≥ 0, (7)

Used in Maghsoodi (1996), Benhamou Gobet and Miri (2010).
This can be seen as a two-dimensional time-homogeneous SDE :
{

Xx
t = x +

∫ t
0 (a(Ys)− k(Ys)Xx

s )ds +
∫ t

0 σ(Ys)
√

Xx
s dWs, x, t ≥ 0.

Yt = t.

Its infinitesimal generator is given by L = L1 + L2, where

L1 = (a(y)− k(y)x)∂x +
σ(y)2

2
∂2

x , L2 = ∂y.
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A second-order scheme for a time-dependent CIR II

Strang’s splitting : the second order scheme for the CIR with
frozen parameters at time ti+ti+1

2 , i.e. with constant parameters
a(

ti+ti+1
2 ), k(

ti+ti+1
2 ) and σ(

ti+ti+1
2 ) is a weak second-order scheme.

Works more generally with (affine) diffusions with
time-dependent parameters.
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A third-order scheme without restriction on σ I
Let assume that L1L2 = L2L1 + L2

3 and denote
Si(t) = I + tLi + t2

2 L2
i + t3

6 L3
i + . . . Then, we have

1
6

∑

ε∈{−1,1}
[S2(t)S1(t)S3(εt) + S2(t)S3(εt)S1(t) + S3(εt)S2(t)S1(t)]

= I + t(L1 + L2) +
t2

2
(L1 + L2)2 +

t3

6
(L1 + L2)3 + . . . . (8)

Csq : if one has a third-order scheme for L1, L2 and L3, we can get a
third-order scheme for L1 + L2 with the scheme :

1
6


 ∑

ε∈{−1,1}
p̂3(εt) ◦ p̂1(t) ◦ p̂2

x(t) + p̂1(t) ◦ p̂3(εt) ◦ p̂2
x(t) + p̂1(t) ◦ p̂2(t) ◦ p̂3

x(εt)


 ,

if the compositions are well-defined.
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A third-order scheme without restriction on σ II

CIR with k = 0 : 1
2 (V0V2

1 − V2
1V0) = σ2

2

(
a− σ2

4

)
∂2

x .

We are in the previous situation with L1 = V0 (resp. L1 = V2
1/2),

L2 = V2
1/2 (resp. L2 = V0) and L3 = σ√

2

√∣∣∣a− σ2

4

∣∣∣∂x if σ2 ≤ 4a (resp.

σ2 > 4a).

x + (a− σ2/4)t exact scheme for V0

X̃(t, x) = x + t σ√
2

√∣∣∣a− σ2

4

∣∣∣ exact scheme for L3

(
√

x + σ
2

√
tY)2 with Y s.t. E[Yq] = E[Nq] for q = 1, . . . , 7 is a third

order scheme for V2
1/2.
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A third-order scheme without restriction on σ III

This remark allows to define a potential third-order scheme that
preserves nonnegativity for x ≥ K3(t), using a r.v. that matches
the 7 first moments of N (0, 1) : Y s.t
P(Y =

√
3 +
√

6) = P(Y = −
√

3 +
√

6) =
√

6−2
4
√

6
, and

P(Y =
√

3−
√

6) = P(Y = −
√

3−
√

6) = 1
2 −

√
6−2

4
√

6
.

We can show that the scheme composition is well-defined and
preserve nonnegativity iff x ≥ K3(t) where

K3(t) = t ×


1{4a/3<σ2<4a}




√√√√√σ2

4
− a +

σ
√

2

√√√√a −
σ2

4
+
σ

2

√
3 +
√

6




2

+1{σ2≤4a/3}
σ
√

2

√
a − σ2/4 + 1{4a<σ2}



σ2

4
− a +




√√√√√ σ
√

2

√√√√σ2

4
− a +

σ

2

√
3 +
√

6




2



 = O(t).
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A third-order scheme without restriction on σ IV
For 0 < x ≤ K3(t), we take a nonnegative r.v. that matches the 3
first moments of the CIR. This can be explicitly done taking a r.v.
that takes two values x−(t, x) < x+(t, x) :

π(t, x)x+(t, x)i + (1− π(t, x))x−(t, x)i = E((Xx
t )i), i = 1, 2, 3.

Lemma 23

Let X s.t. for i ∈ {1, 2, 3}, E[|X|i] <∞, and set mi = E[Xi]. Let
s = m3−m1m2

m2−m2
1

and p =
m1m3−m2

2
m2−m2

1
. Then, ∆ = s2 − 4p > 0 and defining

x± = s±
√

∆
2 and π = m1−x−

x+−x−
, the r.v. defined by :

x+1{U≤π} + x−1{U>π} with U ∼ U([0, 1])

matches the three first moments of X. Moreover, it is nonnegative if X ≥ 0.
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A third-order scheme without restriction on σ V

To extend to k 6= 0, we use the fact that
(Xx

t , t ≥ 0)
law
= (e−ktXx,k=0

ψ−k(t), t ≥ 0), and define the scheme as

X̂x
t := e−ktX̂x,k=0

ψ−k(t).

Theorem 24

The scheme (X̂n
tn
i
, 0 ≤ i ≤ n) given by this construction and starting from

X̂n
tn
0

= x ∈ R+ is a third-order scheme :

∀f ∈ C∞pol(R+),∃K > 0,∀n ∈ N∗, |E[f (X̂n
tn
n
)]− E[f (Xx

T)]| ≤ K/n3.
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A third-order scheme without restriction on σ VI

function X0(x) : x← x + (a− σ2/4)ψ−k(t)
function X1(x) : x← ((

√
x + σ

√
ψ−k(t)Y/2)+)2

function Xt(x) : x← x + σ√
2

√
|a− σ2/4|εψ−k(t)

function CIR O3(x) :
if (x ≥ K3(t)) {
if (ζ = 1) { if (σ2 ≤ 4a) { X1(x) X0(x) Xt(x) } else { X0(x) X1(x) Xt(x) } }
if (ζ = 2) { if (σ2 ≤ 4a) { X1(x) Xt(x) X0(x) } else { X0(x) Xt(x) X1(x) } }
if (ζ = 3) { if (σ2 ≤ 4a) { Xt(x) X1(x) X0(x) } else { Xt(x) X0(x) X1(x) } }

x← xe−kt }
else { s← ũ3(t,x)−ũ1(t,x)ũ2(t,x)

ũ2(t,x)−ũ1(t,x)2 , p← ũ1(t,x)ũ3(t,x)−ũ2(t,x)2

ũ2(t,x)−ũ1(t,x)2 , δ =
√

s2 − 4p, π ← ũ1−(s−δ)/2
δ

if (U < π) x← (s + δ)/2 else x← (s− δ)/2 }
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FIGURE: E(exp(−X̂n
tn
n
)) in function of 1/n with x0 = 3/2, k = 1/2, a = 1/2 and

σ = 0.8 (left) and x0 = 0.3, k = 0.1, a = 0.04 and σ = 2 (right).
Scheme 1 : 2nd order, scheme 2 : 3rd order.
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Heston model : find a second order scheme for





X1
t = X1

0 +
∫ t

0 (a− kX1
s )ds + σ

∫ t
0

√
X1

s dWs

X2
t =

∫ t
0 X1

s ds
X3

t = X3
0 +

∫ t
0 rX3

s ds +
∫ t

0

√
X1

s X3
s (ρdWs +

√
1− ρ2dZs)

X4
t =

∫ t
0 X3

s ds

X1
0 ≥ 0, X3

0 > 0, r ∈ R, ρ ∈ [−1, 1] and (a, k, σ) ∈ R∗+ × R× R∗+.
Remark : We will construct in fact a potential second order scheme
for (X1, log(X3)).
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The algorithm
We split the operator without splitting the CIR nested part in order to
use our CIR discretization. We write it as the sum LW + LZ of the
operators associated to :



dX1
t = (a− kX1

t )dt + σ
√

X1
t dWt

dX2
t = X1

t dt

dX3
t = (r− 1

2 (1− ρ2)X1
t )X3

t dt + ρ
√

X1
t X3

t dWt

dX4
t = X3

t dt





dX1
t = 0

dX2
t = 0

dX3
t = 1

2 (1− ρ2)X1
t X3

t dt + X3
t

√
(1− ρ2)X1

t dZt

dX4
t = 0.

function HW (x1, x2, x3, x4) :
∆x1 ← −x1, CIR O2 (x1), ∆x1 ← ∆x1 + x1 // CIR O3 can be used instead of CIR O2
x2 ← x2 + (x1 + 0.5∆x1)t
x4 ← x4 + 0.5x3t
x3 ← x3 exp [(r− ρa/σ)t + ρ∆x1/σ + (ρk/σ − 0.5)(x1 + 0.5∆x1)t]
x4 ← x4 + 0.5x3t
x1 ← x1 + ∆x1

function HZ (x1, x2, x3, x4) : x3 ← x3 exp(
√

(1− ρ2)x1tN)
function (x1, x2, x3, x4) :
if (B = 1) HZ (x1, x2, x3, x4) HW (x1, x2, x3, x4) else HW (x1, x2, x3, x4) HZ (x1, x2, x3, x4)

Scheme 1 (resp. 2) with CIR O2 (resp. CIR O3)
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Affine Term Structure Models I
We consider the following canonical form (Dai Singleton (2000))

dXt = (A− KXt)dt +
√

DtdWt, (9)

Domain : D = Rd′
+ × Rd−d′ . In the canonical form, the operator can be

written Lf = LAf + LBf + LCf , where

LAf =
d′∑

i=1

(
(Ai − Kiixi)∂i +

γii

2
xi∂

2
i

)
, (Sum of indep CIR processes)

LBf = −
d∑

i=1

d∑

j=1

K̃ijxj∂if , (Linear ODE)

LCf =
d∑

i=d′+1


Ai∂if +

1
2

(γi0 +
d′∑

j=1

γijxj)∂
2
i f


 (sum of 1D indep Gaussian proc).
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Proposition 25

The scheme
1
2 pB(t/2) ◦ pA(t) ◦ pC(t) ◦ pB

x (t/2) + 1
2 pB(t/2) ◦ pC(t) ◦ pA(t) ◦ pB

x (t/2) is a
potential second-order scheme for the Lf = LAf + LBf + LCf operator
defined in (10) on D.

function Affine (x1, . . . , xd) :
x← exp(−K̃t/2)x
if (B = 1) { for i = 1 to d′, CIR O2(xi) // or CIR O3

for i = d′ + 1 to d, xi ← xi + Ait +
√
γi0 +

∑d′
j=1 γijxj

√
tNi}

else { for i = d′ + 1 to d, xi ← xi + Ait +
√
γi0 +

∑d′
j=1 γijxj

√
tNi

for i = 1 to d′, CIR O2(xi) } // or CIR O3
x← exp(−K̃t/2)x
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A useful identity

We recall the explicit characteristic function :

∀v ∈ Sd(R),E[exp(iTr(vXt))] =
exp(Tr[iv(Id − 2iqtv)−1mtxmT

t ])

det(Id − 2iqtv)α/2 ,

where qt =
∫ t

0 exp(sb)aTa exp(sbT)ds,mt = exp(tb).
Let n = Rk(qt). Then, there is θt ∈Md(R) invertible such that
qt = tθtIn

dθ
>
t , and we have :

=⇒ WISd(x, α, b, a; t) =
Law

θtWISd(θ−1
t mtxmT

t (θ−1
t )T, α, 0, In

d ; t)θT
t . (10)

It is therefore sufficient to simulate exactly a Wishart process with
a = In

d and b = 0, which we call a canonical Wishart process.
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A remarkable splitting for canonical Wishart processes
(Ahdida and A., 2011)

The infinitesimal generator of a canonical Wishart process is :

L = Tr(αIn
d D) + 2Tr(xDIn

d D), with Di,j = ∂i,j

for f :Md(R)→ R s.t. ∂i,jf = ∂j,if for 1 ≤ i, j ≤ d. We have

L = L1 + · · ·+ Ln, with LiLj = LjLi, and where

Li is the same operator as L1 by permuting ith and first
coordinates.
L1 is the operator of an SDE that is well defined on Sd(R) and
that can be solved explicitly.

=⇒ By composition, we get an exact scheme for the canonical
Wishart process.
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The case d = 2 (α > d− 1 = 1)
The operator L1 is associated to the following SDE when (X0)2,2 > 0





d(Xt)1,1 = αdt + 2

√
(Xt)1,1 −

(Xt)2
1,2

(Xt)2,2
dB1

t + 2 (Xt)1,2√
(Xt)2,2

dB2
t

d(Xt)1,2 =
√

(Xt)2,2dB2
t , (Xt)2,1 = (Xt)1,2,

d(Xt)2,2 = 0

and if (X0)2,2 = 0 :

d(Xt)1,1 = αdt + 2
√

(Xt)1,1dB1
t , d(Xt)1,2 = d(Xt)2,2 = 0.

In the second case : CIR that can be simulated exactly.
In the first case, we set Ut = (Xt)1,1 − ((Xt)1,2)2/(Xt)2,2 :

dUt = (α−1)dt+
√

UtdB1
t : CIR indep. of (Xt)1,2 ∼ N ((Xt)1,2, (X0)2,2t).
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When d > 2 (α > d− 1)

The SDE associated to L1 can be solved explicitly as for d = 2, and
requires the sampling of 1 CIR distribution and d− 1 standard
Gaussian variables that are independent.
It requires however some additional techniques (Cholesky
decomposition, and outer product Cholesky decomposition when the
initial condition is not invertible).
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Exact scheme for L1 when d ≥ 3 (α ≥ d− 1) I

Up to a permutation, (x)2≤i,j≤d =

(
cr 0
kr 0

)(
cT

r kT
r

0 0

)
=: ccT.

We can show that L1 is the generator of the SDE :

d(Xx
t )1,1 = αdt + 2

√
(Xx

t )1,1 −
∑r

k=1

(∑r
l=1(c−1

r )k,l(Xx
t )1,l+1

)2
dZ1

t

+2
∑r

k=1
∑r

l=1(c−1
r )k,l(Xx

t )1,l+1dZk+1
t

d(Xx
t )1,i =

∑r
k=1 ci−1,kdZk+1

t = d(Xx
t )i,1, i = 2, . . . , d

d(Xx
t )l,k = 0, for 2 ≤ k, l ≤ d.

(11)
The SDE associated to L1 can be solved explicitly as for d = 2, and
requires the sampling of 1 CIR distribution and r− 1 standard
Gaussian variables that are independent :
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Exact scheme for L1 when d ≥ 3 (α ≥ d− 1) II

Xx
t =




1 0 0
0 cr 0
0 kr Id−r−1


×




(Uu
t )1,1 +

r∑
k=1

((Uu
t )1,k+1)

2 ((Uu
t )1,l+1)

T
1≤l≤r 0

((Uu
t )1,l+1)1≤l≤r Ir 0

0 0 0







1 0 0
0 cT

r kT
r

0 0 Id−r−1


 ,

where

d(Uu
t )1,1 = (α− r)dt + 2

√
(Uu

t )1,1dZ1
t ,

u1,1 = x1,1 −
∑r

k=1(u1,k+1)2 ≥ 0,
d((Uu

t )1,l+1)1≤l≤r = (dZl+1
t )1≤l≤r,

(u1,l+1)1≤l≤r = c−1
r (x1,l+1)1≤l≤r.

(12)
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Second and third order schemes for Wishart processes

In the sampling of the exact scheme for L1, we replace the sampling
of the CIR by a second (resp. third) order scheme, and the sampling
of the Normal variables by a moment-matching r.v. s.t. E[Yk] = E[Gk]
for k = 1, . . . , 5 (resp. for k = 1, . . . , 7), we get :

E(f (X̂x
t )) =

2∑

k=0

tk

k!
Lk

1f (x)+O(t3) (resp. E(f (X̂x
t )) =

3∑

k=0

tk

k!
Lk

1f (x)+O(t4))

By composition rule, we get a second (resp. third) order scheme for
canonical Wishart processes and then for General Wishart processes.
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A faster second order scheme when α ≥ d

All the previous schemes rely on the splitting given by the
remarkable splitting and require thus O(d4) operations.
Remark : We can check that if cTc = x, (c + WtIn

d)T(c + WtIn
d) is a

Wishart process with α = d, a = In
d , b = 0 starting from x. Also,

(c +
√

tĜIn
d)T(c +

√
tĜIn

d) is a potential second order scheme for
WISd(x, d, 0, In

d) where Ĝ is a matrix with independent elements
matching the five first moments of the Normal r. v.
Consequence : By using the splitting :

L = Tr((α− d)In
d DS)︸ ︷︷ ︸

L̃ODE

+ dTr(DS) + 2Tr(xDS In
d DS)︸ ︷︷ ︸

LWISd(x,d,0,Ind )

,

we get a by Corollary 20 a second order scheme for WISd(x, α, 0, In
d)

(and then for WISd(x, α, b, a)) in O(d3) operations.
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A modified Euler scheme (As a comparison)
The Euler scheme for the Wishart diffusion (3) is :

X̂ti+1 = X̂ti + (αaTa + bX̂ti + X̂ti b
T)(ti+1 − ti)

+

√
X̂ti(Wti+1 −Wti)a + aT(Wti+1 −Wti)

T
√

X̂ti .

It is not well-defined since X̂ti+1 may not be nonnegative.
Corrected Euler scheme :

X̂ti+1 = X̂ti + (αaTa + bX̂ti + X̂ti b
T)(ti+1 − ti)

+

√
(X̂ti)

+(Wti+1 −Wti)a + aT(Wti+1 −Wti)
T
√

(X̂ti)
+,

where
√

x+ := odiag(
√
λ+

1 , . . . ,
√
λ+

d )o−1 for x ∈ Sd(R) and

x = odiag(λ1, . . . , λ
+
d )o−1.
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A time comparison (106 samples, N time-steps)
N = 10 N = 30

Schemes R. value Im. value Time R. value Im. value Time
Exact (1 step) −0.526852 −0.227962 12
2nd order bis −0.526229 −0.228663 41 −0.526486 −0.229078 125
2nd order −0.526577 −0.228923 76 −0.526574 −0.228133 229
3rd order −0.527021 −0.227286 82 −0.527613 −0.228376 244
Exact (N steps) −0.526963 −0.228303 123 −0.526891 −0.227729 369
Corrected Euler −0.525627∗ −0.233863∗ 225 −0.525638∗ −0.231449∗ 687

α = 3.5, d = 3,∆R = 10−3,∆Im = 10−3, exact value R. =−0.527090 and Im.=−0.228251
Exact (1 step) −0.591579 −0.037651 12
2nd order −0.590444 −0.037024 77 −0.590808 −0.036487 229
3rd order −0.591234 −0.034847 82 −0.590818 −0.036210 246
Exact (N steps) −0.591169 −0.036618 174 −0.592145 −0.037411 920
Corrected Euler −0.589735∗ −0.042002∗ 223 −0.590079∗ −0.039937∗ 680

α =2.2, d = 3,∆R = 0.9 × 10−3,∆Im = 1.3 × 10−3, exact value R. =−0.591411 and Im.=−0.036346
Exact (1 step) 0.062712 −0.063757 181
2nd order bis 0.064237 −0.063825 921 0.064573 −0.062747 2762
2nd order 0.064922 −0.064103 1431 0.063534 −0.063280 4283
3rd order 0.064620 −0.064543 1446 0.064120 −0.063122 4343
Exact (N steps) 0.063418 −0.064636 1806 0.063469 −0.064380 5408
Corrected Euler 0.068298∗ −0.058491∗ 2312 0.061732∗ −0.056882∗ 7113

α = 10.5, d = 10,∆R = 1.4 × 10−3,∆Im = 1.3 × 10−3, exact value R. = 0.063960 and Im.=−0.063544
Exact (1 step) −0.036869 −0.094156 177
2nd order −0.036246 −0.094196 1430 −0.035944 −0.092770 4285
3rd order −0.035408 −0.093479 1441 −0.036277 −0.093178 4327
Exact (N steps) −0.036478 −0.092860 1866 −0.036145 −0.093003 6385
Corrected Euler −0.028685∗ −0.094281∗ 2321 −0.030118∗ −0.088988∗ 7144

α = 9.2, d = 10,∆R = 1.4 × 10−3,∆Im = 1.4 × 10−3, exact value R. =−0.036064 and Im.=−0.093275
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Introduction to affine processes.

Part III : Simulation of affine diffusions

Application to Wishart processes

Weak convergence
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FIGURE: d = 3, 107 MC samples, T = 10. R(E[exp(−Tr(ivX̂N
tNN

))]) in fct of T/N. Left : v = 0.05Id,

x = 0.4Id, α = 4.5, a = Id and b = 0. Exact value : 0.054277. Right : v = 0.2Id + 0.04q

x = 0.4Id + 0.2q, α = 2.22, a = Id and b = −0.5Id. Exact value : 0.239836. qi,j = 1i 6=j.

Aurélien Alfonsi (CERMICS) 29-30 August 2018 107 / 109

Introduction to affine processes.

Part III : Simulation of affine diffusions

Application to Wishart processes

A scheme for the Gourieroux-Sufana model

The joint operator of the Gourieroux-Sufana model (St,Xt) is

L = LS + LX, where LS =
d∑

i=1

rsi∂si +
1
2

d∑

i,j=1

sisjxi,j∂si∂sj ,

and LX is the generator of a Wishart process. We can solve explicitly
the SDE associated to LS : Sl

t = Sl
0 exp[(r− xl,l/2)t + (

√
xZt)l].

By using a second order scheme for LX, we get a second order scheme
for L by Corollary 20.
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Introduction to affine processes.

Part III : Simulation of affine diffusions

Application to Wishart processes

Put option in the Gourieroux-Sufana model
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FIGURE: E[e−rT(K −max (Ŝ1,N
tNN
, Ŝ2,N

tNN
))+] in fct of T/N. d = 2, T = 1, K = 120, S1

0 = S2
0 = 100,

and r = 0.02. x = 0.04Id + 0.02q with qi,j = 1i 6=j, a = 0.2Id, b = 0.5Id and α = 4.5 (left), α = 1.05

(right). 106 Monte-Carlo samples.
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