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Abstract. We analyze a timed Petri net model of an emergency call center
which processes calls with different levels of priority. The counter variables of

the Petri net represent the cumulated number of events as a function of time.

We show that these variables are determined by a piecewise linear dynamical
system. We also prove that computing the stationary regimes of the associ-

ated fluid dynamics reduces to solving a polynomial system over a tropical

(min-plus) semifield of germs. This leads to explicit formulæ expressing the
throughput of the fluid system as a piecewise linear function of the resources,

revealing the existence of different congestion phases. Numerical experiments

show that the analysis of the fluid dynamics yields a good approximation of
the real throughput.

1. Introduction

Motivations. Emergency call centers must handle complex and diverse help re-
quests, involving different instruction procedures leading to the engagement of
emergency means. An important issue is the performance evaluation of these cen-
ters. One needs in particular to estimate the dependence of quantities like through-
puts or waiting times with respect to the allocation of resources, like the operators
answering calls.

The present work originates from a case study relative to the current project led
by Préfecture de Police de Paris (PP), involving the Brigade de sapeurs-pompiers
de Paris (BSPP), of a new organization to handle emergency calls to Police (number
17), Firemen (number 18), and untyped emergency calls (number 112), in the Paris
area. In addition to the studies and experimentation already carried out by PP
and BSPP experts, we aim at developing formal methods, based on mathematical
models. One would like to derive analytical formulæ or performance bounds allow-
ing one to confirm the results of simulation, to identify exceptional situations not
easily accessible to simulations, and to obtain a general understanding of poten-
tial bottlenecks. In such applications, complex concurrency phenomena (available
operators must share their time between different types of requests) are arbitrated
by priority rules. The systems under study are beyond the known exactly solvable
classes of Markov models, and it is desirable to develop new analytical results.
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Contributions. We present an algebraic approach which allows to analyze the
performance of systems involving priorities and modeled by timed Petri nets. Our
results apply to the class of Petri nets in which the places can be partitioned in
two categories: the routing in certain places is subject to priority rules, whereas
the routing at the other places is free choice.

Counter variables determine the number of firings of the different transitions as a
function of time. Our first result shows that, for the earliest firing rule, the counter
variables are the solutions of a piecewise linear dynamical system (Section 3). Then,
we introduce a fluid approximation in which the counter variables are real valued,
instead of integer valued. Our main result shows that in the fluid model, the
stationary regimes are precisely the solutions of a set of lexicographic piecewise
linear equations, which constitutes a polynomial system over a tropical (min-plus)
semifield of germs (Section 4). The latter is a modification of the ordinary tropical
semifield. In essence, our main result shows that computing stationary regimes
reduces to solving tropical polynomial systems.

Solving tropical polynomial systems is one of the most basic problems of trop-
ical geometry. The latter provides insights on the nature of solutions, as well as
algorithmic tools. In particular, the tropical approach allows one to determine the
different congestion phases of the system.

We apply this approach to the case study of PP and BSPP. We introduce a sim-
plified model of emergency call center (Section 2). This allows us to concentrate on
the analysis of an essential feature of the organization: the two level emergency pro-
cedure. Operators at level 1 initially receive the calls, qualify their urgency, handle
the non urgent ones, and transfer the urgent cases to specialized level 2 operators
who complete the instruction. We solve the associated system of tropical polyno-
mial equations and arrive at an explicit computation of the different congestion
phases, depending on the ratio N2/N1 of the numbers of operators of level 2 and
1 (Section 5). Our analytical results are obtained only for the approximate fluid
model. However, they are confirmed by simulations in which the original semantics
of the Petri nets (with integer firings) is respected (Section 6).

Related work. Our approach finds its origin in the maxplus modeling of timed
discrete event systems, introduced by Cohen, Quadrat and Viot and further devel-
oped by Baccelli and Olsder, see [BCOQ92, HOvdW06] for background. The idea
of using counter variables already appeared in their work. However, the classical
results only apply to restricted classes of Petri nets, like event graphs, or event
graphs with weights as, for instance, in recent work by Cottenceau, Hardouin and
Boimond [CHB14]. The modeling of more general Petri nets by a combination of
min-plus linear constraints and classical linear constraints was proposed by Cohen,
Gaubert and Quadrat [CGQ95, CGQ98] and Libeaut and Loiseau (see [Lib96]).
The question of analyzing the behavior of the dynamical systems arising in this
way was stated in a compendium of open problems in control theory [Plu99]. A
key discrepancy with the previously developed min-plus algebraic models lies in the
semantics of the Petri nets. The model of [CGQ95, CGQ98] requires the routing to
be based on open loop preselection policies of tokens at places, and it does not allow
for priority rules. This is remedied in the present work: we show that priority rules
can be written in a piecewise linear way, leading to a rational tropical dynamics.

Our approach is inspired by a work of Farhi, Goursat and Quadrat [FGQ11],
who developed a min-plus model for a road traffic network. The idea of modeling
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priorities by rational min-plus dynamics first appeared there. By comparison, one
aspect of novelty of the present approach consists in showing that this idea applies
to a large class of Petri nets, mixing free choice and priority routing, so that its
scope is not limited to a special class of road traffic models. Moreover, we provide
a complete proof that these Petri nets follow the rational tropical dynamics, based
on a precise analysis of the counter variables along an execution trace. Finally, the
approach of [FGQ11] was developed in the discrete time case. A novelty of the
present work consists in the treatment of the continuous time. This requires the
introduction of a symbolic perturbation technique, working with semifield of germs.
This technique was used in [GG98] for algorithmic purposes. It has been recently
applied by Allamigeon, Fahrenberg, Gaubert, Katz, and Legay to the analysis of
timed systems [AFG+14].

The present piecewise affine dynamical systems bear some general resemblance
with min-plus models of cellular automata, and in particular with the ultradiscrete
Toda equation studied by Inoue and Iwao [II12]. We believe these aspects are worth
being further studied.

The analysis of timed Petri nets is a major question, which has been exten-
sively studied. We refer to [BD91, AN01, GRR04, JJMS11] for a non-exhaustive
account on the topic, and to [BV06, LRST09, BJS09] for examples of tools im-
plementing these techniques. An important effort has been devoted to the com-
parison of timed Petri nets with timed automata in terms of expressivity, see for
instance [BCH+05, Srb08]. The approaches developed in the aforementioned works
aim at checking whether a given specification is satisfied (for instance, reachability,
or more generally, a property expressed in a certain temporal logic), or at deter-
mining whether two Petri nets are equivalent in the sense of bisimulation. Hence,
the emphasis is on issues different from the present ones: we focus on the perfor-
mance analysis of timed Petri nets, by determining the asymptotic throughputs of
transitions.

Acknowledgments. We thank Régis Reboul, from PP, in charge of the emergency
call centers project, and Commandant Stéphane Raclot, from BSPP, for the infor-
mation and insights they provided throughout the present work. We are grateful
to the anonymous reviewers for their comments which helped to improve the pre-
sentation of this paper.

2. A simplified Petri net model of an emergency call center

In this section, we describe a call center answering to emergency calls according
to a two level instruction procedure. In the new organization planned by PP to-
gether with BSPP [RR15], the emergency calls to the police (number 17), to the
firemen (18), and untyped emergency calls (European number 112) will be dealt
with according to a unified procedure, allowing a strong coordination. Another im-
portant feature of this organization is that it involves a two level treatment. In the
present paper, we limit our attention to the analysis of the two level procedure. We
defer to a further work the analysis of the unification of the treatment of calls with
heterogeneous characteristics. Hence, we discuss a simplified model, for academic
purposes.

The first level operators filter the calls and assign them to three categories:
extremely urgent (potentially life threatening situation), urgent (needing further
instruction), and non urgent (e.g., call for advice). Non-urgent calls are dealt with
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Figure 1. Simplified Petri net model of the Parisian 17-18-112
emergency call center (organization in project). Blue arrows do
not belong to the Petri net and symbolize the entrance and exit of
calls in the system.

entirely by level 1 operators. Extremely urgent and urgent calls are passed to
level 2 operators. An advantage of this procedure lies in robustness considerations.
In case of events generating bulk calls, the access to level 2 experts is protected
by the filtering of level 1. This allows for better guarantees of service for the
extremely urgent calls. Every call qualified as extremely urgent generates a 3-
way conversation: the level 1 operator stays in line with the calling person when
the call is passed to the level 2 operator. Such 3-way conversations allow one to
avoid any loss of information, and were shown to contribute to the quality of the
procedure [RR15]. Proper dimensioning of resources is needed to make sure that
the synchronizations between level 1 and level 2 operators created by these 3-way
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conversations do not create bottlenecks. We focus on the case where the system is
saturated, that is, there is an infinite queue of calls that have to be handled. We
want to evaluate the performance of the system, i.e. the throughput of treatment
of calls by the operators.

The call center is modeled by the timed Petri net of Figure 1. We describe here
the net in informal terms, referring the reader to Section 3 for more information
on Petri nets and the semantics that we adopt. We use the convention that all
transitions can be fired instantaneously. Holding times are attached to places.

Let us give the interpretation in terms of places and transitions. The number
of operators of level 1 and 2 is equal to N1 and N2, respectively. The marking in
places p1 and p2, respectively, represents the number of idle operators of level 1 or
2 at a given time. In particular, the number of tokens initially available in places
p1 and p2 is N1 and N2. The initial marking of other places is zero. A firing of
transition q1 represents the beginning of a treatment of an incoming emergency call
by a level 1 operator. The arc from place p1 to transition q1 indicates that every
call requires one level 1 operator. The routing from transition q1 to transitions
q2, q3, q4 represents the qualification of a call as extremely urgent, urgent, or non
urgent (advice). The proportions of these calls are denoted by πext, πur, and πadv,
respectively, so that πext+πur+πadv = 1. The proportions are known from historical
data. The instruction of the call at level 1 is assumed to take a deterministic time
τext, τur, or τadv, respectively, depending on the type of call.

After the treatment of a non urgent or urgent call at level 1, the level 1 operator
is made immediately available to handle a new call. This is represented by the arcs
leading to place p1 from the transitions located below the places with holding times
τur and τadv. Before an idle operator of level 2 is assigned to the treatment of an
urgent call, which is represented by the firing of transition q6, the call is stocked in
the place located above q6. In contrast, the sequel of the processing of an extremely
urgent call (transition q5) requires the availability of a level 2 operator (incoming
arc p2 → q5) in order to initiate a 3-way conversation. The level 1 operator is
released only after a time τtr corresponding to the duration of this conversation.
This is represented by the arc q7 → p1. The double arrow depicted on the arc
p2 → q5 means that level 2 operators are assigned to the treatment of extremely
urgent calls (if any) in priority. The holding times τ ′ext and τ ′ur represent the time
needed by a level 2 operator to complete the instruction of extremely urgent and
urgent calls respectively.

3. Piecewise linear dynamics of timed Petri nets with free choice
and priority routing

3.1. Timed Petri nets: notation and semantics. A timed Petri net consists of
a set P of places and a set Q of transitions, in which each place p ∈ P is equipped
with a holding time τp ∈ R>0 as well as an initial marking Mp ∈ N. Given a
place p ∈ P, we respectively denote by pin and pout the sets of input and output
transitions. Similarly, for all q ∈ Q, the sets of upstream and downstream places
are denoted by qin and qout respectively.

The semantics of the timed Petri net which we use in this paper is based on
the fact that every token entering a place p ∈ P must stay at least τp time units
in place p before becoming available for a firing of a downstream transition. More
formally, a state of the semantics of the Petri net specifies, for each place p ∈ P,
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the set of tokens located at place p, together with the age of these tokens since they
have entered place p. In a given state σ, the Petri net can evolve into a new state
σ′ in two different ways:

(i) either a transition q ∈ Q is fired, which we denote σ
q−→ σ′. This occurs

when every upstream place p contains a token whose age is greater than or equal
to τp. The transition is supposed to be instantaneous. A token enters in each
downstream place, and its age is set to 0;

(ii) or all the tokens remain at their original places, and their ages are incre-

mented by the same amount of time d ∈ R>0. This is denoted σ
d−→ σ′.

In the initial state σ0, all the tokens of the initial marking are supposed to have
an “infinite” age, so that they are available for firings of downstream transitions
from the beginning of the execution of the Petri net. The set of relations of the

form
q−→ and

d−→ constitutes a timed transition system which, together with the
initial state σ0, fully describe the semantics of the Petri net. Note that in this
semantics, transitions can be fired simultaneously. In particular, a given transition
can be fired several times at the same moment. Recall that every holding time τp
is positive, so that we cannot have any Zeno behavior.

In this setting, we can write any execution trace of the Petri net as a sequence
of transitions of the form:

(1) σ0 d0−→ q01−→ q02−→ . . .
q0
n0−→ σ1 d1−→ q11−→ q12−→ . . .

q1
n1−→ σ2 d2−→ . . .

where d0 > 0 and d1, d2, · · · > 0. In other words, we consider traces in which
we remove all the time-elapsing transitions of duration 0, except the first one,
and in which time-elapsing transitions are separated by groups of firing transitions
occurring simultaneously. We say that a transition q is fired at the instant t if there

is a transition
q−→ in the trace such that the sum of the durations of the transitions

of the form
d−→ which occur before in the trace is equal to t. The state of the Petri

net at the instant t refers to the state of the Petri net appearing in the trace (1)
after all transitions have been fired at the instant t.

In the rest of the paper, we stick to a stronger variant of the semantics, referred
to as earliest behavior semantics, in which every transition q is fired at the earliest
moment possible. More formally, this means that in any state σ arising during the
execution, a place p is allowed to contain a token of age (strictly) greater than τp

only if no downstream transition can be fired (i.e. no transition
q−→ with q ∈ pout can

be applied to σ). The motivation to study the earliest behavior semantics originates
from our interest for emergency call centers, in which all calls are supposed to be
handled as soon as possible.

3.2. Timed Petri nets with free choice and priority routing. In this paper,
we consider timed Petri nets in which places are free choice, or subject to priorities.
This class of nets includes our model of emergency call center. Recall that a place
p ∈ P is said to be free choice if either |pout| = 1, or all the downstream transitions
q ∈ pout satisfy qin = {p}. The main property of such a place is the following: if
one of the downstream transitions is activated (i.e. it can be potentially fired), then
the other downstream transitions are also activated. A place is subject to priority
if the available tokens in this place are routed to downstream transitions according
to a certain priority rule. We denote by Ppriority the set of such places. We assume
that no transition has more than one upstream place subject to priority, that is, for
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(a) (b)

p

pout+ pout−

(c)

Figure 2. Conflict, synchronization and priority configurations.

any transition q, the set qin ∩Ppriority has at most one element. This allows to avoid
inconsistency between priority rules (e.g. two priority places acting on the same
transitions in a contradictory way). For the sake of simplicity, we also assume in
the following that every p ∈ Ppriority has precisely two downstream transitions, which
we respectively denote by pout

+ and pout
− . Then, if both transitions are activated,

the tokens available in place p are assigned to pout
+ as a priority. Equivalently,

in the execution trace of the Petri net, we have σ →pout− σ′ only if the transition

→pout
+ cannot be applied to the state σ. We remark that it is possible to handle

multiple priority levels, up to making the presentation of the subsequent results
more complicated.

To summarize, there are three possible place/transition patterns which can occur
in the timed Petri nets that we consider, see Figure 2. The first two ones involve
only free choice places, and are referred to as conflict and synchronization patterns
respectively. We denote by Pconflict the set of free choice places that have at least
two output transitions, and by Qsync the set of transitions such that every upstream
place p satisfies |pout| = 1. By definition, we have Pconflict∩ (Qsync)

in = ∅. The third
configuration in Figure 2 depicts a place p subject to priority. In order to distinguish
pout

+ and pout
− , we depict the arc leading to the transition pout

+ by a double arrow.
By assumption, the places r 6= p located upstream pout

+ and pout
− are non-priority,

so that they are free-choice and have only one output transition, as depicted in
Figure 2(c).

3.3. Piecewise linear representation by counter variables. Since we are in-
terested in estimating the throughput of transitions in a Petri net, we associate
with any transition q ∈ Q a counter variable zq from R to N such that zq(t) rep-
resents the number of firings of transition q that occurred up to time t included.
Similarly, given a place p ∈ P, we denote xp(t) the number of tokens that have
entered place p up to time t included. Note that the tokens initially present in
place p are counted. More formally, xp(t) is given by the sum of the initial marking
Mp and of the numbers of firings of transitions q ∈ pin which occurred before the
instant t (included). We extend the counter variables xp and zq to R<0 by setting:

(2) xp(t) = Mp , zq(t) = 0 , for all t < 0 .

By construction, the functions xp and zq are non-decreasing. Besides, since they
count tokens up to time t included, they are càdlàg functions, which means that
they are right continuous and have left limits at any point. Given a càdlàg function
f , we denote by f(t−) the left limit at the point t.
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The goal of this section is to describe the dynamics of timed Petri nets with free
choice and priority routing by means of a set of piecewise linear equality constraints
over the counter variables. We provide an informal presentation of these constraints.
First observe that we necessarily have:

(3) ∀p ∈ P , xp(t) = Mp +
∑
q∈pin

zq(t) ,

as the initial marking Mp is counted in xp(t), and any token entering place p before
the instant t must have been fired from an upstream transition q ∈ pin before. In
a similar way, if p ∈ Pconflict, the total number of times the downstream transitions
have been fired before the instant t is necessarily equal to the number of tokens
which entered place p before time t− τp (included). This is due to the fact that if
a token enters p at the instant s, then it is consumed exactly at the instant s+ τp
(by definition of the earliest behavior semantics). This yields the identity:

(4) ∀p ∈ Pconflict ,
∑
q∈pout

zq(t) = xp(t− τp) .

Now consider a transition q ∈ Qsync. The number of times this transition is fired
at the instant t is given by zq(t) − zq(t−). In each upstream place p ∈ qin, the
number of tokens which are available for firing q is equal to xp(t − τp) − zq(t−).
Indeed, since place p does not have any other output transition, the total number
of tokens which have left place q until the instant t equals zq(t

−). By definition of
the earliest behavior semantics, the number of firings of q at the instant t must be
exactly equal to the minimum number of tokens available in places p ∈ qin. If we
denote min(x, y) by x ∧ y, we consequently get:

(5) ∀q ∈ Qsync , zq(t) =
∧
p∈qin

xp(t− τp) .

Finally, let us take a place p ∈ Ppriority. Since the transition pout
+ has priority over

pout
− , the quantity zpout

+
(t)−zpout+

(t−) must be equal to the minimal number of tokens

available in the upstream places, including p. For every place r ∈ (pout
+ )in distinct

from p, the number of available tokens is given by xr(t− τr)− zpout+
(t−) (recall that

pout
+ is the only downstream transition of r). In contrast, the number of tokens

available for firing in place p is equal to xp(t − τp) − (zpout+
(t−) + zpout− (t−)). We

deduce that we have:

(6) ∀p ∈ Ppriority , zpout
+

(t) =
(
xp(t− τp)− zpout− (t−)

)
∧

∧
r∈(pout+ )in

r 6=p

xr(t− τr) .

The number of tokens from place p which are available for the transition pout
− after

the firings of pout
+ is given by xp(t−τp)−(zpout+

(t−)+zpout− (t−))−(zpout+
(t)−zpout+

(t−)).

Hence, we obtain:

(7) ∀p ∈ Ppriority , zpout
−

(t) =
(
xp(t− τp)− zpout+

(t)
)
∧

∧
r∈(pout− )in

r 6=p

xr(t− τr) .

We summarize the previous discussion by the following result:
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Theorem 1. Given any execution trace of a timed Petri net with free choice and
priority routing, the counter variables xp (p ∈ P) and zq (q ∈ Q) satisfy the
constraints (3)–(7) for all t > 0, together with the initial conditions (2).

We refer to Appendix A for a detailed proof of this statement. Notice that, if
we do not restrict to the earliest behavior semantics, the constraints (4)–(7) are
relaxed to inequalities.

So far, we have described the dynamics of timed Petri nets in the continuous time
setting. However, since the Petri net of our case study is a model of a real system
which is implemented in silico, we need to investigate the dynamics in discrete time
as well. In more details, assuming that all the quantities τp are multiple of an
elementary time step δ > 0, the discrete-time version of the semantics of the Petri

net restricts the transitions
d−→ to the case where d is a multiple of δ. In this case,

on top of being càdlàg, the functions xp and zq are constant on any interval of the
form [kδ, (k+1)δ) for all k ∈ N. Then, we can verify that the following result holds:

Proposition 2. In the discrete time semantics, the counter variables xp and zq
satisfy the constraints (3)–(7) for all t > 0, independently of the choice of the
elementary time step δ.

In other words, the dynamics in continuous-time is a valid representation of the
dynamics in discrete time which allows to abstract from the discretization time
step. We also note that we can refine the constraint given in (6) by replacing the
left limit zpout

−
(t−) by an explicit value:

(8) ∀p ∈ Ppriority , zpout
+

(t) =



(
xp(t− τp)− zpout− (t− δ)

)
∧

∧
r∈(pout+ )in , r 6=p

xr(t− τr) if t ∈ δN ,

(
xp(t− τp)− zpout− (t)

)
∧

∧
r∈(pout+ )in , r 6=p

xr(t− τr) otherwise.

(Here and below, we denote by δN the set {0, δ, 2δ, . . . }.) The system formed by
the constraints (3)–(5), (7), (8) is referred to as the δ-discretization of the Petri net
dynamics.

The only source of non-determinism in the model that we consider is the routing
policy in the conflict pattern (Figure 2(a)). In the sequel, we assume that the
tokens are assigned according to a stationary probability distribution. Given a
free choice place p ∈ Pconflict, we denote by πqp the probability that an available
token is assigned to the transition q ∈ pout. In the following, we consider a fluid
approximation of the dynamics of the system, in which the xp and zq are non-
decreasing càdlàg functions from R to itself, and the routing policy degenerates in
sharing the tokens in fractions πqp. Equivalently, the fluid dynamics is defined by
the constraints (3)–(7) and the following additional constraints:

(9) ∀p ∈ Pconflict , ∀q ∈ pout , zq(t) = πqpxp(t− τp) .

Note that the latter equation is still valid in the context of discrete time. By
extension, the system formed by the constraints (3)–(5), (7)–(9) is referred to as
the δ-discretization of the fluid dynamics.
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3.4. Application to our Petri net model of emergency call center. We
illustrate Theorem 1 on the Petri net of Figure 1. We point out that in Figure 1,
we have omitted to specify the holding time of some places. By default, this holding
time is set to a certain τε > 0, and is meant to be negligible w.r.t. the other holding
times.

For simplicity, we omit the counter variables of the places distinct from p1 and
p2. Indeed, each of theses places p has a unique input transition q, and its initial
marking is 0. Therefore, by definition, we have xp(t) = zq(t) for all t, which means
that xp can be trivially substituted in the constraints. Similarly, we omit the
transitions which lead to places p1 and p2, as their counter variables correspond the
counter variables of some transitions located upstream and shifted by the holding
time of the place in between. Finally, we denote by zi the counter variables of
transitions qi, and by xi the counter variables of places pi. We can verify that the
fluid dynamics is then given by the following constraints:

z1(t) = x1(t− τε)
z2(t) = πextz1(t− τε)
z3(t) = πurz1(t− τε)
z4(t) = πadvz1(t− τε)
z5(t) = (x2(t− τε)− z6(t−)) ∧ z2(t− τext)

z6(t) = (x2(t− τε)− z5(t)) ∧ z3(t− τur − τε)
z7(t) = z5(t− τtr)
x1(t) = N1 + z7(t) + z3(t− τur) + z4(t− τadv)

x2(t) = N2 + z7(t− τ ′ext) + z6(t− τ ′ur)

They can be simplified into the following system:

(10)

z1(t) = N1 + z5(t− τtr) + πurz1(t− τur − 2τε) + πadvz1(t− τadv − 2τε)

z5(t) =
(
N2 + z5(t− τtr − τ ′ext − τε) + z6(t− τ ′ur − τε)− z6(t−)

)
∧ πextz1(t− τext − τε)

z6(t) =
(
N2 + z5(t− τtr − τ ′ext − τε) + z6(t− τ ′ur − τε)− z5(t)

)
∧ πurz1(t− τur − τε)

which involve the counter variables z1, z5 and z6 only. These variables correspond
to the key characteristics of the system. They respectively represent the number of
calls handled at level 1, and the number of extremely urgent and urgent calls han-
dled at level 2, up to time t. All the other counter variables can be straightforwardly
obtained from z1, z5 and z6.

For the sake of readability, we slightly modify the original holding times τext,
τur, . . . to incorporate the effect of τε. In more details, we substitute τext, τur, τadv,
τ ′ext and τ ′ur by τext − τε, τur − 2τε, τadv − 2τε, τ

′
ext − τε and τ ′ur − τε respectively.

Then, System (10) simply reads as:

(11)

z1(t) = N1 + z5(t− τtr) + πurz1(t− τur) + πadvz1(t− τadv)

z5(t) =
(
N2 + z5(t− τtr − τ ′ext) + z6(t− τ ′ur)− z6(t−)

)
∧ πextz1(t− τext)

z6(t) =
(
N2 + z5(t− τtr − τ ′ext) + z6(t− τ ′ur)− z5(t)

)
∧ πurz1(t− τur)

This is the system which we consider in the rest of the paper.
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4. Computing stationary regimes

We investigate the stationary regimes of the fluid dynamics associated with Petri
nets with free choice and priority routing. More specifically, our goal is to charac-
terize the non-decreasing càdlàg solutions xp and zq of the dynamics which behave
ultimately as affine functions t 7→ u + ρt (u ∈ R and ρ ∈ R>0). By ultimately,
we mean that the property holds for t large enough. In this case, the scalar ρ
corresponds to the asymptotic throughput of the associated place or transition.
However, if the functions xp and zq are continuous, and a fortiori if they are affine,
their values at points t and t− coincide, and then, the effect of the priority rule
on the dynamics vanishes (see Equation (6)). Hence, looking for ultimately affine
solutions of the continuous time equations might look as an ill-posed problem, if one
interprets it in a naive way. In contrast, looking for the ultimately affine solutions
of the δ-discretization of the fluid dynamics is a perfectly well-posed problem. In
other words, we aim at determining the solutions xp and zq of the discrete dynam-
ics which coincide with affine functions at points kδ for all sufficiently large k ∈ N.
These solutions are referred to as the stationary solutions of the dynamics. As we
shall prove in Theorem 3, the characterization of these solutions does not depend
on the value of δ, leading to a proper definition of ultimately affine solutions of the
continuous time dynamics.

In order to determine the stationary regimes, we use the notion of germs of affine
functions. We introduce an equivalence relation ∼ over functions from R to itself,
defined by f ∼ g if f(t) and g(t) are equal for all t ∈ δN sufficiently large. A germ
of function (at point infinity) is an equivalence class of functions with respect to
the relation ∼. For brevity, we refer to the germs of affine functions as affine germs,
and we denote by (ρ, u) the germ of the function t 7→ u + ρt. In this setting, our
goal is to determine the affine germs of the counter variables of the Petri net in the
stationary regimes.

Given two functions f and g of affine germs (ρ, u) and (ρ′, u′) respectively, it is
easy to show that f(t) 6 g(t) for all sufficiently large t ∈ δN if, and only if, the
couple (ρ, u) is smaller than or equal to (ρ′, u′) in the lexicographic order. Moreover,
the affine germ of the function f + g is simply given by the germ (ρ + ρ′, u + u′),
which we denote by (ρ, u) + (ρ′, u′) by abuse of notation. As a consequence, affine
germs provide an ordered group. Let us add to this group a greatest element >,
with the convention that >+ (ρ, u) = (ρ, u) +> = >. Then, we obtain the tropical
(min-plus) semiring of affine germs (G,∧,+), where G is defined as {>}∪R2, and
for all x, y ∈ G, x ∧ y stands for the minimum of x and y in lexicographic order
(extended to >). Since in G, the addition plays the role of the multiplicative law,
the additive inversion defined by −(ρ, u) := (−ρ,−u) corresponds to a division over
G. This makes G a semifield, i.e., in loose terms, a structure similar to a field, except
that the additive law has no inverse. Finally, we can define the multiplication by
a scalar λ ∈ R by λ(ρ, u) := (λρ, λu). When λ ∈ N, this can be understood as an
exponentiation operation in G.

Instantiating the functions xp and zq by affine asymptotics t 7→ up + tρp and
t 7→ uq+tρq in the δ-discretization of the fluid dynamics leads to the following coun-
terparts of the constraints (3), (5), (7) and (9), the variables being now elements
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of the semifield G of germs:

∀p ∈ P , (ρp, up) = (0,Mp) +
∑
q∈pin

(ρq, uq)(12a)

∀p ∈ Pconflict ,∀q ∈ pout , (ρq, uq) = πqp(ρp, up − ρpτp)(12b)

∀q ∈ Qsync , (ρq, uq) =
∧
p∈qin

(ρp, up − ρpτp)(12c)

∀p ∈ Ppriority , (ρpout− , upout− ) = (ρp − ρpout+
, up − ρpτp − upout+

)

∧
∧

r∈(pout− )in , r 6=p
(ρr, ur − ρrτr)

(12d)

Given p ∈ Ppriority, the transposition of (6) (or equivalently (8)) to germs is more
elaborate due to the occurrence of the left limit xpout− (t−). We obtain:

(12e) (ρpout
+
, upout

+
) =



(ρp − ρpout− , up − ρpτp − upout− )

∧
∧

r∈(pout+ )in , r 6=p
(ρr, ur − ρrτr) if ρpout− = 0 ,

∧
r∈(pout+ )in , r 6=p

(ρr, ur − ρrτr) otherwise.

The correctness of these constraints is stated in the following result (see Appen-
dix B for a detailed proof):

Theorem 3. The affine germs of the stationary solutions of the δ-discretization of
the fluid dynamics are precisely the solutions of System (12) such that ρp, ρq > 0
(p ∈ P, q ∈ Q).

Since the expressions at the right hand side of the constraints of System (12)
involve minima of linear terms, these expressions can be interpreted as fractional
functions over the tropical semifield G. In this way, System (12) can be thought of
as a set of tropical polynomial constraints (or more precisely, rational constraints).

The solutions of tropical polynomial systems is a topic of current interest, owing
to its relations with fundamental algorithmic issues concerning classical polyno-
mial system solving over the reals. Here, we describe a simple method to solve
System (12), which is akin to policy search in stochastic control. Observe that Sys-
tem (12) corresponds to a fixpoint equation (ρ, u) = f(ρ, u), where the function f
can be expressed as the infimum

∧
π f

π of finitely many linear (affine) maps fπ. In
more details, every function fπ is obtained by selecting one term for each minimum
operation

∧
occurring in the constraints (for instance, in (12c), we select one term

(ρp, up − ρpτp) with p ∈ qin). For every selection π, we can solve the associated
linear system (ρ, u) = fπ(ρ, u), and under some structural assumptions on the Petri
net, the solution (ρπ, uπ) is unique. If fπ(ρπ, uπ) = f(ρπ, uπ), i.e. in every con-
straint, the term we selected is smaller than or equal to the other terms appearing
in the minimum, then (ρπ, uπ) forms a solution of System (12) associated with the
selection π. Otherwise, the selection π does not lead to any solution. Iterating
this technique over the set of selections provides all the solutions of System (12).
Every iteration can be done in polynomial time. However, since there is an expo-
nential number of possible selections, the overall time complexity of the method is
exponential in the size of the Petri net.
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5. Application to the emergency call center

We now apply the results of Section 4 to determine the stationary regimes of the
fluid dynamics associated with our timed Petri net model of emergency call center.
As in Section 3.4, we consider the subsystem reduced to the variables z1, z5 and z6.
The corresponding system of constraints over the germ variables (u1, ρ1), (u5, ρ5)
and (u6, ρ6) is given by:

(ρ1, u1) =
(
ρ5 + πurρ1 + πadvρ1,

N1 + (u5 − ρ5τtr) + πur(u1 − ρ1τur) + πadv(u1 − ρ1τadv)
)(13a)

(ρ5, u5) =

{(
ρ5, N2 + u5 − ρ5(τtr + τ ′ext)

)
∧ πext(ρ1, u1 − ρ1τext) if ρ6 = 0

πext(ρ1, u1 − ρ1τext) if ρ6 > 0
(13b)

(ρ6, u6) =
(
ρ6, N2 − ρ5(τtr + τ ′ext) + (u6 − ρ6τ

′
ur)
)
∧ πur(ρ1, u1 − ρ1τur)(13c)

To solve this system, it is convenient to introduce the following quantity

τ̄ := πext(τext + τtr) + πurτur + πadvτadv ,

which represents the average time of treatment of a call at level 1 of the model.
Note that we exclude the trivial case where ρ1 = 0 (and subsequently ρ5 = ρ6 = 0),
since it cannot occur unless the quantity N1 is null.

The ρ-part of (13a) and (13c) show that

ρ5 = πextρ1 , 0 6 ρ6 6 πurρ1 .

We start by considering the case where ρ6 = 0. Since ρ1 > 0, the minimum
in (13c) is necessarily attained by the left term. From this, we deduce

ρ1 =
N2

πext(τtr + τ ′ext)
.

As (ρ5, u5) 6 πext(ρ1, u1 − ρ1τext) (by (13b)) and ρ5 = πextρ1, the inequality u5 6
πext(u1 − ρ1τext) holds. Using the u-part of (13a), we can show that this amounts
to the inequality

N2

N1
6 r1 :=

πext(τtr + τ ′ext)

τ̄
.

We now assume that ρ6 > 0. The fact that u5 = πext(u1 − ρ1τext) (by (13b))
leads to the identity

ρ1 =
N1

τ̄
.

It remains to distinguish the subcases corresponding to the minimum in (13c).
• Suppose that the minimum is attained by the left term. We deduce that:

ρ6 =
N2

τ ′ur

− N1

τ̄

πext(τtr + τ ′ext)

τ ′ur

=
N2 −N1r1

τ ′ur

.

Since 0 < ρ6 6 πurρ1, we also derive:

r1 <
N2

N1
6 r2 :=

πext(τtr + τ ′ext) + πurτ
′
ur

τ̄
.

• If the minimum is reached by the right term, then we have ρ6 = πurρ1, or
equivalently ρ6 = πur

N1

τ̄ . Moreover, we necessarily have u6 6 N2 − ρ5(τtr + τ ′ext) +

(u6 − ρ6τ
′
ur), which provides N2

N1
> r2. Note that the latter inequality is strict as

soon as the minimum in (13c) is attained by the right term only.
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Table 1. The normalized throughputs ρ1, ρ5 and ρ6 as piecewise
linear functions of N2/N1.

0 6 N2/N1 6 r1 r1 6 N2/N1 6 r2 r2 6 N2/N1

ρ1/ρ
∗ τ̄

πext(τtr + τ ′ext)

N2

N1
1 1

ρ5/ρ
∗ τ̄

τtr + τ ′ext

N2

N1
πext πext

ρ6/ρ
∗ 0

τ̄

τ ′ur

(N2

N1
− r1

)
πur

To summarize, we report the possible values of the throughputs ρ1, ρ5 and ρ6

in Table 1 in the stationary regimes. We normalize these values by a quantity ρ∗

which corresponds to the throughput (of transition q1) in an “ideal” call center
which involves as many level 2 operators as necessary, i.e. N2 = +∞. Then, the
throughput ρ∗ is given by N1/τ̄ , where τ̄ := πext(τext + τtr) + πurτur + πadvτadv

represents the average time of treatment at level 1.
As shown in Table 1, the ratios ρ1/ρ

∗, ρ5/ρ
∗ and ρ6/ρ

∗ are piecewise linear
functions of the ratio N2/N1. The non-differentiability points are given by:

r1 :=
πext(τtr + τ ′ext)

τ̄
r2 :=

πext(τtr + τ ′ext) + πurτ
′
ur

τ̄
.

They separate three phases:
(i) when N2/N1 is strictly smaller than r1, the number of level 2 operators is

so small that some extremely urgent calls cannot be handled, and no urgent call is
handled. This is why the throughput of the latter calls at level 2 is null. Also, level 1
operators are slowed down by the congestion of level 2, since, in the treatment of an
extremely urgent call, a level 1 operator cannot be released until the call is handled
by a level 2 operator.

(ii) when N2/N1 is between r1 and r2, there are enough level 2 operators to
handle all the extremely urgent calls, which is why the throughput ρ5 is equal to
ρ1 multiplied by the proportion πext of extremely urgent calls. As a consequence,
level 2 is no longer slowing down level 1 (the throughput ρ1 reaches its maximal
value ρ∗). However, the throughput of urgent calls at level 2 is still limited because
N2 is not sufficiently large.

(iii) ifN2/N1 is larger than r2, the three throughputs reach their maximal values.
This means that level 2 is sufficiently well-staffed w.r.t. level 1.

This analysis provides a qualitative method to determine an optimal dimension-
ing of the system in stationary regimes. Given a fixed N1, the number N2 of level
2 operators should be taken to be the minimal integer such that N2/N1 > r2. This
ensures that the level 2 properly handles the calls transmitted by the level 1 (all
calls are treated). Then, N1 should be the minimal integer such that ρ1 = N1

τ̄
dominates the arrival rate of calls.
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Figure 3. Comparison of the throughputs of the non-fluid simu-
lations with the theoretical throughputs (fluid model). The three
phases are identified by two vertical lines.

6. Experiments

We finally compare the analytical results of Section 5, obtained in the fluid
setting, with the asymptotic throughputs of the Petri net provided by simulations.

6.1. Asymptotic behavior of the non-fluid dynamics. We have implemented
the δ-discretization of the non-fluid dynamics (Equations (3)–(5), (7) and (8)) since
this setting is the closest to reality. Recall that, in this case, tokens are routed
towards transitions q2, q3 and q4 randomly according to a constant probability
distribution. We assume that holding times are given by integer numbers of seconds,
so that we take δ = 1 s. In this way, we compute the quantities z1(t), z5(t) and
z6(t) by induction on t ∈ N using the equations describing the dynamics. In the
simulations, we choose holding times and probabilities which are representative of
the urgency of calls.

Figure 3 compares the limits when t→ +∞ of the throughputs z1(t)/t, z5(t)/t,
z6(t)/t of the “real” system, with the throughputs ρ1, ρ5 and ρ6 of the stationary
solutions which have been determined in Section 5. The latter are simply computed
using the analytical formulæ of Table 1. We estimate the limits of the throughput
zi(t)/t by evaluating the latter quantity for t = 106 s. As shown in Figure 3, these
estimations confirm the existence of three phases, as described in the previous
section. The convergence of zi(t)/t towards the throughputs ρi is mostly reached
in the two extreme phases. In the intermediate phase, the difference between the
limit of zi(t)/t and the throughput ρi is more important. This originates from the
stochastic nature of the routing, which causes more variations in the realization of
the minima in the zi(t): the throughput of q6 increases and the throughputs of q1

and q5 decrease.

6.2. Asymptotic behavior of the fluid dynamics. We have also simulated the
discrete-time fluid dynamics (using Equations (3)–(5) and (7)–(9)). All simulations
have been computed with exact rationals in Q.
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(a) (b)

(c) (d)

Figure 4. Comparison of the fluid dymamics with the stationary
regimes. Error ratios |zi(t)/t − ρi|/ρi are plotted in log-log scale,
respectively in blue, red and green when i = 1, 5, 6.

In most cases, we observe that the corresponding asymptotic throughputs con-
verge to the throughputs of the stationary solutions. This is illustrated in Fig-
ures 4(a), 4(b) and 4(c), which are obtained using the same set of holding times,
and by varying the ratio N2/N1 (lower, intermediate and upper phase respectively).

However, there are also cases in which the convergence does not hold. In the
experiments we have made, this happens only in the lower phase and in the in-
termediate phase, that is, when N2/N1 < r2. This is illustrated in Figure 4(d),
in which we have increased τ ′ext by one unit of time in comparison to Figure 4(b).
Such cases suggest the existence of other kinds of stationary regimes of the dynam-
ics, in which the system oscillates between different phases. We remark that the
non-convergence appears to be related to the existence of arithmetical relationships
between the holding times of places. An interpretation lies in the fact that, if cycle
times are not coprime in the system, phenomena of synchronization may lead to
recurrent slow-down of extreme urgent calls by urgent calls in the two lower phases,
which could lower the throughput of the system.
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7. Concluding remarks

We have shown that timed Petri nets with free choice and priority routing can be
analyzed by means of tropical geometry. This allows us to identify the congestion
phases in the fluid version of the dynamics of the Petri net. We have applied this
method to a model of emergency call center. Numerical experiments indicate that
these theoretical results are representative of the real dynamics.

In future work, we aim at comparing the behaviors of the fluid deterministic
model and of the discrete stochastic one. We also plan to study uniqueness condi-
tions of the stationary regimes, and conditions under which convergence of the fluid
dynamics to a stationary regime can be shown. We will refine our Petri net model
of emergency call center to take care of the heterogeneous nature of level 2 (calls to
police and firemen require different instruction times). To this end, it will be helpful
to implement an analysis tool determining automatically the stationary regimes of
a timed Petri net given in input. Finally, we plan to analyze the treatment times
of the system, on top of the throughputs.
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Appendix A. Proof of Theorem 1

Lemma 1. Suppose that all the holding times τp (p ∈ P) are positive, and consider
the subpart of the execution trace formed by the transitions fired at the instant t,
i.e.:

(14) . . .
d−→ σt

− q1−→ q2−→ . . .
qn−→ σt

d′−→
(with d > 0 unless t = 0, and d′ > 0). Then the following two properties hold:

(i) for all p ∈ Ppriority, no transition
pout−−→ can occur before a transition

pout+−→ in (14);

(ii) any pair of consecutive of consecutive transitions
qi−→qi+1−→ can be switched

in (14) without changing the states occurring after, provided that (qi, qi+1)
is not equal to (pout+ , pout− ) for some p ∈ Ppriority.

Proof. (i) Suppose that a transition
pout−−→ occurs before

pout+−→ in (14), i.e. we have

a subsequence of the form σ
pout−−→ σ′ . . .

pout+−→. As all the holding times are positive,
all the tokens consumed by pout

+ are already present in the state σ. In other words,

the transition σ
pout
+−→ . . . is valid in the semantics. This contradicts the priority rule.

(ii) Consider a pair of consecutive transitions

σi
qi−→qi+1−→ σi+2

such that (qi, qi+1) 6= (pout
+ , pout

− ). As discussed in the previous case, since the
holding times are positive, the transition qi+1 does not consume tokens produced by
the transition qi. Besides, there is no priority rule between qi and qi+1. Therefore,

qi+1 can be fired before qi, and the sequence σi
qi+1−→ qi−→ leads to the same state

σi+2. It follows that all the subsequent states remain identical. �

Let us now prove Theorem 1. It is useful to extract the part of the execution
trace leading to the state σt of the Petri net at the instant t. It has one of the
following two forms:

(15) . . .
d−→ σt

− q1−→ q2−→ . . .
qn−→ σt

d′−→
on

(16) . . .
d−→ q1−→ q2−→ . . .

qn−→ d′′−→ σt
d′−→
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depending on whether some transitions q ∈ Q are fired at the instant t or not. In
both cases, d′, d′′ > 0 and d > 0 unless t = 0, and the durations of the time-elapsing
transitions occurring before the state σt in the trace sum up to t.

In this context, zq(t) counts the number of transitions occurring before σt in the
trace, while xp(t) is given by the sum of Mp and the number of transitions q ∈ pin

occurring before σt. The constraint (3) is therefore trivially satisfied by definition
of xp(t) and the zq(t).

Consider p ∈ Pconflict. Since we use the earliest behavior semantics and p is free
choice, any token of the initial marking is consumed at the instant 0, and any token
brought by an upstream transition q′ ∈ pin at the instant s > 0 is consumed at the
instant s+ τp. As a consequence, we can build a bijection which maps each initial

token with the transition
q−→ which consumes it at the instant 0, and any transition

q′−→ occurring at the instant s− τp with the transition
q−→ which consumes at the

instant s the token brought by q′ to place p. We deduce that

Mp +
∑
q′∈pin

zq′(t− τp) =
∑
q∈pout

zq(t) .

Using the constraint (3), this yields to xp(t− τp) =
∑
q∈pout zq(t).

Now, let us take q ∈ Qsync. Consider p ∈ qin. Recall that, by definition of Qsync,

q is the only downstream transition of place p if q. Therefore, every transition
q−→

arising at the instant s consumes a token from place p. This token is either a initial
token from Mp, or a token brought by a transition q′ ∈ pin fired before the instant
s−τp (included). Therefore, we have zq(t) 6 xp(t−τp). In fact, xp(t−τp)−zq(t) is
equal to the number of tokens with age greater than or equal to τp located in place
p in the state σt. At the instant t+ ε with 0 < ε < d′, the age of these tokens will
be strictly greater than τp. Therefore, if xp(t − τp) − zq(t) > 0 for all p ∈ qin, the
transition q can be fired at the instant t+ ε. But this is impossible in the earliest
behavior semantics, since the places p ∈ qin are not allowed to contain tokens with
age strictly greater than τp while their downstream transition q can be fired. We
deduce that xp(t− τp) = zq(t) for some p ∈ qin. This proves (5).

Finally, consider p ∈ Ppriority. Using similar arguments as the ones used in the
previous case, we can show that zpout+

(t) 6 xr(t− τr) for all r ∈ (pout
+ )in, r 6= p, and

zpout
−

(t) 6 xr(t− τr) for all r ∈ (pout
− )in, r 6= p. Besides, we have zpout+

(t) + zpout− (t) 6

xp(t− τp), since every firing of the transition pout
+ or pout

− at the instant s consumes
a token of Mp or a token brought by an upstream transition of p before the instant
s− τp. In consequence, as the function zpout− is non-decreasing, we obtain:

zpout
+

(t) + zpout− (t−) 6 xp(t− τp) .

In order to prove that (6) is satisfied, we distinguish two cases depending on the
form of the trace:

(i) if the trace is of the form (15), then, by Lemma 1, we can rewrite the subpart
of the trace as follows:

. . .
d−→ σt

− q′1−→ q′2−→ . . .
q′k−→

pout+−→ . . .
pout+−→︸ ︷︷ ︸

k+ times

σ
pout−−→ . . .

pout−−→︸ ︷︷ ︸
k− times

σt
d′−→

where k+, k− > 0, and where pout
+ and pout

− do not appear in the q′i. Then, the
quantity xp(t− τp)− zpout

+
(t)− zpout− (t−) corresponds to the number of tokens with
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age greater than or equal to τp in the intermediary state σ. If it is positive, and if
xr(t− τr)− zpout

+
(t) > 0 for all r ∈ (pout

+ )in such that r 6= p, then the transition pout
+

can be fired right after the state σ. This contradicts the priority rule if k− > 0. If
k− = 0, we can fire pout

+ at the instant t + ε (0 < ε < d′), which contradicts the
definition of the earliest behavior semantics (all the upstream place of pout

+ contains
a token older than allowed).

(ii) if the trace is of the form (16), then zpout− (t−) = zpout− (t). In this case, the

quantity xp(t− τp)− zpout
+

(t)− zpout− (t−) represents the number of tokens with age

greater than or equal to τp at place p in the state σt. If xp(t − τp) − zpout+
(t) −

zpout
−

(t−) > 0 and xr(t− τr)− zpout+
(t) > 0 for all r ∈ (pout

+ )in such that r 6= p, then

the transition pout
+ can be fired at the instant t + ε with 0 < ε < d′. This is again

a contradiction with the earliest behavior semantics.
In both cases, we have xp(t−τp)−zpout+

(t)−zpout− (t−) = 0 or xr(t−τr)−zpout+
(t) = 0

for some r ∈ (pout
+ )in such that r 6= p. We deduce that the constraint (6) holds.

Now assume that xp(t− τp)− zpout+
(t)− zpout− (t) > 0 and xr(t− τr)− zpout− (t) > 0

for all r ∈ (pout
− )in such that r 6= p. These quantities correspond to the number of

tokens in places p and r with age greater than or equal to τp and τr respectively,
in the state σt. Thus, the transition pout

− is activated at the instant t + ε for
all ε > 0 sufficiently small. Note that xp(t − τp) − zpout+

(t) − zpout− (t−) > 0 as

zpout
−

(t−) < zpout
−

(t). Thus, there exists a place r′ ∈ (pout
+ )in with r 6= p, such that

xr′(t − τr′) = zpout
+

(t). In other words, place r′ does not contain any token with

age greater than or equal to τr′ . Given ε > 0 sufficiently small, this is still true at
the instant t + ε, so that the transition pout

+ cannot be fired at the instant t + ε.
Therefore, we are allowed to fire the transition pout

− at the instant t + ε, which is
a contradiction with the definition of the earliest behavior semantics. As a result,
(7) is satisfied. �

Appendix B. Proof of Theorem 3

We denote the lexicographic order over R2 by 4, and we use the notation x ≺ y
when x 4 y and x 6= y.

We first remark that given two functions f and g of affine germs (ρ, u) and
(ρ′, u′), the function t 7→ f(t)∧g(t) belongs to the affine germ given by the minimum
(ρ, u) ∧ (ρ′, u′) taken in the lexicographic order. Besides, if τ ∈ δN, the function
t 7→ f(t− τ) belongs to the affine germ (ρ, u− τρ). Finally, for all λ ∈ R, the affine
germ of the map t 7→ λf(t) is equal to λ(ρ, u) = (λρ, λu).

Now, suppose that xp and zq are stationary solutions of the δ-discretization of
the fluid dynamics, and let (ρp, up) and (ρq, uq) be the respective germs, for p ∈ P
and q ∈ Q. Since the functions xp and zq satisfy the constraints (3), (5), (7), (9) for
all t ∈ δN, we deduce from the previous properties that the constraints (12a)–(12d)
are satisfied. Besides, given p ∈ Ppriority, (8) ensures that for all t ∈ δN, we have:

zpout
+

(t) =
(
xp(t− τp)− zpout− (t− δ)

)
∧

∧
r∈(pout+ )in , r 6=p

xr(t− τr) .
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Consequently, we obtain
(17)

(ρpout
+
, upout

+
) = (ρp− ρpout

−
, up− ρpτp−upout− + ρpout− δ)∧

∧
r∈(pout+ )in , r 6=p

(ρr, ur − ρrτr) .

If ρpout
−

= 0, this amounts to the constraint given in (12e). Now consider the case

where ρpout
−

> 0. Using (12d), we know that

(ρpout
−
, upout

−
) 4 (ρp − ρpout+

, up − ρpτp − upout+
) ,

and thus
(ρpout

+
, upout

+
) 4 (ρp − ρpout− , up − ρpτp − upout− ) ,

Since δ > 0, it follows that

(ρpout
+
, upout

+
) ≺ (ρp − ρpout− , up − ρpτp − upout− + ρpout− δ) .

We conclude that the constraint (17) is equivalent to (12e) when ρpout− > 0.

Conversely, let (ρp, up) and (ρq, uq) be solutions of System (12). We define xp
and zq as the functions given by xp(t) = up + ρpkδ and zq(t) = uq + ρqkδ for all
t ∈ [kδ, (k + 1)δ) and k ∈ N. The constraints (12a)–(12d) ensure that (3), (5),
(7), (9) hold for all t ∈ δN. Since all the holding times τp belong to δN and the
functions xp and zq are constant on the intervals of the form [kδ, (k+1)δ), we deduce
that these constraints (3), (5), (7), (9) actually hold for all t in such intervals, and
so for all t > 0. Moreover, as previously shown, the constraint given in (12e)
is equivalent to (17), since (12d) is satisfied. This proves that the constraint (8)
holds for all t ∈ δN. It remains to show that the latter constraint is satisfied
when t ∈ (kδ, (k + 1)δ). First observe that zpout+

(kδ) 6
∧
r∈(pout+ )in , r 6=p xr(kδ − τr)

ensures that zpout
+

(t) 6
∧
r∈(pout+ )in , r 6=p xr(t − τr). Besides, by (7), we know that

zpout
+

(t) 6 xp(t− τp)− zpout
−

(t). We now distinguish two cases:

(i) if we have zpout
+

(kδ) =
∧
r∈(pout+ )in , r 6=p xr(kδ − τr), then straightforwardly,

zpout
+

(t) =
∧
r∈(pout

+ )in , r 6=p xr(t− τr).
(ii) if zpout

+
(kδ) = xp(kδ − τp)− zpout− ((k − 1)δ), we obtain:

zpout
+

(kδ) > xp(kδ − τp)− zpout− (kδ) > zpout+
(kδ) ,

where the first inequality comes from the fact that zpout− is non-decreasing, and the

second inequality from (7). We deduce that zpout+
(kδ) = xp(kδ − τp) − zpout− (kδ).

Hence, we get zpout
+

(t) = xp(t− τp)− zpout− (t).

As a consequence, in both cases, we have proved that zpout+
(t) is the minimum

between zpout
+

(t)− zpout
−

(t) and
∧
r∈(pout+ )in , r 6=p xr(t− τr). This shows that (8) holds

for all t > 0. �
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