Nonparametric regression with martingale increment errors

Sylvain Delattrea, Stéphane Gaïffasb,∗

a Université Paris Diderot - Paris 7, Laboratoire de Probabilités et Modèles Aléatoires, France
b Université Pierre et Marie Curie - Paris 6, Laboratoire de Statistique Théorique et Appliquée, France

Received 22 November 2010; received in revised form 9 June 2011; accepted 4 August 2011
Available online 12 August 2011

Abstract

We consider the problem of adaptive estimation of the regression function in a framework where we replace ergodicity assumptions (such as independence or mixing) by another structural assumption on the model. Namely, we propose adaptive upper bounds for kernel estimators with data-driven bandwidth (Lepski’s selection rule) in a regression model where the noise is an increment of martingale. It includes, as very particular cases, the usual i.i.d. regression and auto-regressive models. The cornerstone tool for this study is a new result for self-normalized martingales, called “stability”, which is of independent interest. In a first part, we only use the martingale increment structure of the noise. We give an adaptive upper bound using a random rate, that involves the occupation time near the estimation point. Thanks to this approach, the theoretical study of the statistical procedure is disconnected from usual ergodicity properties like mixing. Then, in a second part, we make a link with the usual minimax theory of deterministic rates. Under a β-mixing assumption on the covariates process, we prove that the random rate considered in the first part is equivalent, with large probability, to a deterministic rate which is the usual minimax adaptive one.

© 2011 Elsevier B.V. All rights reserved.

Keywords: Nonparametric regression; Adaptation; Kernel estimation; Lepski’s method; Self-normalized martingales; Random rates; Minimax rates; β-Mixing

∗ This work is supported in part by French Agence Nationale de la Recherche (ANR) ANR Grant “PROGNOSTIC” ANR-09-JCJC-0101-01 (http://www.lsta.upmc.fr/prognostic/index.php).
* Corresponding author.
E-mail addresses: delattre@math.jussieu.fr (S. Delattre), stephane.gaiffas@upmc.fr (S. Gaïffas).
1. Introduction

In the theoretical study of statistical or learning algorithms, stationarity, ergodicity and concentration inequalities are assumptions and tools of first importance. When one wants to obtain asymptotic results for some procedure, stationarity and ergodicity of the random process generating the data is mandatory. Using extra assumptions, like moments and boundedness conditions, concentration inequalities can be used to obtain finite sample results. Such tools are standard when the random process is assumed to be i.i.d., like Bernstein’s or Talagrand’s inequality (see [15,21], among others). To go beyond independence, one can use a mixing assumption in order to “get back” independence using coupling, see [9], so that, roughly, the “independent data tools” can be used again. This approach is widely used in nonparametric statistics, statistical learning theory and time series analysis.

The aim of this paper is to replace stationarity and ergodicity assumptions (such as independence or mixing) by another structural assumption on the model. Namely, we consider a regression model where the noise is an increment of martingale. It includes, as very particular cases, the usual i.i.d. regression and the auto-regressive models. The cornerstone tool for this study is a new result, called “stability”, for self-normalized martingales, which is of independent interest. In this framework, we study kernel estimators with a data-driven bandwidth, following the Lepski’s selection rule; see [17,19].

Lepski’s method is a statistical algorithm for the construction of optimal adaptive estimators. It was introduced in [16–18], and it provides a way to select the bandwidth of a kernel estimator from the data. It shares the same kind of adaptation properties to the inhomogeneous smoothness of a signal as wavelet thresholding rules; see [19]. It can be used to construct an adaptive estimator of a multivariate anisotropic signal, see [14], and recent developments shows that it can be used in more complex settings, like adaptation to the semi-parametric structure of the signal for dimension reduction, or the estimation of composite functions; see [11,13]. In summary, it is commonly admitted that Lepski’s idea for the selection of a smoothing parameter works for many problems. However, theoretical results for this procedure are mostly stated in the idealized model of gaussian white noise, excepted for [10], where the model of regression with a random design was considered. As far as we know, nothing is known on this procedure in other settings: think for instance of the auto-regressive model or models with dependent data.

Our approach is in two parts: in a first part, we consider the problem of estimation of the regression function. We give an adaptive upper bound using a random rate, that involves the occupation time at the estimation point; see Theorem 1. In this first part, we only use the martingale increment structure of the noise, and not stationarity or ergodicity assumptions on the observations. Consequently, even if the underlying random process is transient (e.g. there are few observations at the estimation point), the result holds, but the occupation time is typically small, so that the random rate is large (and eventually not going to zero as the sample size increases).

The key tool is a new result of stability for self-normalized martingales stated in Theorem 2; see Section 4. It works surprisingly well for the statistical application proposed here, but it might give new results for other problems as well. In a second part (Section 5), we make a link with the usual minimax theory of deterministic rates. Using a β-mixing assumption, we prove that the random rate used in Section 3 is equivalent, with a large probability, to a deterministic rate which is the usual adaptive minimax one; see Proposition 1.

The message of this paper is twofold. First, we show that the kernel estimator and Lepski’s method are very robust with respect to the statistical properties of the model: they does not require stationarity or ergodicity assumptions, such as independence or mixing to “do the job of
adaptation”; see Theorem 1. The second part of the message is that, for the theoretical assessment of an estimator, one can use advantageously a theory involving random rates of convergence. Such a random rate naturally depends on the occupation time at the point of estimation (the local amount of data), and it is “almost observable” if the smoothness of the regression were to be known. An ergodicity property, such as mixing, shall only be used in a second step of the theory, for the derivation of the asymptotic behaviour of this rate (see Section 5). Of course, the idea of random rates for the assessment of an estimator is not new. It has already been considered in [12] for discrete time and in [8] for diffusion models. However, this work contains, as far as we know, the first result concerning adaptive estimation of the regression with a martingale increment noise.

2. Main definitions

2.1. The model

Consider sequences \((X_k)_{k \geq 0}\) and \((Y_k)_{k \geq 1}\) of random variables respectively in \(\mathbb{R}^d\) and \(\mathbb{R}\), both adapted to a filtration \((\mathcal{F}_k)_{k \geq 0}\), and such that for all \(k \geq 1\):

\[
Y_k = f(X_{k-1}) + \varepsilon_k,
\]

where the sequence \((\varepsilon_k)_{k \geq 1}\) is a \((\mathcal{F}_k)\)-martingale increment:

\[
\mathbb{E}(|\varepsilon_k| | \mathcal{F}_{k-1}) < \infty \quad \text{and} \quad \mathbb{E}(\varepsilon_k | \mathcal{F}_{k-1}) = 0,
\]

and where \(f : \mathbb{R}^d \to \mathbb{R}\) is the unknown function of interest. We study the problem of estimation of \(f\) at a point \(x \in \mathbb{R}^d\) based on the observation of \((Y_1, \ldots, Y_N)\) and \((X_0, \ldots, X_{N-1})\), where \(N \geq 1\) is a finite \((\mathcal{F}_k)\)-stopping time. This allows for “sample size designing”; see Remark 1 below. The analysis is conducted under the following assumption on the sequence \((\varepsilon_k)_{k \geq 1}\).

Assumption 1. There is a \((\mathcal{F}_k)\)-adapted sequence \((\sigma_k)_{k \geq 0}\), assumed to be observed, of positive random variables and \(\mu, \gamma > 0\) such that:

\[
\mathbb{E}\left[\exp\left(\mu \frac{\varepsilon_k^2}{\sigma_k^2} \right) | \mathcal{F}_{k-1} \right] \leq \gamma \quad \forall k \geq 1.
\]

This assumption means that the martingale increment \(\varepsilon_k\), normalized by \(\sigma_{k-1}\), is uniformly subgaussian. In the case where \(\varepsilon_k\) is gaussian conditionally to \(\mathcal{F}_{k-1}\), Eq. (1) is satisfied if \((\sigma_k)\) is such that \(\text{Var}(\varepsilon_k | \mathcal{F}_{k-1}) \leq c \sigma_{k-1}^2\) for any \(k \geq 0\), where \(c > 0\) is a deterministic constant not depending on \(k\). If one assumes that \(\text{Var}(\varepsilon_k | \mathcal{F}_{k-1}) \leq \bar{\sigma}^2\) for a known constant \(\bar{\sigma} > 0\), one can take simply \(\sigma_k \equiv \bar{\sigma}\). Note that \(\sigma_{k-1}\) is not necessarily the conditional variance of \(\varepsilon_k\), but an observed upper bound of it.

Particular cases of model (1) are the regression and the auto-regressive model.

Example 1. In the regression model, one observes \((Y_k, X_{k-1})_{k=1}^n\) satisfying

\[
Y_k = f(X_{k-1}) + s(X_{k-1}) \xi_k,
\]

where \((\xi_k)\) is i.i.d. centred, such that \(\mathbb{E}(\exp(\mu \xi_k^2)) \leq \gamma\) and independent of \(\mathcal{F}_k = \sigma(X_0, \ldots, X_k)\), and where \(f : \mathbb{R}^d \to \mathbb{R}\) and \(s : \mathbb{R}^d \to \mathbb{R}^+\). This model is a particular case of (1) with \(\sigma_k^2 \geq s(X_k)^2\).
Example 2. In the auto-regressive model, one observes a sequence \((X_k)_{k=0}^n\) in \(\mathbb{R}^d\) satisfying

\[
X_k = \tilde{f}(X_{k-1}) + S(X_{k-1})\tilde{\zeta}_k,
\]

where \(\tilde{f} = (f_1, \ldots, f_d) : \mathbb{R}^d \to \mathbb{R}^d\), where \(S : \mathbb{R}^d \to \mathbb{R}^d \times d\) and where \(\tilde{\zeta}_k = (\zeta_{k,1}, \ldots, \zeta_{k,d})\) is a sequence of centred i.i.d. vectors in \(\mathbb{R}^d\) independent of \(X_0\), with covariance matrix \(I_d\) and such that \(\mathbb{E}(\exp(\mu \zeta_{k,j}^2)) \leq \gamma\). The problem of estimation of each coordinate \(f_j\) is a particular case of (1) with \(Y_k = (X_k)_j\), \(F_k = (\zeta_{0,1}, \ldots, \tilde{\zeta}_k)\) and \(\sigma_{k}^2 \geq S_{j,j}(X_k)^2\).

Let us mention that these two examples are very particular. The analysis conducted here allows to go way beyond the i.i.d. case, as long as \((\zeta_k)\) is a martingale increment.

Remark 1. The results given in Section 3 are stated in a setting where one observes \((X_{k-1}, Y_k)_{k=1}^N\) with \(N\) a stopping time. Of course, this contains the usual case \(N \equiv n\), where \(n\) is a fixed sample size. This framework includes situations where the statistician decides to stop the sampling according to some design of experiment rule. This is the case when obtaining data has a cost, that cannot be more than a maximum value, for instance.

Remark 2. Note that while \(\zeta_k = \varepsilon_k / \sigma_{k-1}\) is conditionally subgaussian, \(\varepsilon_k\) is not in general, (see [5] for examples).

2.2. Lepski’s method

In what follows, \(|x|\) stands for the Euclidean norm of \(x \in \mathbb{R}^d\). An object of importance in the analysis conducted below is the following. For \(h > 0\), we define

\[
L(h) = \sum_{k=1}^{N} \frac{1}{\sigma_{k-1}^2} \mathbf{1}_{|X_{k-1} - x| \leq h},
\]

which is the occupation time of \((X_k)_{k=0}^\infty\) at \(x\) renormalized by \((\sigma_k)\). Then, if \(h\) is such that \(L(h) > 0\) (there is at least one observations in the interval \([x - h, x + h]\)), we define the kernel estimator

\[
\hat{f}(h) = \frac{1}{L(h)} \sum_{k=1}^{N} \frac{1}{\sigma_{k-1}^2} \mathbf{1}_{|X_{k-1} - x| \leq h} Y_k.
\]

Let \((h_i)_{i \geq 0}\) be a decreasing sequence of positive numbers, called bandwidths, and define the following set, called grid, as

\[
\mathcal{H} := \{h_j : L(h_j) > 0\}.
\]

For the sake of simplicity, we will consider only on a geometrical grid, where

\[
h_j = h_0 q^j
\]

for some parameters \(h_0 > 0\) and \(q \in (0, 1)\). Lepski’s method selects one of the bandwidths in \(\mathcal{H}\). Let \(b > 0\) and for any \(h > 0\), define

\[
\psi(h) := 1 + b \log(h_0 / h).
\]
A discussion about the function ψ is given in Remark 5 below. For $u > 0$, define, on the event \(\{ L(h_0)^{-1/2} \leq u \} \), the bandwidth

\[
H_u = \min \left\{ h \in \mathcal{H} : \left(\frac{\psi(h)}{L(h)} \right)^{1/2} \leq u \right\},
\]

and let $u_0 > 0$. The estimator of $f(x)$ is $\hat{f}(\hat{H})$ defined on the set $\{ L(h_0)^{-1/2} \leq u_0 \}$, where \hat{H} is selected according to the following rule:

\[
\hat{H} := \max \left\{ h \in \mathcal{H} : h \geq H_{u_0} \text{ and } \forall h' \in [H_{u_0}, h] \cap \mathcal{H}, \right. \\
\left. |\hat{f}(h) - \hat{f}(h')| \leq \nu \left(\frac{\psi(h')}{L(h')} \right)^{1/2} \right\},
\]

where ν is a positive constant. This is the standard Lepski’s procedure; see [17–20]. In the next section, we give an upper bound for $\hat{f}(\hat{H})$, with a normalization (convergence rate) that involves $L(h)$. This result is stated without any further assumptions on the model.

Remark 3. The number u_0 is a fixed constant such that the largest bandwidth h_0 in the grid satisfies $L(h_0)^{-1/2} \leq u_0$. This deterministic constraint is very mild: if we have some data close to x, and if h_0 is large enough (this is the largest bandwidth in the grid), then $L(h_0)$ should be large, at least such that $L(h_0)^{-1/2} \leq u_0$. Consider the following basic example: $X_k \in [−1, 1]^d$ almost surely for any k and $\sigma_k \equiv 1$, then by taking $h_0 = \sqrt{d}$ and $u_0 = 1$ the event $\{ L(h_0)^{-1/2} \leq u_0 \}$ has probability one. In Section 5 (see Proposition 1) we prove that a mixing assumption on $(X_k)_{k \geq 0}$ entails that this event has an overwhelming probability.

3. Adaptive upper bound

The usual way of stating an adaptive upper bound for $\hat{f}(\hat{H})$, see for instance [19], is to prove that it has the same convergence rate as the oracle estimator $\hat{f}(H^*)$, which is the “best” among a collection $\{ \hat{f}(h) : h \in \mathcal{H} \}$. The oracle bandwidth H^* realizes a bias-variance trade-off, that involves explicitly the unknown f. For $h \in \mathcal{H}$ define

\[
\bar{f}(h) := \frac{1}{L(h)} \sum_{k=1}^N \frac{1}{\sigma_k} 1_{|X_{k-1} - x| \leq h} f(X_{k-1}).
\]

Consider a family of non-negative random variables $(W(h); h \in \mathcal{H})$ that bounds from above the local smoothness of f (measured by its increments):

\[
\sup_{h' \in [H_{u_0}, h] \cap \mathcal{H}} |\bar{f}(h') - f(x)| \leq W(h), \quad \forall h \in \mathcal{H}.
\]

Nothing is required on $(W(h); h \in \mathcal{H})$ for the moment, one can perfectly choose it as the left hand side of (6) for each $h \in \mathcal{H}$ for instance. However, for the analysis conducted here, we need to bound W from below and above (see Remark 6): introduce

\[
\bar{W}(h) := [W(h) \vee (\delta(h/h_0)^{u_0})] \wedge u_0,
\]
where \(\delta_0 \) and \(\alpha_0 \) are positive constants. On the set
\[
\left\{ L(h_0)^{-1/2} \leq \tilde{W}(h_0) \right\},
\]
define the random oracle bandwidth
\[
H^* := \min \left\{ h \in \mathcal{H} : \left(\frac{\psi(h)}{L(h)} \right)^{1/2} \leq \tilde{W}(h) \right\},
\]and consider the event
\[
\Omega' := \left\{ L(h_0)^{-1/2} \leq \tilde{W}(h_0), W(H^*) \leq u_0 \right\}.
\]
The event \(\Omega' \) is the “minimal” requirement for the proof of an upper bound for \(\hat{f}(\hat{H}) \); see Remarks 6 and 7 below.

Theorem 1. Let Assumption 1 hold and let \(\hat{f}(\hat{H}) \) be the procedure given by Lepski’s rule (4). Then, for any \(\rho \in (0, b_\mu \nu^2/(64 \alpha_0 (1 + \gamma))) \), we have
\[
\mathbb{P}\left[\left\{ |\hat{f}(\hat{H}) - f(x)| \geq t \tilde{W}(H^*) \right\} \cap \Omega' \right] \leq C_0 \frac{(\log(t + 1))^{1+\rho/2}}{t^\rho}
\]
for any \(t \geq t_0 \), where \(C_0, t_0 > 0 \) are constants depending on \(\rho, \mu, \gamma, q, b, u_0, \delta_0, \alpha_0, \nu \).

The striking fact in this theorem is that we do not use any stationarity, ergodicity or concentration property. In particular, we cannot give at this point the behaviour of the random normalization \(\tilde{W}(H^*) \). It does not go to 0 in probability with \(N \to +\infty \) when \(L(h_0) \) does not go to \(+\infty \) in probability, which happens if \((X_k)_{k \geq 0} \) is a transient Markov chain for instance. Hence, without any further assumption, Theorem 1 does not entail that \(\hat{f}(\hat{H}) \) is close to \(f(x) \). On the other hand, when \((X_k)_{k \geq 0} \) is mixing, we prove that \(\tilde{W}(H^*) \) behaves as the deterministic minimax optimal rate; see Section 5. The cornerstone of the proof of this Theorem is a new result concerning the stability of self-normalized martingales; see Theorem 2 in Section 4 below.

Remark 4. The parameter \(\rho \) of decay of the probability in Theorem 1 is increasing with the threshold parameter \(\nu \) from (4). So, for any \(p > 0 \) and \(\nu \) large enough, Theorem 1 entails that the expectation of \((\tilde{W}(H^*)^{-1}|\hat{f}(\hat{H}) - f(x)|)^\rho \mathbf{1}_{\Omega'} \) is finite.

Remark 5. The presence of the penalizing function \(\psi \) in Eqs. (4) and (8) is surprisingly not only due to the “payment for pointwise adaptation”, which is a well-known phenomenon in the i.i.d. setting; see [19, 20], among others. It turns out that in our setting, even for the proof of an upper bound for a non-adaptive estimator (with a bandwidth that depends on the smoothness of \(f \)), we need again this penalizing term for a technical reason. Indeed, we do not know in this context if \(H^* \) is close to a deterministic quantity, so we need a uniform upper bound for the noise term (controlled by a union bound) over a set of grids, which is “compensated” by \(\psi \) (this is illustrated by the controls of the probability (23) in the proof of Theorem 1).

Remark 6. The definition of \(\tilde{W} \) is related to the fact that since nothing is required on the sequence \((X_k) \), the occupation time \(L(h) \) can be small, even if \(h \) is large. In particular, \(L(h) \) has no reason to be close to its expectation. So, without the introduction of \(\tilde{W} \) above, that bounds \(W \) from below by a power function, we cannot give a lower estimate of \(H^* \) (even rough), which is mandatory for the proof of Theorem 1.
Remark 7. On the event \(\Omega' \), we have \(\{ L(h_0)^{-1/2} \leq \bar{W}(h_0) \} \), meaning that the bandwidth \(h_0 \) (the largest in \(\mathcal{H} \)) is large enough to contain enough points in \([x-h_0, x+h_0] \), so that \(L(h_0) \geq \bar{W}(h_0)^2 \). This is not a restriction when \(W(h) = Lh^s \) [\(f \) has a local Hölder exponent \(s \)]; for instance, see Section 5.

Remark 8. In the definition of \(\hat{f}(\hat{H}) \), we use kernel estimation with the rectangular kernel \(K(x) = I_{[-1,1]}(x)/2 \). This is mainly for technical simplicity, since the proof of Theorem 1 is already technically involved. Consequently, Theorem 1 does not give, on particular cases (see Section 5), the adaptive minimax rate of convergence for regression functions with an Hölder exponent \(s \) larger than 1. To improve this, one can consider Lepski’s method applied to local polynomials (LP) (see [10]). This would lead, in the framework considered here, to strong technical difficulties.

4. Stability for self-normalized martingales

We consider a local martingale \((M_n)_{n \in \mathbb{N}} \) with respect to a filtration \((\mathcal{G}_n)_{n \in \mathbb{N}} \), and for \(n \geq 1 \) denote its increment by \(\Delta M_n := M_n - M_{n-1} \). The predictable quadratic variation of \(M_n \) is

\[
\langle M \rangle_n := \sum_{k=1}^{n} \mathbb{E} [\Delta M_k^2 | \mathcal{G}_{k-1}].
\]

Concentration inequalities for martingales have a long history. The first ones are the Azuma–Hoeffding’s inequality and the Freedman’s inequality (see [7] for a precise account on these inequalities). The latter states that, if \((M_n) \) is a square integrable martingale such that \(|\Delta M_k| \leq c \) a.s. for some constant \(c > 0 \) and \(M_0 = 0 \), then for any \(x, y > 0 \):

\[
\mathbb{P}[M_n \geq x, \langle M \rangle_n \leq y] \leq \exp \left(-\frac{x^2}{2(y + cx)} \right).
\]

Later on, an alternative to the assumption \(|\Delta M_k| \leq c \) was proposed. This is the so-called Bernstein’s condition, which requires that there is some constant \(c > 0 \) such that for any \(p \geq 2 \):

\[
\sum_{k=1}^{n} \mathbb{E}[|\Delta M_k|^p | \mathcal{G}_{k-1}] \leq \frac{p!}{2} c^{p-2} \langle M \rangle_n. \tag{10}
\]

In [23] (see Chapter 8), inequality (9) is proved with \(\langle M \rangle_n \) replaced by a \(\mathcal{G}_{n-1} \)-measurable random variable \(n R_n^2 \), under the assumption that

\[
\sum_{k=1}^{n} \mathbb{E}[|\Delta M_k|^p | \mathcal{G}_{k-1}] \leq \frac{p!}{2} c^{p-2} n R_n^2. \tag{11}
\]

holds for any \(p \geq 2 \). There are many other very recent deviation inequalities for martingales, in particular inequalities involving the quadratic variation \([M]_n = \sum_{k=1}^{n} \Delta M_k^2 \); see for instance [6,3,7].

For the proof of Theorem 1, a Bernstein’s type of inequality is not enough: note that in (9), it is mandatory to work on the event \(\{ \langle M \rangle_n \leq y \} \). A control of the probability of this event usually requires an extra assumption on \((X_k)_{k \geq 0} \), such as independence or mixing (see Section 5), and this is precisely what we wanted to avoid here. Moreover, for the proof of Theorem 1, we need a result concerning \(M_T \), where \(T \) is an arbitrary finite stopping-time.
In order to tackle this problem, a first idea is to try to give a deviation for the self-normalized martingale $M_T / \sqrt{(M)_T^2}$. It is well-known that this is not possible, a very simple example is given in Remark 9. In Theorem 2, we give a simple solution to this problem. Instead of $M_T / \sqrt{(M)_T^2}$, we consider $\sqrt{a} M_T / (a + (M)_T)$, where $a > 0$ is an arbitrary real number, and we prove that the exponential moments of this random variable are uniformly bounded under Assumption 2 below. The result stated in Theorem 2 is of independent interest, and we believe that it can be useful for other statistical problems.

Assumption 2. Assume that $M_0 = 0$ and that

$$\Delta M_n = s_{n-1} \zeta_n$$

for any $n \geq 1$, where $(s_n)_{n \in \mathbb{N}}$ is a (G_n)-adapted sequence of random variables and $(\zeta_n)_{n \geq 1}$ is a sequence of (G_n)-martingale increments such that for $\alpha = 1$ or $\alpha = 2$ and some $\mu > 0$, $\gamma > 1$:

$$\mathbb{E} \left[\exp(\mu |\zeta|^\alpha) | G_{k-1} \right] \leq \gamma$$

for any $k \geq 1$. (13)

Let us define

$$V_n := \sum_{k=1}^{n} s_{k-1}^2.$$

Note that if $(\zeta_n)_{n \geq 1}$ is a conditionally normalized sequence (i.e. $\mathbb{E}(\zeta_n^2 | G_{n-1}) = 1$) then (12) entails that $V_n = (M)_n$. Moreover, if Assumption 2 holds, we have $(M)_n \leq c_\mu V_n$ for any $n \geq 1$ with $c_\mu = \ln 2 / \mu$ when $\alpha = 2$ and $c_\mu = 2 / \mu^2$ when $\alpha = 1$. Denote $\cosh(x) = (e^x + e^{-x}) / 2$ for any $x \in \mathbb{R}$.

Theorem 2. Let Assumption 2 holds.

- If $\alpha = 2$, we have for any $\lambda \in \{0, \frac{\mu}{2(1+\gamma^2)}\}$, any $a > 0$ and any finite stopping-time T:

$$\mathbb{E} \left[\exp \left(\lambda \frac{a M_T^2}{(a + V_T)^2} \right) \right] \leq 1 + c_\lambda.$$

where $c_\lambda := \exp \left(\frac{\lambda \Gamma_\lambda}{2(1-2\lambda \Gamma_\lambda)} \right) (\exp(\lambda \Gamma_\lambda) - 1)$ and $\Gamma_\lambda := \frac{1+2\gamma}{2(\mu-\lambda)}$. (14)

- If $\alpha = 1$, we have for any $\lambda \in (-\mu, \mu)$, any $a > 0$ and any finite stopping-time T:

$$\mathbb{E} \left[\cosh \left(\lambda \frac{\sqrt{a} M_T}{a + V_T} \right) \right] \leq 1 + c'_\lambda.$$

where $c'_\lambda = (\gamma - 1) \lambda^2 \exp ((\gamma - 1) \lambda^2 / \mu^2) \cosh (2 \log 2 + 2(\gamma - 1) \lambda^2 / \mu^2) / \mu^2$. (15)

The proof of Theorem 2 is given in Section 6. Theorem 2 shows that when ζ_k is subgaussian (resp. sub-exponential) conditionally to G_{k-1}, then $\sqrt{a} M_T / (a + V_T)$ is also subgaussian (resp. sub-exponential), hence the name stability. Indeed, we cannot expect an improvement in the tails of $\sqrt{a} M_T / (a + V_T)$ due to the summation, since the s_{k-1} are arbitrary (for instance, it can be equal to zero for every k excepted for one).

Remark 9. It is tempting to take “$a = V_T$” in Theorem 2. However, the following basic example shows that it is not possible. Take $(B_t)_{t \geq 0}$ a standard Brownian motion, consider $M_n = B_n$ and define the stopping time $T_c = \inf\{n \geq 1 : B_n / \sqrt{n} \geq c\}$, where $c > 0$. For any $c > 0$,
T_c is finite a.s. (use the law of iterated logarithm for instance). So, in this example, one has $M_{T_c}/\sqrt{(M)T_c} = M_{T_c}/\sqrt{T_c} \geq c$, for any $c > 0$.

5. Consistency with the minimax theory of deterministic rates

In this section, we prove that, when $(X_k)_{k \geq 0}$ is mixing, then Theorem 1 gives the adaptive minimax upper bound. Let us consider again sequences $(X_k)_{k \geq 0}$ and $(Y_k)_{k \geq 1}$ of random variables satisfying (1), where $(\varepsilon_k)_{k \geq 0}$ an $(\mathcal{F}_k)_{k \geq 0}$-martingale increment. For the sake of simplicity, we work under the following simplified version of Assumption 1.

Assumption 3. There is a known $\sigma > 0$ and $\mu, \gamma > 0$ such that:

$$
\mathbb{E} \left[\exp \left(\frac{\varepsilon_k^2}{\sigma^2} \right) \right] \leq \gamma \quad \forall k \geq 1.
$$

Moreover, we consider the setting where we observe (Y_1, \ldots, Y_n) and (X_0, \ldots, X_{n-1}), namely the stopping-time N is simply equal to n (the results in this section are proved for n large enough). Note that in this setting, we have $L(h) = \sigma^{-2} \sum_{k=1}^n \mathbb{1}_{|x_k-x|\leq h}$. We assume also that $(X_k)_{k \geq 0}$ is a strictly stationary sequence.

5.1. Some preliminaries

A function $\ell : \mathbb{R}^+ \to \mathbb{R}^+$ is slowly varying if it is continuous and if

$$
\lim_{h \to 0^+} \ell(\lambda h)/\ell(h) = 1, \quad \forall \lambda > 0.
$$

Fix $\tau \in \mathbb{R}$. A function $g : \mathbb{R}^+ \to \mathbb{R}^+$ is τ-regularly varying if $g(y) = y^{\tau} \ell(y)$ for some slowly varying ℓ. Regular variation is a standard and useful notion, of importance in extreme values theory for instance. We refer to [4] on this topic.

Below we will use the notion of β-mixing to measure the dependence of the sequence $(X_k)_{k \geq 0}$. This measure of dependence was introduced by Kolmogorov, we refer to [9] for topics on dependence. Introduce the σ-field $\mathcal{F}_v = \sigma(X_k : u \leq k \leq v)$, where u, k, v are integers. A strictly stationary process $(X_k)_{k \in \mathbb{Z}}$ is called β-mixing or absolutely regular if

$$
\beta_q := \frac{1}{2} \sup \left(\sum_{i=1}^I \sum_{j=1}^J \| \mathbb{P}[U_i \cap V_j] - \mathbb{P}[U_i] \mathbb{P}[V_j] \| \right) \to 0 \quad \text{as } q \to +\infty,
$$

where the supremum is taken among all finite partitions $(U_i)_{i=1}^I$ and $(V_j)_{j=1}^J$ of Ω that are, respectively, $\mathcal{F}_{-\infty}$ and \mathcal{F}_q measurable. This notion of dependence is convenient in statistics because of a coupling result by Berbee, see [2], that allows to construct, among β-mixing observations, independent blocks, on which one can use Bernstein’s or Talagrand’s inequality (for a supremum) for instance. This strategy has been adopted in a series of papers dealing with dependent data; see [24,1,22] among others. In this section, we use this approach to give a deterministic equivalent to the random rate used in Section 3. This allows to prove that Theorem 1 is consistent with the usual minimax theory of deterministic rates, when one assumes that the sequence $(X_k)_{k \geq 0}$ is β-mixing.
5.2. Deterministic rates

We assume that f has Hölder smoothness in a neighbourhood of x, and we recall that h_0 is the maximum bandwidth used in Lepski’s procedure (see Section 2.2).

Assumption 4 (Smoothness of f). There is $0 < s \leq 1$ and $r > 0$ such that

$$
\sup_{y:|y-x| \leq h} |f(y) - f(x)| \leq w(h) \quad \text{for } w(h) := rh^s
$$

for any $h \leq h_0$.

Under Assumption 4, one has that

$$
\sup_{h' \in [H_{h_0},h] \cap \mathcal{H}} |\tilde{f}(h') - f(x)| \leq rh^s \quad \forall h \in \mathcal{H}.
$$

Under this assumption, one can replace \tilde{W} by w in the statement of Theorem 1 and from the definition of the oracle bandwidth H^* (see (8)), an oracle bandwidth related to the modulus of continuity w can be defined in the following way: on the event

$$
\Omega_0 = \{L(h_0)^{-1/2} \leq rh^s\},
$$

let us define (recalling that from now on, $w(h) = rh^s$)

$$
H_w := \min \left\{ h \in [0, h_0] : \left(\frac{\psi(h)}{L(h)} \right)^{1/2} \leq rh^s \right\}. \tag{17}
$$

Under some ergodicity condition (using β-mixing) on $(X_k)_{k \geq 0}$, we are able to give a deterministic equivalent to $w(H_w)$. Indeed, in this situation, the occupation time $L(h)$ concentrates around its expectation $E L(h)$, so a natural deterministic equivalent to (17) is given by

$$
h_w := \min \left\{ h \in [0, h_0] : \left(\frac{\psi(h)}{E L(h)} \right)^{1/2} \leq rh^s \right\}. \tag{18}
$$

Note that h_w is well defined and unique when $(E L(h_0))^{-1/2} \leq rh^s_0$, i.e. when $n \geq \sigma^2/(P_X([x - h_0, x + h_0])r^2h_0^{2s})$, where P_X stands for the distribution of X_0. We are able to give the behaviour of h_w under the following assumption.

Assumption 5 (Local Behaviour of P_X). There is $\tau \geq -1$ and a slowly varying function ℓ_X such that

$$
P_X([x - h, x + h]) = h^{\tau+1}\ell_X(h) \quad \forall h \leq h_0.
$$

This is an extension of the usual assumption on P_X which requires that it has a continuous density f_X wrt the Lebesgue measure such that $f_X(x) > 0$ (see also [10]). It is met when $f_X(y) = c|y-x|^\tau$ for y close to x for instance (in this case ℓ_X is constant).

Lemma 1. Grant Assumptions 4 and 5. Then h_w is well-defined by (18) and unique when n is large enough and satisfies

$$
h_w = \left(\frac{\sigma^2}{r^2n} \right)^{1/(2s+\tau+1)} \ell_1 \left(\frac{\sigma^2}{r^2n} \right),
$$

where ℓ_1 is a slowly varying function that depends on s, τ and ℓ_X, ψ.
The proof of this lemma easily follows from basic properties of regularly varying functions, so it is omitted. Explicit examples of such rates are given in [10]. Note that in the i.i.d. regression setting, we know from [10] that \(r h_w^s \) is the minimax adaptive rate of convergence. Now, under the following mixing assumption, we can prove that the random rate \(H_w^s \) and deterministic rate \(h_w^s \) have the same order of magnitude with a large probability.

Assumption 6. Let \((\beta_q)_{q \geq 1}\) be the sequence of \(\beta\)-mixing coefficients of \((X_k)_{k \geq 0}\), see (16), and let \(\eta, \kappa > 0\). We assume that for any \(q \geq 1\):

\[
\beta_q \leq \frac{1}{\psi^{-1}(2q)},
\]

where \(\psi(u) = \eta (\log u)\kappa\) (geometric mixing) or \(\psi(u) = \eta u^{\kappa}\) (arithmetic mixing).

Proposition 1. Let Assumptions 4–6 hold. On \(\Omega_0\), let \(H_w\) be given by (17) and let (for \(n\) large enough) \(h_w\) be given by (18). Then, if \((X_k)\) is geometrically \(\beta\)-mixing, or if it is arithmetically \(\beta\)-mixing with a constant \(\kappa < 2s/(\tau + 1)\), we have

\[
P\left(\frac{1}{2} h_w \leq H_w \leq 2 h_w \right) \cap \Omega_0 \geq 1 - \varphi_n \quad \text{and} \quad P[\Omega_0] = o(\varphi_n)
\]

for \(n\) large enough, where in the geometrically \(\beta\)-mixing case:

\[
\varphi_n = \exp(-C_1 n^{\delta_1} \ell_1(1/n)) \quad \text{where} \quad \delta_1 = \frac{2s}{(2s + \tau + 1)(\kappa + 1)}
\]

and in the arithmetically \(\beta\)-mixing case:

\[
\varphi_n = C_2 n^{-\delta_2} \ell_2(1/n) \quad \text{where} \quad \delta_2 = \frac{2s}{2s + \tau + 1} \left(\frac{1}{\kappa} - \frac{\tau + 1}{2s} \right),
\]

where \(C_1, C_2\) are positive constants and \(\ell_1, \ell_2\) are slowly varying functions that depends on \(\eta, \kappa, \tau, s, \sigma, r\) and \(X\).

The proof of Proposition 1 is given in Section 6 below. The assumption used in Proposition 1 allows a geometric \(\beta\)-mixing, or an arithmetic \(\beta\)-mixing, up to a certain order, for the sequence \((X_k)\). This kind of restriction on the coefficient of arithmetic mixing is standard; see for instance [22,24,1].

The next result is a direct corollary of Theorem 1 and Proposition 1. It says that when \((X_k)_{k \geq 0}\) is mixing, then the deterministic rate \(h_w^s\) is an upper bound for the risk of \(\hat{f}(\hat{H})\).

Corollary 1. Let Assumptions 3–5 hold. Let Assumption 6 hold, with the extra assumption that \(\kappa < 2s/(s + \tau + 1)\) in the arithmetical \(\beta\)-mixing case. Moreover, assume that \(|f(x)| \leq Q\) for some known constant \(Q > 0\). Let us fix \(p > 0\). If \(v > 0\) satisfies \(b_1 v^2 > 64 p (1 + \tau)\) (recall that \(v\) is the constant in front the threshold in Lepski’s procedure, see (4)), we have

\[
E[|\tilde{f}(\hat{H}) - f(x)|^p] \leq C_1 (r h_w^s)^p
\]

for \(n\) large enough, where \(\tilde{f}(\hat{H}) = -Q \cup \hat{f}(\hat{H}) \land Q \) and where \(C_1 > 0\) depends on \(q, p, \mu, \gamma, b, u_0, \delta_0, v, Q\).

The proof of Corollary 1 is given in Section 6 below. Let us recall that in the i.i.d regression model with gaussian noise, we know from [10] that \(w(h_w)\) is the minimax adaptive rate of
convergence. So, Corollary 1 proves that Theorem 1 is consistent with the minimax theory of deterministic rates, when \((X_k)\) is \(\beta\)-mixing.

Example 3. Assume that \(P_X\) has a density \(f_X\) which is continuous and bounded away from zero on \([x - h_0, x + h_0]\), so that Assumption 5 is satisfied with \(\tau = 0\). In this setting, one easily obtains that \(h^*_w\) is equal (up to some constant) to \((\log n/n)^{s/(2s+1)}\), which is the pointwise minimax adaptive rate of convergence; see [20,18,19] for the white-noise model and [10] for the regression model.

6. Proof of the main results

6.1. Proof of Theorem 2 for \(\alpha = 2\)

Let \(a > 0\) and \(\lambda \in [0, \frac{\mu}{2(1+y)}]\). Define \(Y_0 := 0\) and for \(n \geq 1:\)

\[
Y_n := \frac{aM^2_n}{(a + V_n)^2} \quad \text{and} \quad H_n := \mathbb{E}\left[\exp(\lambda (Y_n - Y_{n-1}) | \mathcal{G}_{n-1})\right].
\]

Assume for the moment that \(H_n\) is finite a.s, hence we can define the local martingale

\[
S_n := \sum_{k=1}^{n} e^{\lambda Y_{k-1}} \left(e^{\lambda (Y_k - Y_{k-1})} - H_k \right),
\]

so that

\[
\exp(\lambda Y_n) = 1 + \sum_{k=1}^{n} e^{\lambda Y_{k-1}} \left(e^{\lambda (Y_k - Y_{k-1})} - 1 \right)
\]

\[
= 1 + S_n + \sum_{k=1}^{n} e^{\lambda Y_{k-1}} (H_k - 1).
\]

Using the sequence of localizing stopping times

\[
T_p := \min \left\{ n \geq 0 : \sum_{k=1}^{n+1} \mathbb{E}(e^{\lambda Y_k} | \mathcal{G}_{k-1}) > p \right\}
\]

for \(p > 0\), the process \((S_n \wedge T_p)_{n \geq 0}\) is a uniformly integrable martingale. So using Fatou’s Lemma, one easily gets that

\[
\mathbb{E}(e^{\lambda Y_T}) \leq \liminf_{p \to +\infty} \mathbb{E}(e^{\lambda Y_{T \wedge T_p}}) \leq \liminf_{p \to +\infty} \left\{ 1 + \mathbb{E}(S_{T \wedge T_p}) + \mathbb{E}\left(\sum_{k=1}^{T \wedge T_p} e^{\lambda Y_{k-1}} (H_k - 1) \right) \right\}
\]

\[
= 1 + \liminf_{p \to +\infty} \mathbb{E}\left(\sum_{k=1}^{T \wedge T_p} e^{\lambda Y_{k-1}} (H_k - 1) \right).
\]

This entails (14) if we prove that

\[
\sum_{i=1}^{n} e^{\lambda Y_{k-1}} (H_k - 1) \leq c_\lambda.
\]
for all \(n \geq 1 \). First, we prove that

\[
H_n \leq \exp \left[\frac{\lambda \alpha s_{n-1}^2}{(a + V_n)^2} \left(\Gamma_\lambda + \frac{2M_{n-1}^2}{a + V_{n-1}} (2\lambda \Gamma_\lambda - 1) \right) \right],
\]

which entails that \(H_n \) is finite almost surely. We can write

\[
Y_n - Y_{n-1} = a \frac{M_n^2 - M_{n-1}^2}{(a + V_n)^2} + a \frac{M_{n-1}^2}{(a + V_{n-1})^2} \frac{(a + V_{n-1})^2 - (a + V_n)^2}{(a + V_n)^2 (a + V_{n-1})^2}
\]

\[
= a \left(M_n - M_{n-1} \right)^2 + 2M_{n-1} (M_n - M_{n-1})
\]

\[
= a \frac{M_{n-1}^2}{(a + V_{n-1})^2} \left(2a + V_{n-1} + V_n \right)
\]

\[
\leq a \frac{s_{n-1}^2 \xi_n^2 + 2M_{n-1} s_{n-1} \xi_n}{(a + V_n)^2} \frac{2aM_{n-1}^2 s_{n-1}^2}{(a + V_n)^2 (a + V_{n-1})}
\]

where we used that \(V_{n-1} \leq V_n \). In other words

\[
\exp (\lambda (Y_n - Y_{n-1})) \leq \exp \left(\mu_n \xi_n^2 + \rho_n \xi_n - \delta_n \right),
\]

with:

\[
\mu_n = \frac{\lambda \alpha s_{n-1}^2}{(a + V_n)^2}, \quad \rho_n = \frac{2\lambda \alpha s_{n-1} M_{n-1}}{(a + V_n)^2}, \quad \delta_n = \frac{2\lambda \alpha s_{n-1}^2 M_{n-1}^2}{(a + V_n)^2 (a + V_{n-1})}
\]

The random variables \(\mu_n, \rho_n \) and \(\delta_n \) are \(\mathcal{G}_{n-1} \)-measurable and one has \(0 \leq \mu_n \leq \lambda \). We need the following lemma.

Lemma 2. Let \(\xi \) be a real random variable such that \(\mathbb{E}[\xi] = 0 \) and such that

\[
\mathbb{E}[\exp(\mu \xi^2)] \leq \gamma
\]

for some \(\mu > 0 \) and \(\gamma > 1 \). Then, for any \(\rho \in \mathbb{R} \) and \(m \in [0, \mu) \), we have

\[
\mathbb{E}[\exp(m \xi^2 + \rho \xi)] \leq \exp \left((1 + 2\gamma)(\rho^2 + m) \right) \frac{(1 + 2\gamma)(\rho^2 + m)}{2(\mu - m)}.
\]

The proof of this lemma is given in Section 7. Conditionally to \(\mathcal{G}_{n-1} \), we apply Lemma 2 to \(\xi_n \). This gives

\[
H_n \leq \mathbb{E}[\exp(\mu_n \xi_n^2 + \rho_n \xi_n - \delta_n) \mid \mathcal{G}_{n-1}] \leq \exp \left(\Gamma_\lambda \left(\rho_n^2 + \mu_n \right) - \delta_n \right),
\]

that can be written as

\[
H_n \leq \exp \left[\frac{\lambda \alpha s_{n-1}^2}{(a + V_n)^2} \left(\Gamma_\lambda + 2M_{n-1}^2 \left(\frac{2\lambda \Gamma_\lambda a}{(a + V_n)^2} - \frac{1}{a + V_{n-1}} \right) \right) \right]
\]
which yields (20) using \(a/(a + V_n)^2 \leq 1/(a + V_{n-1})\). Since \(\lambda < \mu/[2(1 + \gamma)]\), we have
\[2\lambda \Gamma_\lambda - 1 < 0,\]
so (20) entails
\[H_n - 1 \leq \exp \left[\frac{\lambda \Gamma_\lambda a s_{n-1}^2}{(a + V_n)^2} \right] - 1 \leq (\exp(\lambda \Gamma_\lambda) - 1) \frac{a s_{n-1}^2}{(a + V_n)^2},\]
where we used the fact that \(e^{\mu x} - 1 \leq (e^{\mu} - 1)x\) for any \(x \in [0, 1/2]\), and \(\mu > 0\). Note that (20) entails also the following inclusion:
\[\{H_n > 1\} \subseteq \left\{ \frac{2M_{n-1}^2}{a + V_{n-1}} < \frac{\Gamma_\lambda}{1 - 2\lambda \Gamma_\lambda} \right\} \subseteq \left\{ e^{\exp(\lambda Y_{n-1})} < \exp \left(\frac{\lambda \Gamma_\lambda}{2(1 - 2\lambda \Gamma_\lambda)} \right) \right\}.
\]
It follows that
\[\sum_{k=1}^{n} e^{\lambda Y_{k-1}}(H_k - 1) \leq c_\lambda \sum_{k=1}^{n} \frac{a s_{k-1}^2}{(a + V_k)^2},\]
so (19) follows, since
\[\sum_{k=1}^{n} \frac{a s_{k-1}^2}{(a + V_k)^2} \leq \int_{0}^{V_n} \frac{a}{(a + x)^2}dx \leq 1.\]
This concludes the proof of (14) for \(\alpha = 2\). \(\Box\)

6.2. Proof of Theorem 2 for \(\alpha = 1\)

First, note that (13) and the fact that \(\xi_k\) are centred entails that for any \(|\lambda| < \mu\), we have
\[\mathbb{E}[\exp(\lambda \xi_k) \mid \mathcal{G}_{k-1}] \leq \exp(\mu' \lambda^2)\]
for any \(k \geq 1\), where \(\mu' = (\gamma - 1)/\mu^2\). Now, we use the same mechanism of proof as for the case \(\alpha = 2\). Let \(a > 0\) and \(\lambda \in (-\mu, \mu)\) be fixed. Define
\[Y_n = \frac{\sqrt{a} M_n}{a + V_n} \quad \text{and} \quad H_n = \mathbb{E}\left[\cosh(\lambda Y_n) - \cosh(\lambda Y_{n-1}) \mid \mathcal{G}_{n-1} \right].\]

Assuming for the moment that \(H_n\) is finite almost surely, we define the local martingale
\[S_n := \sum_{k=1}^{n} \left(\cosh(\lambda Y_k) - \cosh(\lambda Y_{k-1}) - H_k \right).\]

Thus, inequality (15) follows if we prove that for all \(n \geq 1\):
\[\cosh(\lambda Y_n) \leq 1 + S_n + \mu' \lambda^2 \exp \left(\mu' \lambda^2 \right) \cosh \left(2 \log 2 + 2 \mu' \lambda^2 \right).\]

We can write
\[Y_n - Y_{n-1} = -\frac{\sqrt{a} M_{n-1} s_{n-1}^2}{(a + V_n)(a + V_{n-1})} + \frac{\sqrt{a} s_{n-1} \xi_n}{a + V_n},\]
which gives, together with (21):
\[\mathbb{E}\left[\exp(\pm(\lambda(Y_n - Y_{n-1})) \mid \mathcal{G}_{n-1} \right] \leq \exp \left(\pm \frac{\lambda \sqrt{a} M_{n-1} s_{n-1}^2}{(a + V_n)(a + V_{n-1})} + \frac{\mu' \lambda^2 a s_{n-1}^2}{(a + V_n)^2} \right).\]
As we have
\[
\cosh(\lambda Y_n) = \frac{1}{2} e^{\lambda Y_{n-1}} e^{\lambda (Y_n - Y_{n-1})} + \frac{1}{2} e^{-\lambda Y_{n-1}} e^{-\lambda (Y_n - Y_{n-1})},
\]
we derive:
\[
\mathbb{E} \left[\cosh(\lambda Y_n) \mid G_{n-1} \right] \leq \frac{1}{2} \exp \left(\lambda Y_{n-1} - \frac{\lambda \sqrt{a M_{n-1} s_{n-1}^2}}{(a + V_n)(a + V_{n-1})} + \frac{\mu' \lambda^2 a s_{n-1}^2}{(a + V_n)^2} \right) \\
+ \frac{1}{2} \exp \left(-\lambda Y_{n-1} + \frac{\lambda \sqrt{a M_{n-1} s_{n-1}^2}}{(a + V_n)(a + V_{n-1})} + \frac{\mu' \lambda^2 a s_{n-1}^2}{(a + V_n)^2} \right),
\]
\[
= \exp \left(\frac{\mu' \lambda^2 a s_{n-1}^2}{(a + V_n)^2} \right) \cosh \left(\left(1 - \frac{s_{n-1}^2}{a + V_n} \right) \lambda Y_{n-1} \right).
\]
So, it remains to prove that
\[
\sum_{k=1}^{n} \left(\exp \left(\frac{\mu' \lambda^2 a s_{k-1}^2}{(a + V_k)^2} \right) \cosh \left(\left(1 - \frac{s_{k-1}^2}{a + V_k} \right) \lambda Y_{k-1} \right) - \cosh(\lambda Y_{k-1}) \right)
\leq \mu' \lambda^2 \exp \left(\mu' \lambda^2 \right) \cosh \left(2 \log 2 + 2 \mu' \lambda^2 \right).
\]
We need the following lemma.

Lemma 3. If \(A > 0 \), one has
\[
\sup_{\eta \in [0, 1]} \sup_{z \geq 0} \left(e^{A \eta} \cosh((1 - \eta)z) - \cosh(z) \right) \leq A \eta e^{A \eta} \cosh(2 \log 2 + 2A).
\]

The proof of this lemma is given in Section 7. Using Lemma 3 with \(\eta = s_{k-1}^2/(a + V_k) \) and \(A = \mu' \lambda^2 a/(a + V_k) \), we obtain
\[
\exp \left(\frac{\mu' \lambda^2 a s_{k-1}^2}{(a + V_k)^2} \right) \cosh \left(\left(1 - \frac{s_{k-1}^2}{a + V_k} \right) \lambda Y_{k-1} \right) - \cosh(\lambda Y_{k-1})
\leq \frac{\mu' \lambda^2 a^2}{(a + V_k)^2} \exp(2 \log 2 + 2 \mu' \lambda^2),
\]
and (15) follows, since
\[
\sum_{k=1}^{n} \frac{a s_{k-1}^2}{(a + V_k)^2} \leq \int_{0}^{V_n} \frac{a}{(a + x)^2} \, dx \leq 1.
\]
This concludes the proof of Theorem 2. \(\square \)

6.3. Proof of Theorem 1

6.3.1. Notations
Let us fix \(\lambda \in (0, \frac{\mu}{2(1 + \gamma)}) \), to be chosen later. In the following we denote by \(C \) any constant which depends only on \((\lambda, \mu, \gamma) \). Let us recall that on the event
\[
\Omega' := \{ L(h_0)^{-1/2} \leq \tilde{W}(h_0) \} \cap \{ W(H^*) \leq u_0 \},
\]
the bandwidths H^* and \hat{H} are well defined, and let us set for short

$$\mathbb{P}'(A) = \mathbb{P}(\Omega' \cap A).$$

We use the following notations: for $h > 0$ and $a > 0$, take

$$M(h) := \sum_{k=1}^{N} \frac{1}{a_2^k} 1_{|x_{k-1} - x| \leq h \varepsilon_k}, \quad Z(h, a) := \frac{\sqrt{a} |M(h)|}{a + L(h)}.$$ \hfill (22)

If $h = h_j \in \mathcal{H}$, we denote $h_- := h_{j+1}$ and $h_+ := h_{j-1}$ if $j \geq 1$. We will use repeatedly the following quantity: for $i_0 \in \mathbb{N}$ and $t > 0$, consider

$$\pi(i_0, t) := \mathbb{P} \left[\sup_{i \geq i_0} \psi^{-1/2}(h_i) \sup_{a \in I(h_i)} Z(h_i, a \psi(h_i)) > t \right],$$ \hfill (23)

where $I(h) := [u_0^{-2}, \delta_0^{-2}(h/h_0)^{-2\alpha_0}]$.

Note that this interval is related to the definition of \hat{W}; see (7). The proof of Theorem 1 contains three main steps. Namely,

1. the study of the risk of the ideal estimator $\hat{W}(H^*)^{-1} |\hat{f}(H^*) - f(x)|$,
2. the study of the risk $\hat{W}(H^*)^{-1} |\hat{f}(\hat{H}) - f(x)|$ when $\{H^* \leq \hat{H}\}$,
3. the study of the risk $\hat{W}(H^*)^{-1} |\hat{f}(\hat{H}) - f(x)|$ when $\{H^* > \hat{H}\}$.

These are the usual steps in the study of Lepski’s method; see [17–20]. However, the context (and consequently the proof) proposed here differs significantly from the “usual” proof.

6.3.2. On the event $\{H^* \leq \hat{H}\}$

Recall that $\nu > 0$ is the constant in front of Lepski’s threshold; see (4). Let us prove the following.

Lemma 4. For all $t > 0$, one has

$$\mathbb{P}' \left[\hat{W}(H^*)^{-1} |\hat{f}(H^*) - f(x)| > t \right] \leq \pi(0, (t - 1)/2),$$ \hfill (24)

and

$$\mathbb{P}' \left[H^* \leq \hat{H}, \hat{W}(H^*)^{-1} |\hat{f}(\hat{H}) - f(x)| > t \right] \leq \pi(0, (t - \nu - 1)/2).$$ \hfill (25)

Proof. First, use the decomposition

$$|\hat{f}(H^*) - f(x)| \leq |\widetilde{f}(H^*) - f(x)| + \frac{|M(H^*)|}{L(H^*)},$$

where we recall that $\tilde{f}(h)$ is given by (5), and the fact that $|\tilde{f}(H^*) - f(x)| \leq \hat{W}(H^*)$, since $W(H^*) \leq \hat{W}(H^*)$ on $\{W(H^*) \leq u_0\}$. Then, use (8) to obtain $L(H^*)^{1/2} \geq \psi(H^*)^{1/2} \hat{W}(H^*)^{-1}$, so that

$$\frac{|M(H^*)|}{L(H^*)} \leq \frac{2|M(H^*)|}{L(H^*) + \psi(H^*) \hat{W}(H^*)^{-2}} \leq 2\hat{W}(H^*)\psi^{-1/2}(H^*) Z \left(H^*, \hat{W}^{-2}(H^*) \psi(H^*) \right),$$

and
and
\[
\hat{W}^{-1}(H^*) \frac{|M(H^*)|}{L(H^*)} \leq 2\psi^{-1/2}(H^*) \sup_{a \in I(H^*)} Z \left(H^*, a\psi(H^*) \right) \\
\leq 2 \sup_{j \geq 0} \psi^{-1/2}(h_j) \sup_{a \in I(h_j)} Z \left(h_j, a\psi(h_j) \right),
\]
(26)
this concludes the proof of (24). On \(\{ H^* \leq \hat{H} \} \), one has using (4) and (8):
\[
|\hat{f}(\hat{H}) - \hat{f}(H^*)| \leq \nu(\psi(H^*))/L(H^*))^{1/2} \leq \nu \hat{W}(H^*).
\]
Hence, since \(W(H^*) \leq \hat{W}(H^*) \) on \(\{ W(H^*) \leq u_0 \} \), we have for all \(t > 0 \):
\[
P' \left[H^* \leq \hat{H}, \hat{W}(H^*)^{-1} \left| \hat{f}(\hat{H}) - f(x) \right| > t \right] \\
\leq P' \left[H^* \leq \hat{H}, \hat{W}(H^*)^{-1} \left| \hat{f}(H^*) - f(x) \right| > t - \nu \right],
\]
and (25) follows using (24).

6.3.3. On the event \(\{ H^* > \hat{H} \} \)

Lemma 5. For any \(t, \eta > 0 \), we have
\[
P' \left(H^* \leq \eta, \sup_{u_0 \leq h < H^*, h \in \mathcal{H}} \left| \frac{M(h)}{(L(h)\psi(h))^{1/2}} \right| > t \right) \leq \pi(i_0(\eta), t/2),
\]
where we put
\[
i_0(\eta) = \min \{ i \in \mathbb{N} : h_i < \eta \}.
\]

Proof. Note that \(u(h) := (\psi(h)/L(h))^{1/2} \) is decreasing, so \(h = H_u(h) \) for \(h \in \mathcal{H} \), and note that
\[
\frac{|M(h)|}{(L(h)\psi(h))^{1/2}} = u(h)^{-1} \frac{|M(H_u(h))|}{L(H_u(h))}.
\]
If \(h < H^* \) then \(u(h) = (\psi(h)/L(h))^{1/2} \geq \hat{W}(h) \) using (8), and \(\hat{W}(h) \geq \varepsilon_0(h/h_0)^{q_0} \). So, \(u(h) \geq \varepsilon_0(H_u(h)/h_0)^{q_0} \) when \(h < H^* \). If \(h \geq H_u_0 \), then \(u(h) \leq u_0 \) using the definition of \(H_u_0 \).
This entails
\[
\sup_{u_0 \leq h < H^*, h \in \mathcal{H}} \frac{|M(h)|}{(L(h)\psi(h))^{1/2}} \\
\leq \sup \left\{ u^{-1} \frac{|M(H_u)|}{L(H_u)} : u : H_u < H^* \text{ and } \delta_0(H_u/h_0)^{q_0} < u \leq u_0 \right\}.
\]
Hence, for any \(u \) such that \(\delta_0(H_u/h_0)^{q_0} < u \leq u_0 \) and \(H_u < H^* \leq \eta \), one has using (3):
\[
u^{-1} \frac{|M(H_u)|}{L(H_u)} \leq 2u^{-1} \frac{|M(H_u)|}{L(H_u) + u^{-2}\psi(H_u)} \\
= 2\psi(H_u)^{-1/2} Z \left(H_u, u^{-2}\psi(H_u) \right) \\
\leq 2 \sup_{i : h_i < \eta} \psi(h_i)^{-1/2} \sup_{\delta_0(h_i/h_0)^{q_0} \leq u \leq u_0} Z \left(h_i, u^{-2}\psi(h_j) \right). \quad \square
Lemma 6. For any $s, t > 0$ define

$$\eta_{s,t} := h_0 \left(\frac{u_0 s}{\delta_0 t} \right)^{1/\alpha_0}.$$

(27)

Then, for all $0 < s < t$, we have:

$$\mathbb{P}^t \left[H^* > \hat{H}, \tilde{W}(H^*)^{-1} \left| \hat{f}(\hat{H}) - f(x) \right| > t \right]$$

$$\leq \pi \left(0, \frac{s - 1}{2} \right) + \pi \left(\eta_{s,t}, \frac{1}{4} \left(\frac{2s}{t} \right) \right) + \pi \left(0, \frac{1}{2} \left(\frac{vt}{2s} - 1 \right) \right).$$

Proof. Let $0 < s < t$. One has

$$\mathbb{P}^t \left[H^* > \hat{H}, \tilde{W}(H^*)^{-1} \left| \hat{f}(\hat{H}) - f(x) \right| > t \right]$$

$$\leq \mathbb{P}^t \left[H^* > \hat{H}, (L(\hat{H})/\psi(\hat{H}))^{1/2} \left| \hat{f}(\hat{H}) - f(x) \right| > s \right]$$

$$+ \mathbb{P}^t \left[H^* > \hat{H}, (\psi(\hat{H})/L(\hat{H}))^{1/2} > (t/s)\tilde{W}(H^*) \right].$$

The first term is less than $\pi(0, (s - 1)/2)$, indeed, on $\{ W(H^*) \leq u_0, H^* > \hat{H} \}$ one has

$$(L(\hat{H})/\psi(\hat{H}))^{1/2} \left| \hat{f}(\hat{H}) - f(x) \right|$$

$$\leq (L(\hat{H})/\psi(\hat{H}))^{1/2} \left| \tilde{f}(\hat{H}) - f(x) \right| + (L(\hat{H})\psi(\hat{H}))^{-1/2} |M(\hat{H})|$$

$$\leq (L(\hat{H})/\psi(\hat{H}))^{1/2} \tilde{W}(\hat{H}) + (L(\hat{H})\psi(\hat{H}))^{-1/2} |M(\hat{H})|$$

$$\leq 1 + (L(\hat{H})\psi(\hat{H}))^{-1/2} |M(\hat{H})|,$$

and the desired upper-bound follows from Lemma 5. Let us bound the second term. Consider

$$\omega \in \left\{ W(H^*) \leq u_0, H^* > \hat{H}, (\psi(\hat{H})/L(\hat{H}))^{1/2} > (t/s)\tilde{W}(H^*) \right\}.$$

Due to the definition of \hat{H}, see (4), there exists $h' = h'_\omega \in [H_{u_0}, \hat{H}]$ such that

$$\left| \tilde{f}(h') - \tilde{f}(\hat{H}_+) \right| > v(\psi(h')/L(h'))^{1/2}.$$

But since $h' \leq \hat{H} < H^*$, one has

$$v \left(\frac{\psi(h')}{L(h')} \right)^{1/2} \leq \left| \tilde{f}(h') - \tilde{f}(\hat{H}_+) \right| + \frac{|M(h')|}{L(h')} + \frac{|M(\hat{H}_+)|}{L(\hat{H}_+)}$$

$$\leq 2\tilde{W}(H^*) + \frac{|M(h')|}{L(h')} + \frac{|M(\hat{H}_+)|}{L(\hat{H}_+)}$$

$$\leq \frac{2s}{t} \left(\frac{\psi(h')}{L(h')} \right)^{1/2} + \frac{|M(h')|}{L(h')} + \frac{|M(\hat{H}_+)|}{L(\hat{H}_+)}.$$
So, since $h' \leq \hat{H}$ entails (for such an ω) that $(\psi(h')/L(h'))^{1/2} \geq (\psi(\hat{H})/L(\hat{H}))^{1/2} > (t/s) \tilde{W}(H^*)$, we obtain

$$\frac{|M(h')|}{L(h')} + \frac{|M(\hat{H}_+)|}{L(\hat{H}_+)} > \left(\nu - \frac{2s}{t} \right) \left(\frac{\psi(h')}{L(h')} \right)^{1/2} \geq \left(\nu - \frac{2s}{t} \right) \max \left[\left(\frac{\psi(h')}{L(h')} \right)^{1/2}, \frac{t}{s} \tilde{W}(H^*) \right],$$

and therefore

$$\omega \in \left\{ \sup_{h_0 \leq h < H^*, h \in \mathcal{H}} \frac{|M(h)|}{L(h) \psi(h)}^{1/2} > \frac{1}{2} \left(\nu - \frac{2s}{t} \right) \right\} \cup \left\{ \frac{|M(H^*)|}{L(H^*)} \geq \frac{t}{2s} \left(\nu - \frac{2s}{t} \right) \tilde{W}(H^*) \right\}.$$

In addition, because of $\hat{H} \geq h_0$, one has

$$\delta_0(H^*/h_0)^{a_0} \leq \tilde{W}(H^*) < (s/t)(\psi(\hat{H})/L(\hat{H}))^{1/2} \leq (s/t)u_0,$$

so $H^* \leq \eta_{s,t}$, where $\eta_{s,t}$ is given by (27). We have shown that

$$\left\{ W(H^*) \leq u_0, H^* > \hat{H}, \left(\frac{\psi(\hat{H})}{L(h_0)} \right)^{1/2} > \frac{t}{s} \tilde{W}(H^*) \right\}$$

$$\subset \left\{ H^* \leq \eta_{s,t}, \sup_{h_0 \leq h < H^*, h \in \mathcal{H}} \frac{|M(h)|}{L(h) \psi(h)}^{1/2} > \frac{1}{2} \left(\nu - \frac{2s}{t} \right) \right\}$$

$$\cup \left\{ \frac{|M(H^*)|}{L(H^*)} \geq \left(\frac{vt}{2s} - 1 \right) \tilde{W}(H^*) \right\},$$

and we conclude using Lemma 5 and (26). \(\square\)

6.3.4. Finalization of the proof

In order to conclude the proof of Theorem 1, we need the following uniform version of Theorem 2: under the same assumptions as in Theorem 2, we have for any $0 < a_0 < a_1$:

$$\mathbb{E} \left[\sup_{a \in [a_0, a_1]} \exp \left(\frac{\lambda}{2} \frac{a M_N^2}{(a + V_N)^2} \right) \right] \leq (1 + c_\lambda)(1 + \log(a_1/a_0)). \quad (28)$$

Indeed, since

$$\frac{\partial}{\partial a} \frac{a M_N^2}{(a + V_N)^2} = \left| \frac{M_N^2}{(a + V_N)^3} (V_N - a) \right| \leq a^{-1} \frac{a M_N^2}{(a + V_N)^2} = Y^a/a,$$

we have

$$\sup_{a \in [a_0, a_1]} \exp(\lambda Y^a/2) \leq \exp(\lambda Y^{a_0}/2) + \int_{a_0}^{a_1} a^{-1} \exp(\lambda Y^a/2) \lambda Y^a/2 \, da$$

$$\leq \exp(\lambda Y^{a_0}) + \int_{a_0}^{a_1} a^{-1} \exp(\lambda Y^a) \, da,$$
so (28) follows taking the expectation and using Theorem 2. Now, using (28) with
\[s_k = \frac{1}{\sigma_{k-1}} 1_{|X_{k-1} - x| \leq h}, \quad \zeta_k = \varepsilon_k / \sigma_{k-1} \]
we obtain
\[\mathbb{E} \left[\exp \left(\left(\lambda / 2 \right) \sup_{a \in [a_0, a_1]} Z(h, a)^2 \right) \right] \leq C (1 + \log(a_1 / a_0)), \]
where we recall that \(Z(h, a) \) is given by (22). So, using Markov’s inequality, we arrive, for all \(h > 0, a_1 > a_0 > 0 \) and \(t \geq 0 \), at:
\[\mathbb{P} \left[\sup_{a \in [a_0, a_1]} Z(h, a) > t \right] \leq C (1 + \log(a_1 / a_0)) e^{-\lambda t^2 / 2}. \] \hfill (29)

A consequence of (29), together with a union bound, is that for all \(i_0 \in \mathbb{N} \) and \(t > 0 \):
\[\pi(i_0, t) \leq C e^{-\lambda t^2 / 2} \sum_{i \geq i_0} (h_i / h_0)^{b \lambda t^2 / 2} (1 + 2 \log(u_0 / \delta_0) + 2 a_0 \log(h_0 / h_i)), \] \hfill (30)

where we recall that \(\pi(i_0, t) \) is given by (23).

Now, it remains to use what the grid \(\mathcal{H} \) is. Recall that for some \(q \in (0, 1) \), we have \(h_i = h_0 q^i \) and we denote by \(C \) any positive number which depends only on \(\lambda, \mu, \gamma, q, b, u_0, \delta_0, a_0, v \).

Using together (25) and Lemma 6, one gets for \(0 < s < t \):
\[\mathbb{P}^{\prime} \left[\hat{W}(H^*)^{-1} | \hat{f} (\hat{H}) - f(x)| > t \right] \leq \pi \left(0, \left(1 - v - \frac{1}{2} t \right) \right) + \pi \left(0, \left(1 - v - \frac{1}{2} t \right) \right), \]
and using (30), we have for any \(u > 0, i_0 \in \mathbb{N}
\[\pi(i_0, u) \leq C e^{-\lambda u^2 / 2} (i_0 + 1) q^{ib \lambda u^2 / 2}. \]

Recalling that \(\eta_{s, t} \) is given by (27) and that \(i_0(\eta) = \min \{ i \in \mathbb{N} : h_i < \eta \} \), we have
\[\frac{\log(\delta_0 / u_0) + \log(t / s)}{\alpha_0 \log(1 / q)} < i_0(\eta_{s, t}) \leq \frac{\log(\delta_0 / u_0) + \log(t / s)}{\alpha_0 \log(1 / q)} + 1. \] \hfill (31)

Now, recall that \(0 < \rho < \frac{b \mu v^2}{64 \alpha_0 (1 + \gamma)} \) and consider \(s = \sqrt{(8 \rho \log t) / \lambda} + 1 \). When \(t \) is large enough, we have \(s < t \) and:
\[\pi \left(0, \left(1 - v - \frac{1}{2} t \right) \right) \leq C_1 t^{-\rho}, \quad \pi \left(0, \left(1 - v - \frac{1}{2} t \right) \right) \leq C_2 \exp(-C_2 t^2), \]
\[\pi \left(0, \left(1 - v - \frac{1}{2} t \right) \right) \leq C_3 \exp \left(-C_3 (t / \log t)^2 \right), \]
for constants \(C_i, C'_i \) that depends on \(\lambda, b, v, \delta_0, u_0, a_0, q \). For the last probability, we have:
\[\pi \left(i_0(\eta_{s, t}), \frac{1}{4} \left(v - \frac{2s}{t} \right) \right) \leq C \exp \left(-\lambda (v - \frac{2s}{t})^2 / 32 \right) (i_0(\eta_{s, t}) + 1) \]
\[\times \exp \left(-\frac{i_0(\eta_{s, t}) b \lambda (v - \frac{2s}{t})^2 \log(1 / q)}{32} \right). \]
and by taking $\lambda \in \left(0, \frac{\mu}{2(1+\gamma)}\right)$ and t large enough, one has

$$\frac{b\lambda(v - 2\varepsilon/t)^2}{32\alpha_0} > \rho,$$

so we obtain together with (31):

$$\pi \left(i_0(\eta_{x,t}), \frac{1}{4} \left(v - \frac{2\varepsilon}{t}\right)\right) \leq \frac{C (\log(t+1))^{1+\rho/2}}{t^\rho},$$

when t is large enough. This concludes the proof of Theorem 1. \hfill \qed

6.4. Proof of Proposition 1

Let us denote for short $I_h = [x - h, x + h]$. Recall that h_w is well-defined when $n \geq \sigma^2/(P_X[I_h_0]r^2h_0^2)$, and that H_w is well defined on the event

$$\Omega_0 = \{L(h_0) \geq (rh_0^2)^{-2}\}.$$

So, from now on, we suppose that n is large enough, and we work on Ω_0. We need the following Lemma, which says that, when $L(h_w)$ and $E(L(h_w))$ are close, then H_w and h_w are close.

Lemma 7. If Assumption 4 holds, we have for any $0 < \varepsilon < 1$ that on Ω_0:

$$\begin{align*}
\{L(h_w) \geq \frac{E(L(h_w))}{(1 + \varepsilon)^\delta}\} &\subset \{H_w \leq (1 + \varepsilon)h_w\} \quad \text{and} \\
\{L(h_w) \leq \frac{E(L(h_w))}{(1 - \varepsilon)^\delta}\} &\subset \{H_w > (1 - \varepsilon)h_w\},
\end{align*}$$

when n is large enough.

The proof of Lemma 7 is given in Section 7 below. We use also the next Lemma from [1] (see Claim 2, p. 858). It is a corollary of Berbee’s coupling lemma [2], that uses a construction from the proof of Proposition 5.1 in [24], see p. 484.

Lemma 8. Grant Assumption 6. Let q, q_1 be integers such that $0 \leq q_1 \leq q/2$, $q_1 \geq 1$. Then, there exist random variables $(X_i^*)_{i=1}^n$ satisfying the following.

- For $j = 1, \ldots, J := [n/q]$, the random vectors

 $$U_{j,1} := (X_{(j-1)q+1}, \ldots, X_{(j-1)q+q_1}) \quad \text{and} \quad U_{j,1}^* := (X_{(j-1)q+1}^*, \ldots, X_{(j-1)q+q_1}^*)$$

 have the same distribution, and so have the random vectors

 $$U_{j,2} := (X_{(j-1)q+q_1+1}, \ldots, X_{jq}) \quad \text{and} \quad U_{j,2}^* := (X_{(j-1)q+q_1+1}^*, \ldots, X_{jq}^*).$$

- For $j = 1, \ldots, J$,

 $$\mathbb{P}[U_{j,1} \neq U_{j,1}^*] \leq \beta_{q - q_1} \quad \text{and} \quad \mathbb{P}[U_{j,2} \neq U_{j,2}^*] \leq \beta_{q_1}.$$

- For each $k = 1, 2$, the random vectors $U_{1,k}^*, \ldots, U_{J,k}^*$ are independent.
In what follows, we take simply \(q_1 = [q/2] + 1 \), where \([x]\) stands for the integral part of \(x \), and introduce the event \(\Omega^* = \{ X_i = X_i^*, \forall i = 1, \ldots, n \} \). Assume to simplify that \(n = Jq \).

Lemma 8 gives

\[
\mathbb{P}[(\Omega^*)^c] \leq J (\beta_{q-q_1} + \beta_{q-q_1}) \leq 2J \beta_{[q/2]} \leq \frac{2n\beta_{[q/2]}}{q}.
\]

(32)

Then, denote for short \(L^*(h) = \sum_{i=1}^n 1_{|X_i^*-X_i| \leq h} \), and note that, using Lemma 7, we have, for \(z := 1 - 1/(1 + \varepsilon)^s \):

\[
\left\{ H_w > (1 + \varepsilon)^s h_w \right\} \cap \Omega^* \cap \Omega_0 \subset \left\{ L^*(h_w) - \mathbb{E}L(h_w) \geq z\mathbb{E}L(h_w) \right\} = \left\{ \frac{1}{n} \sum_{i=1}^n (1_{|X_i^*-X_i| \leq h_w} - P_X[I_{h_w}]) \geq zP_X[I_{h_w}] \right\}.
\]

Use the following decomposition of the sum:

\[
\frac{1}{n} \sum_{i=1}^n (1_{|X_i^*-X_i| \leq h_w} - P_X[I_{h_w}]) \leq \frac{1}{J} \sum_{j=1}^J (Z_{j,1} + Z_{j,2}),
\]

where for \(k \in \{1, 2\} \), we put

\[
Z_{j,k} := \frac{1}{q} \sum_{i \in I_{j,k}} (1_{|X_i^*-X_i| \leq h_w} - P_X[I_{h_w}]),
\]

where \(I_{j,1} := \{(j - 1)q + 1, \ldots, (j - 1)q + q_1\} \) and \(I_{j,2} := \{(j - 1)q + q_1 + 1, \ldots, jq\} \). For \(k \in \{1, 2\} \), we have used Lemma 8 that the variables \(Z_{j,k} \) are independent, centred, such that \(\|Z_{j,k}\|_\infty \leq 1/2 \) and \(\mathbb{E}[Z_{j,k}^2] \leq P_X[I_{h_w}]/4 \). So, Bernstein’s inequality gives

\[
\mathbb{P} \left[\left\{ H_w > (1 - z)^{1/s} h_w \right\} \cap \Omega^* \cap \Omega_0 \right] \leq 2 \exp \left(-\frac{z^2}{2(1 + z/3)} \frac{nP_X[I_{h_w}]}{q} \right),
\]

and doing the same on the other side gives for any \(z \in (0, 1) \):

\[
\mathbb{P} \left[\left\{ \frac{1}{(1 + z)^{1/s}} h_w \leq H_w \leq \frac{1}{(1 - z)^{1/s}} h_w \right\}^c \cap \Omega^* \right] \leq 4 \exp \left(-\frac{z^2}{2(1 + z/3)} \frac{nP_X[I_{h_w}]}{q} \right).
\]

So, when \(n \) is large enough, we have

\[
\mathbb{P}[h_w/2 \leq H_w \leq 2h_w] \geq 1 - 4 \exp \left(-\frac{CnP_X[I_{h_w}]}{q} \right) - \frac{2n\beta_{[q/2]}}{q}.
\]

(33)

Now, Lemma 1 and Assumption 5 gives that

\[
nP_X[I_{h_w}] = n^{2s/(2s+r+1)} \ell(1/n),
\]

where \(\ell \) is a slowly varying function that depends on \(\ell_X, r, s, \tau \) and \(\sigma \). When the \(\beta \)-mixing is geometric, we have \(\psi^{-1}(p) = \exp((p/\eta)^{1/\kappa}) \), so the choice \(q = n^{2s\kappa}/((2s+r+1)(\kappa+1)) \) implies

\[
\mathbb{P}[(h_w/2 \leq H_w \leq 2h_w) \cap \Omega_0] \geq 1 - \exp(-C_1n^{2s} \ell(1/n)).
\]
When the mixing is arithmetic, we have \(\psi^{-1}(p) = (p/\eta)^{1/\kappa} \), so the choice \(q = n^{2s/(2s+\tau+1)}\ell(1/n)/(\log n)^2 \) implies

\[
\mathbb{P} \left[\left| h_w/2 \leq H_w \leq 2h_w \right| \cap \Omega_0 \right] \geq 1 - C_2 n^{-\delta_2} \ell_2(1/n).
\]

So, it only remains to control the probability of \(\Omega_0 \). Using the same coupling argument as before together with Bernstein’s inequality, we have when \(n \) is large enough:

\[
\mathbb{P}[L(h_0) < w(h_0)-2] = \mathbb{P}[L(h_0) - \mathbb{E}L(h_0) < w(h_0)-2 - \mathbb{E}L(h_0)]
\leq \mathbb{P} \left(L(h_0) - \mathbb{E}L(h_0) < -\frac{n P_X[I_{h_0}]}{2} \right)
\leq \exp \left(-C_2 \frac{n P_X[I_{h_0}]}{q} \right) + 2n^\beta_{[q/2]}/q.
\]

So, when the \(\beta \)-mixing is geometric, the choice \(q = n^{k/(k+1)} \) implies that \(\mathbb{P}[\Omega_0^c] \leq \exp \left(-C_1 n^{1/(k+1)} \right) = o(\varphi_n) \). When the mixing is arithmetic, we have \(\psi^{-1}(p) = (p/\eta)^{1/\kappa} \), so the choice \(q = n/(\log n)^2 \) gives \(\mathbb{P}[\Omega_0^c] \leq C_2 (\log n)^2 n^{-1/\kappa} = o(\varphi_n) \). This concludes the proof of Proposition 1. \(\Box \)

6.5. Proof of Corollary 1

Note that \(w(h) = rh^s \) satisfies \(w(h) \geq rh_0^s h/h_0 \) and \(w(h) \leq rh_0^s \) for any \(h \in [0, h_0] \). So, under Assumption 4, we can replace \(\hat{W} \) by \(w \) in the statement of Theorem 1. For any fixed \(\rho \in (p, \frac{bh^s}{64(1+y)}) \) (note that \(\alpha_0 = 1 \) in this case, compared with (7)), we have

\[
\mathbb{P} \left[\left| \hat{f}(\hat{H}) - f(x) \right| \geq tw(H^*) \right] \cap \Omega_0 \leq C_0 \frac{\left(\log(t + 1) \right)^{\rho/2 + 1}}{t^\rho}
\]

for any \(t \geq t_0 \), where we recall that \(\Omega_0 = \{ L(h_0)^{-1/2} \leq w(h_0) \} \), and where

\[
H^* := \min \left\{ h \in \mathcal{H} : \left(\frac{\psi(h)}{L(h)} \right)^{1/2} \leq w(h) \right\}.
\]

Recall the definition (17) of \(H_w \), and note that by construction of \(\mathcal{H} \), one has that \(H_w \leq H^* \leq q^{-1} H_w \). So, on the event \(\{ H_w \leq 2h_w \} \), one has \(w(H^*) \leq w(2q^{-1} h_w) \leq (2/q)^s rh_0^s \). So, putting for short \(A := \{ H_w \leq 2h_w \} \cap \Omega_0 \), we have

\[
\mathbb{P} \left[\left| \hat{f}(\hat{H}) - f(x) \right| \geq c_1 tw(h_w) \right] \cap A \leq C_0 \frac{\left(\log(t + 1) \right)^{\rho/2 + 1}}{t^\rho}
\]

for any \(t \geq t_0 \), where \(c_1 = (2/q)^s \). Since \(\rho > p \), we obtain, by integrating with respect to \(t \), that

\[
\mathbb{E} \left[\left| w(h_w)^{-1}(\hat{f}(\hat{H}) - f(x)) \right|^p 1_A \right] \leq C_1,
\]

where \(C_1 \) is a constant depending on \(C_0, t_0, q, \rho, s, p \). Now, it only remains to observe that using Proposition 1, \(\mathbb{P}(A^c) \leq 2\varphi_n \), and that \(\varphi_n = o(w(h_w)) \) in the geometrically \(\beta \)-mixing case, and in the arithmetically \(\beta \)-mixing when \(\kappa < 2s/(s + \tau + 1) \). \(\Box \)
7. Proof of the Lemmas

7.1. Proof of Lemma 7

Recall that \(w(h) = rh^s \) and note that for \(n \) large enough, we have \(\psi((1 + \varepsilon)h_w) \leq (1 + \varepsilon)^s \psi(h_w) \) since \(\psi \) is slowly varying. So, the definition of \(h_w \) gives

\[
\frac{\psi((1 + \varepsilon)h_w)}{w((1 + \varepsilon)h_w)^2} \leq \frac{1}{(1 + \varepsilon)^s} \frac{\psi(h_w)}{w(h_w)^2} = \frac{1}{(1 + \varepsilon)^s} \mathbb{E} L(h_w).
\]

On the other hand, by definition of \(H_w \), we have

\[
\{ H_w \leq (1 + \varepsilon)h_w \} = \left\{ L((1 + \varepsilon)h_w) \geq \frac{\psi((1 + \varepsilon)h_w)}{w((1 + \varepsilon)h_w)^2} \right\},
\]

and \(L((1 + \varepsilon)h_w) \geq L(h_w) \), so we proved that the embedding

\[
\left\{ \frac{L(h_w)}{\mathbb{E} L(h_w)} \geq \frac{1}{(1 + \varepsilon)^s} \right\} \subseteq \{ H_w \leq (1 + \varepsilon)h_w \}
\]

holds when \(n \) is large enough. The same argument allows to prove that

\[
\left\{ \frac{L(h_w)}{\mathbb{E} L(h_w)} \leq \frac{1}{(1 - \varepsilon)^s} \right\} \subseteq \{ H_w > (1 - \varepsilon)h_w \},
\]

which concludes the proof of the Lemma. \(\square \)

7.2. Proof of Lemma 2

Take \(m \in [0, \mu) \) and \(\rho \in \mathbb{R} \). Note that \(e^y \leq 1 + ye^y \) for any \(y \geq 0 \) and \(e^y \leq 1 + y + y^2 e^{|y|} \) for any \(y \in \mathbb{R} \), so

\[
e^{m\xi^2 + \rho\xi} \leq e^{\rho\xi} + m\xi^2 e^{m\xi^2 + \rho\xi} \leq 1 + \rho \xi + (\rho^2 + m)\xi^2 e^{m\xi^2 + |\rho\xi|},
\]

and

\[
\mathbb{E}[e^{m\xi^2 + \rho\xi}] \leq 1 + (\rho^2 + m)\mathbb{E}[\xi^2 e^{m\xi^2 + |\rho\xi|}],
\]

since \(\mathbb{E}\xi = 0 \). Take \(m_1 \in (m, \mu) \). Since \(|\rho\xi| \leq \varepsilon \rho^2 / 2 + \xi^2 / (2\varepsilon) \) for any \(\varepsilon > 0 \), we obtain for \(\varepsilon = [2(m_1 - m)]^{-1} \):

\[
e^{m\xi^2 + |\rho\xi|} \leq \exp\left(\frac{\rho^2}{4(m_1 - m)}\right) e^{m_1\xi^2}.
\]

Together with

\[
\xi^2 \leq \frac{1}{\mu - m_1} e^{(\mu - m_1)\xi^2}
\]

and the definition of \(\mu \), this entails

\[
\mathbb{E}[\xi^2 e^{m\xi^2 + |\rho\xi|}] \leq \frac{\gamma}{\mu - m_1} \exp\left(\frac{\rho^2}{4(m_1 - m)}\right).
\]
Thus,
\[
\mathbb{E}[e^{mz^2+|\rho z|}] \leq 1 + \frac{\gamma(\rho^2 + m)}{\mu - m_1} \exp\left(\frac{\rho^2}{4(m_1 - m)}\right)
\]
\[
\leq 1 + \frac{\gamma(\rho^2 + m)}{\mu - m_1} \exp\left(\frac{\rho^2 + m}{4(m_1 - m)}\right).
\]
For the choice \(m_1 = \mu/(1 + 2\gamma) + 2\gamma m/(1 + 2\gamma)\) one has \(\gamma/\mu = 1/[2(m_1 - m)]\), so the Lemma follows using that \(1 + ye^{y^2/2} \leq e^y\) for all \(y \geq 0\). This concludes the proof of the Lemma. □

7.3. Proof of Lemma 3

Let \(\eta \in (0, 1]\) and \(z \in \mathbb{R}_+\) be such that \(e^{A\eta} \cosh((1 - \eta)z) - \cosh(z) \geq 0\). Let us show that one has
\[
z \leq 2 \log 2 + 2A.
\]
(35)

Since \(\cosh(z)/\cosh((1 - \eta)z) \geq e^{\eta z}/2\) one has \(z \leq \eta^{-1} \log 2 + A\). Thus (35) holds if \(\eta \geq 1/2\). If \(\eta < 1/2\) and \(z \geq \log(3)\), it is easy to check that the derivative of \(x \mapsto \cosh((1 - x)z)e^{\eta x/2}\) is non-positive; hence \(\cosh((1 - \eta)z)\) in this case. Thus, we have either \(z \leq \log(3)\) or \(z \leq 2A\) which yields (35) in every case. Finally, from (35), we easily derive
\[
e^{A\eta} \cosh((1 - \eta)z) - \cosh(z) = \cosh((1 - \eta)z)\left(e^{A\eta} - \frac{\cosh(z)}{\cosh((1 - \eta)z)}\right)
\]
\[
\leq \cosh(z)(e^{A\eta} - 1)
\]
\[
\leq \cosh (2 \log(2) + 2A) A\eta e^{A\eta}.
\]
This concludes the proof of the Lemma.

References

