
Stationary solutions of discrete and continuous Petri nets with prioritiesI

Xavier Allamigeona, Vianney Bœufb,a,c,∗, Stéphane Gauberta
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Abstract

We study a continuous dynamics for a class of Petri nets involving priorities. We show that this dynamics
can be written in terms of policies which identify the bottleneck places. We characterize the stationary
solutions, and show that they coincide with the stationary solutions of the discrete dynamics of this class
of Petri nets. We provide numerical experiments on a case study of an emergency call center, indicating
that pathologies of discrete models (oscillations around a limit different from the stationary limit) vanish
by passing to continuous Petri nets.
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1. Introduction

Context

The study of continuous analogues of Petri nets dates back to the works of David and Alla [6] and Silva
and Colom [19] in 1987. It has given rise to a large scope of research in the field of Petri nets. Whereas
classical (discrete) Petri nets belong to the class of discrete event dynamic systems, the circulation of tokens
in continuous Petri nets is a continuous phenomenon: tokens are assumed to be fluid, i.e., a transition can
fire an infinitesimal quantity of tokens. In this way, the continuous dynamics can be represented by a system
of ordinary differential equations or differential inclusions.

Continuous Petri nets are usually introduced as a relaxed approximation of Petri nets, that helps un-
derstanding some of the properties of the underlying discrete model, allowing one to overcome the state
space explosion that can occur in the latter. The continuous framework can also be seen as a scaling limit
of a class of stochastic Petri nets (see [5]), where the marking Mp of place p in the fluid model is the finite
limit of Mp(N)/N , with N being a scaling ratio tending to infinity, and where the firing times of transitions
follow a Poisson distribution.

An important effort has been devoted to the comparison between continuous nets and their discrete
counterparts. For example, the relationship between reachability of continuous Petri nets and of discrete
Petri nets is well understood (see [18]). A recent introduction to continuous models can be found in [20],
while a more extensive reference is [7].

In order to evaluate the long-term performance of Petri nets, one has to characterize the stationary or
steady states of the Petri nets dynamics. Cohen, Gaubert and Quadrat [4] introduced an approximation
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program of EDF and Fondation Mathématique Jacques Hadamard. The first and last authors were partially supported by the
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of a discrete Petri net by a fluid, piecewise affine dynamics with finite delays, and showed that the limit
throughput does exist for a class of consistent and free choice Petri nets. In the more recent work of Gaujal
and Giua [10], the result is extended to larger classes of Petri nets, and the stationary throughputs are
computed as the solutions of a linear program. The results obtained using this fluid approximation hardly
apply to the discrete model, up to a remarkable exception identified by Bouillard, Gaujal and Mairesse [2]
(bounded Petri nets under total allocation). This reference illustrates the many difficulties that arise from
the discrete setting (e.g., some firing sequences may lead to a deadlock).

In the continuous dynamics setting, with time attached to transitions, Recalde and Silva [17] showed
that the steady states of free choice Petri nets as well as upper bounds of the throughputs in larger classes
of Petri nets can be determined by linear programming. However, in general, the asymptotic throughputs
are non-monotone with respect to the initial marking or the firing rates of the transitions [14]. An example
of oscillations in infinite time around a steady state is also given in [13].

Contributions

We propose a continuous dynamics of Petri nets where time is attached to places and not to transitions.
The main novelty is that it handles a class of Petri nets in which tokens can be routed according to priority
rules (Section 2). We initially studied this class in [1] in the discrete setting, motivated by an application
to the performance analysis of an emergency call center.

We show that the continuous dynamics can equivalently be expressed in terms of policies. A policy is
a map associating with every transition one of its upstream places. In this way, the dynamics of the Petri
net can be written as an infimum of the dynamics of subnets induced by the different policies. The policies
reaching the infimum indicate the places which are bottleneck in the Petri net. On any time interval in
which a fixed policy reaches the infimum, the dynamics reduces to a linear dynamics (Section 3).

We characterize the stationary solutions in terms of the policies of the Petri net. This allows us to
set up a correspondence between the (ultimately affine) stationary solutions of the discrete dynamics that
were described in [1] and the stationary solutions of the continuous dynamics (Section 4). We also relate the
continuous stationary solutions to the initial marking of the Petri net. This relies on restrictive assumptions,
in particular the semi-simplicity of a 0 eigenvalue of a matrix associated with a policy.

We finally provide some numerical simulations of the continuous dynamics. We consider a model of
emergency call center with two hierarchical levels for handling calls, originating from a real case study (17-
18-112 call center in the Paris area) [1]. On this Petri net, numerical experiments illustrate the convergence
of the trajectory towards the stationary solution. This exhibits an advantage of the continuous setting in
comparison to the discrete one, in which, for certain values of the parameters, the asymptotic throughputs
computed by simulations differ from the stationary solutions (Section 5).

Related work

The motivation of this work stems from our previous study [1], in which we addressed the same class of
Petri nets with priorities in the discrete setting, and applied it to the performance analysis of an emergency
call center. The discrete dynamics is shown there to be given by piecewise affine equations (tropical analogues
of rational equations). The idea of modeling priority rules by piecewise affine dynamics originated from Farhi,
Goursat and Quadrat [8], who applied it to a special class of road traffic models. In the discrete setting,
limit time-periodic behaviors can occur. They may lead to asymptotic throughputs different from the affine
stationary solutions of the dynamics, a pathology which motivates our study of a continuous version of the
dynamics.

The “continuization” of our dynamics draws inspiration from the original continuous model where time
is attached to transitions. In particular, the situation in which the routing of a token at a given place is
influenced by the firing times of the output transitions through a race policy has received much attention,
see [20]. Here, we address the situation in which the routing is specified by priority or preselection rules
which are independent of the processing rates. To do so, it is convenient to attach times to places, instead of
attaching firing rates to transitions. We point out in Remark 3 that our model can be reduced to a variant of
the standard continuous model [20] in which we allow immediate transitions and require non-trivial routings
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Figure 1: Conflict, synchronization and priority patterns

to occur only at these transitions. A benefit of our presentation is to allow a more transparent comparison
between the continuous model and the discrete time piecewise affine models studied in [4, 10, 1].

The use of the term “policy” refers to the theory of Markov decision processes, owing to the analogy
between the discrete time dynamics and the value function of a semi-Markovian decision process. Note that
in the context of continuous Petri nets, policies are also known as “configurations”, see [14] for an example.

2. Continuous dynamics of Petri nets

2.1. General notation

A Petri net consists of a set P of places, a set Q of transitions and a set of arcs E ⊂ (P ×Q)∪ (Q×P).
Every arc is given a valuation in N. Each place p ∈ P is given an initial marking M0

p ∈ N, which represents
the number of tokens initially occurring in the place.

We denote by a+qp the valuation of the arc from transition q to place p, with the convention that a+qp = 0
if there is no such arc. Similarly, we denote by a−qp the valuation of the arc from place p to transition q,
with the same convention. We set aqp := a+qp − a−qp. The Q× P matrix A = (aqp)q∈Q,p∈P is referred to as

the incidence matrix of the Petri net, and its transpose matrix C := AT as its token flow matrix. We also
denote by C+ (resp. C−) the P ×Q matrix with entry a+qp (resp. a−qp), so that C = C+ −C−. We limit our
attention to pure Petri nets, i.e., Petri nets with no self-loop: for every pair (q, p), at least one of a+qp and
a−qp is zero.

We denote by qin the set of upstream places of transition q and by qout the set of downstream places of
transition q. Similarly, we use the notation pin and pout to refer to the sets of input and output transitions
of a place p.

2.2. Petri nets with free choice and priority routing

In this paper, we consider a class of Petri nets in which places are either free choice or subject to priority.
Recall that a place p ∈ P is said to be free choice if either all the output transitions q ∈ pout satisfy qin = {p}
(conflict, see Figure 1(a)), or |pout| = 1 (synchronization, see Figure 1(b)). A place is subject to priority
if its tokens are routed to output transitions according to a priority rule. We refer to Figure 1(c) for an
illustration. For the sake of simplicity, we assume that each place subject to priority has exactly two output
transitions, and that any transition has at most one upstream place subject to priority. Given a place p
subject to priority, we denote by q+(p) and q−(p) its two output transitions, with the convention that q+(p)
has priority over q−(p). For the sake of readability, we use the notation q+ and q− when the place p is clear
from context.

The set of transitions such that every upstream place p satisfies |pout| = 1 is referred to as Qsync and the
set of free choice places that have at least two output transitions is referred to as Pconflict. We denote by
Ppriority the set of places subject to priority. The sets (Pconflict)

out, Qsync and (Ppriority)out form a partition of
Q. Figure 1 hence summarizes the three possible place/transition patterns that can occur in this class of
Petri nets.
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2.3. Continuous dynamics and routing rules

We now equip the Petri net with a continuous semantics. Given a transition q, we associate a flow fq(t)
which represents the instantaneous firing rate of transition q at time t. We also associate with each place p
a marking Mp(t), which is a continuous real valued function of the time t. In the case of discrete timed Petri
nets, one typically requires that every token stays a minimum time in the place, — at this stage, the token
may be considered as under processing — before becoming available for the firing of output transitions. To
capture this property in the continuous setting, we assume that the marking Mp(t) can be decomposed as
Mp(t) = mp(t) +wp(t), where mp(t) is the quantity of tokens under processing and wp(t) is the quantity of
tokens waiting to contribute to the firing of an output transition.

We associate with each place p a time constant τp > 0. Each token entering in a place is processed with
the rate 1/τp. This leads to the following differential equation:

ṁp(t) =
∑
q∈pin

a+qpfq(t)−
mp(t)

τp
. (1)

The evolution of the number of tokens waiting in place p is described by the relation:

ẇp(t) =
mp(t)

τp
−
∑
q∈pout

a−qpfq(t) . (2)

Moreover, for all transition q, we require that

min
p∈qin, wp(t)=0

(mp(t)

τp
−

∑
q′∈pout

a−q′pfq′(t)
)

= 0 . (3)

In particular, this implies that at least one place p ∈ qin verifies wp(t) = 0. In this case, (3) means that
each of the upstream places p that has a zero quantity of waiting tokens (wp(t) = 0) must satisfy ẇp(t) ≥ 0,
and that at least one of these places satisfies ẇp(t) = 0. In other words, there is at least one bottleneck
upstream place p of q, which has no waiting tokens and whose outgoing flow

∑
q′∈pout a

−
q′pfq′(t) coincides

with its processing flow mp(t)/τp.
The relation provided in (3) can be simplified in the case of conflict and synchronization patterns. In

more detail, if q has a unique upstream place p, and this place is free choice (conflict), then (3) reduces to:

mp(t)

τp
−

∑
q′∈pout

a−q′pfq′(t) = 0 . (4)

Now, if q has several upstream places, which are all free choice (synchronization), then (3) reads as:

fq(t) = min
p∈qin, wp(t)=0

mp(t)

a−qpτp
. (5)

This equation also holds if |qin| = 1 and if the upstream place of q has a single output transition.
We respectively denote by m(t), w(t) and f(t) the vectors of entries mp(t), wp(t) and fq(t).
Albeit the dynamics that we presented so far is piecewise affine, a trajectory t 7→ (m(t), w(t), f(t)) may

be discontinuous. Indeed, in (5), the set of the places over which the minimum is taken may change over
time. If at time t, there is a new place p ∈ qin such that wp(t) cancels, and if the quantity mp(t)/(a

−
qpτp) is

sufficiently small, then the minimum in (5) (and subsequently the flow fq(t)) discontinuously jumps to the
latter value.

Initial conditions of the dynamics are specified by a pair (m(ti), w(ti)) such that the minimum in (3)
makes sense, i.e., at least one wp(ti) is equal to 0 for each set of places qin. One can easily show that if the
set {p ∈ qin : wp(t) = 0} is nonempty for all transition q ∈ Q at time t = ti, then it remains nonempty for
all time t ≥ ti.
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The dynamics (1)–(3) may admit different trajectories for a given initial condition. These correspond
to different routings of tokens in places with several output transitions. However, each of these trajectories
satisfies the conservation law:

ṁ(t) + ẇ(t) = Cf(t) , (6)

where C is the token flow matrix of the Petri net. Recall that a P-invariant of the Petri net refers to
a nonnegative solution y of the system yTC = 0. In the discrete setting, a P-invariant corresponds to a
weighting of places that is constant for any reachable marking, meaning that the quantity yTM is preserved
under any firing of transition. An analogous statement holds in the continuous setting:

Proposition 1. Given a P-invariant y of the Petri net, the quantity yT(m(t) + w(t))p∈P is independent
of t.

In particular, if the entries of y are all positive, then the Petri net is bounded, i.e., each function
t 7→Mp(t) is bounded.

The following proposition collects several homogeneity properties of the continuous dynamics:

Proposition 2. Let (m(t), w(t), f(t)) be a trajectory solution of the dynamics (1)–(3), with the initial
markings (mp(0))p∈P , and the holding times (τp)p∈P and let α ∈ R≥0, then:

(i) (αm(t), αw(t), αf(t)) is a trajectory solution of the dynamics, associated with the initial markings
(αmp(0))p∈P .

(ii) (m(t/α), w(t/α), (1/α)f(t/α)) is a trajectory solution of the dynamics, associated with the holding
times (ατp)p∈P and the same initial conditions.

(iii) let x be a vector of the kernel of C, and D = diag(τ) be the P ×P diagonal matrix such that Dpp = τp,
then (m(t) + αDC+x,w(t), f(t) + αx) is a trajectory solution of the dynamics, associated with the
initial markings (m(0) + αDC+x).

The proof of these statements is straightforward.
We now complete the description of the continuous dynamics by additional equations which arise from

the specification of routing rules. Such rules occur in the following two situations:
Conflict. Given p ∈ Pconflict, we suppose that tokens are routed according to a stationary distribution

specified by weights µqp > 0 associated with each output transition q. Therefore,

∀p ∈ Pconflict, ∀q ∈ pout, a−qpfq(t) = µqp
mp(t)

τp
. (7)

Priority. Let p ∈ Ppriority, and q+ and q− be the two output transitions, as illustrated in Figure 1(c). In
order to specify that the flow is routed in priority to transition q+, we require that:

fq+(t) = min
r∈qin+ , wr(t)=0

mr(t)

a−q+rτr
, (8)

fq−(t) =


minr∈qin−\{p},wr(t)=0

mr(t)

a−q−rτr
if wp(t) 6= 0 ,

min
(mp(t)

a−qpτp
−
a−q+p

a−qp
fq+(t) ,minr∈qin−\{p},wr(t)=0

mr(t)

a−q−rτr

)
if wp(t) = 0 .

(9)

The expression of fq−(t) in (9), when wp = 0, indicates that only the outgoing flow from p that is not already
consumed by the priority transition q+ is available to q−.

The first two properties of homogeneity in Proposition 2 are still satisfied by the dynamics extended by
the routing rules (7)–(9).
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Remark 3. We already mentioned in the introduction that our model differs from the standard continuous
Petri net model in which transitions are equipped with firing rates, in the sense that in the latter model,
the flows of the output transitions of a given place are pairwise independent. To overcome this limitation,
immediate transitions have been introduced [16]. These transitions come with the specification of routing
rules, for instance, in the case of conflict pattern. In this way, our model could be reduced to a classical
continuous model enriched with immediate transitions. In this reduction, we require timed transitions
to have exactly one upstream place and one downstream place, so that all the routing is determined by
immediate transitions, which inherit the equations defined in our place-timed dynamics.

Simply put, our model is the continuous analogue of discrete Petri nets equipped with “holding dura-
tions”, in which tokens are frozen during processing, whereas the usual continuous Petri net model can
be seen as the continuous analogues of Petri nets with “enabling durations”, in which transitions preempt
tokens. We refer to [3] for a discussion on the meaning of time in Petri nets.

3. Policies and bottleneck places

The analysis of the piecewise affine dynamical system (1)–(3) leads to introduce the notion of policy.
Fixing a policy allows one to solve the dynamics on a region where it is linear. We shall see in Section 4
that policies also arise in the characterization of stationary solutions.

Even if our continuous dynamics holds for more general classes of Petri nets, we focus in the following
on strongly connected, autonomous Petri nets, so that each transition has at least one upstream place.

We observe that the dynamics of Petri nets with free choice and priority routing (1)–(2), (5) and (7)–(9)
is linear on each region where the arguments of the minimum operators do not change. More precisely, at
any time t, for any transition q ∈ Q, there exists a place p ∈ qin such that wp(t) = 0 and p is the unique
upstream place of q or p realizes the minimum in the expression (5), (8) or (9) of fq(t). Place p is then
referred to as the bottleneck place of transition q at time t.

We define a policy π as a function from Q to P, which maps any transition q to one of its upstream
places pπ(q) ∈ qin. A policy is meant to indicate the bottleneck place of each transition q. We denote by Sπ
the selection matrix associated with π, that is, the Q× P matrix such that (Sπ)qp = 1 if p = pπ(q), and 0
otherwise. In particular, (Sπ)qp = 1 implies that aqp < 0.

Note that, if p realizes the minimum in one of the equations (5), (8) or (9) for some transition, then p
also realizes the minimum in (3). The converse is not true if places are subject to priority. For p denoting a
priority place and q+ its priority output transition, if p realizes the minimum in (3) for transition q+, then,
p does not necessarily realize the minimum in (8). In other words, our definition of a bottleneck place is
dependent on the routing rules of the net.

We point out that notions comparable to policies are used in [14] in the context of continuous Petri nets
with time attached to transitions.

The dynamics of a Petri net can be expressed in terms of the different policies of the net: at any time t,
there is a policy π∗ (we can note π∗(t) if we want to emphasize the dependence on time) such that

∀q ∈ Q , wpπ∗ (q)(t) = 0 ,

and

∀q ∈ Q s.t. pπ∗(q) 6∈ (Pconflict ∪ Ppriority) ,
mpπ∗ (q)(t)

τpπ∗ (q)
= a−qpπ∗ (q)fq(t) ,

∀q ∈ Q s.t. pπ∗(q) ∈ Pconflict ,
mpπ∗ (q)(t)

τpπ∗ (q)
=
a−qpπ∗ (q)

µqpπ∗ (q)
fq(t) ,

∀q+ ∈ Q s.t. pπ∗(q+) ∈ Ppriority ,
mpπ∗ (q+)(t)

τpπ∗ (q+)
= a−q+pπ∗ (q+)fq+(t) ,

∀q− ∈ Q s.t. pπ∗(q−) ∈ Ppriority ,
mpπ∗ (q−)(t)

τpπ∗ (q−)
= a−q−pπ∗ (q−)fq−(t) + a−q+pπ∗ (q+)fq+(t) .
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Now, for any policy π, we denote by C−π the Q×Q matrix such that the right-hand side of this system of
equations reads C−π f(t) , where f(t) is the vector of the (fq(t))q∈Q. In particular, the above system writes

Sπ∗

(
m(t)

τ

)
= C−π∗f(t) ,

where (m(t)/τ) is the vector of the (mp(t)/τp)p∈P . The diagonal entries of C−π are positive. Moreover,
if we order each transition of type q+ before its associated transition q−, the matrix C−π becomes lower
triangular.1 Hence, C−π is invertible. Matrix C−π can be seen as a specification of the downstream token
flow matrix of the Petri net C− (introduced in Section 2.1), associated with the policy π.

With this notation, the continuous dynamics of Petri nets with free choice and priority routing reads:

f(t) = inf
π s.t. Sπw(t)=0

(C−π )−1Sπ

(
m(t)

τ

)
, (10a)

ṁ(t) = C+f(t)− m(t)

τ
, (10b)

ẇ(t) =
m(t)

τ
− C−f(t) , (10c)

where the infimum must be understood for the partial order over RQ induced by ≤. Note that there is at
least one policy π∗ (depending on t) attaining the infimum. It suffices to choose the policy π∗ introduced
earlier (i.e., to choose a policy that attains the minimum componentwise).

By choosing an upstream place for each transition, a policy actually defines a candidate “bottleneck
net” of the Petri net, that is, a subnet with all the transitions of the original Petri net, and such that
each transition has a unique upstream place. On each of these subnets, the dynamics is linear and yields
a unique trajectory for a given initial condition. The trajectory is solved on a subnet of the original Petri
net, but one can easily recover the solution over the whole Petri net. This applies to the original dynamics
of the system, on any time interval over which the infimum is reached by a constant policy, as stated in the
following proposition.

Proposition 4. Suppose that there is a policy π∗ which reaches the infimum in (10a) for all time t in the
interval [ti, tf ]. Then the dynamics of the Petri net with free choice and priority routing reduces to a linear
system, which admits a unique solution, given the initial conditions (m(ti), w(ti)).

Proof. If π∗ reaches the infimum for any t ∈ [ti, tf ], then the continuous dynamics of the Petri net reads:

C−π∗f(t) = Sπ∗

(
m(t)

τ

)
, (11a)

ṁ(t) = C+f(t)− m(t)

τ
, (11b)

ẇ(t) =
m(t)

τ
− C−f(t) , (11c)

Sπ∗w(t) = 0 , (11d)

which is a linear system.
We multiply (11b) by Sπ∗ , and replace the term Sπ∗(m(t)/τ) by its expression given in (11a). This leads

to:
Sπ∗ṁ(t) = Sπ∗C

+f(t)− C−π∗f(t) .

1We recall that, in our class of Petri nets, we assume that each transition has at most one upstream place subject to priority,
so that this re-ordering is valid.
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Let D = diag(τ) be the P × P diagonal matrix such that Dpp = τp, then Dπ := SπDSπ
T is the Q×Q

diagonal matrix such that (Dπ)qq = τpπ(q). Equation (11a) then writes Sπ∗m(t) = Dπ∗C
−
π∗f(t). This leads

to:
ḟ(t) = (C−π∗)

−1D−1π∗
(
Sπ∗C

+ − C−π∗
)
f(t) ,

which is an ordinary differential system. Moreover, the f(ti) can be obtained from the m(ti) by (11a), so
that this system admits a unique solution f for all t ∈ [ti, tf ].

Given this solution f , one can successively solve the differential system in m given by (11b) and the
differential system in w given by (11c), whose initial conditions are known, so that the whole dynamics
admits a unique trajectory.

4. Stationary solutions

In this section, we prove that the stationary solutions of the continuous and discrete dynamics of a timed
Petri net with free-choice and priority routing are the same. To do so, we first recall in Section 4.1 the
formulation of the discrete dynamics and the associated stationary solutions given in [1].

4.1. Stationary solutions of the discrete dynamics

The discrete dynamics of Petri nets with free choice and priority is expressed in terms of counter variables
associated with transitions and places. Given a transition q, the counter variable zq : R≥0 → N denotes
the number of firings of q that occurred up to time t included. Similarly, the counter variable of place p
is a function xp : R≥0 → N which represents the number of tokens that have visited place p up to time t
included (taking into account the initial marking). On top of being non-decreasing, the counter variables
are càdlàg functions, which means that they are right continuous and have a left limit at any time.

In this setting, the parameter τp associated with the place p represents a minimal holding time. It is
shown in [1] that, if tokens are supposed to be fired as early as possible, the counter variables satisfy the
following equations (we generalize the equations to the case with valuations):

∀p ∈ P , xp(t) = M0
p +

∑
q∈pin

a+qpzq(t) , (12a)

∀p ∈ Pconflict ,
∑
q∈pout

a−qpzq(t) = xp(t− τp) , (12b)

∀q ∈ Qsync , zq(t) = min
p∈qin

xp(t− τp)/a−qp , (12c)

∀p ∈ Ppriority ,

zq+(t) = min

(( 1

a−q+p
xp(t− τp)−

a−q−p

a−q+p
lim
s↑t

zq−(s)
)
, min
r∈qin+ ,r 6=p

1

a−q+r
xr(t− τr)

)
, (12d)

zq−(t) = min

(( 1

a−q−p
xp(t− τp)−

a−q+p

a−q−p
zq+(t)

)
, min
r∈qin− ,r 6=p

1

a−q−r
xr(t− τr)

)
, (12e)

where q+ (q−) is the priority (non priority) output transition of p ∈ Ppriority.
Note that if all the holding times τp are integer multiples of a fixed time δ, the left limit lims↑t zq−(s)

in (12d) can be replaced by zq−(t− δ). This is helpful in particular to simulate these equations.
In the setting of [1], all conflicts are solved by a stationary distribution routing. The equivalent of

the routing rule introduced to solve conflicts in the continuous setting is obtained here by allowing the
tokens to be shared in fractions, so that the counter functions take real values. This corresponds to a fluid
approximation of the discrete dynamics. In this setting, for each p ∈ Pconflict and q ∈ pout, we fix µqp > 0,
giving the proportion of the tokens routed from p to q. We have:

∀p ∈ Pconflict , ∀q ∈ pout , zq(t) =
µqp

a−qp
xp(t− τp) . (13)
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The stationary solutions of the discrete dynamics are defined as functions xp and zq satisfying the
relations (12)–(13) and which ultimately behave as affine functions, i.e., xp(t) = up+tρp and zq(t) = uq+tρq
for all t large enough. In this case, ρp (resp. ρq) represents the asymptotic throughput of place p (resp.
transition q). We have shown in [1, Theorem 3] that these stationary solutions are precisely given by
following system (we generalize the equations to the case with valuations):

∀p ∈ P , ρp =
∑
q∈pin

a+qpρq , (14a)

∀p ∈ Pconflict ,∀q ∈ pout , ρq = µqpρp/a
−
qp , (14b)

∀q ∈ Qsync , ρq = min
p∈qin

ρp/a
−
qp , (14c)

∀p ∈ Ppriority , ρq+ = min
r∈qin+

ρr/a
−
q+r , (14d)

∀p ∈ Ppriority , ρq− = min
((
ρp − a−q+pρq+

)
/a−q−p, min

r∈qin−\{p}
ρr/a

−
q−r

)
, (14e)

∀p ∈ P , up = M0
p +

∑
q∈pin

a+qpuq , (15a)

∀p ∈ Pconflict ,∀q ∈ pout, uq = (µqp/a
−
qp)(up − ρpτp) , (15b)

∀q ∈ Qsync , uq = min
p∈qin,ρq=ρp

(up − ρpτp)/a−qp , (15c)

∀p ∈ Ppriority ,

uq+ =



min
(

(up − ρpτp − a−q−puq−)/a−q+p,

min
r∈qin+ \{p}, ρq+=ρr

(ur − ρrτr)/a−q+r
) if ρq− = 0 ,

min
r∈qin+ \{p}, ρq+=ρr

(ur − ρrτr)/a−q+r otherwise,

(15d)

uq− =



min
(

(up − ρpτp − a−q+puq+)/a−q−p,

min
r∈qin−\{p}, ρq−=ρr

(ur − ρrτr)/a−q−r
) if ρq− + ρq+ = ρp ,

min
r∈qin−\{p}, ρq−=ρr

(ur − ρrτr)/a−q−r otherwise.

(15e)

The above equations are expressed in a more compact form in [1], using a semiring of germs of affine
functions, which encodes lexicographic minimization operations.

4.2. Stationary solutions of the continuous time dynamics

In the continuous setting, we define a stationary solution as a solution (m,w, f) of the continuous
dynamics such that for any place, mp is constant and wp is affine (ẇp is constant). The following theorem
provides a characterization of the stationary solutions.

Theorem 5. A triple (m,w, f) of vectors of resp. |P|, |P| and |Q| functions from R≥0 to R≥0, with all
the mp constant and all the wp affine, is a stationary solution of the continuous dynamics if and only if the

9



following conditions hold:

m

τ
= C+f , (16a)

ẇ =
m

τ
− C−f , (16b)

Cf ≥ 0 , (16c)

and there exists a policy π∗, such that

∀t , Sπ∗w(t) = 0 , (16d)(
Sπ∗C

+ − C−π∗
)
f = 0 . (16e)

Note that the existence of an f  0 that satisfies (16c) provides a simple algebraic necessary condition
to the existence of a stationary flow in a Petri net. This corresponds to the net being partially repetitive
(see [15] for a definition).

Proof. Equations (16a) and (16b) are derived from (10b) and (10c), with ṁ = 0 for a stationary solution.
In a stationary solution, for any place p, ẇp is constant, so that one cannot have ẇp < 0, otherwise this

would yield limt→∞ wp(t) = −∞. Therefore, by (16b), (m/τ) ≥ C−f , and by (16a), we can replace (m/τ)
by C+f , and get (16c).

As the ẇ are constant, if, for some place p and at some time t0 > 0, wp(t0) = 0, then ẇp = 0, (otherwise
it would contradict wp(t) ≥ 0 for 0 ≤ t < t0 or for t > t0). Hence, the set of places p such that wp(t) = 0 is
independent of time for t > 0.

Moreover, the mp are constant, so that, if a policy π attains the minimum in (10a) at some time, then
it attains the minimum at any time. This means that, if (m,w, f) is a solution of the continuous dynamics,
then there exists a policy π∗ such that:

∀t , Sπ∗w(t) = 0 ,

C−π∗f = Sπ∗
(m
τ

)
.

Now, by (16a) again, we can replace m/τ by C+f in the above equation, and we get Equations (16d)
and (16e).

Conversely, suppose that a triple of functions (m,w, f) satisfies the conditions of the theorem, with
policy π∗. We prove that the the relations given in (10) describing the dynamics are satisfied. First, (10b)
and (10c) are derived from (16a) and (16b), with ṁp = 0. We also note that, in Equations (16c) and (16e),
replacing the term C+f by m/τ (by (16a)) leads to the following equations:

C−f ≤ m

τ
, (17)

f = (C−π∗)
−1Sπ∗(

m

τ
) . (18)

Equations (16d) and (18) show that π∗ attains the equality in (10a). Hence, in order to prove (10a), it is
sufficient to prove that, for any π, we have

C−π f ≤ Sπ
(m
τ

)
. (19)

We prove this inequality row by row. Let q be a transition. We distinguish the following cases:

• if q ∈ Qsync, then (C−f)pπ(q) = (C−π f)q for any π (for any choice of an upstream place of q) so that (19)
follows from (17).

• if q has a unique upstream place p, with p ∈ Pconflict, then for any π, pπ(q) = pπ∗(q) so that (19) follows
from (18).

10



• assume now that q+ is the priority transition of a place p subject to priority. Then, by (17), mp/τp ≥
a−q+pfq+ + a−q−pfq− ≥ a−q+pfq+ and for r ∈ qin+ \ {p}, mr/τr ≥ a−q+rfq+ . Finally, for any r ∈ qin+ ,

a−q+pfq+ ≤ mr/τr. This proves (19).

• let q− be the non priority transition of a place p subject to priority. Then (C−f)pπ(q−) = (C−π f)q− for
any policy π, so that (19) follows from (17).

As a consequence of Theorem 5, we obtain a correspondence between the stationary solutions of the
continuous dynamics and the stationary solutions of the discrete dynamics. In order to highlight the parallel
between the discrete and the continuous setting, we denote by fp the processing flow mp/τp for every place
p.

Corollary 6. (i) Suppose (m,w, f) defines a stationary solution of the continuous dynamics. Then, for
the initial marking M0

p = mp, setting ρ := f , up := M0
p , and uq := 0 yields a stationary solution of

the discrete dynamics.

(ii) Conversely, suppose (ρ, u) is a stationary solution of the discrete dynamics. Then, defining f := ρ,
setting mp := ρpτp for every place p, and defining w according to (16b) and (16d) yields a stationary
solution of the continuous dynamics.

Proof. Both statements are straightforward. We point out that (14a) reads ρp = C+ρq and that (14b)–(14e)
are equivalent to ρq = minπ(C−π )−1Sπρp. The same relationship between the fq and the fp was established
in the proof of Theorem 5.

An important problem is to relate the stationary flow to the initial marking. On top of the relations
given by the invariants of the Petri nets, most results in this direction are limited to nets without priorities,
as they rely on monotonicity properties of the dynamics. The next theorem identifies, however, a somehow
special situation in which such a relation persists even in the presence of priority. This applies in particular
to the Petri net of the next section.

Theorem 7. If a trajectory of the continuous Petri net converges towards a stationary solution (m∞, w∞, f∞),
if for this trajectory, there exists a policy π that reaches the infimum in (10a) at any time, and if 0 is a
semi-simple eigenvalue of (SπC

+ − C−π ) associated with this policy, then f∞ is uniquely determined by the
initial marking.

(Recall that the eigenvalue λ of a matrix B is said to be semi-simple if the dimension of its eigenspace is
equal to its algebraic multiplicity, that is, to the multiplicity of λ as the root of the characteristic polynomial
of B. In particular, if 0 is a semi-simple eigenvalue of B, then the kernel of B and its range space are
complementary subspaces.)

Proof. Under the conditions of the theorem, there exists a policy π such that, for any t,

Sπṁ(t) = (SπC
+ − C−π )f(t) , (20)

Sπm(t) = DπC
−
π f(t) , (21)

as shown in the proof of Proposition 4.
Since 0 is a semi-simple eigenvalue of (SπC

+ − C−π ), the same property holds for the matrix (SπC
+ −

C−π )(DπC
−
π )−1 = (SπC

+(C−π )−1 − I)D−1π . Therefore, the kernel of this matrix and its range space are
complementary subspaces. We denote by Q the projection onto the former along the latter.

By (20), we obtain that QSπṁ(t) = Q(SπC
+ − C−π )f(t) = 0, so that QSπm(t) is independent of time,

and
QSπm(0) = QSπm∞ = QDπC

−
π f∞ .

Moreover, as (m∞, w∞, f∞) is a stationary solution of the continuous dynamics, Equation (16e) holds and
DπC

−
π f∞ belongs to the kernel of (SπC

+(C−π )−1 − I)D−1π . Therefore,

f∞ = (C−π )−1D−1π QSπm(0) .
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M0
2 /M

0
1 0.2 0.4 0.6 0.8 1.0 1.2

ρ5 2.857 5.714 8.333 8.333 8.333 8.333
fup5 2.865 5.716 — 8.338 8.339 8.340

fdown
5 2.849 5.707 — 8.328 8.328 8.327

ρ6 0 0 0.238 3.095 5.952 8.333
fup6 < 0.001 < 0.001 — 3.107 5.968 8.340

fdown
6 0 0 — 3.083 5.936 8.327

Table 1: Lower and upper bounds of the throughputs of the continuous dynamics computed by SpaceEx, and comparison to
the stationary throughputs

5. Experimental results

In this section, we illustrate our results on the model of an emergency call center with two treatment
levels, introduced in [1]. In this simplified model of an emergency call center, emergency calls are handled
by a first level of operators who dispatch them into three categories: extremely urgent, urgent and non
urgent. Non-urgent calls (proportion µ4 of the calls) are entirely processed by level 1 operators. Extremely
urgent (µ2) and urgent calls (µ3) are transfered to level 2 operators. Extremely urgent calls have priority
over urgent calls (but cannot interrupt a talk between an operator of level 2 and an urgent call).

This emergency call center can be modeled by a Petri net with free choice and priority routing, as
depicted in Figure 2. Place p3 is a conflict place with a fluid stationary routing, with proportions µ2, µ3,
µ4, representing the dispatching of calls into the categories “extremely urgent”, “urgent” and “non urgent”
respectively. Every arc has a valuation equal to one. The initial marking M0

1 (resp. M0
2 ) of place p1 (p2)

denotes the available number of operators of level 1 (level 2) in the call center.
It was observed in [1] that the discrete dynamics has a pathological feature: when certain arithmetic

relations between the time delays are satisfied, the discrete time trajectory may not converge to a stationary
solution, and its asymptotic throughput may differ from the throughput of the stationary solution. It
follows from our correspondence result (Corollary 6) that the continuous dynamics has the same stationary
solutions. We shall observe that, in this continuous setting, the trajectory converges towards a stationary
solution, so that the former pathology vanishes.

To compute the (fluid approximation) of the discrete dynamics, simulations have been performed in exact
(rational) arithmetics, using the GMP library [11]. The throughput of transitions q5 and q6 (see Figure 2),
for the discrete dynamics, are compared in Figure 3 to the throughputs of the stationary solutions, computed
by Equations (16c) and (16e).

The dynamics expressed by (1)–(2), (5) and (7)–(9) belongs to the class of hybrid automata [12], which
can handle piecewise linear but discontinuous dynamics like ours. We simulate our dynamics with the tool
SpaceEx [9], which is a verification platform for hybrid systems. The particularity of SpaceEx is that it
computes a sound over-approximation of the trajectories.

At the scale of Figure 3, the lower and upper bounds to the values of the throughputs, computed by
SpaceEx, coincide with the shape of the stationary throughputs curve. Table 1 compares the numerical values
of these lower and upper bounds to the stationary throughputs for a few values of M0

2 /M
0
1 . We observe that

the over-approximation computed by SpaceEx provides an accurate estimate of the stationary throughput
computed via Equations (16c)–(16e). This tends to show that the continuous dynamics converges towards
the stationary throughputs, unlike the discrete dynamics.

Note that the experiments made with SpaceEx did not terminate for M0
2 /M

0
1 = 0.6: this seems to be

related with the larger number of switches between the states of the automaton at this frontier between two
different phases.
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p3

p1

M0
1

p2

M0
2

q1

q2 q3 q4

q5

q6

µ2 µ3 µ4

Figure 2: Petri net of a simplified emergency call center. Place p2 is subject to priority routing. The initial markings of the
places different from p1 and p2 are null. Holding times of places p1 and p2 are 0.01. For the other places, the holding times
are, from top to bottom and from left to right: (0.01, 4, 3, 3, 1, 0.01, 6, 7).

6. Conclusion

We introduced a hybrid dynamical system model for continuous Petri nets having both free choice and
priority places, and showed that there is a correspondence between the stationary solutions of the continuous
dynamics and the discrete one. An advantage of the continuous setting is that some pathologies of the
discrete model (failure of convergence to a stationary solution) may vanish. This is the case in particular
on a case study (emergency call center). We leave it for further work to see under which generality the
convergence to the stationary solution can be established.
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