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INTRODUCTION

These notes are an introduction to continuous-time corporate finance which is mainly concerned
with the decisions taken by firm managers in terms of investment, hedging and dividend distri-
bution. Unlike standard option-pricing models, which rule out frictions or market imperfections,
Corporate finance is relevant only when the markets exhibit frictions such as tax subsidies, liqui-
dation costs, costs of issuing new shares and agency costs. This is the famous Modigliani-Miller
theorem that claims: in the absence of frictions, the value of a firm is independent of its capital
structure that is the proportion of debt and equity in the liability side of its balance sheet.
As a consequence, in a world without frictions, all managerial decisions that would modify the
structure of the balance sheet, have no impact on the total value of the firm. In these notes, we
will focus on two type of frictions: issuance costs and agency costs keeping in mind that agency
costs are a way to explain why issuance costs are high in practice.
In the first chapter, we present the base liquidity-management problem where the issuance costs
are so high that firm are liquidated when they run out of cash reserves. We apply the base model
to banks to study the impact of regulatory capital requirements and to investment in a more
productive technology. From a mathematical viewpoint, the liquidity-management problem ne-
cessitates to solve stochastic singular control problems whose difficulty increases as and when
the model becomes more realistic. While the first chapter assumes exogenous costly refinancing,
a deeper approach consists in focusing on endogenous costs due to a conflict of interest between
shareholders and managers such as moral hazard issues when the firm’s owner cannot observe
the effort made by his/her manager. As a consequence, we must study the contracting problem,
called principal-agent problem that defines the relationship between firm’s owners and firm’s
managers. The practical implementation of the optimal contract when it exists gives a role to
cash reserves which establishes a connection between the two chapters.
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CHAPTER 1

LIQUIDITY-MANAGEMENT PROBLEMS

1.1 A workhorse model

A firm has a single investment project that generates random cash-flows over time. The cumu-
lative cash-flow process X = (Xt)t≥0 is an arithmetic Brownian motion with strictly positive
drift µ,

Xt = µ t+ σWt (1.1)

In absence of any frictions (in particular, new equity issuances are costless, the firm’s value
is defined by the sum of initial cash holdings of the firm x plus the present value of future
cash-flows:

V (x) = x+ Ex
[∫ ∞

0

e−rtdXt

]
= x+

µ

r
. (1.2)

Assume now that the firm is cash constrained in the sense that it cannot afford to issue new
equity or debt. To meet the operating costs and avoid bankruptcy, the cash reserves must always
remain non negative. The cash reserves of the firm M = (Mt)t≥0 evolves according to

dMt = dXt − dZt M0 = x (1.3)

where Z = (Zt)t≥0 is the cumulative payment process to equity-holders (here we assume that
the manager acts on behalf of equity-holders) to be endogenously determined. The process Z
is assumed to be non decreasing meaning that the losses for equity-holders are limited to their
initial investment, which is called limited liability. For a given payment policy Z the value of
the firm is defined by the present value of future payments up to the liquidation time τL

V (x;Z) = Ex
[∫ τL

0

e−rtdZt

]
(1.4)

where
τL = {t ≥ 0 Mt < 0} (1.5)

Thus the Stochastic Control Problem that defines the firm’s value

sup
Z
V (x;Z) = sup

Z
Ex
[∫ τL

0

e−rtdZt

]
≡ V ∗(x) (1.6)
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1.1.1 A stochastic singular control problem

Bounded dividend rates

In that case, the dividend payment process Zt is given by dZt = u(Xt) dt where 0 ≤ u(.) ≤M .
Then, the value function is now given by

V ∗(x) = sup
u

E
(∫ τL

0

e−rsu(Xs) ds

)
.

Let V (x, u) = E
(∫ τL

0
e−rsu(Xs) ds

)
be the expected total discounted value corresponding to the

manager’s strategy u. To prove that a strategy u∗ is optimal, we will proceed in two steps:

1. Find a function φ such that V (x, u) ≤ φ for all x ≥ 0 and for all u.

2. Prove that φ(x) = V (x, u∗).

Verification Theorem Denote by A the differential operator

Af(x) =
σ2

2

∂2f

∂x2
+ µ

∂f

∂x
− rf.

Assume that there is a smooth function φ such that the following variational inequalities hold:

• For all bounded dividend rate u,

Aφ(x) + u(x)(1− φ′(x)) ≤ 0. (1.7)

Then, the function φ satisfies φ ≥ V (x, u) for all bounded dividend rate u.

Proof: Apply Itô formula to e−rtφ(Xt).

Free Boundary Problem It is clear from variational inequalities (1.7) that the optimal control
u∗ depends on the the sign of 1− V ′ in the following way

u∗(x) =

{
0 if V ′ > 1
M if V ′ < 1.

When V ′ = 1 the optimal control switches. Let (VM , x
∗
M ) be a solution to the following free

boundary problem

AVM = 0, x ≤ x∗M
AVM +M(1− V ′M ) = 0, x ≥ x∗M

VM (0) = 0 limited liability condition

V (x∗M ) = 1 switching condition.

Then, the shareholder value function is VM and the optimal strategy is u∗(x) = M11{x≥x∗M}.

Unbounded dividend rates

Heuristic derivation of Bellman Equation.

- The policy Z0 = z ∈ (0, x) yields to

V ∗(x) ≥ V ∗(x− z) + z.

Letting z go to 0 yields that V ′(x) ≥ 1 for all x > 0.

• Dynamic programming principle yields to LV ≤ 0.
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Let

V (x, Z) = E
(∫ τL

0

e−rs dZs

)
.

and φ such that φ′ ≥ 1 and Lφ ≤ 0 then φ ≥ V (x, Z) for all admissible strategy Z.

Solution of the Bellman Equation. Let (V0, x0) the solution to the following boundary prob-
lem:

AV0(x) = 0, x ≤ x0

V ′0(x) = 1 x ≥ x0

V0(0) = 0V ′0(x0) = 1 and V ′′0 (x0) = 0

Then, the shareholder value function is given by V0 and the optimal strategy is given by

Zx0
t = max [0,max0≤s≤t (µs+ σWs − x0)] .

Computations are explicit and give

V0(x) = Ex
[∫ τL

0

e−rsdZx0
s

]
=

f0(x)

f ′0(x0)
0 ≤ x ≤ x0, (1.8)

with

f0(x) = eα
+
0 x − eα

−
0 x and x0 =

1

α+
0 − α

−
0

ln

(
α−0
)2(

α+
0

)2 , (1.9)

where α−0 < 0 < α+
0 are the roots of the characteristic equation

µx+
1

2
σ2x2 − r = 0.

If the firm starts with cash reserves x above x0, the optimal dividend policy distributes immedi-
ately the amount (x− x0) as exceptional dividend and then follows the dividend policy defined
by the process Zx0 . Thus, for x ≥ x0,

V0(x) = x− x0 +
µ

r
.
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Figure 1: Shareholder value V0(x)
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as a function of µ and σ2.

1.1.2 Application to Banking

This part is based on the book by Rochet and Santiago-Moreno, Chapter 4. Let us consider a
bank with a fixed volume of deposit and a fixed volume of risky assets. It is assume that the
assets generate cashflows

µdt+ σdWt,

where µ, σ > 0. The structure of the balance sheet implies that the book value of equity Et
satisfies

Et = Mt +A−D.

If we assume for simplicity, that neither the cash nor the deposit are remunerated, we obtain
the dynamics of cash reserves

dMt = µdt+ σdWt − dZt,

where Z = {Zt, t ≥ 0} represents the cumulative dividends paid to shareholders.
There is a deposit insurance system that protects depositors in case the bank is liquidated. Here,
we make the strong assumption that the bank cannot issue new equity and is forced to liquidate
its assets at a lower price than the market value of these assets when Mt < 0. The losses
are modeled by an exogenous parameter α and /alphaA represents the proceeds of liquidation.
Assuming αA < D, the deposit insurance system has to provide the shortfall D − αA and to
avoid this situation, it imposes a minimum capital requirement. More precisely, we assume that
the bank is allowed to operate as long as Et ≥ e, where e = A(1 − α) to avoid costly deposit
insurance. This is equivalent to impose a minimum level of cash reserves m = D − αA.
The shareholder value function under regulation is

VR(m) = sup
Z

Em
[∫ τL

0

e−rtdZt

]
where now

τL = inf{t ≥ 0,Mt ≤ m}.

Because the parameters of the model are constant, it is not difficult to see that for m ≥ m

VR(m) = V ∗(m−m),

and that the distribution threshold is mR = x0 +m. The target cash level is shifted to the right
by the minimum-liquidity ratio. In particular, if the parameter α is very low (high cost of fire
sale) or if the level of deposit is high, the shareholders have to wait a longer time to distribute
dividends.
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1.2 Optimal Investment for cash-constrained Firm

So far, we have considered firms with a fixed technology. A natural question arises: how liquidity
management interacts with investment decision. This introduces a real-option component in
the liquidity management problem. We will study a model based on Décamps and Villeneuve
(2007) where a cash-constrained firm can adopt a new technology. The optimal time to invest
is a classical real option problem but it is complicated here by the assumption that the firm has
no access to external financing.

1.2.1 The model

A firm has an investment option to improve its profitability at a sunk cost I. We assume that
the firm must finance the investment cost with the funds generated by its own activity. This is a
crucial difference with the base model because now retaining earnings is not only precautionary
but can be used to make the firm more profitable.
The manager who again acts on behalf of shareholders chooses a control policy π = (Zπt , τ

π; t ≥
0) that models a dividend/investment policy. Zπt therefore corresponds to the total amount
of dividends paid out by the firm up to time t and the control component τπ represents the
investment time in the growth opportunity. Therefore, cash reserves of the firm at time t evolves
as

dXπ
t = (µ011t≤τπ + µ111t>τπ )dt+ σdWt − dZπt − dIπt ,

A given control policy (Zπt , τ
π; t ≥ 0) fully characterizes the associated investment process

(Iπt )t≥0 by relation It = I11t≥τπ . As before, we define the bankruptcy time as the first time cash
reserves are depleted τπ0 = inf{t ≥ 0 : Xπ

t ≤ 0}. The shareholder value along a fixed control π
is given by

Vπ(x) = Ex

[∫ τπ0

0

e−rsdZπs

]
.

and thus the shareholder value function is

V ∗(x) = sup
π
Vπ(x),

and the optimal policy π? = (τπ
?

, Zπ
?

t ; t ≥ 0) is such that

Vπ?(x) = V ∗(x).

There are two simple scenarios that play a key role in the analysis. The first one is

• Never invest in the growth option (and follow the associated optimal dividend policy).
This gives the following value function V0(x) =

f0(x)

f
′
0(x0)

, 0 ≤ x ≤ x0,

V0(x) = x− x0 + V0(x0), x ≥ x0.

The second is

• Invest immediately in the growth option (and follow the optimal dividend policy associated
to the new profit rate).
This gives the following value function V1(x− I) = max

(
0,
f1(x− I)

f
′
1(x1)

)
, 0 ≤ x ≤ x1 + I,

V1(x− I) = x− I − x1 + V1(x1), x ≥ x1 + I.
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Clearly, we have V ∗(x) ≥ V0(x) and V ∗(x) ≥ V1(x− I). Note that the second strategy exposes
the firm to a higher risk of liquidation as its cash reserves are reduced by I.

Now let consider the following optimal stopping problem

φ(x) = sup
τ∈T

Ex
[
e−r(τ∧τ0)max(V0(Rτ∧τ0), V1(Rτ∧τ0 − I))

]
where (Rt)t represents the cash reserves process generated by the activity in place in absence
of dividend distribution:

dRt = µ0dt+ σdWt

and τ0 = inf{t ≥ 0 : Rt ≤ 0}. We have,

Theorem 1.2.1. For all x ∈ [0,∞), V ∗(x) = φ(x).

A road map towards the proof
A first observation is that Optimal stopping theory implies V ∗(x) ≥ φ(x). The difficulty is

to prove the reverse inequality. We introduce the HJB equation

max(1− v′, L0v − rv, V1(.− I)− v) = 0.

First, we have a standard verification result

Lemma 1.2.2. Suppose we can find a positive function Ṽ piecewise C2 on (0,+∞) with bounded
first derivatives and such that for all x > 0,

(i) L0Ṽ − rṼ ≤ 0 in the sense of distributions,

(ii) Ṽ (x) ≥ V1(x− I),

(iii) Ṽ ′(x) ≥ 1,

with the initial condition Ṽ (0) = 0 then, Ṽ (x) ≥ V ∗(x) for all x ∈ [0,∞).

Lemma 1.2.3. φ is a supersolution and thus V ∗ = φ.

Some observations. First, the growth option is worthless if and only if(
µ1 − µ0

r

)
< (x1 + I)− x0.

We focus on the case where the investment is valuable by assuming

(H1)
µ1 − µ0

r
≥ (x1 + I)− x0.

If the manager decides to postpone dividend distribution until investment, we can define the
associated value function

θ(x) = sup
τ∈T

Ex
[
e−r(τ∧τ0)V1(Rτ∧τ0 − I)

]
,

that can be explicitly computed θ(x) =
f0(x)

f0(b)
V1(b− I) x ≤ b,

θ(x) = V1(x− I), x ≥ b,
where b > I is defined by the smooth-fit principle

V
′

1 (b− I)

f
′
0(b)

=
V1(b− I)

f0(b)
. (1.10)

This allows us to determine the optimal strategies.
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Proposition 1.2.4. If θ(x0) > V0(x0) then, the policy π? = (Zπ
?

t , τπ
?

) defined by the increasing
right-continuous process

Zπ
?

t = ((Rτb − I)− x1)+11t=τb + Lx1
t (µ1)11t>τb ,

and by the stopping time τπ
?

= τb satisfies for all positive x the relation φ(x) = Vπ?(x).

-

6

Figure 1: θ(x0) > V0(x0)
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Proposition 1.2.5. If θ(x0) ≤ V0(x0) then, the policy π? = (Zπ
?

t , τπ
?

) defined by the increasing
right-continuous process

Zπ
?

t =
[
(Rτa − x0)+11t=τa + (Lx0

t (µ0)− Lx0
τa (µ0))11t>τa

]
11τa<τc

+ [((Rτc − I)− x1)+11t=τc + Lx1
t (µ1,W )11t>τc ] 11τc<τa ,

and by the stopping time

τπ
?

=

{
τc if τc < τa
∞ if τc > τa

satisfies for all positive x the relation φ(x) = Vπ?(x).
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CHAPTER 2

AGENCY FRICTIONS IN A CONTINUOUS-TIME
FRAMEWORK

The models in Chapter 1 assume an exogenous friction, that is a costly refinancing. A way
to understand why refinancing is costly is to focus on endogenous frictions due for instance
to conflicts of interest between managers and shareholders. These frictions are called agency
frictions and we will focus here more particularly on moral hazard issue, when the firm’s owner
is unable to observe if the manager is exerting effort to improve the earnings of a project. As
a consequence, we have to regulate this friction by entering into an agreement or a contract
specifying the remuneration of the manager in order to give him the right incentives to make
the desirable effort.

2.1 Principal-Agent model

We will consider a standard framework where an entrepreneur, refereed as the Agent has the
expertise but not the funds to start a project. An investor, referred as the Principal has the
required funds but lack of expertise to steer the project. We assume that both actors are risk-
neutral but they differ by their preference with respect to time. We assume that the agent is
less patient than the principal and thus has a discount rate ρ that is higher than the principal’s
discount rate r. We also assume that the agent has limited liability which imposes that all the
losses are the responsibility of the principal who is assumed to be able to finance any shortfall.
Once the contract has been signed, the project starts and generates cash flows that evolve as

dXt = (µ− (1− et)δ)dt+ σdZet . (2.1)

where µ, δ > 0 which makes the effort profitable, Zet is a Brownian motion and e = {et, t ≥ 0}
is an effort process adapted to the filtration generated by Ze that takes values in [0, 1]. It is
assumed that the agent has a private benefit B dt where B is a positive constant, whenever
he shirks. Finally, once the contract is terminated, the principal receives a liquidation payoff
L ≤ µ

r .
Probabilistic model. Formally, we consider the probability space Ω = C([0,∞),R), the set

of continuous real functions on [0,+∞) endowed with the Wiener measure denoted by P. Let
Z = (Zt)t≥0 be a Brownian motion under (P,Ft) where Ft is the completion of the natural
filtration generated by Z. Under P, we assume that the project’s cash flows evolve as

dXt = µdt+ σdZt.

Thus, P corresponds to the probability distribution of the profitability when the agent chooses
to make effort at any time. For any effort process e = {et, t ≥ 0} which is assumed to be a Ft
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adapted process with values in [0, 1], we define

γet = exp

[∫ t

0

−
(
δ(1− es)

σ

)
dZs −

1

2

∫ t

0

(
δ(1− es)

σ

)2

ds

]
.

Because the effort process is bounded, the process (γet )t≥0 is an Ft- martingale. We then define
a probability Pe on Ω such that

dPe

dP
|Ft = γet .

The process (Zet )t≥0 with

Zet = Zt +

∫ t

0

(
δ(1− es)

σ

)
ds

is a Brownian motion under Pe. Therefore, any action process e induces a probability measure
Pe on Ω for which the dynamics of cash flows is given by Equation (2.16).

Problem formulation. A contract is a triplet (C, τL, e) that specifies nonnegative transfers
C = (Ct)t≥0 (remuneration) from the principal to the agent, a stopping time τL at which
the project is liquidated and an effort process e that the principal recommends to the agent.
The process C is FX -adapted, nondecreasing (reflecting agent’s limited liability), τL is an FX -
stopping time, and, for any effort process e, we assume

Ee
(∫ τL

0

e−rsdCs

)
< +∞. (2.2)

Throughout the paper FX denotes the Pe-augmentation of the filtration generated by (Xt)t≥0

and T X the set of FX -stopping times.
For a fixed contract Γ = (C, τL, e). The agent’s expected profit and the principal’s expected

profit associated to Γ are respectively,

VA(Γ) = Ee
(∫ τL

0

e−ρt(B(1− et) dt+ dCt)

)
,

and

VP (Γ) = Ee
(∫ τL

0

e−rt(dXt − dCt) + e−rτLL

)
.

An incentive-compatible effort process e∗(C, τL) = (e∗t (C, τL))t≥0 is an agent best reply in
term of effort to a given remuneration and liquidation policy (C, τL). That is, for any effort
process a, the effort process e∗(C, τL) satisfies

Ee
(∫ τL

0

e−ρt(B(1− et) dt+ dCt)

)
≤ Ee

∗(C,τL)

(∫ τL

0

e−ρt(B(1− e∗t (C, τL)) dt+ dCt)

)
.

We say that a contract (C, τL, e) is incentive compatible or (C, τL) induces an effort strategy
e∗(C, τL) if e = e∗(C, τL). An optimal contract is an incentive compatible contract that maxi-
mizes the expected principal’s profit at date 0 subject to delivering to the agent a payoff larger
than her reservation utility w0 > 0. The principal problem is then to find, if any, an optimal
contract. Formally, the principal studies the problem

sup
C,τL

Ee
∗(C,τL)

(∫ τL

0

e−rt(dXt − dCt) + e−rτLL

)
(2.3)

s.t Ee
∗(C,τL)

(∫ τL

0

e−ρt(B(1− e∗t (C, τL)) dt+ dCt)

)
≥ w0. (2.4)

We refer inequality (2.4) as the agent’s participation constraint.
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2.2 Incentive compatibility and Markov formulation

This section develops in our setting a standard result due to Sannikov, generalized by Cvitanic,
Possamäı and Touzi: the continuation value of the agent (defined below) characterizes the incen-
tive compatible effort and allows for a Markov formulation of the principal’s problem (2.3)-(2.4).

Fix a contract Γ = (C, τL, e) and assume for a while that effort process e is incentive compat-
ible which yields that both players have the same set of information. Let us define the process
WΓ = (WΓ

t )t≥0 as

WΓ
t = Ee

(∫ τL

t

e−ρ(s−t)(B(1− es)ds+ dCs) | FXt
)
.

The process WΓ corresponds to the agent’s continuation value process associated to contract
Γ. Because C is an increasing process and effort process e takes values bounded by 1, WΓ

t ≥ 0
for all t ≤ τL while WΓ

τL = 0 by construction. Moreover, because we assumed the manager has
limited liability, we deduce that a contract Γ is terminated the first time WΓ hits zero. The
following holds.

Lemma 2.2.1. The continuation value process WΓ associated to the incentive compatible con-
tract Γ satisfies under Pe the dynamics

dWΓ
t = (ρWΓ

t −B(1− et)) dt+ βΓ
t dZ

e
t − dCt for t ≤ τL, (2.5)

where the process βΓ = (βΓ
t )t≥0 is FX predictable and uniquely defined. It is called hereafter the

sensitivity process.

Proof of Lemma 2.2.1. By assumption (2.2) and because ρ > r, the process

Ut = e−ρtWΓ
t +

∫ t

0

e−ρs(B(1− es)ds+ dCs) = Ee
(∫ τL

0

e−ρs(B(1− es)ds+ dCs)|FXt
)

is a uniformly integrable martingale under Pe. By the martingale Representation theorem, there
exists a unique FXt predictable process βΓ such that

Ut = Y0 +

∫ t

0

e−ρsβΓ
s dZ

e
s ,

with

Ee
(∫ τL

0

e−2ρs(βΓ
s )2 ds

)
< +∞.

Then, Itô’s formula, yields (2.5). 2

Thus, any contract Γ = (C, τL, e) defines a unique sensitivity process βΓ = (βΓ
t )t≥0 by the

representation theorem for Brownian martingale that yields (2.5). We could interpret Lemma
2.2.1 in the framework of BSDE as follows: for any given incentive compatible contract Γ =
(C, τL, e), there exists an unique pair of FXt adapted process (WΓ

t , β
Γ
t ) such that{

WΓ
τL = 0,

dWΓ
t = (ρWΓ

t −B(1− et)) dt+ βΓ
t dZ

e
t − dCt.

However, the question of characterizing incentive-compatible contracts that satisfy the agent’s
participation constraint (2.4) remains unanswered: we have to characterize the set Γ(w0) of
contracts Γ for which e = e∗(τL, (Ct)t) and, WΓ

0 is greater than the participation constraint w0.
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To solve this problem, the idea of Sannikov (2008) has been to see the sensitivity process βΓ

as a control. To this end, let us consider the class of FX measurable processes β = (βt)t≥0 such
that

Ea
(∫ ∞

0

e−2rsβ2
s ds

)
< +∞, (2.6)

and, for any fixed increasing process C, let us consider the process W β = (W β
t )t≥0 that satisfies

the controlled stochastic differential equation under P0,

dW β
t = (ρW β

t + h(βt)) dt+ βt dZt − dCt and W β
0 ≥ w0,

with h(β) = inf0≤e≤1( δσβ − B)(1 − e). We would like the process (W β
t )t≥0 to play the role of

the agent continuation value associated to some incentive compatible contract Γ ∈ Γ(w0). By

limited liability, this requires W β
t ≥ 0 up to the termination date of the contract Γ. Therefore,

we introduce
τβ0 (C) = inf{t ≥ 0 , W β

t = 0}.

Let us recall that we have assumed so far that action process a is incentive compatible.
The next lemma characterizes incentive compatible contracts as a deterministic function of the
control process β.

Lemma 2.2.2. For any compensation process (Ct)t≥0 satisfying (2.2) and any process (βt)t≥0

satisfying (2.6), the contract Γ = (C, τβ0 (C), 11βt≥σλ) is incentive compatible and belongs to
Γ(w0).

Proof of Lemma 2.2.2. The proof follows from a standard application of the martingale
optimality principle. For any compensation process (Ct)t≥0 satisfying (2.2) and any process
(βt)t≥0 satisfying (2.6), the process

Ret = e−ρtW β
t +

∫ t

0

e−ρs(B(1− es)ds+ dCs)

is a uniformly integrable Pe-supermartingale for every effort process (et)t≥0 and a uniformly
integrable Pe∗ -martingale where, for any t ≥ 0, e∗t = 11βt≥σλ with λ = B

δ . Therefore

Ee
(∫ τβ0 (C)

0

e−ρt(B(1− et)dt+ dCt)

)
≤ Re0

= W β
0

= Re
∗

0

= Ee
∗

(∫ τβ0 (C)

0

e−ρt(B(1− e∗t )dt+ dCt)

)
(2.7)

2

Therefore, the principal’s problem is to find a contract Γ = (C, τβ0 (C), 11β≥λσ) that maximizes
her expected profit at date 0. This leads to the following Markov formulation of problem (2.3)-
(2.4).

VP (w0) = maxw≥w0
VP (w) (2.8)

where

VP (w) = sup
C,β

Ee
∗

(∫ τβ0 (C)

0

e−rs(dXs − dCs) + e−rτ
β
0 (C)L

)
with e∗t = 11βt≥σλ,

such that
dWt = (ρWt −B11βt<σλ) dt+ βtdZt − dCt with W0 = w. (2.9)
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2.2.1 Full-effort contracts

From now, we will focus on contracts that induce full effort et = 1 for all t. From the above
Markov formulation, the best full-effort contract is obtained by solving the singular stochastic
control problem

VP (w) = sup
C,β≥λσ

Ee
∗

(∫ τβ0 (C)

0

e−rs(dXs − dCs) + e−rτ
β
0 (C)L

)
(2.10)

where the dynamics of the agent’s continuation utility is given by

dWt = ρWt dt+ βtdZt − dCt with W0 = w.

There are similarities between the Principal problem and those of the shareholders value function
in the liquidity management models. In particular, the value function VP can be characterized
in terms of the HJB equation:

max

{
maxβ≥λσ

β2

2
v′′(w) + ρwv′(w)− rv(w) + µ,−v′ − 1

}
= 0 (2.11)

together with the boundary condition v(0) = L.
The main result, first obtained in a continuous-time framework by De Marzo and Sannikov is
that the Principal value VP is a smooth and concave solution of the above HJB equation. Note
that the concavity of VP implies that the principal chooses the sensitivity parameter β = λσ.
More precisely, we state the main result as follows (see De Marzo and Sannikov, Proposition 8)

Proposition 2.2.3. There exists a unique function v0 defined on (0,+∞) and a unique threshold
w∗ > 0 such that

• v0(0) = L, λ2σ2

2 v′′0 (w) + ρwv′0(w)− rv0(w) + µ = 0, v′0 ≥ −1 on (0, w∗) and v′0(w∗) = −1,

• v0 is concave and twice continuously differentiable.

Some words about concavity. Assume there is a point w̃ such that v′′0 (w̃) ≥ 0. Because
v′0 ≥ −1, this implies

v0(w̃) ≥ µ− ρw̃
r

.

But, in absence of agency frictions, the right-hand side corresponds to the first best value, i.e.
choose the admissible remuneration policy Ct = ρw̃t. Thanks to the concavity, it is clear that v0

is a solution of (2.11) and thus a standard verification result implies that v = VP . Termination
occurs when the continuation utility hits zero where the manager is fired. Unlike liquidity
management models, it is here a matter of incentives and not a question of liquidity because the
shareholders have deep-pockets. Observe that VP is not always increasing because w belongs
to the agent and at some point, increases in cash flows no longer offset the promised payments
which triggers the remuneration at a point where the marginal cost of an immediate payment
equals that of increased continuation utility, v′(w∗) = −1.
Therefore, it could happen that VP falls below the liquidation value L before w∗. Without
agency frictions, the shareholders would prefer to liquidate the firm. However, because of agency
frictions, they have committed to a long-term contract which prevents them from stopping the
project outside the rules of the contract.
If it happens that VP ≤ I then the shareholders have no incentives to start the contract at time
zero. This could happen for low profitability firms, when µ is small relative to I. To sum up, the
project is undertaken if the set {w ≥ 0, VP (w) > I} is not empty. If we assume that the labor
market for skilled managers is competitive which is equivalent to assume that the shareholders
have the bargaining power, they will offer a contract that will promise ex-ante

w0 = max{w ≥ 0, VP (w) > I}.
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2.2.2 Implementation

The theoretical characterization of the optimal contract using the agent’s continuation utility
needs a more concrete implementation which uses a combination of limited-liability securities,
such as stocks and bonds that can be sold to the financial market. We present the implementation
proposed by Bias et al. where all managerial decisions are contingent on the level of cash reserves.
As a nice consequence, the capital structure of the firm looks like that of liquidity management
models.
The idea of Biais et al. is to use cash reserves to model agent’s continuation utility. We assume
that these reserves Mt are kept in an escrow account whose balance is observable by posing
Wt = λσMt. Setting α = λσ, we get

dMt = ρMtdt+ σdZt −
dLt
α
.

But cash reserves grow with the interest rate earned (ρMtdt) and with the earnings (µdt+σdZt)
and decreases with the payout to stakeholders. In order to stick with this accounting evolution
of cash reserves, we observe that the evolution of Mt can be written as follows:

dMt = ρMtdt+ µdt+ σdZt −
dLt
α
− µdt.

The payouts are thus dLt
α + µdt. The flow µdt corresponds to a perpetual bond with coupon µ

paid out to bondholders.
To sum up, the optimal full-effort contract is implemented with a combination of debt, equity
and liquid reserves. The firm issue debt with a coupon equals to the expected profitability to
discipline the manager. The manager receive a fraction α of the firm’s equity. Observe that
the greater the moral hazard problem, the greater the stake held by the manager. Dividend
are paid when cash reserves hit the target level w

∗

α . The greater the moral hazard problem, the
higher the target cash level. Finally, the firm is liquidated the first time the cash reserves hit
zero. Although the last feature is similar to liquidity management models, it is not for liquidity
reasons that the firm is liquidated but rather to give the incentives to do effort.

2.3 Moral Hazard with a Risk-Averse Agent

Consider the following dynamic principal-agent model in continuous time based on Sannikov
(RES 2008) who considers a setting where a risk- averse agent works for a risk-neutral principal
for an infinite time horizon. The principal and the agent discount future utility at a common
rate r.

The total output Xt produced up to time t evolves according to

dXt = At dt+ dBAt ,

where (BAt )t≥0 is a Brownian motion under PA. The process (At)t is measurable with respect to
the filtration generated by X and represents the agent’s choice of effort level. We assume that
At takes values in a bounded interval [0, Ā]. The agent has a cost of effort given by h(At) where
h is a continuous, increasing and convex function. Furthermore, it is assumed that h(0) = 0
and there exists some γ such that h(a) ≥ γa.
Using the same probabilistic formulation as above, we observe that X is a Brownian motion
under P0.
The principal compensates the agent by a stream of consumption (Ct)t≥0, the consumption
needs to be nonnegative which reflects the limited liability of the agent. The agent cannot save
and his utility function u is assumed to be smooth, increasing and concave with u(0) = 0.

The output process X is publicly observable by both the principal and the agent. The
principal does not observe the agent’s effort, and uses the observations of X to give the agent
incentives to make costly effort. Because the cost function and utility function are common
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knowledge, the principal knows the set of all effort processes that are optimal for the agent
given this compensation contract. In cases where the optimal effort process is not uniquely
determined, we assume that we can choose arbitrarily one such A. This is due to the common
assumption in the literature that the agent will choose what the principal prefers if there is
more than one optimal choice for the agent, since he will have no incentives to deviate from
that choice.Before the agent starts working for the principal, the principal offers him a full-
commitment contract that specifies a nonnegative flow of consumption (Ct)t and a termination
date τ .
A contract Γ = (τ, (Ct)t) is said to be incentive-compatible if there exists at least an effort
process A∗(Γ) that maximizes the agent’s total expected utility

EA
(∫ τ

0

e−rt(u(Ct)− h(At)) dt

)
.

The principal’s problem then becomes

sup
ΓI.C.

EA
∗(Γ)

(∫ τ

0

e−rt(A∗t (Γ)− Ct) dt
)
,

Moreover, an incentive-compatible contract is admissible if

EA
∗(Γ)

(∫ τ

0

e−rt(u(Ct)− h(A∗t (Γ))) dt

)
≥ w0,

where w0 is the agent’s reservation utility that could be interpreted as the utility the agent
benefits from not working.

2.3.1 Characterization of incentive-compatible contracts

Given the principal-agent setting, the intuitive formulation is that the principal will offer a
compensation at time t depends solely on the path of the output process up to time t. Knowing
this contract, the agent chooses his action which maximizes his expected payoff. The process
(At)t is restricted to be progressively measurable with respect to the filtration generated by X.

Proceeding analogously as in the risk-neutral case, we introduce the control π = ((βt)t, (Ct)t)
and define the controlled SDE Wπ as follows:{

Wπ
0 = w0

dWπ
t = (rWπ

t + f(βt)− u(Ct)) dt+ βtdBt,

where f(z) = infa∈[0,Ā](h(a) − za). We also define τπ0 = inf{t ≥ 0, Wπ
t = 0} such that the

control π induces a contract (τπ0 , (Ct)t).
The martingale optimality principle gives that the family

RAt = e−rtWπ
t +

∫ t

0

e−rt(u(Ct)− h(At)) dt

is a uniformly integrable PA supermartingale and a uniformly integrable PA∗ martingale for

A∗t (π) = (h′)−1(βt)11βt≥γ = a∗(βt).

Optional sampling Theorem gives

w0 = EA
∗

(∫ τπ0

0

e−rt(u(Ct)− h(A∗t )) dt

)
and thus the contract (τπ0 , (Ct)t) is incentive-compatible with the associated best reply a∗(βt).
It is moreover admissible because Wπ

0 = w0 by definition.
The principal’s problem becomes

F (w0) = sup
β,C

Ea
∗(β)

(∫ τπ0

0

e−rt(a∗t (β)− Ct) dt

)
.
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This is a Markov control problem, while not a singular one unlike the risk-neutral case.
The principal value dominates the value associated to the shirking action At = 0 for all t. Denote
by F0 this value. Because the agent must at least receive w, a constant flow of consumption

c0 = u−1(rw0) is an admissible contract which gives F0(w0) = −u
−1(rw0)
r . Observe that F0 is a

decreasing and concave function with F0(0) = 0. The associated HJB equation is{
0 = supc>0,β∈R

(
β2

2 F
′′(w) + (rw + f(β) + βa∗(β)− u(c))F ′(w)− rF (w) + a∗(β)− c

)
0 = F (0)

Observe also that f(β) + βa∗(β) = h(a∗(β)) and when β ≥ γ, there is a one-to-one correspon-
dence between β and a.
Sannikov has made two important contributions. First, he has conjectured that it is optimal to
choose always β ≥ γ and he has shown that there is a solution F1 and a threshold w1 such that

• F1 is strictly concave and twice continuously differentiable.

• F1 satisfies F1(0) = 0, F1(w1) = F0(w1) and F ′1(w1) = F ′0(w1)

• F1 is a solution of the HJB equation

sup
a,c>0

(
(h′(a))2

2
F ′′1 (w) + (rw + h(a)− u(c))F ′1(w)− rF1(w) + a− c

)
= 0 on (0, w1).

Second, he has shown that F = F0 for large w and has thus linked the Principal value to the
value function of the mixed optimal stopping/control problem

F̂ (w) = sup
τ,a,c

Ea
(∫ τπ0 ∧τ

0

e−rt(at − Ct) dt+ e−r(τ
π
0 ∧τ)F0(Wτπ0 ∧τ )

)

Applying a verification result, we have F1 = F̂ on (0, w1). But Sannikov claimed that F1 = F̂
everywhere. From a mathematical viewpoint, a rigorous proof of this claim is still an open
question as the question of the optimality to choose always β ≥ γ.

To close that section, we sketch the proof of F = F0 for large w.

Lemma 2.3.1. Assume limc→∞u
′(c) = 0. Then, for every w ≥ ŵ, where ŵ is defined by

u′(u−1(rŵ) = γ, we have F (w) = F0(w).

Proof. For w ≥ ŵ, let us define c by the relation u(c) = rw. By concavity of u, u′(c) ≤ γ. Then,
we have for any incentive pair (A,C),

w = E
(∫ ∞

0

e−rt(u(Ct)− h(At)) dt

)
(2.12)

≤ E
(∫ ∞

0

e−rt(c+ u′(c)(Ct − c)− γAt) dt
)

(2.13)

≤ w + u′(c)

(
E
(∫ ∞

0

e−rt(Ct −At) dt
)
− c

r

)
(2.14)

≤ w + u′(c)

(
F0(w)− E

(∫ ∞
0

e−rt(At − Ct) dt
))

. (2.15)

Therefore, for any incentive pair (A,C), we have

F0(w) ≥ E
(∫ ∞

0

e−rt(At − Ct) dt
)
,

which concludes the proof.
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2.4 Moral Hazard and Real Option

2.4.1 The model

We will study now a dynamic corporate finance contracting model in which firm’s profitability
fluctuates and is impacted by unobservable managerial effort. Thereby, we introduce in an
agency framework the issue of strategic liquidation, a real option to abandon a project. We shall
link the principal’s problem to a two-dimensional fully degenerate optimal stopping problem.
Principal and agent. We consider a firm that hires a manager to operate a project. The firm’s
owner, or the principal, has access to unlimited funds and the manager, or agent, is protected
by limited liability. The agent and the principal both agree on the same discount rate r. We
assume that, at any time t, the project produces observable cash flows if and only if the manager
is in charge. In particular, the project is abandoned when the manager is fired and we assume
without loss of generality that its scrap value is zero. The cumulative cash flows process (Yt)t≥0

and the profitability process (Xt)t≥0 evolve as

dYt = Xt dt and dXt = −δat dt+ σdZat , X0 = x (2.16)

where δ and σ are positive constants, Zat is a Brownian motion, and at ∈ [0, 1] is the agent’s
unobservable action. The unobservable action at = 0 is called the effort action, the unobservable
action at > 0 is called the shirking action. Thus, shirking has a negative effect −δat on prof-
itability. Whenever the agent shirks, he receives a private benefit Bat dt where B is a positive
constant.
Proceeding analogously as before, we obtain the following Markov formulation of our problem:
find a contract Γ = (C, τβ0 (C), 11β<λσ) that maximizes her expected profit at date 0.

VP (x,w0) = maxw≥w0VP (x,w) (2.17)

where

VP (x,w) = sup
C,β

Ea
∗

(∫ τβ0 (C)

0

e−rs(Xs ds− dCs)

)
with a∗ = (a∗t )t≥0 and a∗t = 11βt<σλ,

such that
dXt = −δ11βt<σλ dt + σdZt with X0 = x, (2.18)

dWt = (rWt −B11βt<σλ) dt+ βtdZt − dCt with W0 = w. (2.19)

Our first result concerns the possibility to postpone the payment to a terminal lump sum
transfer.

Lemma 2.4.1. It is always optimal for the principal to postpone payments and to pay the agent
only at the liquidation time with a lump-sum payment.

Proof of Lemma 2.4.1. First, observe that, from (2.7), the Principal’s value function (2.17)
can be re-written as VP (x,w0) = maxw≥w0(v(x,w)− w) where

v(x,w) = sup
C,β

Ea
∗

(∫ τβ0 (C)

0

e−rs(Xs +B11βs<λσ) ds

)
s.t (2.18) and (2.19). (2.20)

The amount v(x,w) corresponds to the total surplus generated by the project in our moral
hazard framework.

Second, note that τβ0 (C) = σβ0 ∧ τ̃
β
0 (C) where for any fixed increasing process (Ct)t≥0, we

have
τ̃β0 (C) = inf{t ≥ 0, W β

t− = 0},

and
σβ0 = inf{t ≥ 0, (∆C)t = W β

t− and (∆C)t > 0}.
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Third, with no loss of generality, a remuneration process can be written under the form
(Ct)t<τβ0 (C) +W(τβ0 (C))−11t=τβ0 (C). Therefore, a control policy can be viewed as a pair (C, β) and

a stopping time τ at which the Principal pays W β
τ− and liquidate. Thus, we have

v(x,w) = sup
C,β,τ

Ea
∗

(∫ τ∧τ̃β0 (C)

0

e−rs(Xs +B11βs<λσ) ds

)
.

Observe that τ̃β0 (0) corresponds to the liquidation time when the principal postpones pay-
ments up to liquidation. We have

v(x,w) ≥ sup
β,τ

Ea
∗

(∫ τ∧τ̃β0 (0)

0

e−rs(Xs +B11βs<λσ) ds

)
, choosing C = 0 (2.21)

≥ Ea
∗

(∫ (σβ0∧τ̃
β
0 (C))∧τ̃β0 (0)

0

e−rs(Xs +B11βs<λσ) ds

)
, choosing τ = σβ0 ∧ τ̃

β
0 (C)

= Ea
∗

(∫ σβ0∧τ̃
β
0 (C)

0

e−rs(Xs +B11βs<λσ) ds

)
, observing τ̃β0 (C) ≤ τ̃β0 (0). (2.22)

Taking the supremum over the controls C, β in (2.22) yields v(x,w). It follows from (2.21) that

v(x,w) = sup
β,τ

Ea
∗

(∫ τ∧τ̃β0 (0)

0

e−rs(Xs +B11βs<λσ) ds

)
, (2.23)

which proves that it is optimal to postpone payments. 2

2.4.2 Full-effort contracts

We focus on full-effort contracts, that is the class of contracts that induces the agent to exert
effort at any time. It follows from Lemma 2.2.2 that the full-effort action process a = 0 is
incentive compatible if and only if βt ≥ λσ. Restricting the analysis to contracts that incentivize
the full-effort action leads to re-write the Principal problem as follows:

Find a contract Γ = (Wτ−11t=τ , τ ∧ τ̃β0 , 0) where the pair (τ, β) is solution to

v(x,w) = sup
β≥λσ,τ

E0

(∫ τ∧τ̃β0

0

e−rsXs ds

)
(2.24)

such that
dXt = σdZt with X0 = x, (2.25)

dWt = rWt + βtdZt with W0 = w, (2.26)

where
τ̃β0 = inf{t ≥ 0, Wt− = 0}.

The above problem is an Optimal Stopping problem with a random maturity τ̃β0 and the rest
of the lecture will consists in solving this problem.
First remember that the unconstrained stopping problem

v0(x) = sup
τ

E0

(∫ τ

0

e−rsXs ds

)
(2.27)
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which corresponds to the firm value in a frictionless world in which there are no asymmetry of
information and private benefits is a standard real option problem that has an explicit solution
(see for instance Dixit and Pindyck). We have

v0(x) =
x

r
− x∗

r
eθ(x−x

∗), with θ =
−
√

2r

σ
and x∗ =

1

θ
.

The threshold x∗ is the profitability threshold below which it is optimal to abandon the project
when the profitability is observable. The stopping time

τ∗ = inf{t ≥ 0, Xt ≤ x∗} (2.28)

is optimal for (2.27).
Second, we consider the sub-solution to problem (2.24)-(2.26) where βt equals λσ. This yields
the two-dimensional constrained optimal stopping problem

u(x,w) = sup
τ

E0

(∫ τ∧τ̃λσ0

0

e−rsXs ds

)
(2.29)

such that
dXt = σdZt with X0 = x,

dWt = rWt dt+ λσdZt with W0 = w,

and
τ̃λσ0 = inf{t ≥ 0, Wt− = 0}. (2.30)

The main result states

Theorem 2.4.2. The following holds

(i) For all (x,w) ∈ R× R+, v(x,w) = u(x,w). Furthermore, u(x,w) = v0(x) for all (x,w) ∈
R× R+ such that w ≥ λ(x− x∗).

(ii) The contract ((Wτ∗−
11t=τ∗)t≥0, τ

∗ ∧ τ̃λσ0 , 0) is the optimal contract that induces full effort.

The proof of Theorem 2.4.2 consist in three steps that we briefly describe below. For a
rigorous proof, we refer to Décamps and Villeneuve (2018).

Step 1 We explicitly solve the optimal stopping problem (2.29).
The exit time τR = τ∗ ∧ τ0 of the open rectangle R = (x∗,+∞)× (0,+∞) is optimal for
(2.29). That is,

u(x,w) = E0

(∫ τR

0

e−rsXs ds

)
.

Moreover, if w ≥ λ(x− x∗) then, u(x,w) = v0(x).

Step 2 We prove regularity results for u. We have u is jointly continuous over [x∗,+∞)× [0,∞)
and C∞ over R = (x∗,+∞)× (0,+∞). Furthermore, it satisfies

max(L(λσ)u,−u) = 0 (2.31)

almost everywhere on R× R+ where L(β) is the fully degenerate differential operator

L(β)V ≡ −rV (x,w)+x+rw
∂V

∂w
(x,w)+

1

2
σ2 ∂

2V

∂x2
(x,w)+

1

2
β2 ∂

2V

∂w2
(x,w)+σβ

∂2V

∂x∂w
(x,w).

Step 3 We show concavity results for u. For any x > x∗,
∂u

∂w
(x, 0) exists and is finite. Moreover,

for any (x,w) ∈ R, the value function u satisfies
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(i)
∂u

∂w
(x,w) = E0

(
11τ0≤τ∗

∂u

∂w
(Xτ0 , 0)

)
≥ 0,

(ii)
∂2u

∂w2
(x,w) < 0,

(iii) (
∂2u

∂x∂w
+ λ

∂2u

∂w2
)(x,w) < 0.

We thus conclude that u is a smooth solution of

max(maxβ≥λσL(β)v,−v) = 0 on R× R+, (2.32)

with boundary conditions v(x, 0) = 0 Then, a standard verification argument based on Itô’s
formula yields u = v.

Optimal payment policies. It follows from the proof of Theorem 2.4.2 that, once the agent’s
continuation payoff Wt reaches λ(Xt−x∗), payment policy Wτ∗−

11t=τ∗ guarantees optimal liqui-

dation of the firm. Another policy that leads to optimal liquidation once Wt reaches λ(Xt−x∗)
is to pay the agent at continuous rate rWt dt up to the optimal liquidation time τ∗. To see
this, assume that couple (x,w) satisfies relation w = λ(x − x∗) and consider payment policy
dCt = rWt dt. The dynamics

dXt = σdZt X0 = x,

dWt = rWt + λσdZt − dCt W0 = w,

imply that dWt = λdXt, from which we deduce that Wt = λ(Xt−x∗). In turn, τ0 = τ∗ a.s., that
is, the continuation value process W reaches zero at the optimal liquidation time τ∗. Consistent
with (2.7), a direct computation yields that

w = E0

(∫ τ∗

0

e−rtrWs ds

)
, (2.33)

and, accordingly, the value of the principal satisfies

VP (x,w) = E0

(∫ τ∗

0

e−rs(Xsds− dCs)

)
= v0(x)− w.

The above remark shows that paying cash earlier is not costly for the principal provided that
principal can ensure that profitability process reaches optimal liquidation threshold x∗ before
continuation value of the agent falls to zero.

To summarize, when initial values (x,w) satisfy w < λ(x − x∗), deferring payments give
incentives to the agent, the continuation value rises and the risk of inefficient liquidation is
reduced. Once the agent has established a high performance record, that is when continuation
value Wt reaches λ(Xt−x∗), any payment policy that leads to liquidation at τ∗ is optimal. The
same idea is present in He and in DeMarzo and Sannikov (2017) where payments to the agent
are postponed until inefficient liquidation can be avoided. Note that, as it is usual in dynamic
contracting models, the agent may be fired without any compensation at all after a series of bad
outcomes leading to inefficient liquidation.
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