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Abstract. In previous works of the author and others, max-plus methods have been explored for
the solution of first-order, nonlinear Hamilton–Jacobi–Bellman partial differential equations (HJB
PDEs) and corresponding nonlinear control problems. These methods exploit the max-plus linearity
of the associated semigroups. In particular, although the problems are nonlinear, the semigroups
are linear in the max-plus sense. These methods have been used successfully to compute solutions.
Although they provide certain computational-speed advantages, they still generally suffer from the
curse of dimensionality. Here we consider HJB PDEs in which the Hamiltonian takes the form
of a (pointwise) maximum of linear/quadratic forms. The approach to the solution will be rather
general, but in order to ground the work, we consider only constituent Hamiltonians corresponding
to long-run average-cost-per-unit-time optimal control problems for the development. We obtain a
numerical method not subject to the curse of dimensionality. The method is based on construction of
the dual-space semigroup corresponding to the HJB PDE. This dual-space semigroup is constructed
from the dual-space semigroups corresponding to the constituent linear/quadratic Hamiltonians. The
dual-space semigroup is particularly useful due to its form as a max-plus integral operator with a
kernel obtained from the originating semigroup. One considers repeated application of the dual-space
semigroup to obtain the solution.
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1. Introduction. One approach to nonlinear control is through dynamic pro-
gramming (DP). With DP, the solution of the control problem “reduces” to the so-
lution of the corresponding partial differential equation (PDE). In the case of de-
terministic optimal control or deterministic games, where one player’s feedback is
prespecified, the PDE is a Hamilton–Jacobi–Bellman (HJB) PDE. If one can solve
the HJB PDE, then this approach is ideal in that one obtains the optimal control for
the given criterion as opposed to a control meeting only some weaker goal such as
stability. The problem is that one must solve the HJB PDE! We should remark that
such HJB PDEs also arise in robust/H∞ nonlinear filtering and robust/H∞ control
under partial information.

Various approaches have been taken for solution of the HJB PDE. First, note
that it is a fully nonlinear, first-order PDE. Consequently, the solutions are generally
nonsmooth (with the exception of the linear/quadratic case, of course), and one must
use the theory of viscosity solutions [3], [10], [11], [12], [20]. One approach to the
solution is through generalized characteristics (cf. [36], [37], as well as [15], [23] for
classical treatments). This approach can obtain the solution very quickly at a single
point if the solution is smooth. However, the nonsmoothness introduces tremendous
difficulties, which appear, to the author, to be difficult to handle in an automated
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1240 WILLIAM M. McENEANEY

approach. In particular, the projections of the characteristics into the state space
may cross and/or may not cover the entire state space (in analogy with shocks and
rarefaction waves).

The most common methods by far fall into the class of grid-based methods (cf. [3],
[4], [14], [20], [25] among many others). These require that one generate a grid over
some bounded region of the state space. In this general class of methods, we include
finite-difference methods, finite element methods, and those DP-based methods which
map the continuum problem onto some discrete space. Although higher-order grid-
based methods are being explored (cf. [6], [41], [16]), there are still hard lower limits
to the computational growth as a function of the space dimension. In particular,
suppose the region over which one constructs the grid is rectangular, say square, for
simplicity. Further, suppose one uses 100 grid points per dimension. (Clearly 50 would
be the minimum acceptable, and 100 could be a bit sparse.) If the state dimension
is n, then one has 100n grid points. Thus the computations grow exponentially in
state-space dimension n. If the computations per grid point grew with a state-space
dimension such as 2n, then the computations would grow at a rate of (200C)n for
some constant, C. For concreteness, we discuss only the steady-state PDE case here.
If the state-space dimension is 3, it is feasible to solve these problems on current
generation machinery. However, the computations will grow by more than 8 × 106

when going from a dimension 3 problem to a dimension 6 problem. Parallel algorithms
can alleviate this problem to some extent (cf. [5]). However, there can be only rather
limited improvement in the dimension of problems which can be handled by such
techniques.

In recent years, an entirely new class of numerical methods for HJB PDEs has
emerged [19], [34], [1], [22], [32], [31], [33], [30], [28]. These methods exploit the
max-plus (or min-plus [9], [32]) linearity of the associated semigroup. They employ a
max-plus basis function expansion of the solution, and the numerical methods obtain
the coefficients in the basis expansion. We will refer to these methods as max-plus
basis methods. Much of the previous work has concentrated on the (harder) steady-
state HJB PDE class, where (for both max-plus basis and grid-based methods), one
propagates forward in “time” to obtain the steady-state limit solution. With the
max-plus basis methods, the number of basis functions required still typically grows
exponentially with space dimension. For instance, one might use 25 basis functions
per space dimension. Consequently, one still has the curse of dimensionality. With
the max-plus basis methods, the “time-step” tends to be much larger than what can
be used in grid-based methods (since it encapsulates the action of the semigroup
propagation on each basis function), and so these methods can be quite fast on small
problems. Even with a max-plus basis approach, the curse of dimensionality growth is
so fast that one cannot expect to solve general problems of more than, say, dimension
5, on current machinery, and again, the computing machinery speed increases that
are expected in the foreseeable future cannot do much to raise this.

Many researchers have noticed that the introduction of even a single, simple
nonlinearity into an otherwise linear control problem of high dimensionality, say n,
has disastrous computational repercussions. Specifically, one goes from solution of an
n-dimensional Riccati equation to solution of a grid-based or max-plus basis method
over a space of dimension n. While the Riccati equation may be “relatively” easily
solved for large n, the max-plus and grid-based methods have no hope of obtaining
solutions on general problems of dimension, say, n ≥ 6. This has been a frustrating,
counter-intuitive situation for decades.
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This paper discusses an approach to certain nonlinear HJB PDEs which is not sub-
ject to the curse of dimensionality. Although this approach also utilizes the max-plus
algebra, the method is largely unrelated to the max-plus basis approaches discussed
above. In fact, for this new method, the computational growth in the state-space
dimension is on the order of n3. There is of course no “free lunch,” and there is
exponential computational growth in a certain measure of complexity of the Hamilto-
nian. Under this measure, the minimal complexity Hamiltonian is the linear/quadratic
Hamiltonian—corresponding to a solution by a Riccati equation. If the Hamiltonian
is given as a pointwise maximum or minimum of M linear/quadratic Hamiltonians,
then one could say the complexity of the Hamiltonian is M . One could also apply
this approach to a wider class of HJB PDEs with semiconvex Hamiltonians (by ap-
proximation of the Hamiltonian by a finite number of quadratic forms), but that is
certainly beyond the scope of this paper.

The approach has been applied on some simple nonlinear problems. A steady-
state HJB PDE comprised of 2 linear/quadratic components was solved in dimensions
2 and 3 in under 10 seconds on a standard PC, and in 20 seconds over R4. A few
simple examples comprised of 3 linear/quadratic components were solved in 10–20
seconds over R3 and 10–45 seconds over R4. For these particular problems, the
solution was obtained over the entire space (as opposed to a rectangular region)
with the resulting errors in the gradients growing linearly in |x|. (See section 7 for
more information on specific examples.) These speeds are of course unprecedented
in standard general approaches to nonlinear PDEs. This code was not optimized,
and there are many computational cost reduction methods that one could employ to
further reduce computational growth. Further, the computational growth in going
from n = 4 up to, say, n = 6 would be on the order of 63/43 � 4 as opposed to, say,
more than 104 for a grid-based method.

We will be concerned here with HJB PDEs of the form 0 = H̃(x, gradV ), where
the Hamiltonians are given or approximated as

H̃(x, gradV ) = max
m∈{1,2,...,M}

{Hm(x, gradV )}.

In order to make the problem tractable, we will concentrate on a single class of HJB
PDEs: those for long-run average-cost-per-unit-time problems. However, the theory
obviously can be expanded to a much larger class.

Since the development of the proposed method in the following sections takes
quite a few pages, we briefly outline the main points here. First, recall that the
solution of the above PDE is the eigenfunction of the corresponding semigroup, that
is,

0 ⊗ V = V = S̃τ [V ],

where ⊕,⊗ denote max-plus addition and multiplication, and we note that S̃τ is max-
plus linear (cf. [19], [27], [32]). The Legendre–Fenchel transform maps this into the
dual-space eigenfunction problem

0 ⊗ e = B̃τ � e,

where we use the � notation to indicate B̃τ � e
.
=

∫ ⊕
Rn B̃τ (x, y) ⊗ e(y) dy, where∫ ⊕

denotes max-plus integration (maximization). Then one approximates B̃τ �⊕
m∈M Bm

τ , where M .
= {1, 2, . . . ,M} and the Bm

τ correspond to the Hm. The
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1242 WILLIAM M. McENEANEY

max-plus power method [13], [24], [32] suggests that the solution is approximated by
the form

e � lim
N→∞

[ ⊕
m∈M

Bm
τ

]N

� 0 = lim
N→∞

⎡⎣ ⊕
{mi}N

i=1

Bm1
τ ⊗ Bm2

τ ⊗ · · · BmN
τ

⎤⎦� 0,

where the N superscript denotes the � operation N times, and 0 represents the zero-
function. Given linear/quadratic forms for each of the Hm, the Bm

τ are obtained by
Riccati equations. Let eN

.
= [

⊕
m∈M Bm

τ ]N � 0. Then eN → e. The convergence
rate does not depend on the space dimension, but on the dynamics of the problem.
There is no curse of dimensionality. The exponential growth is in M = #M. Given
the solution of the Riccati equations for the Hm, the computation of each product,
Bm1
τ ⊗ Bm2

τ ⊗ · · · BmN
τ , is analytical, modulo n × n matrix inversions (and hence the

n3 computational growth rate).
In section 2, the class of control problems and HJB PDEs which we will use to

demonstrate the theory will be given. We will also review the existing theory relevant
to our problem there. In section 3 the relation between solution of the HJB PDEs
and their corresponding semiconvex dual problems will be discussed. In section 4,
a discrete-time approximation of the semigroup for the problem of interest will be
introduced, and convergence of the solutions of the approximate problems to the
original problem will be obtained. The algorithm itself will be developed in section 5.
The basic algorithm is not subject to the curse of dimensionality. However, practical
implementation requires some additional work; some initial remarks on this appear
in section 6. The algorithm is applied to some simple examples in section 7. Finally,
section 8 sketches some future directions.

2. Sample problem class and review of theory. There are certain conditions
which must be satisfied for solutions to exist and the method to apply. In order that
the assumptions are not completely abstract, we will work with a specific problem
class: the infinite time-horizon H∞ problem with fixed feedback. This class consists
of long-term average-cost-per-unit-time problems. Moreover, it is a problem class in
which there already exists a good deal of results, and so less analysis will be required
for application of the new method.

As indicated above, we suppose the individual Hm are linear/quadratic Hamilto-
nians. Consequently, consider a finite set of linear systems

ξ̇m = Amξm + σmw, ξm0 = x ∈ R
n.(1)

Let w ∈ W .
= Lloc

2 ([0,∞); Rm), where we recall that Lloc
2 ([0,∞); Rm) = {w : [0,∞) →

R
m :

∫ T

0
|wt|2 dt < ∞ for all T < ∞}. Let the cost functionals be

Jm(x, T ;w)
.
=

∫ T

0

1

2
ξmt Dmξmt − γ2

2
|wt|2 dt,(2)

and let the value function (also known as the available storage in this context) be

V m(x) = sup
w∈W

sup
T<∞

Jm(x, T ;w) = lim
T→∞

sup
w∈W

Jm(x, T ;w).(3)

We remark that a generalization of the second term in the integrand of the cost
functional to 1

2w
TCmw with Cm symmetric and positive definite is not needed since
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this is equivalent to a change in σm in the dynamics (1). Obviously Jm and V m

require some assumptions in order to guarantee their existence. The assumptions will
hold throughout the paper. Since these assumptions only appear together, we will
refer to this entire set of assumptions as assumption block (A.m), and these are as
follows:

(A.m)

Assume that there exists cA ∈ (0,∞) such that

xTAmx ≤ −cA|x|2 ∀x ∈ R
n, m ∈ M.

Assume that all Dm are positive definite and symmetric, and let cD be
such that

xTDmx ≤ cD|x|2 ∀x ∈ R
n, m ∈ M

(which is obviously equivalent to all eigenvalues of the Dm being no
greater than cD). Lastly, assume that γ2/c2σ > cD/c2A, where cσ ≥ σm.

Note that these assumptions guarantee the existence of the V m as locally bounded
functions which are zero at the origin (cf. [35]). (These assumptions could be weak-
ened by using the specific linear/quadratic structure, but that would distract from
the goal of this paper.) The corresponding HJB PDEs are

0 = −Hm(x, gradV )(4)

= −
{

1

2
xTDmx + (Amx)T gradV + max

w∈Rm

[
(σmw)T gradV − γ2

2
|w|2

]}
= −

{
1

2
xTDmx + (Amx)T gradV +

1

2
gradV TΣm gradV

}
V (0) = 0,

where Σm .
= 1

γ2σ
m(σm)T . Let R

− .
= R∪{−∞}. Recall that a function, φ : R

n → R
−

is semiconvex if given any R ∈ (0,∞) there exists kR ∈ R such that φ(x) + kR

2 |x|2
is convex over BR(0) = {x ∈ R

n : |x| ≤ R}. For a fixed choice of cA, cσ, γ > 0
satisfying the above assumptions, and for any δ ∈ (0, γ), we define

Gδ =

{
V : R

n → [0,∞)

∣∣∣∣V is semiconvex and V (x) ≤ cA(γ − δ)2

c2σ
|x|2 ∀x ∈ R

n

}
.

From [35] (undoubtedly among many others), each value function (3) is the unique
viscosity solution of its corresponding HJB PDE (4) in the class Gδ for sufficiently
small δ > 0.

From the structure of the running cost and dynamics, it is easy to see (cf. [42],
[35]) that each V m satisfies

V m(x) = sup
T<∞

sup
w∈W

Jm(x, T ;w) = lim
T→∞

sup
w∈W

Jm(x, T ;w)
.
= lim

T→∞
V m,f (x, T ),(5)

and that each V m,f is the unique continuous viscosity solution of (cf. [3], [20])

0 = VT −Hm(x, gradV ), V (0, x) = 0.(6)

It is easy to see that these solutions have the form V m,f (x, t) = 1
2x

TPm,f
t x, where

each Pm,f satisfies the differential Riccati equation

Ṗm,f = (Am)TPm,f + Pm,fAm + Dm + Pm,fΣmPm,f , Pm,f
0 = 0.(7)
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By (5) and (7), the V m take the form V (x) = 1
2x

TPmx, where Pm = limt→∞ Pm,f
t .

With this form and (4) (or (7)), we see that the Pm satisfy the algebraic Riccati
equations

0 = (Am)TPm + PmAm + Dm + PmΣmPm.(8)

Combining this with the above, one has the following.
Theorem 2.1. Each value function (3) is the unique classical solution of its

corresponding HJB PDE (4) in the class Gδ for sufficiently small δ > 0. Further,
V m(x) = 1

2x
TPmx, where Pm is the smallest symmetric, positive definite solution of

(8).
The duality between viscosity (and/or classical) solutions of the HJB PDEs and

the corresponding value functions is certainly very important. However, the method
we will use to obtain these value functions/HJB PDE solutions will be through the
associated semigroups. These semigroups are equivalent to dynamic programming
principles (DPPs). Consequently, for each m we define the semigroup

Sm
T [φ]

.
= sup

w∈W

[∫ T

0

1

2
(ξmt )TDmξmt − γ2

2
|wt|2 dt + φ(ξmT )

]
,(9)

where ξm satisfies (1). By [35], the domain of Sm
T includes Gδ for all δ > 0. The

following result is similar to that in [32]; the only significant difference is that, in this
case, V m(x) = 1

2x
TPmx is smooth.

Theorem 2.2. Fix any T > 0. Each value function, V m, is the unique smooth
solution of V = Sm

T [V ] in the class Gδ for sufficiently small δ > 0. Further, given any
V ∈ Gδ, limT→∞ Sm

T [V ](x) = V m(x) for all x ∈ R
n (uniformly on compact sets).

Recall that the HJB PDE problem of interest is

0 = −H̃(x, gradV )
.
= − max

m∈M
Hm(x, gradV ), V (0) = 0.(10)

The corresponding value function is

Ṽ (x) = sup
w∈W

sup
μ∈D∞

J̃(x,w, μ)
.
= sup

w∈W
sup

μ∈D∞

sup
T<∞

∫ T

0

lμt(ξt) −
γ2

2
|wt|2 dt,(11)

where lμt(x) = 1
2x

TDμtx, D∞ = {μ : [0,∞) → M : measurable }, and ξ satisfies

ξ̇ = Aμtξ + σμtwt, ξ0 = x.(12)

Theorem 2.3. Value function Ṽ is the unique viscosity solution of (10) in the
class Gδ for sufficiently small δ > 0.

Remark 2.4. The proof of Theorem 2.3 is nearly identical to the proofs of The-
orems 2.5 and 2.6 from [35], with only trivial changes, and so is not included. In
particular, rather than choosing any w ∈ W, one chooses both any w ∈ W and any
μ ∈ D∞.

Define the semigroup

S̃T [φ] = sup
w∈W

sup
μ∈DT

[∫ T

0

lμt(ξt) −
γ2

2
|wt|2 dt + φ(ξT )

]
,(13)

where DT = {μ : [0, T ) → M : measurable }. In analogy with Theorem 2.2, one has
the following.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CURSE-OF-DIMENSIONALITY-FREE METHOD 1245

Theorem 2.5. Fix any T > 0. Value function Ṽ is the unique continuous
solution of V = S̃T [V ] in the class Gδ for sufficiently small δ > 0. Further, given any

V ∈ Gδ, limT→∞ S̃T [V ](x) = Ṽ (x) for all x ∈ R
n (uniformly on compact sets).

The proof is nearly identical to the proof of a similar result in [32] and so is not
included. In particular, the only change is the addition of the supremum over DT—
which makes no substantial change in the proof. More important, we also have the
following.

Theorem 2.6. There exists cV > 0 such that Ṽ (x) − 1
2cV |x|2 is strictly convex.

Proof. Fix any x, ν ∈ R
n with |ν| = 1 and any δ > 0. Let ε > 0. Given x, let

wε ∈ W, με ∈ D∞ be ε-optimal for Ṽ (x). Then

Ṽ (x− δν) − 2Ṽ (x) + Ṽ (x + δν)

≥ J̃(x− δν, wε, με) − 2J̃(x,wε, με) + J̃(x + δν, wε, με) − 2ε.(14)

Let ξδ, ξ0, ξ−δ be solutions of dynamics (12), but with initial conditions ξδ0 = x + δν,
ξ0
0 = x, and ξ−δ

0 = x− δν, respectively, where the inputs are wε and με for all three
processes. Then

ξ̇δ − ξ̇0 = Aμε
t [ξδ − ξ0] and ξ̇0 − ξ̇−δ = Aμε

t [ξ0 − ξ−δ].(15)

Letting Δ+
t

.
= ξδt − ξ0

t , one also has ξ0
t − ξ−δ

t = Δ+
t , and by linearity one finds

Δ̇+ = Aμε
t Δ+. Also, using (14) and (11), we have

Ṽ (x− δν) − 2Ṽ (x) + Ṽ (x + δν) ≥
∫ ∞

0

(Δ+)TDμε
t Δ+ dt− 2ε.(16)

Also, by the finiteness of M, there exists K < ∞ such that

d

dt
|Δ+|2 = 2(Δ+)TAμε

t Δ+ ≥ −K|Δ+|2,

which implies

|Δ+|2 ≥ e−Ktδ2 ∀ t ≥ 0.(17)

Let λD
.
= min{λ ∈ R : λ is an eigenvalue of a Dm}. By the positive definiteness

of the Dm and finiteness of M, λD > 0. Consequently, by (16), and then (17),

Ṽ (x− δν) − 2Ṽ (x) + Ṽ (x + δν) ≥
∫ ∞

0

λD|Δ+|2 dt− 2ε ≥ λD

K
δ2 − 2ε.(18)

Since ε > 0 and |ν| = 1 were arbitrary, one obtains the result.

3. Max-plus spaces and dual operators. Again, recall that a function φ :
R

n → R
− is semiconvex if, given any R ∈ (0,∞), there exists βR ∈ R such that

φ(x) + βR

2 |x|2 is convex over BR(0) = {x ∈ R
n : |x| ≤ R}. We will modify this

definition by allowing the βR to be n×n, symmetric, and positive or negative definite
matrices. We will denote the set of such matrices as Dn. We say φ is uniformly
semiconvex with (symmetric, definite matrix) constant β ∈ Dn if φ(x) + 1

2x
Tβx is

convex over R
n. Let Sβ = Sβ(Rn) be the set of functions mapping R

n into R
− which

are uniformly semiconvex with (symmetric, definite matrix) constant β. (A negative
definite semiconvexity constant corresponds to functions which are still convex after
subtracting a convex quadratic.) Also note that Sβ is a max-plus vector space (also
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known as a moduloid) [19], [32], [2], [8], [26]. For instance, α1 ⊗ φ1 ⊕ α2 ⊗ φ2 ∈ Sβ

for all α1, α2 ∈ R
− and all φ1, φ2 ∈ Sβ . Combining Theorems 2.1 and 2.6, we have

the following.
Theorem 3.1. There exists β ∈ Dn such that given any β such that β − β > 0

(i.e., β−β positive definite), Ṽ ∈ Sβ and V m ∈ Sβ for all m ∈ M. Further, one may

take β negative definite (i.e., Ṽ , V m are convex).
We henceforth assume we have chosen β such that β − β > 0.
Throughout the remainder, we will employ certain transform kernel functions,

ψ : R
n × R

n → R, which take the form

ψ(x, z) = 1
2 (x− z)TC(x− z)

with nonsingular, symmetric C satisfying C+β < 0 (i.e., C+β negative definite). The
following semiconvex duality result [19], [31], [32] requires only a small modification
of convex duality and Legendre–Fenchel transform results [38], [39].

Theorem 3.2. Let φ ∈ Sβ. Let C and ψ be as above. Then, for all x ∈ R
n,

φ(x) = max
z∈Rn

[ψ(x, z) + a(z)](19)

=

∫ ⊕

Rn

ψ(x, z) ⊗ a(z) dz = ψ(x, ·) � a(·),(20)

where for all z ∈ R
n,

a(z) = − max
x∈Rn

[ψ(x, z) − φ(x)](21)

= −
∫ ⊕

Rn

ψ(x, z) ⊗ [−φ(x)] dx = −{ψ(·, z) � [−φ(·)]} ,(22)

which, using the notation of [8],

=
{
ψ(·, z) � [φ−(·)]

}−
.(23)

We will refer to a as the semiconvex dual of φ (with respect to ψ).
Remark 3.3. We note that φ ∈ Sβ implies that φ is locally Lipschitz (cf. [18]).

We also note that if φ ∈ Sβ and if there is any x ∈ R
n such that φ(x) = −∞, then

φ ≡ −∞. Henceforth, we will ignore the special case of φ ≡ −∞ and assume that all
functions are real-valued.

Semiconcavity is the obvious analogue of semiconvexity. In particular, a function,
φ : R

n → R∪{+∞}, is uniformly semiconcave with constant β ∈ Dn if φ(x)− 1
2x

Tβx

is concave over R
n. Let S−

β be the set of functions mapping R
n into R∪{+∞} which

are uniformly semiconcave with constant β.
Lemma 3.4. Let φ ∈ Sβ (still with C + β < 0), and let a be the semiconvex dual

of φ. Then a ∈ S−
d for some d ∈ Dn such that C + d < 0.

Proof. A proof only in the case φ ∈ C2 is provided; in the more general case, a
mollification argument can be employed.

Noting that φ ∈ Sβ and −C − β > 0, there exists a unique minimizer,

x(z) = argmin
x∈R

[φ(x) − ψ(x, z)],

and one has

a(z) = φ(x(z)) − ψ(x(z), z).(24)
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Fix any z, ν ∈ R
n with |ν| = 1. Define as : R → R and xs : R → R

n by

as(δ)
.
= a(z + δν) and xs(δ) = x(z + δν).(25)

We will obtain a lower bound on the second derivative of as, and this will prove the
result. Differentiating as, one has

das

dδ

∣∣∣∣∣
δ=0

=
d

dδ
[φ(x(z + δν)) − ψ(x(z + δν), z + δν)]

= gradx φ(x(z)) · dx
s

dδ
− gradx ψ(x(z), z) · dx

s

dδ
− gradz ψ(x(z), z) · ν,

which, using the fact that gradx φ(x(z)) − gradx ψ(x(z), z) = 0,

= − gradz ψ(x(z), z) · ν.

Differentiating again, one finds

d2as

dδ2

∣∣∣∣∣
δ=0

= −
n∑

i=1

⎧⎨⎩
n∑

j=1

ψzixj
(x(z), z)

dxs
j

dδ
νi +

n∑
k=1

ψzizk(x(z), z)νkνi

⎫⎬⎭(26)

= −νTCν + νTC
dxs

dδ

∣∣∣∣∣
δ=0

.(27)

Now, differentiating both sides of gradx φ(x(z + δν))− gradx ψ(x(z + δν), z + δν) = 0
yields

n∑
j=1

φxixj

dxs
j

dδ
−

n∑
k=1

ψxixk

dxs
k

dδ
−

n∑
l=1

ψxizlνl = 0 ∀ i,

which yields

dxs

dδ
= − [φxx(x(z), z) − C]

−1
Cν.(28)

Substituting (28) into (27), one obtains

d2as

dδ2
= νT

{
−C + C [C − φxx(x(z), z)]

−1
C
}
ν.(29)

Now, φ ∈ Sβ implies −φxx(x(z)) − β < 0, which implies that there exists k0 > 0
such that

νT [−β − φxx(x(z))] ν < −k0|ν|2 ∀ ν.

Combining this with the fact that C + β < 0 implies that

νT [C − φxx(x(z))]ν < −k0|ν|2 ∀ ν.

Now, C − φxx(x(z)) being symmetric, negative definite implies that C − φxx(x(z)) =
UΛUT for some diagonal Λ (with all diagonal entries negative, of course) and some
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real, unitary U . Consequently, [C − φxx(x(z))]−1 = UΛ−1UT < 0, which is negative
definite. Then, since ζT [C − φxx(x(z))]−1ζ < 0 for all ζ ∈ R

n, ζ �= 0, one sees that

νTC[C − φxx(x(z))]−1Cν < 0

for all ν ∈ R
n, ν �= 0, and so

C[C − φxx(x(z))]−1C < 0.(30)

Let d
.
= −C+ 1

2C[C−φxx(x(z))]−1C. Then, by (30), C+d = 1
2C[C−φxx(x(z))]−1C <

0. (Note that if d is not definite, then by addition of εI for arbitrarily small ε, one
can make d definite without violating the inequalities.) Further, by (29) and (30),

d2as

dδ2

∣∣∣∣∣
δ=0

= νT
[
d +

1

2
C[C − φxx(x(z))]−1C

]
ν < νT dν,

which yields the result.

Remark 3.5. Fix any δ > 0 such that Ṽ ∈ Gδ, and let Kδ = 2 cA(γ−δ)2

c2σ
so

that 0 ≤ Ṽ (x) ≤ Kδ

2 |x|2. Then, using Lemma 3.4 and the monotonicity of the dual

operations, the semiconvex dual, ã, of Ṽ is in S−
d ∩ G−

δ for some d ∈ Dn such that
C + d < 0, where G−

δ is the space of semiconcave functions satisfying

0 ≤ ã(z) ≤ 1
2z

TQ−
δ z,

where Q−
δ

.
= C(C −KδI)

−1Kδ(C −KδI)
−1C −K2

δ (C −KδI)
−1C(C −KδI)

−1, and
where the last term on the right is the dual of Kδ

2 |x|2. Further, by the monotonicity

of the dual operations, any a ∈ G−
δ has dual V ∈ Gδ.

Lemma 3.6. Let φ ∈ Sβ with semiconvex dual a. Suppose b ∈ S−
d with C + d < 0

is such that φ = ψ(x, ·) � b(·). Then b = a.
Proof. Note that −b ∈ Sd. Therefore, for all y ∈ R

n, we have −b(y) =
maxζ∈Rn [ψ(y, ζ) + α(ζ)], or equivalently,

b(y)= −max
ζ∈Rn

[ψ(y, ζ) + α(ζ)],(31)

where for all ζ ∈ R
n,

α(ζ)= − max
y∈Rn

[ψ(y, ζ) + b(y)],

which by assumption

= −φ(ζ).(32)

Combining (31) and (32), and then using (21), one obtains

b(y) = −max
ζ∈Rn

[ψ(y, ζ) − φ(ζ)] = a(y) ∀ y ∈ R
n.

We will hereafter refer to the uniqueness of the semiconvex dual in the sense of
Lemma 3.6 simply as the uniqueness of the semiconvex dual. It will be critical to the
method that the functions obtained by application of the semigroups to the ψ(·, z) be
semiconvex with less concavity than the ψ(·, z) themselves. In other words, we will

want, for instance, S̃τ [ψ(·, z)] ∈ S−(c+εI) for some ε > 0. This is the subject of the
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next theorem. Also, in order to keep the theorem statement clean, we will first state
some definitions. Define

λD
.
= min{λ ∈ R : λ is an eigenvalue of Dm, m ∈ M}.

Note that the finiteness of M and positive definiteness of the Dm imply that λD > 0.
Let

IC
.
=

{
C ∈ Dn

∣∣∣∣ min
|ν|=1

min
m∈M

νT
[
AmTC + CAm

]
ν ≥ −λD/4

}
.

Theorem 3.7. Let C ∈ IC . Then there exists τ > 0 and η > 0 such that for all
τ ∈ [0, τ ],

S̃τ [ψ(·, z)], Sm
τ [ψ(·, z)] ∈ S−(C+ηIτ).

Remark 3.8. If we restrict our attention to C = cI for some c ∈ R, then C ∈ IC
if one takes |c| ≤ λD/[8 maxm∈M |Am|], c �= 0, and so the theorem condition can be
satisfied.

Proof. We prove the result only for S̃τ . The proof for Sm
τ is nearly identical and

slightly simpler.
The first portion of the proof is similar to the proof of Theorem 2.6. Again, fix any

x, ν ∈ R
n with |ν| = 1 and any δ > 0. Fix τ > 0 (to be specified below), and let ε >

0. Let wε, με be ε-optimal for S̃τ [ψ(·, z)](x). Specifically, suppose Îψ(x, τ, wε, με) ≥
S̃τ [ψ(·, z)](x) − ε, where

Îψ(x, τ, w, μ)
.
=

∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + ψ(ξτ , z)(33)

and ξt satisfies (12). For simplicity of notation, let V̂ τ,ψ = S̃τ [ψ(·, z)]. Then

V̂ τ,ψ(x− δν) − 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν)

≥ Îψ(x− δν, τ, wε, με) − 2Îψ(x, τ, wε, με) + Îψ(x + δν, τ, wε, με) − 2ε.(34)

Let ξδ, ξ0, ξ−δ,Δ+ be as given in the proof of Theorem 2.6. Note that

ψ(ξδτ , z) − 2ψ(ξ0
τ , z) + ψ(ξ−δ

τ , z) = (Δ+
τ )TCΔ+

τ .(35)

Note also that as in the proof of Theorem 2.6,

1

2

[
ξδtD

με
t ξδt − 2ξ0

tD
με
t ξ0

t + ξ−δ
t Dμε

t ξ−δ
t

]
= (Δ+

t )TDμε
t Δ+

t .(36)

Combining (33), (34), (35), and (36), one obtains

V̂ τ,ψ(x− δν) − 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν)

≥
∫ τ

0

(Δ+
t )TDμε

t Δ+
t dt + (Δ+

τ )TCΔ+
τ − 2ε.(37)

Further, noting as before that Δ̇+ = Aμε
t Δ+, one has

Δ+
t = exp

{∫ t

0

Aμε
r dr

}
δν

.
= Λε

tδν.(38)
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Combining (37) and (38), one has

V̂ τ,ψ(x− δν) − 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν)

≥ δ2

{∫ τ

0

νT (Λε
t )

TDμε
t Λε

tν dt + νT (Λε
τ )

TCΛε
τν

}
− 2ε.

However, since λD > 0 and Λε
0 = I, there exists τ̄ > 0 such that for all τ ∈ (0, τ̄),

≥ δ2

[
λD

2
τ + νTCν

]
+ δ2

[
νT (Λε

τ )
TCΛε

τν − νTCν
]
− 2ε.(39)

Now define gνt
.
= νT (Λε

t )
TCΛε

tν − νTCν. Noting that d
dt [Λ

ε
t ] = Aμε

t Λε
t , one

obviously has

dgν

dt
= νT

[
(Λε

t )
T (Aμε

t )TCΛε
t + (Λε

t )
TCAμε

t Λε
t

]
ν,

and consequently,

gνt =

∫ t

0

νT
[
(Λε

r)
T (Aμε

r )TCΛε
r + (Λε

r)
TCAμε

rΛε
r

]
ν dr.(40)

Also, define

ḡνt
.
=

∫ t

0

νT
[
(Aμε

r )TC + CAμε
r

]
ν dr.

Noting that Λε
t is continuous, and that Λε

0 = I, one sees that there exist δ̂ > 0 and
τ̂ > 0 such that for all τ ∈ (0, τ̂),

|gνt − ḡνt | ≤
δ̂

2
t2 ∀ t ∈ (0, τ̂).(41)

Let τ̃ = min{τ̄ , τ̂ , λD

4δ̂
}. By (39) and the definition of gν ,

V̂ τ,ψ(x− δν)−2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν) ≥ δ2νTCν + δ2

[
λD

2
τ + ḡντ − |gντ − ḡντ |

]
− 2ε,

which, by the definition of ḡν and (41)

≥ δ2νTCν + δ2

[
λD

2
τ +

∫ τ

0

νT
[
(Aμε

r )TC + CAμε
r

]
ν dr − δ̂

2
τ2

]
− 2ε,

which, by the definition of τ̃ and the assumption that C ∈ IC ,

≥ δ2νTCν + δ2λDτ

8
− 2ε ∀ τ ∈ (0, τ̃).

Since this is true for all ε > 0, letting η = λD/8, one has

V̂ τ,ψ(x− δν) − 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν) ≥ δ2νT [C + ηIτ ]ν ∀ τ ∈ (0, τ̃).

Corollary 3.9. We may choose C ∈ Dn such that Ṽ , V m ∈ S−C , and such that
with ψ, τ , η as in the statement of Theorem 3.7,

S̃τ [ψ(·, z)], Sm
τ [ψ(·, z)] ∈ S−(C+ηIτ) ∀ τ ∈ [0, τ ].
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Henceforth, we suppose C chosen so that the results of Corollary 3.9 hold. We
also suppose τ, η chosen according to the corollary as well.

Now for each z ∈ R
n, S̃τ [ψ(·, z)] ∈ S−(C+ηIτ). Therefore, by Theorem 3.2,

S̃τ [ψ(·, z)](x) =

∫ ⊕

Rn

ψ(x, y) ⊗ B̃τ (y, z) dy = ψ(x, ·) � B̃τ (·, z),(42)

where for all y ∈ R
n,

B̃τ (y, z) = −
∫ ⊕

Rn

ψ(x, y)⊗
{
−S̃τ [ψ(·, z)](x)

}
dx =

{
ψ(·, y)�[S̃τ [ψ(·, z)](·)]−

}−
.(43)

It is handy to define the max-plus linear operator with “kernel” B̃τ (where we do

not rigorously define the term kernel, as it will not be needed here) as
̂̃Bτ [α](z)

.
=

B̃τ (z, ·) � α(·) for all α ∈ S−C .
Proposition 3.10. Let φ ∈ S−C with the semiconvex dual denoted by a. Define

φ1 = S̃τ [φ]. Then φ1 ∈ S−(C+ηIτ), and

φ1(x) = ψ(x, ·) � a1(·),
where

a1(x) = B̃τ (x, ·) � a(·).

Proof. The proof that φ1 ∈ S−(C+ηIτ) is similar to the proof of Theorem 3.7.
Consequently, we prove only the second assertion:

φ1(x)= sup
w∈W

sup
μ∈D∞

[∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + φ(ξτ )

]
= sup

w∈W
sup

μ∈D∞

max
z∈Rn

[∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + ψ(ξτ , z) + a(z)

]
= max

z∈Rn

{
S̃τ [ψ(·, z)](x) + a(z)

}
,

which by (42),

= max
z∈Rn

max
y∈Rn

{
ψ(x, y) + B̃τ (y, z) + a(z)

}
=

∫ ⊕

y∈Rn

∫ ⊕

z∈Rn

B̃τ (y, z) ⊗ a(z) dz ⊗ ψ(x, y) dy

=

∫ ⊕

y∈Rn

a1(x) ⊗ ψ(x, y) dy.

Theorem 3.11. Let V ∈ S−C , let a be its semiconvex dual (with respect to ψ),

and suppose B̃τ (z, ·) � a(·) ∈ S−
d with C + d < 0. Then V = S̃τ [V ] if and only if

a(z)= max
y∈Rn

[
B̃τ (z, y) + a(y)

]
,

which of course

=

∫ ⊕

Rn

B̃τ (z, y) ⊗ a(y) dy = B̃τ (z, ·) � a(·) =
̂̃Bτ [a](z) ∀ z ∈ R

n.
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Proof. Since a is the semiconvex dual of V , for all x ∈ R
n,

ψ(x, ·) � a(·)= V (x) = S̃τ [V ](x)

= S̃τ

[
max
z∈Rn

{ψ(·, z) + a(z)}
]

(x)

= sup
w∈W

sup
μ∈D∞

[∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + max

z∈Rn
{ψ(ξτ , z) + a(z)}

]
= max

z∈Rn

[
a(z) + sup

w∈W
sup

μ∈D∞

{∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + ψ(ξτ , z)

}]
= max

z∈Rn

{
a(z) + S̃τ [ψ(·, z)](x)

}
=

∫ ⊕

Rn

a(z) ⊗ S̃τ [ψ(·, z)](x) dz,

which by (42)

=

∫ ⊕

Rn

a(z) ⊗
∫ ⊕

Rn

B̃τ (y, z) ⊗ ψ(x, y) dy dz

=

∫ ⊕

Rn

∫ ⊕

Rn

B̃τ (y, z) ⊗ a(z) ⊗ ψ(x, y) dy dz

=

∫ ⊕

Rn

[∫ ⊕

Rn

B̃τ (y, z) ⊗ a(z) dz

]
⊗ ψ(x, y) dy

=

[∫ ⊕

Rn

B̃τ (·, z) ⊗ a(z) dz

]
� ψ(x, ·),

where by Proposition 3.10, the first term is in S−(C+ηIτ). Combining this with Lemma
3.6, one has

a(y) =

∫ ⊕

Rn

B̃τ (·, z) ⊗ a(z) dz = B̃τ (y, ·) � a(·) ∀ y ∈ R
n.

The reverse implication follows by supposing a(·) = B̃τ (y, ·)� a(·) and reordering the
above argument.

Corollary 3.12. Value function Ṽ is given by Ṽ (x) = ψ(x, ·)� ã(·), where ã is
the unique solution of

ã(y) = B̃τ (y, ·) � ã(·) ∀ y ∈= R
n,

or equivalently, ã =
̂̃Bτ [ã].

Proof. Combining Theorems 2.5 and 3.11 yields the assertion that Ṽ has this
representation. The uniqueness follows from the uniqueness assertion of Theorem 2.5
and Lemma 3.6.

Similarly, for each m ∈ M and z ∈ R
n, we have Sm

τ [ψ(·, z)] ∈ S−(C+ηIτ) and

Sm
τ [ψ(·, z)](x) = ψ(x, ·) � Bm

τ (·, z) ∀x ∈ R
n,

where

Bm
τ (y, z) =

{
ψ(·, y) �

[
Sm
τ [ψ(·, z)]

]−
(·)

}−
∀ y ∈ R

n.

As before, it will be handy to define the max-plus linear operator with “kernel” Bm
τ

as B̂m
τ [a](z)

.
= Bm

τ (z, ·) � a(·) for all a ∈ S−C . Further, one also obtains analogous
results (by similar proofs). In particular, one has the following.
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Theorem 3.13. Let V ∈ S−C , and let a be its semiconvex dual (with respect to
ψ). Then V = Sm

τ [V ] if and only if

a(z)= Bm
τ (z, ·) � a(·) ∀ z ∈ R

n.

Corollary 3.14. Each value function V m is given by V m(x) = ψ(x, ·)� am(·),
where each am is the unique solution of the problem am(y) = Bm

τ (y, ·) � am(·) for all
y ∈ R

n.

4. Discrete-time approximation. The method developed here will not involve
any discretization over space. Of course this is obvious since otherwise one could
not avoid the curse of dimensionality. The discretization will be over time where
approximate μ processes will be constant over the length of each time-step.

We define the operator S̄τ on Gδ by

S̄τ [φ](x)= sup
w∈W

max
m∈M

[∫ τ

0

lm(ξmt ) − γ2

2
|wt|2 dt + φ(ξmτ )

]
(x)

= max
m∈M

Sm
τ [φ](x),

where ξm satisfies (1). Let

Bτ (y, z)
.
= max

m∈M
Bm
τ (y, z) =

⊕
m∈M

Bm
τ (y, z) ∀ y, z ∈ R

n.

The corresponding max-plus linear operator is

B̂τ =
⊕
m∈M

B̂m
τ .

Lemma 4.1. For all z ∈ R
n, we have S̄τ [ψ(·, z)] ∈ S−(C+ηIτ). Further,

S̄τ [ψ(·, z)](x) = ψ(x, ·) � Bτ (·, z) ∀x ∈ R
n.(44)

Proof. We provide the proof of the last statement as follows:

S̄τ [ψ(·, z)](x)= max
m∈M

Sm
τ [ψ(·, z)](x) = max

m∈M
ψ(x, ·) � Bm

τ (·, z)

= max
m∈M

max
y∈Rn

[ψ(x, y) + Bm
τ (y, z)] = max

y∈Rn

[
ψ(x, y) + max

m∈M
Bm
τ (y, z)

]
= ψ(x, ·) �

[
max
m∈M

Bm
τ (·, z)

]
.

We remark that, parameterized by τ , the operators S̄τ do not necessarily form a
semigroup, although they do form a sub-semigroup (i.e., S̄τ1+τ2 [φ](x) ≤ S̄τ1 S̄τ2 [φ](x)

for all x ∈ R
n and all φ ∈ S−C). In spite of this, one does have Sm

τ ≤ S̄τ ≤ S̃τ for all
m ∈ M.

With τ acting as a time-discretization step size, let

Dτ
∞ =

{
μ : [0,∞) → M| for each n ∈ N ∪ {0}, there exists mn ∈ M

such that μ(t) = mn ∀ t ∈ [nτ, (n + 1)τ)
}
,
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and for T = n̄τ with n̄ ∈ N define Dτ
T similarly but with domain [0, T ) rather than

[0,∞). Let Mn̄ denote the outer product of M, n̄ times. Let T = n̄τ , and define

¯̄S
τ

T [φ](x) = max
{mk}n̄−1

k=0∈Mn̄

{
n̄−1∏
k=0

Smk
τ

}
[φ](x) = (S̄τ )

n̄[φ](0),

where the Π notation indicates operator composition, and the superscript in the last
expression indicates repeated application of S̄τ , n̄ times.

We will approximate Ṽ by solving V = S̄τ [V ] via its dual problem a = B̂τ [a] for
small τ . Consequently, we will need to show that there exists a solution to V = S̄τ [V ],
that the solution is unique, and that it can be found by solving the dual problem. We
begin with existence.

Theorem 4.2. Let

V (x)
.
= lim

N→∞
¯̄S
τ

Nτ [0](x)(45)

for all x ∈ R
n, where 0 here represents the zero-function. Then, V satisfies

V = S̄τ [V ], V (0) = 0.(46)

Further, 0 ≤ V m ≤ V ≤ Ṽ for all m ∈ M, and consequently, V ∈ Gδ.
Proof. Note that

V m(x)= lim
N→∞

Sm
Nτ [0](x) ≤ lim sup

N→∞
¯̄S
τ

Nτ [0]

≤ lim
N→∞

S̃Nτ [0](x) = Ṽ (x) ∀x ∈ R
n.(47)

Also,

¯̄S
τ

(N+1)τ [0](x)= ¯̄S
τ

Nτ [S̄τ [0](·)](x)(48)

= sup
ŵ∈W

sup
μ̂∈DNτ

∫ Nτ

0

lμ̂t(ξt) −
γ2

2
|ŵt|2 dt

+ sup
w∈W

max
m∈M

∫ (N+1)τ

Nτ

lm(ξt) −
γ2

2
|wt|2 dt,

which by taking w ≡ 0

≥ sup
ŵ∈W

sup
μ̂∈DNτ

∫ Nτ

0

lμ̂t(ξt) −
γ2

2
|ŵt|2 dt = ¯̄S

τ

Nτ [0](x),(49)

which implies that ¯̄S
τ

Nτ [0](x) is a monotonically increasing function of N . Since it is
also bounded from above (by (47)), one finds

V m(x) ≤ lim
N→∞

¯̄S
τ

Nτ [0](x) ≤ Ṽ (x) ∀x ∈ R
n,(50)

which also justifies the use of the limit definition of V in the statement of the theorem.
In particular, one has 0 ≤ V m ≤ V ≤ Ṽ , and so V ∈ Gδ.

Fix any x ∈ R
n, and suppose there exists δ > 0 such that

V (x) ≤ S̄τ [V ](x) − δ.(51)
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However, by the definition of V , given any y ∈ R
n, there exists Nδ < ∞ such that for

all N ≥ Nδ,

V (y) ≤ ¯̄S
τ

Nδτ
[0](y) + δ/4.(52)

Combining (51) and (52), one finds after a small bit of work that

V (x)≤ S̄τ

[ ¯̄Sτ

Nδτ
[0] + δ/2

]
(x) − δ,

which, using the max-plus linearity of S̄τ ,

= ¯̄S
τ

(Nδ+1)τ [0](x) − δ/2

for all N ≥ Nδ. Consequently, V (x) ≤ limN→∞
¯̄S
τ

Nτ [0](x) − δ/2, which is a contra-
diction. Therefore, V (x) ≥ S̄τ [V ](x) for all x ∈ R

n. The reverse inequality follows in
a similar way. Specifically, fix x ∈ R

n and suppose there exists δ > 0 such that

V (x) ≥ S̄τ [V ](x) + δ.(53)

By the monotonicity of ¯̄S
τ

Nτ with respect to N , for any N < ∞,

V (x) ≥ ¯̄S
τ

Nτ [0](x) ∀x ∈ R
n.

By the monotonicity of S̄τ with respect to its argument (i.e., φ1(x) ≤ φ2(x) for all x
implying S̄τ [φ1](x) ≤ S̄τ [φ2](x) for all x), this implies

S̄τ [V ] ≥ ¯̄S
τ

(N+1)τ [0] ∀x ∈ R
n.(54)

Combining (53) and (54) yields

V (x) ≥ ¯̄S
τ

(N+1)τ [0](x) + δ.

Letting N → ∞ yields a contradiction, and so V ≤ S̄τ [V ].
The following result is immediate.
Theorem 4.3.

V (x) = sup
μ∈Dτ

∞

sup
w∈W

sup
T∈[0,∞)

[∫ T

0

lμt(ξt) −
γ2

2
|wt|2 dt

]
,

where ξt satisfies (12).
Theorem 4.4. V (x) − 1

2cV |x|2 is strictly convex.
Proof. The proof is identical to the proof of Theorem 2.6 with the exception that

με is chosen from Dτ
∞ instead of D∞.

Remark 4.5. From the choice of β in section 3, this immediately implies that
V ∈ Sβ , and of course since C + β < 0, that V ∈ S−C .

We now address the uniqueness issue. Similar techniques to those used for V m

and Ṽ will prove uniqueness for (46) within Gδ. A slightly weaker type of result under
weaker assumptions will be obtained first; this result is similar in form to that of [40].

Suppose V
′ �= V , V

′ ∈ Gδ satisfies (46). This implies that for all x ∈ R
n and all

N < ∞
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V
′
(x)= ¯̄S

τ

Nτ [V
′
](x)

= sup
w∈W

sup
μ∈Dτ

∞

{∫ Nτ

0

lμt(ξt) −
γ2

2
|wt|2 dt + V

′
(ξNτ )

}
,

which, by taking w0 ≡ 0 (with corresponding trajectory denoted by ξ0),

≥ V
′
(ξ0

Nτ ).(55)

However, by (12), one has ξ̇0 = Aμtξ0, and so |ξ0
t | ≤ e−cAt|x| for all t ≥ 0, which

implies that |ξ0
Nτ | → 0 as N → ∞. Consequently

lim
N→∞

V
′
(ξ0

Nτ ) = 0.(56)

Combining (55) and (56), one has

V
′
(x) ≥ 0 ∀x ∈ R

n.(57)

Also, by (46)

V
′
(x)= lim

N→∞
¯̄S
τ

Nτ [V
′
](x) ∀x ∈ R

n.

By (57) and the monotonicity of ¯̄S
τ

Nτ with respect to its argument, this is
(58)

≥ lim
N→∞

¯̄S
τ

Nτ [0](x) = V (x).

By (57) and (59), one has the uniqueness result analogous to [40], which is as follows.
Theorem 4.6. V is the unique minimal, nonnegative solution to (46).
The stronger uniqueness statement (making use of the quadratic bound on lμt(x))

is as follows. As with V m, Ṽ , the proof is similar to that in [35]. However in this case,
there is a small difference in the proof, and this difference requires another lemma.
Due to this difference in the case of V , we include a sketch of the proof (but with the
new lemma in full) in Appendix A.

Theorem 4.7. V is the unique solution of (46) within the class Gδ for sufficiently

small δ > 0. Further, given any V ∈ Gδ, we have limN→∞
¯̄S
τ

Nτ [V ](x) = V (x) for all
x ∈ R

n (uniformly on compact sets).

Henceforth, we let δ > 0 be sufficiently small such that V m, Ṽ , V ∈ Gδ for all
m ∈ M.

Theorem 4.8. Let V ∈ S−C , and let a be its semiconvex dual. Then, if Bτ (y, ·)�
a(·) ∈ S−

d , V = S̄τ [V ] if and only if a(y) = Bτ (y, ·) � a(·) for all y ∈ R
n.

Proof. By the semiconvex duality,

ψ(x, ·) � a(·)= V (x) = S̄τ [V ](x)(59)

= S̄τ

[
max
z∈Rn

{ψ(·, z) + a(z)}
]
(x),

which, as in the first part of the proof of Theorem 3.11,

=

∫ ⊕

Rn

a(z) ⊗ S̄τ [ψ(·, z)](x) dz,

which, by Lemma 4.1,
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=

∫ ⊕

Rn

a(z) ⊗
∫ ⊕

Rn

ψ(x, y) ⊗ Bτ (y, z) dy dz,

which, as in the latter part of the proof of Theorem 3.11,

=

[∫ ⊕

Rn

Bτ (·, z) ⊗ a(z) dz

]
� ψ(x, ·).(60)

By Lemmas 3.4 and 3.6, this implies

a(y) = Bτ (y, ·) � a(·) ∀ y ∈ R
n.

Alternatively, if a(y) = Bτ (y, ·) � a(·) for all y, then

V (x) = ψ(x, ·) � a(·) =

[∫ ⊕

Rn

Bτ (·, z) ⊗ a(z) dz

]
� ψ(x, ·) ∀x ∈ R

n,

which by (59)–(60) yields V = S̄τ [V ].
Corollary 4.9. Value function V given by (45) is in Sβ ⊂ S−C and has repre-

sentation V (x) = ψ(x, ·) � a(·), where a is the unique solution in S−
d ∩ G−

δ of

a(y) = Bτ (y, ·) � a(·) ∀ y ∈ R
n,(61)

or equivalently, a = B̂τ [a].
Proof. The fact that V ∈ Sβ follows from Theorem 4.4 and the choice of β. By

Theorem 4.7, V ∈ Gδ and is the unique solution of (46) in Gδ.
By Theorem 4.8, its semiconvex dual, a, satisfies (61), and by Lemma 3.4, a ∈ S−

d

for some d ∈ Dn such that C + d < 0. Suppose there is â ∈ S−
d ∩G−

δ for some d̂ ∈ Dn

such that C + d̂ < 0, and that â satisfies (61). Then, by Theorem 4.8 and Remark

3.5, its dual, V̂ , is in Gδ and V̂ = S̄τ [V̂ ], V̂ (0) = 0. By Theorem 4.7 then, V̂ = V . By
Lemma 3.6, this implies that â = a.

The following result on propagation of the semiconvex dual will also come in
handy.

Proposition 4.10. Let φ ∈ Sβ ⊂ S−C with the semiconvex dual denoted by a.
Define φ1 = S̄τ [φ]. Then φ1 ∈ S−(C+ηIτ), and

φ1(x) = ψ(x, ·) � a1(·),
where

a1(y) = Bτ (y, ·) � a(·) ∀ y ∈ R
n.

Proof. The proof is similar to the proof of Proposition 3.10, and consequently
some details are not included. To begin, as in the proof of Proposition 3.10, we note
that the proof that φ1 ∈ S−(C+ηIτ) is nearly identical to the proof of Theorem 3.7. In
particular, fix any x, ν ∈ R

n with |ν| = 1 and any δ > 0. Let m ∈ M be optimal, and

wε be ε-optimal, for S̄τ [φ](x). That is, suppose Iφ
(x, τ, wε,m) ≥ S̄τ [φ](x)− ε, where

Iφ
(x, τ, w,m)

.
=

∫ τ

0

lm(ξt) −
γ2

2
|wt|2 dt + φ(ξτ )

and ξ satisfies (1). Then

S̄τ [φ](x− δν) − 2S̄τ [φ](x) + S̄τ [φ](x + δν)

≥ Iφ
(x− δν, τ, wε,m) − 2Iφ

(x, τ, wε,m) + Iφ
(x + δν, τ, wε,m) − 2ε.
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Let ξδ, ξ0, ξ−δ satisfy the dynamics of (1) with inputs wε and m, and with initial
conditions ξδ0 = x+ δν, ξ0

0 = x, and ξ−δ
0 = x− δν, respectively. Letting Δ+

t
.
= ξδt − ξ0

t ,
one finds

φ(ξδτ ) − 2φ(ξ0
τ ) + φ(ξ−δ

τ ) ≥ (Δ+
τ )TCΔ+

τ

because φ ∈ S−C . One then continues as in the proof of Theorem 3.7, but with Dm

and Am replacing Dμε
t and Aμε

t , respectively. In particular, one has Λε
t = exp{Amt}.

More important, one may use the same values of η and τ which were fixed in section 3.
Now we turn to the second assertion of the proposition. This follows exactly as

in the proof of Proposition 3.10 with two minor exceptions: First, the supremum over
μ ∈ D∞ is replaced by a maximum over m ∈ M. Second, the use of (42) is replaced
by the invocation of (44).

We now show that one may approximate Ṽ , the solution of V = S̃τ [V ], to as
accurate a level as one desires by solving V = S̄τ [V ] for sufficiently small τ . Recall

that if V = S̄τ [V ], then it satisfies V = ¯̄S
τ

Nτ [V ] for all N > 0 (while Ṽ satisfies

V = S̃Nτ [V ]), and so this is essentially equivalent to introducing a discrete-time

μ ∈ Dτ
Nτ approximation to the μ process in S̃Nτ . The result will follow easily from

the following technical lemma. The lemma uses the particular structure of our example
class of problems as given by assumption block (A.m). As the proof of the lemma is
technical and long, it is delayed to Appendix B.

Lemma 4.11. Given ε̂ ∈ (0, 1], T < ∞, there exist T ∈ [T/2, T ] and τ > 0 such
that

S̃T [V m](x) − ¯̄S
τ

T [V m](x) ≤ ε̂(1 + |x|2) ∀x ∈ R
n, ∀m ∈ M.

We now obtain the main approximation result.
Theorem 4.12. Given ε > 0 and R < ∞, there exists τ > 0 such that

Ṽ (x) − ε ≤ V (x) ≤ Ṽ (x) ∀x ∈ BR(0).

Proof. From Theorem 4.2, we have

0 ≤ V m(x) ≤ V (x) ≤ Ṽ (x) ≤ cA(γ − δ)2

c2σ
|x|2 ∀x ∈ R

n.(62)

Also, with T = Nτ for any positive integer N ,

¯̄S
τ

Nτ [φ] ≤ S̃T [φ] ∀φ ∈ Gδ.(63)

Further, by Theorem 2.5, given ε > 0 and R < ∞, there exists T̂ < ∞ such that for
all T > T̂ and all m ∈ M,

S̃T [Ṽ ](x) − ε/2 ≤ S̃T [V m](x) ∀x ∈ BR(0).(64)

By (64) and Lemma 4.11, given ε > 0 and R < ∞, there exists T ∈ [0,∞), τ ∈ [0, T ],
where T = Nτ for some integer N such that for all |x| ≤ R,

Ṽ (x) − ε= S̃T [Ṽ ](x) − ε

≤ S̃T [V m](x) − ε/2

≤ ¯̄S
τ

T [V m](x),

where ε̂(1 + R2) = ε/2, and which, by (62) and the monotonicity of ¯̄S
τ

T [·],
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≤ ¯̄S
τ

T [V ](x),

which, by (63),

≤ S̃T [V ](x),

which, by the monotonicity of S̃T [·],

≤ S̃T [Ṽ ](x) = Ṽ (x).

Noting (from Theorem 4.7) that V = ¯̄S
τ

T [V ] completes the proof.
Remark 4.13. For this class of systems (defined by assumption block (A.m)), we

expect this result could be sharpened to

Ṽ (x) ≤ −ε̂(1 + |x|2) ≤ V (x) ≤ Ṽ (x) ∀x ∈ R
n

by sharpening Theorem 2.5. However, this type of result might be valid only for
limited classes of systems, and so we have not pursued it here.

5. The algorithm. We now begin discussion of the actual algorithm.

Let C ∈ IC such that C − cV I < 0, and initialize with V
0
(x)

.
= cV

2 |x|2. From

Theorem 4.2, V = limN→∞
¯̄S
τ

Nτ [V
0
]. Given V

k
, let

V
k+1 .

= S̄τ [V
k
]

so that V
k

= ¯̄S
τ

kτ [V
0
] for all k ≥ 1.

Let ak be the semiconvex dual of V
k

for all k. Since V
0

= cV
2 |x|2, one easily finds

the quadratic a0(·). Note also that by Proposition 4.10,

ak+1 = Bτ (x, ·) � ak(·) = B̂τ [a
k]

for all n ≥ 0.
Recall that

Bτ (x, ·) � ak(·)=
∫ ⊕

Rn

Bτ (x, y) ⊗ ak(y) dy =

∫ ⊕

Rn

⊕
m∈M

Bm
τ (x, y) ⊗ ak(y) dy

=
⊕
m∈M

∫ ⊕

Rn

Bm
τ (x, y) ⊗ ak(y) dy =

⊕
m∈M

[
Bm
τ (x, ·) � ak(·)

]
.(65)

By (65),

a1(x) =
⊕
m∈M

â1
m(x), where(66)

â1
m(x)

.
= Bm

τ (x, ·) � a0(·) ∀m.

By (65) and (66),

a2(x)=
⊕

m2∈M

∫ ⊕

Rn

Bm2
τ (x, y) ⊗

[ ⊕
m1∈M

â1
m1

(y)

]
dy

=
⊕

{m1,m2}∈M×M

∫ ⊕

Rn

Bm2
τ (x, y) ⊗ â1

m1
(y) dy.
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Consequently,

a2(x) =
⊕

{m1,m2}∈M2

â2
{m1,m2}(x), where

â2
{m1,m2}(x)

.
= Bm2

τ (x, ·) � â1
m1

(·) ∀m1,m2(67)

and M2 represents the outer product M×M. Proceeding with this, one finds that
in general,

ak(x) =
⊕

{mi}k
i=1∈Mk

âk{mi}k
i=1

(x), where(68)

âk{mi}k
i=1

(x)
.
= Bmk

τ (x, ·) � âk−1

{mi}k−1
i=1

(·) ∀ {mi}ki=1 ∈ Mk.

Of course one can obtain V
k

from its dual as

V
k
(x)= max

y∈Rn
[ψ(x, y) + ak(y)]

= max
y∈Rn

[
ψ(x, y) + max

{mi}k
i=1∈Mk

âk{mi}k
i=1

(y)

]
= max

{mi}k
i=1∈Mk

{
max
y∈Rn

[ψ(x, y) + âk{mi}k
i=1

(y)]

}
.
= max

{mi}k
i=1∈Mk

V̂ k
{mi}k

i=1
(x),(69)

where

V̂ k
{mi}k

i=1
= max

y∈Rn
[ψ(x, y) + âk{mi}k

i=1
(y)] =

∫ ⊕

Rn

ψ(x, y) ⊗ âk{mi}k
i=1

(y) dy.(70)

The algorithm will consist of the forward propagation of the âk{mi}k
i=1

(according to

(68)) from k = 0 to some termination step k = N , followed by construction of the

value as V̂ k
{mi}k

i=1
(according to (70)).

It is important to note that the computation of each âk{mi}k
i=1

is analytical. We

will indicate the actual analytical computations.
By the linear/quadratic nature of the m-indexed systems, we find that the Sm

τ [ψ(·, z)]
take the form

Sm
τ [ψ(·, z)](x) = 1

2 (x− Λm
τ z)TPm

τ (x− Λm
τ ) + 1

2z
TRm

τ z,

where the time-dependent n×n matrices Pm
t , Λm

t , and Rm
t satisfy Pm

0 = C, Λm
0 = I,

Rm
0 = 0:

Ṗm = (Am)TPm + PmAm + Dm + PmΣmPm,(71)

Λ̇m =
[
(Pm)−1Dm −Am

]
Λm,

Ṙm = (Λm)TDmΛm.

We note that each of the Pm
τ ,Λm

τ , Rm
τ need only be computed once.

Next, one computes each quadratic function Bm
τ (x, z) (one time only) as follows.

One has

Bm
τ = − max

y∈Rn
{ψ(y, x) − Sm

τ [ψ(·, z)](y)} ,

which, by the above,
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(72)

= min
y∈Rn

{
1
2 (y − x)TC(y − x) + 1

2 (y − Λm
τ z)TPm

τ (y − Λm
τ z) + 1

2z
TRm

τ z
}
.

Recall that by Theorem 3.7, this has a finite minimum (Pm − (C + ηIτ) positive
definite). Taking the minimum in (73), one has

Bm
τ (x, z) = 1

2

[
xTMm

1,1x + xTMm
1,2z + zT (Mm

1,2)
Tx + zTMm

2,2z
]
,

where, with shorthand notation Dτ
.
= (Pm

τ − C)−1,

(73)

Mm
1,1 =

[
CD−1

τ Pm
τ D−1

τ C − (D−1
τ C + I)TC(D−1

τ C + I)
]
,

Mm
1,2 =

[
(D−1

τ C + I)TCD−1
τ Pm

τ − CD−1
τ Pm

τ (D−1
τ Pm

τ − I)
]
Λm
τ ,(74)

Mm
2,2 = (Λm

τ )T
[
(D−1

τ Pm
τ − I)TPm

τ (D−1
τ Pm

τ − I) − Pm
τ D−1

τ CD−1
τ Pm

τ

]
Λm
τ + Rm

τ .(75)

Note that given the Pm
τ ,Λm

τ , Rm
τ , the Bm

τ are quadratic functions with analytical
expressions for their coefficients. Also note that all the matrices in the definition of
Bm
τ may be precomputed.

Now let us write the (quadratic) âk{mi}k
i=1

in the form

âk{mi}k
i=1

(x) = 1
2

(
x− ẑk{mi}k

i=1

)T

Q̂k
{mi}k

i=1

(
x− ẑk{mi}k

i=1

)
+ r̂k{mi}k

i=1
.

Then, for each mk+1,

âk+1

{mi}k+1
i=1

= max
z∈Rn

{
Bmk+1
τ (x, z) + âk{mi}k

i=1
(z)

}
= max

z∈Rn

{
1
2

[
xTMm

1,1x + xTMm
1,2z + zT (Mm

1,2)
Tx + zTMm

2,2z
]

+ 1
2

(
x− ẑk{mi}k

i=1

)T

Q̂k
{mi}k

i=1

(
x− ẑk{mi}k

i=1

)
+ r̂k{mi}k

i=1

}
= 1

2

(
x− ẑk+1

{mi}k+1
i=1

)T

Q̂k+1

{mi}k+1
i=1

(
x− ẑk+1

{mi}k+1
i=1

)
+ r̂k+1

{mi}k+1
i=1

,(76)

where
(77)

Q̂k+1

{mi}k+1
i=1

= M
mk+1

1,1 −M
mk+1

1,2 D̂
(
M

mk+1

1,2

)T
,

ẑk+1

{mi}k+1
i=1

= −
(
Q̂k+1

{mi}k+1
i=1

)−1

M
mk+1

1,2 Ê,

r̂k+1

{mi}k+1
i=1

= r̂k{mi}k
i=1

+ 1
2 Ê

TMm
2,2ẑ

k
{mi}k

i=1
− 1

2

(
ẑk+1

{mi}k+1
i=1

)T

Q̂k+1

{mi}k+1
i=1

ẑk+1

{mi}k+1
i=1

,

D̂=
(
M

mk+1

2,2 + Q̂k
{mi}k

i=1

)−1

,

Ê= D̂Q̂k
{mi}k

i=1
ẑk{mi}k

i=1
.

Thus we have the analytical expression for the propagation of each (quadratic) âk{mi}k
i=1

function. Specifically, we see that the propagation of each âk{mi}k
i=1

amounts to a set

of matrix multiplications (and an inverse). Note that for the purely quadratic con-
stituent Hamiltonians considered here (without terms that are linear or constant in
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the state and gradient variables), one will have ẑk{mi}k
i=1

= 0 and r̂k{mi}k
i=1

= 0, and so

computation of these terms is not necessary (unless one adds linear and/or constant
terms).

At each step k, the semiconvex dual ak of V
k

is represented as the finite set of
functions

Âk
.
=

{
âk{mi}k

i=1
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
,

where this is equivalently represented as the set of triples

Q̂k
.
=

{(
Q̂k

{mi}k
i=1

, ẑk{mi}k
i=1

, r̂k{mi}k
i=1

)
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
.

At any desired stopping time, one can recover a representation of V
k

as

V̂k
.
=

{
V̂ k
{mi}k

i=1
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
,

where these V̂ k
{mi}k

i=1
are also quadratics. In fact, recall

V
k
(x)= max

z∈Rn
[ak(z) + ψ(x, z)]

= max
{mi}k

i=1

max
z∈Rn

[
1
2 (z − ẑk{mi}k

i=1
)T Q̂k

{mi}k
i=1

(z − ẑk{mi}k
i=1

) + r̂k{mi}k
i=1

+ c
2 |x− z|2

]
.
= max

{mi}k
i=1

1
2 (x− x̂k

{mi}k
i=1

)T P̂ k
{mi}k

i=1
(x− x̂k

{mi}k
i=1

) + ρ̂k{mi}k
i=1

.
=

⊕
{mi}k

i=1

V̂ k
{mi}k

i=1
(x),

where with C
.
= cI,

(78)

P̂ k
{mi}k

i=1
= CF̂ Q̂k

{mi}k
i=1

F̂C + (F̂C − I)TC(F̂C − I),

x̂k
{mi}k

i=1
= −

(
P̂ k
{mi}k

i=1

)−1 [
CF̂ Q̂k

{mi}k
i=1

Ĝ + (F̂C − I)TCF̂ Q̂k
{mi}k

i=1

]
ẑk{mi}k

i=1
,

ρ̂k{mi}k
i=1

= r̂k{mi}k
i=1

+ 1
2

(̂
zk{mi}k

i=1

)T [
ĜT Q̂k

{mi}k
i=1

Ĝ + Q̂k
{mi}k

i=1
F̂CF̂ Q̂k

{mi}k
i=1

]
ẑk{mi}k

i=1
,

F̂
.
= (Q̂k

{mi}k
i=1

+ C)−1,

and
Ĝ

.
= (F̂ Q̂k

{mi}k
i=1

− I).

Thus, V
k

has the representation as the set of triples

Pk
.
=

{(
P̂ k
{mi}k

i=1
, x̂k

{mi}k
i=1

, ρ̂k{mi}k
i=1

)
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
.(79)

We note that the triples which comprise Pk are obtained from the triples(
Q̂k

{mi}k
i=1

, ẑk{mi}k
i=1

, r̂k{mi}k
i=1

)
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by matrix multiplications and an inverse. The transference from triples(
Q̂k

{mi}k
i=1

, ẑk{mi}k
i=1

, r̂k{mi}k
i=1

)
to triples (P̂ k

{mi}k
i=1

, x̂k
{mi}k

i=1
, ρ̂k{mi}k

i=1
) need only be done once, which is at the termi-

nation of the algorithm propagation. Again, in the purely quadratic class of problems
addressed here, and with the pure quadratic initialization, the x̂k

{mi}k
i=1

and ρ̂k{mi}k
i=1

terms will be zero. We note that (79) is our approximate solution of the original
control problem/HJB PDE.

The errors are due to our approximation of Ṽ by V (see Theorem 4.12 and Remark

4.13) and to the approximation of V by the prelimit V
N

for stopping time k = N .

Neither of these errors is related to the space dimension. The errors in |Ṽ − V | are

dependent on the step size τ . The errors in |V N − V | = | ¯̄Sτ

Nτ [0] − V | are due to

premature termination in the limit V = limN→∞
¯̄S
τ

Nτ [0]. The computation of each

triple (P̂ k
{mi}k

i=1
, x̂k

{mi}k
i=1

, ρ̂k{mi}k
i=1

) grows as the cube of the space dimension (due to

the matrix operations). Thus one avoids the curse of dimensionality. Of course if one

then chooses to compute V
N

(x) for all x on some grid over, say, a rectangular region
in R

n, then by definition one has exponential growth in this computation as the space

dimension increases. We stress that one does not need to compute V
N � Ṽ at each

such point.
However, the curse of dimensionality is replaced by another type of rapid compu-

tational cost growth. Here, we refer to this as the curse of complexity. If #M = 1,
then all the computations of our algorithm (excepting the solution of the Riccati
equation) are unnecessary, and we informally refer to this as complexity one. When

there are M = #M such quadratics in the Hamiltonian, H̃, we say it has complexity
M . Note that

#
{
V̂ k
{mi}k

i=1
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
∼ MN .

For large N , this is indeed a large number. (We very briefly discuss means for reducing
this in the next section.) Nevertheless, for small values of M , we obtain a very
rapid solution of such nonlinear HJB PDEs, as will be indicated in the examples to
follow. Further, the computational cost growth in space dimension n is limited to
cubic growth. We emphasize that the existence of an algorithm avoiding the curse of
dimensionality is significant regardless of the practical issues.

6. Practical issues. The bulk of this paper develops an algorithm which avoids
the curse of dimensionality. However, the curse of complexity is also a formidable
barrier. The purpose of the paper is to bring to light the existence of this class
of algorithms. Considering the long development of finite element methods, it is
clear that the development of highly efficient methods from this new class could be a
further substantial achievement. (Nevertheless, some impressive computational times
are indicated in the next section.) In this section, we briefly indicate some practical
heuristics that have been helpful and outline the actual steps in an implementation
of the basic algorithm.

6.1. Pruning. The number of quadratics in Qk grows exponentially in k. How-
ever, in practice (for the cases we have tried) we have found that relatively few of

these actually contribute to V
k
. Thus it would be very useful to prune the set.
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Note that if

âk{m̂i}k
i=1

(x) ≤
⊕

{mi}k
i=1 	={m̂i}k

i=1

âk{mi}k
i=1

(x) ∀x ∈ R
n,(80)

then

∫ ⊕

Rn

Bτ (x, z) ⊗ ak(z) dz ≤
∫ ⊕

Rn

Bτ (x, z) ⊗

⎡⎣ ⊕
{mi}k

i=1 	={m̂i}k
i=1

âk{mi}k
i=1

(z)

⎤⎦ dz.

Consequently âk{m̂i}k
i=1

will play no role whatsoever in the computation of V
k
. Further,

it is easy to show that the progeny of âk{m̂i}k
i=1

(i.e., those âk+j

{mi}k+j
i=1

for which {mi}ki=1 =

{m̂i}ki=1) never contribute either. Thus, one may prune such âk{m̂i}k
i=1

without any

loss of accuracy. This shrinks not only the current Qk, but also the growth of the
future Qk+j .

In the examples to follow, we pruned âk{m̂i}k
i=1

if there existed a single sequence

{m̃i}ki=1 such that âk{m̂i}k
i=1

(x) ≤ âk{m̃i}k
i=1

(x) for all x. This significantly reduced

the growth in the size of Qk. However, it clearly failed to prune anywhere near the
number of elements that could be pruned according to condition (80), and thus much
greater computational reduction might be possible. This would require an ability
to determine when a quadratic was dominated by the maximum of a set of other
quadratic functions.

Also in the examples to follow, an additional heuristic pruning technique was
applied for a number of iterations to delay hitting the curse of complexity growth
rate. A function âk{mi}k

i=1
was pruned if it did not dominate at least one of the corners

of the unit cube. Specifically, let C = {xj} be the corners of the unit cube. The set
of functions was pruned down to a subset of L ≤ 2n functions, {âk{m̂l

i}k
i=1

| l ≤ L},
such that ak(xj) = maxl≤L âk{m̂l

i}k
i=1

(xj) for all xj ∈ C. This introduces a component

of the calculations which is subject to curse of dimensionality growth, but in the
examples run so far it reduced the computations over what they were needed without
the heuristic. (Also, the curse of dimensionality growth due to this heuristic is 2n

rather than on the order of 200n, as in the discussion of other methods in section 1.)

6.2. Initialization. It is also easy to see that one may initialize with an arbitrary
quadratic function less than an ak(x) rather than with a0 ≡ 0. Significant savings
were obtained by initializing with a set of M = #M quadratics, {am(x)} where the
am were the convex duals of the V m (which were each obtained by the solution of the
corresponding Riccati equation). With a0(z)

.
=

⊕
m∈M am(z), one starts much closer

to the final solution, and so the number of steps where one is encountering the curse
of complexity is greatly reduced.

6.3. Pseudocode for the algorithm. In this short section, we briefly indicate
the actual steps that one would code in an instantiation of the algorithm.

1. Choose a time-step size, τ , and number of steps, K. (We do not address error
analysis and stopping-time criteria in this paper.)

2. For each m ∈ M, compute Pm
τ from (71). Next, for each m ∈ M, compute

Mm
1,1, M

m
1,2, and Mm

2,2 from (73), (74), and (75), respectively. These are used
in each iteration update below.
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3. Initialize the iteration. One may initialize with a0(x)
.
= 0, which is Q̂0 = {Q̂0

1}
with Q̂0

1 = 0 (the n × n matrix of zeros). Note that in this pseudocode,

we will index the Q̂k by a generic subscript rather than by the sequences
{mi}ki=1, as this is more convenient in software. Although this is a simple
initialization, the computational time is hugely improved through the use of
the initialization described in section 6.2. In this latter case, we first compute
(approximately) the Pm

∞
.
= limt→∞ Pm

t from (71). The initialization is then

Q̂0 = {Q̂0
j}Mj=1, where each Q̂0

j is obtained from the corresponding P j
∞, by

the dual operation, and in particular is given by

Q̂0
j = C(C − P j

∞)−1P j
∞(C − P j

∞)−1C − P j
∞(C − P j

∞)−1C(C − P j
∞)−1P j

∞.

4. Perform the basic iteration step. That is, given Q̂k = {Q̂k
j }Jk

j=1, compute

Q̂k+1 as follows:
(a) Start with j = 1 and m = 1. Let � = 1.

(b) (iteration-subloop): Obtain Q̂k+1
� from update equation (78), that is,

Q̂k+1
� = Mm

1,1 −Mm
1,2

(
Mm

2,2 + Q̂k
j

)−1 (
Mm

1,2

)T
.

(c) Let � = �+1. If m < M , set m = m+1, and go to step 4(b). If m = M
and j < Jk, set m = 1, j = j + 1, and go to step 4(b). If m = M and
j = Jk, set JK+1 = �− 1; we are done with the iteration step.

5. Repeat step 4 K times.
6. Recover the solution approximation from the dual matrices. That is, given

Q̂K = {Q̂K
j }JK

j=1, compute Pk = {P̂ k
j }JK

j=1 from (78). The solution approxi-

mation is the pointwise maximum V (x) = maxj≤JK

1
2x

T P̂K
j x.

Remark 6.1. We emphasize that pruning techniques, such as those of section 6.1
are critical to rapid computational rates, but this is still an open area of research, and
we leave instantiation of such to the intrepid researcher.

7. Examples. A number of examples have so far been tested. In these tests,
the computational speeds were very great. This is due to the fact that M = #M
was small. The algorithm as described above was coded in MATLAB. This includes
the very simple pruning technique and initialization discussed in the previous section.
The quoted computational times were obtained with a standard 2001 PC. The times
correspond to the times to compute VN or, equivalently, PN . The plots below require
one to compute the value function and/or gradients pointwise on planes in the state
space. These plotting computations are not included in the quoted computational
times.

We will briefly indicate the results of three similar examples with state-space
dimensions of 2, 3, and 4. The number of constituent linear/quadratic Hamiltonians
for each of them is 3. The structures of the dynamics are similar for each of them so
as to focus on the change in dimension.

Example 1. The first case has constituent Hamiltonians with the Am given by

A1 =

[
−1.0 0.5
0.1 −1.0

]
, A2 = (A1)T , A3 =

[
−1.0 0.5
0.5 −1.9

]
.

The Dm and Σm are simply

D1 = D2 = D3 =

[
1.5 0.2
0.2 1.5

]
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and

Σ1 = Σ2 = Σ3 =

[
0.27 −0.01
−0.01 0.27

]
.

Figure 1 depicts the value function and first partial derivative (computed by a
simple first-difference on the grid points) over the region [−1, 1] × [−1, 1]. Note the
discontinuity in the first partial along one of the diagonals. Figure 2 depicts the
second partial and a backsubstitution error over the same region. The second partial
also has a discontinuity along the same diagonal as the first. The error plot has been
rotated for better viewing due to the high error along the discontinuity in the gradient.
The backsubstitution error is computed by taking these approximate partials and
substituting them back into the original HJB PDE. Consequently, the depicted errors
contain components due to the approximate gradient dotted with the dynamics, and
the term with the square in the gradient in the Hamiltonian. Perhaps it should be
noted that the solutions of such problems cannot be obtained by patching together the
quadratic functions corresponding to solutions of the corresponding algebraic Riccati
equations. The computations required slightly less than 10 seconds.
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Fig. 1. Value function and first partial (two-dimensional case).
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Fig. 2. Second partial and backsubstitution error (two-dimensional case).
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Fig. 3. Value function and first partial (three-dimensional case).

Example 2. We now consider a case where the Am are given by

A1 =

⎡⎣−1.0 0.5 0.0
0.1 −1.0 0.2
0.2 0.0 −1.5

⎤⎦ , A2 = (A1)T , A3 =

⎡⎣−1.0 0.5 0.0
0.1 −1.0 0.2
0.2 0.0 −1.5

⎤⎦ ,

the Dm are

D1 =

⎡⎣ 1.5 0.2 0.1
0.2 1.5 0.0
0.1 0.0 1.5

⎤⎦ , D2 =

⎡⎣ 1.6 0.2 0.1
0.2 1.6 0.0
0.1 0.0 1.6

⎤⎦ , D3 = D1,

and the Σm are

Σ1 =

⎡⎣ 0.2 −0.01 0.02
−0.01 0.2 0.0
0.02 0.0 0.25

⎤⎦ , Σ2 =

⎡⎣ 0.16 −0.005 0.015
−0.005 0.16 0.0
0.015 0.0 0.2

⎤⎦ , Σ3 = Σ1.

The results of this three-dimensional example appear in Figures 3–5. In this case,
the results have been plotted over the region of the affine plane x3 = 3 given by
x1 ∈ [−10, 10] and x2 ∈ [−10, 10]. The backsubstitution error has been scaled by
dividing by |x|2 + 10−5. Note that the scaled backsubstitution errors (away from the
discontinuity in the gradient) grow only slowly or are possibly bounded with increasing
|x|. (Recall that the approximate solution is obtained over the whole space.) Since
the gradient errors are multiplied by the nominal dynamics in one component of
this term (as well as being squared in another), this indicates that the errors in the
gradient itself likely grow only linearly (or nearly linearly) with increasing |x|. The
computations required approximately 13 seconds.

Example 3. The four-dimensional example has constituent Hamiltonians with the
Am, Dm, and Σm given by

A1 =

⎡⎢⎣
−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.5 0.1
0.0 −0.1 0.0 −1.5

⎤⎥⎦ , A2 = (A1)T ,
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Fig. 4. Second and third partials (three-dimensional case).
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Fig. 5. Scaled backsubstitution error (three-dimensional case).

A3 =

⎡⎢⎣
−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.6 −0.1
0.0 −0.05 0.1 −1.5

⎤⎥⎦ ,

D1 = D2 = D3 =

⎡⎢⎣
1.5 0.2 0.1 0.0
0.2 1.5 0.0 0.1
0.1 0.0 1.5 0.0
0.0 0.1 0.0 1.5

⎤⎥⎦ ,

and

Σ1 = Σ2 = Σ3 =

⎡⎢⎣
0.2 −0.01 0.02 0.01

−0.01 0.2 0.0 0.0
0.02 0.0 0.25 0.0
0.01 0.0 0.0 0.25

⎤⎥⎦ .

The results for this example appear in Figures 6–8. In this case, the results
have been plotted over the region of the affine plane x3 = 3, x4 = −0.5 given by
x1 ∈ [−10, 10] and x2 ∈ [−10, 10]. The backsubstitution error has again been scaled
by dividing by |x|2 + 10−5. The computations required approximately 40 seconds.
We remark that one cannot change dimension independent of dynamics (except in
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the trivial case, where each component of the system has exactly the same dynamics
of the other components with no interdependence), and so one cannot directly compare
the computation times of these three examples. However, it is easy to see that the
computation time increases are on the order of square to cubic in space dimension,
rather than being subject to curse-of-dimensionality-type growth.
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Fig. 6. Value function and first partial (four-dimensional case).
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Fig. 7. Second and third partials (four-dimensional case).

8. Future directions.

Pruning. In order to make these methods more practical, algorithms need to be
developed for determining when a quadratic function is dominated by the function,
which is the pointwise maximum of a set of quadratic functions. This has the potential
for greatly reducing the effects of the curse of complexity, and consequently greatly
decreasing computational times.

Constant/linear terms. An instantiation of this class of methods was devel-

oped here for a very particular type of Hamiltonian, H̃(x, p) = maxm{Hm(x, p)},
where the Hm corresponded to a very specific type of linear/quadratic problem. One
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Fig. 8. Fourth partial and scaled backsubstitution error (four-dimensional case).

would like to generalize the Hm to, say,

Hm(x, p) = 1
2x

TDmx + 1
2p

TΣmp + (Amx)T p + (lm1 )Tx + (lm2 )T p + αm.

Clearly certain conditions on H̃(x, p) = maxm{Hm(x, p)} would be necessary. It is
not obvious that these conditions would need to apply to each of the constituent Hm

individually. In the work here, the Hm corresponded to linear/quadratic problems
with maximizing controllers/disturbances. It is not clear that the constituent lin-
ear/quadratic problems need to be constricted in this way either. For instance, could
some or all of the Hm correspond to, say, game problems?

Convergence/error analysis. Only convergence of the approximation to the
solution was obtained here. Estimates of error size and convergence rate need to be
determined. For instance, it was hypothesized (and observed in the examples) that
one obtains the solution over the whole state space with linear growth rate in the
errors in the gradient. Is this true in any generality?

Nonergodic problem. The algorithm was developed for an infinite time-horizon
problem, where the dynamics were stable to the origin. One expects the approach
would also be applicable to discounted cost problems and exit problems. One would
also expect that a similar theory could be developed for finite time-horizon problems
such as robust filtering. Max-plus methods have also been discussed for problems
corresponding to variational inequalities [30]. The analysis and algorithm necessary
for a variational inequality would be of interest.

Other nonlinearities. This work concentrated only on the case of a nonlinearity
due to taking the maximum of a set of Hamiltonians for linear/quadratic problems.
An obvious question is how well this approach might work for other classes of nonlin-
earities. What classes of nonlinear HJB PDEs could be best approximated by maxima
over reasonably small numbers of linear/quadratic HJB PDEs? Perhaps a single non-
linearity in only one variable (possibly appearing in multiple places) would be the
most tractable?
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Appendix A. Sketch of proof of Theorem 4.7. Fix δ > 0 (used in the

definition of Gδ). Suppose V
′ ∈ Gδ satisfies (46). Then,

V
′
(x)= ¯̄S

τ

Nτ [V
′
](x)

= sup
w∈W

sup
μ∈Dτ

∞

{∫ Nτ

0

lμt(ξt) −
γ2

2
|wt|2 dt + V

′
(ξNτ )

}
∀x ∈ R

n,

where ξ satisfies (12). Fix x ∈ R
n, and let με ∈ Dτ

∞, wε ∈ W be ε-optimal , i.e.,

V
′
(x) ≤

∫ Nτ

0

lμ
ε
t (ξεt ) −

γ2

2
|wε

t |2 dt + V
′
(ξεNτ ) + ε,

where ξε satisfies (12) with inputs με, wε.
Following the same steps as in [35], one obtains the same lemmas.

Lemma A.1. For any N < ∞, ‖wε‖2
L2(0,Nτ) ≤ ε

δ + 1
δ

[
cAγ2

c2σ
e−cANτ + cD

cA

]
|x|2.

Lemma A.2. For any N < ∞,∫ Nτ

0

|ξεt |2 dt ≤
ε

δ

c2σ
cA

+
c2σ
δ

[(
cD
c2A

+
γ2

c2σ

)
+

1

cA

]
|x|2.

Lemma A.3. If wε, με are ε-optimal over [0, Nτ), then they are also ε-optimal
over [0, nτ) for all n ≤ N , i.e.,∫ nτ

0

lμ
ε
t (ξεt ) −

γ2

2
|wε

t |2 dt + V
′
(ξεnτ ) ≥ V

′
(x) − ε.

The independence of the above bounds with respect to N is important. Specifi-
cally, since there is a finite bound on the energy (the bound on wε) coming into the
trajectories, roughly speaking the ξε “tend” toward the origin.

Now we need a lemma which will replace equation (20) in [35].
Lemma A.4. For any N < ∞,

N∑
n=1

|ξεnτ |2 ≤ 1

1 − e−cAτ

[
|x|2 +

(
cσ
c2A

)
‖wε‖2

L2(0,Nτ)

]
.

Proof. Note that d
dt |ξε|2 ≤ −cA|ξε| + d̂|wε|2 with d̂ = c2σ/cA. Solving this on

intervals of the form [nτ, (n + 1)τ), one finds

|ξετ |2 ≤ |x|2e−cAτ + d̂‖wε‖2
L2(0,τ),

|ξε2τ |2 ≤ |ξετ |2e−cAτ + d̂‖wε‖2
L2(τ,2τ),

and so on. Continuing this process, and combining the inequalities, yields

N∑
n=1

|ξεnτ |2 ≤
(

N∑
n=1

e−ncAτ

)
|x|2 + d̂

N∑
n=1

⎡⎣⎛⎝N−n∑
j=0

e−jcAτ

⎞⎠ ‖wε‖2
L2((n−1)τ,nτ)

⎤⎦ .

Using the standard geometric series limit yields the result.
Combining Lemmas A.2 and A.4, one obtains a bound on

∑N
n=1 |ξεnτ |2 which is

independent of N . Consequently, at least some of the |ξεnτ | can be guaranteed to
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be arbitrarily small for large N . The remainder of the proof (of Theorem 4.7) then
follows as in equations (24)–(28) in [35], but with Nτ replacing T , and nτ replacing
τ . This completes the sketch of the proof.

Appendix B. Sketch of proof of Lemma 4.11. Fix δ > 0 (used in the
definition of Gδ). Fix m ∈ M. Fix any T < ∞ and x ∈ R

n. Let ε = (ε̂/2)(1 + |x|2).
Let wε ∈ W, με ∈ D∞ be ε-optimal for S̃T [V m](x), i.e.,

S̃T [V m](x) −
[∫ T

0

lμ
ε
t (ξεt) −

γ2

2
|wε

t |2 dt + V m(ξεT )

]
≤ ε =

ε̂

2
(1 + |x|2),(81)

where ξε satisfies (12) with inputs wε, με.
We will let ξ

ε
satisfy (12) with inputs wε and a με ∈ Dτ

∞ (where τ has yet to be
chosen). Solving (12), one has

ξεt = exp

[∫ t

0

Aμε
r dr

]
x +

∫ t

0

exp

[∫ t

r

Aμε
ρ dρ

]
σμε

rwε
r dr,

ξ
ε

t= exp

[∫ t

0

Aμε
r dr

]
x +

∫ t

0

exp

[∫ t

r

Aμε
ρ dρ

]
σμε

rwε
r dr.

Consequently,

|ξεt − ξ
ε

t | ≤
∣∣∣∣exp

[∫ t

0

Aμε
r dr

]
− exp

[∫ t

0

Aμε
r dr

]∣∣∣∣ |x|
+

{∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r − exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r

∣∣∣∣2 dr

}1/2

‖wε‖L2(0,t).(82)

We now simply show that this can be made arbitrarily small by taking τ small. We
will use the boundedness of ‖wε‖ and ‖ξε‖ which are independent of t for this class
of systems [35].

Consider the first term on the right in (82). Note that∣∣∣∣exp

[∫ t

0

Aμε
r dr

]
− exp

[∫ t

0

Aμε
r dr

]∣∣∣∣(83)

=

∣∣∣∣exp

[∫ t

0

Aμε
r dr

]∣∣∣∣ ∣∣∣∣1 − exp

[∫ t

0

Aμε
r dr −

∫ t

0

Aμε
r dr

]∣∣∣∣ .
Fix τ > 0. For any subset of R, I, let L(I) be the Lebesgue measure of I. Let

N be the largest integer such that Nτ ≤ t. Given m ∈ M, let

Im = {r ∈ [0, Nτ) |Aμε
r = Am} and λm = L(Im).

Let n0 = 0. For 1 ≤ k < M = #M, let nk be the largest integer such that nkτ ≤
λk + nk−1τ . For m < M , let

με
r = m ∀ t ∈ [nm−1τ, nmτ).

Let με
r = M for all t ∈ [nM−1τ, t) = [nM−1τ,Nτ) ∪ [Nτ, t). With this choice of με,

one finds ∣∣∣∣1 − exp

[∫ t

0

Aμε
r dr −

∫ t

0

Aμε
r dr

]∣∣∣∣ < β1
τ ,(84)
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where β1
τ → 0 as τ → 0 independent of t. We skip the details.

Let y ∈ R
n. Define Ft = exp

[∫ t

0
Aμε

r dr
]
. Then, using assumption block (A.m),

d

dt

[
yTFT

t Fty
]
= yT

[
FT
t Ḟt + ḞT

t Ft

]
y = 2yT

[
FT
t Aμε

tFt

]
y

= 2(Fty)
TAμε

t (Fty) ≤ −2cA|Fty|2 = −2cA
[
yTFT

t Fty
]
.

Solving this ordinary differential inequality, one finds [yTFT
t Fty

]
≤ |y|2e−2cAt. Since

this is true for all y ∈ R
n, we have∣∣∣∣exp

[∫ t

0

Aμε
r dr

]∣∣∣∣ ≤ e−cAt ∀ t ≥ 0.(85)

By (83), (84), and (85),∣∣∣∣exp

[∫ t

0

Aμε
r dr

]
− exp

[∫ t

0

Aμε
r dr

]∣∣∣∣ ≤ β1
τe

−cAt ∀ t ≥ 0.(86)

We now turn to the second term on the right-hand side of (82). Note that{∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r − exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r

∣∣∣∣2 dr

}1/2

≤
{

2

∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]∣∣∣∣2 ∣∣∣σμε
r − σμε

r

∣∣∣2 dr

+2

∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]
− exp

[∫ t

r

Aμε
ρ dρ

]∣∣∣∣2 ∣∣∣σμε
r

∣∣∣2 dr

}1/2

,

and proceeding as above,

≤
{

2

∫ t

0

e−2cA(t−r)
∣∣∣σμε

r − σμε
r

∣∣∣2 dr + 2β1
τ

∫ t

0

e−2cA(t−r)
∣∣∣σμε

r

∣∣∣2 dr

}1/2

≤
{

2

[∫ t

0

e−4cA(t−r) dr

]1/2 [∫ t

0

∣∣∣σμε
r − σμε

r

∣∣∣4 dr

]1/2

+ 2β1
τ c

2
σ

∫ t

0

e−2cA(t−r) dr

}1/2

.

Further, there exists β2
τ such that [

∫ t

0
|σμε

r −σμε
r |4 dr]1/2 ≤ β2

τ , where β2
τ → 0 as τ → 0,

and we skip the obvious, but technical, proof. Consequently,{∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r − exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r

∣∣∣∣2 dr

}1/2

≤
{

2β2
τ (4cA)−1/2 + 2β1

τ c
2
σ(2cA)−1

}1/2

≤ β3
τ ,(87)

where β3
τ → 0 as τ → 0 (independent of t).

Combining (82), (86), and (87), one has

|ξεt − ξ
ε

t | ≤ β1
τe

−cAt|x| + β3
τ‖wε‖L2(0,t).(88)

Now, by the system structure given by assumption block (A.m) and by the fact
that the V m are in Gδ, one obtains the following lemmas exactly as in [35]. These are
also analogous to their counterparts in Appendix A.
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Lemma B.1. For any t < ∞, ‖wε‖2
L2(0,t)

≤ ε
δ + 1

δ

[
cAγ2

c2σ
e−cANτ + cD

cA

]
|x|2.

Lemma B.2. For any t < ∞,∫ t

0

|ξεr |2 dt ≤
ε

δ

c2σ
cA

+
c2σ
δ

[(
cD
c2A

+
γ2

c2σ

)
+

1

cA

]
|x|2.

Let c1
.
= ε

δ and c2
.
= 1

δ [ cAγ2

c2σ
e−cANτ + cD

cA
]. By Lemma B.1 and (88), for all t < ∞

one has

|ξεt − ξ
ε

t |≤ β1
τe

−cAt|x| + β3
τ (c1 + c2|x|2)1/2,

and by proper choice of β4
τ ,

≤ β4
τ (1 + |x|),(89)

where β4
τ → 0 as τ → 0 (independent of t > 0).

Now,∫ T

0

lμ
ε
t (ξεt ) −

γ2

2
|wε

t |2 dt + V m(ξεT ) −
∫ T

0

lμ
ε
t (ξ

ε

t ) −
γ2

2
|wε

t |2 dt + V m(ξ
ε

T )

=

∫ T

0

ξεtD
με
t ξεt − ξ

ε

tD
με
t ξ

ε

t dt + (ξεT )TPmξεT − (ξ
ε

T )TPmξ
ε

T .(90)

Note that the integral term on the right-hand side in (90) is∫ T

0

(ξεt )
TDμε

t (ξεt − ξ
ε

t ) + (ξεt )
T
(
Dμε

t −Dμε
t

)
ξ
ε

t + (ξεt − ξ
ε

t )
TDμε

t ξ
ε

t dt

≤ β4
τ (1 + |x|)

∫ T

0

(
|Dμε

t | |ξεt | + |Dμε
t | |ξεt |

)
dt + β5

τ

∫ T

0

|ξεt | |ξ
ε

t | dt

for appropriate β5
τ → 0 as τ → 0, which, after some work,

≤ β6
τ (1 + |x|2)(1 +

√
T )(91)

for an appropriate choice of β6
τ → 0 as τ → 0 (independent of T ).

Similarly, the last two terms on the right-hand side in (90) are

ξεT
TPmξεT − ξ

ε

T

T
Pmξ

ε

T= (ξεT + ξ
ε

T )TPm(ξεT − ξ
ε

T )

≤ |Pm|
[
|ξεT − ξ

ε

T |2 + 2|ξεT | |ξεT − ξ
ε

T |
]
,

which, by (89),

≤ β7
τ (1 + |x|2) + β8

τ |ξεT |(1 + |x|),(92)

where β7
τ , β

8
τ → 0 as τ → 0.

We also need the following lemma which is obtained in [35].
Lemma B.3. Given T < ∞, there exist T ∈ [T/2, T ] and ε-optimal wε ∈ W,

με ∈ D∞ for S̃T [V m] such that

|ξεT |2 ≤ 1

T

{
ε

δ

c2σ
cA

+
c2σ
δ

[(
cD
c2A

+
γ2

c2σ

)
+

1

cA

]
|x|2

}
.
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Combining (92) and Lemma B.3, one finds that there exist c3, c4 < ∞ such that

ξεT
TPmξεT − ξ

ε

T

T
Pmξ

ε

T ≤ β9
τ (1 + |x|2),(93)

where β9
τ → 0 as τ → 0 (independent of T ).

Combining (90), (91), and (93),∫ T

0

lμ
ε
t (ξεt ) −

γ2

2
|wε

t |2 dt + V m(ξεT ) −
∫ T

0

lμ
ε
t (ξ

ε

t ) −
γ2

2
|wε

t |2 dt + V m(ξ
ε

T )

≤ β10
τ (1 + |x|2)(1 +

√
T ),(94)

where β10
τ → 0 as τ → 0 (independent of T ).

Combining (81) and (94), one has

S̃T [V m](x) −
∫ T

0

lμ
ε
t (ξ

ε

t ) −
γ2

2
|wε

t |2 dt + V m(ξ
ε

T )≤ ε

2
(1 + |x|2) + β10

τ (1 + |x|2)(1 +
√
T ),

which, for τ sufficiently small (depending on T now),
≤ ε(1 + |x|2).

This completes the proof of Lemma 4.11.
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