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Abstract. Max-plus based methods have been recently explored for solution of first-
order Hamilton-Jacobi-Bellman equations by several authors. In particular, McEneaney’s
curse-of-dimensionality free method applies to the equations where the Hamiltonian
takes the form of a (pointwise) maximum of linear/quadratic forms. In previous works
of McEneaney and Kluberg, the approximation error of the method was shown to be
O(1/(Nτ))+O(

√
τ) where τ is the time discretization step and N is the number of itera-

tions. Here we use a recently established contraction result for the indefinite Riccati flow
in Thompson’s metric to show that under different technical assumptions, still covering
an important class of problems, the error is only of order O(e−αNτ ) + O(τ) for some
α > 0. This also allows us to obtain improved estimates of the execution time and to
tune the precision of the pruning procedure, which in practice is a critical element of
the method.

1. Introduction

1.1. Max-plus methods in optimal control. Dynamic Programming (DP) is a gen-
eral approach to the solution of optimal control problems. In the case of deterministic
optimal control, this approach leads to solving a first-order, nonlinear partial differential
equation, the Hamilton-Jacobi-Bellman equation(HJB PDE). Various methods have been
proposed for solving the HJB PDE. We cite among all the finite difference schemes, the
method of the vanishing viscosity of Crandall and Lions [CL84], the discrete dynamic
programming method or semi-Lagrangian method developed by Falcone [Fal87] and oth-
ers [CD83, FF94, CFF04], the high order ENO schemes introduced by Osher, Sethian
and Shu [OS88, OS91], the discontinuous Galerkin method by Hu and Shu [HS99], the
ordered upwind methods for convex static Hamilton-Jacobi equations by Sethian and
Vladimirsky [SV03] which is an extension of the fast marching method for the Eikonal
equations [Set99], and the antidiffusive schemes for advection of Bokanowski and Zi-
dani [BZ07]. These methods generally require the generation of a grid on the state space.
This is known to suffer from the so called curse-of-dimensionality since the computational
growth in the state-space dimension is exponential.

Recently a new class of methods has been developed after the work of Fleming and McE-
neaney [FM00], see in particular the works of McEneaney [McE07], of Akian, Gaubert
and Lakhoua [AGL08], of McEneaney, Deshpande and Gaubert [MDG08], of Dower and
McEneaney [DM11] and of James et al. [SSM10]. These methods are referred to as max-
plus basis methods since they all rely on max-plus algebra. Their common idea is to
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approximate the value function by a supremum of finitely many “basis functions” and
to propagate the supremum forward in time by exploiting the max-plus linearity of the
Lax-Oleinik semigroup. Recall that the Lax-Oleinik semigroup (St)t>0 associated to a
Hamiltonian H(·, ·) : Rn×Rn → R is the evolution semigroup of the following HJB PDE

(1) − ∂v

∂t
+H(x,∇v) = 0, (x, t) ∈ Rn × (0, T ],

with initial condition

(2) v(x, 0) = φ(x), x ∈ Rn.

Thus, St maps the initial function φ(·) to the function v(·, t). Among several max-plus
basis methods which have been proposed, the curse-of-dimensionality-free method intro-
duced by McEneaney [McE07] is of special interest. This method applies to the special
class of HJB PDE where the Hamiltonian H is given or approximated as a pointwise
maximum of computationally simpler Hamiltonians:

H(x,∇V ) = max
m∈M
{Hm(x,∇V )}(3)

with M = {1, 2, · · · ,M}. In particular, McEneaney studied the case where each Hamil-
tonian Hm is a linear/quadratic form, originating from a linear quadratic optimal control
problem:

Hm(x, p) = (Amx)′p+
1

2
x′Dmx+

1

2
p′Σmp,

where (Am, Dm,Σm) are matrices meeting certain conditions. Such Hamiltonian H cor-
responds to a linear quadratic switching optimal control problem (Section 2.1) where the
control switches between several linear quadratic systems. We are interested in finding the
value function V of the corresponding infinite horizon switching optimal control problem.
The method consists in two successive approximations (Section 2.4). First we approx-
imate the infinite horizon problem by a finite horizon problem. Then we approximate
the value function of the finite horizon switching optimal control problem by choosing an
optimal strategy which does not switch on small intervals.

We denote by (St)t>0 and (Smt )t>0 for all m ∈ M respectively the semigroup corre-
sponding to H and Hm for all m ∈ M. Let V 0 be a given initial function and T > 0 be
the finite horizon. The first approximation uses ST [V 0] to approximate V and introduces
the finite-horizon truncation error:

ε0(x, T, V
0) := V (x)− ST [V 0](x).

Let τ > 0 be a small time step and N > 0 such that T = Nτ . Denote by S̃τ the semigroup
of the optimal control problem where the control does not switch on the interval [0, τ ].
The second approximation approximates ST [V 0] by {S̃τ}N [V 0]. The error at point x of
this time discretization approximation is denoted by:

ε(x, τ,N, V 0) := ST [V 0](x)− {S̃τ}N [V 0](x).

The total error at a point x is then simply ε0(x, T, V
0) + ε(x, τ,N, V 0). We shall see that

S̃τ = supm∈M Smτ . Therefore S̃τ applied to a quadratic function corresponds to solving
|M| Riccati equations, requiring O(|M|n3) arithmetic operations. The total number of
computational cost is O(|M|Nn3), with a cubic growth in the state dimension n. In this
sense it is considered as a curse of dimensionality free method. However, we see that
the computational cost is bounded by a number exponential in the number of iterations,
which is referred to as the curse of complexity. In practice, a pruning procedure denoted
by Pτ removing at each iteration a number of functions less useful than others is needed
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in order to reduce the curse of complexity. We denote the error at point x of the time
dicretization approximation incorporating the pruning procedure by:

εPτ (x, τ,N, V 0) = ST [V 0](x)− {Pτ ◦ S̃τ}N [V 0](x).

1.2. Main contributions. In this paper, we analyze the growth rate of ε0(x, T, V
0) as

T tends to infinity and the growth rate of εPτ (x, τ,N, V 0) as τ tends to 0, incorporating
a pruning procedure Pτ of error O(τ r) with r > 1. The error ε(x, τ,N, V 0) in the absence
of pruning is obtained when r = +∞.

We show that under technical assumptions (Assumption 2.1 and 3.2),

ε0(x, T, V
0) = O(e−αT ), as T → +∞

uniformly for all x ∈ Rn and all initial quadratic functions V 0(x) = 1
2
x′Px where P is a

matrix in a certain compact (Theorem 4.1). We also show that given a pruning procedure
generating an error O(τ r) with r > 1,

εPτ (x, τ,N, V 0) = O(τmin{1,r−1}), as τ → 0

uniformly for all x ∈ Rn, N ∈ N and V 0 as above (Theorem 5.1). As a direct corollary,
we have

ε(x, τ,N, V 0) = O(τ), as τ → 0

uniformly for all x ∈ Rn, N ∈ N and V 0 as above.

1.3. Comparison with earlier estimates. McEneaney and Kluberg showed in [MK10,
Thm 7.1] that under Assumption 2.1, for a given V 0,

ε0(x, T, V
0) = O(

1

T
), as T → +∞(4)

uniformly for all x ∈ Rn. They also showed [MK10, Thm 6.1] that if in addition to
Assumption 2.1, the matrices Σm are all identical for m ∈M, then for a given V 0,

ε(x, τ,N, V 0) = O(
√
τ), as τ → 0(5)

uniformly for all x ∈ Rn and N ∈ N. Their estimates imply that to get a sufficiently
small approximation error ε we can use a horizon T = O(1/ε) and a discretization step
τ = O(ε2). Thus asymptotically the computational cost is:

O(|M|O(1/ε3)n3), as ε→ 0.

The same reasoning applied to our estimates shows a considerably smaller asymptotic
growth rate of the computational cost (Corollary 7.1):

O(|M|O(− log(ε)/ε)n3), as ε→ 0

McEneaney and Kluberg [MK10] gave a technically difficult proof of the estimates (4)
and (5), assuming that all the Σm’s are the same. They conjectured that the latter as-
sumption can at least be released for a subclass of problems. This is supported by our
results, showing that for the subclass of problems satisfying Assumption 3.2, this assump-
tion can be omitted. To this end, we use a totally different approach. Our main idea is to
use the Thompson’s metric to measure the error. It is well-known that the Thompson’s
metric defined on the space of positive-definite matrices is a Finsler metric and that the
standard Riccati flow is strictly contracting in Thompson’s metric (see [LW94, LL07]).
However, we shall see that the Riccati equations appeared in the problem are indefinite
and so we can not apply directly the contraction results. It has been shown recently
in [GQ12] that the indefinite Riccati flows has a strict local contraction property in
Thompson’s metric under some technical assumptions. This local contraction result on
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the indefinite Riccati flow constitutes an essential part of our proofs. We shall also need
an extension of the Thompson’s metric to the space of supremum of quadratic functions.

Our approach derives a tighter estimate of ε0(x, T, V
0) and ε(x, τ,N, V 0) compared

to previous results as well as an estimate of εPτ (x, τ,N, V 0) incorporating the pruning
procedure. This new result justifies the use of pruning procedure of error O(τ 2) without
increasing the asymptotic total approximation error order.

The paper is organized as follows. In Section 2, we recall the switching linear quadratic
control problem and the max-plus approximation method. In Section 3, we recall the con-
traction results on the indefinite Riccati flow as well as the extension of the Thompson’s
metric to the space of supremum of quadratic functions. In Sections 4 and 5, we present
the estimates of the two approximation errors and part of the proofs. In Section 6, we
show the proofs of some technical lemmas. Finally in Section 7, we give some remarks
and some numerical illustrations of the theoretical estimates.

2. Problem statement

We recall briefly the problem class and present some basic concepts and necessary
assumptions. The reader can find more details in [McE07].

2.1. Problem class. Let M = {1, · · · ,M} be a finite index set. We are interested in
finding the value function of the following switching optimal control problem:

V (x) = sup
w∈W

sup
µ∈D∞

sup
T>0

∫ T

0

1

2
(ξµtt )′Dµtξµtt −

γ2

2
|wt|2dt

where

D∞ := {µ : [0,∞)→M, µ measurable},

W := {w : [0,∞)→ Rk :

∫ T

0

|wt|2dt <∞, ∀T <∞},

and ξ is subject to:

ξ̇ = Aµtξ + σµtwt, ξ0 = x.(6)

In the sequel we denote Σm := γ2

2
σm(σm)′. As in [McE07], we make the following as-

sumptions throughout the paper to guarantee the existence of V .

Assumption 2.1.

• There exists cA > 0 such that:

x′Amx 6 −cA|x|2, ∀x ∈ Rn,m ∈M

• There exists cσ > 0 such that:

|σm| 6 cσ, ∀m ∈M

• All Dm are positive definite, symmetric, and there is cD such that:

x′Dmx 6 cD|x|2, ∀x ∈ Rn,m ∈M,

and

c2A >
cDc

2
σ

γ2

4



2.2. Evolution semigroup. Define the semigroup:

ST [V 0](x) = sup
w∈W

sup
µ∈DT

J(x, T ;V 0;w, µ)

where

J(x, T ;V 0;w, µ) :=

∫ T

0

1

2
ξ′tD

µtξt −
γ2

2
|wt|2dt+ V 0(ξT ),

DT = {µ : [0, T )→M, µ measurable},
and ξ : [0, T ]→ R is subject to (6). For each m ∈M, define the semigroup {Smt }t>0:

SmT [V 0](x) := sup
w∈W

J(x, T ;V 0;w, µm),

where
µmt = m, t ∈ [0, T ].

Note that for each t > 0, St is max-plus linear in the sense that for two functions
V1, V2 : Rn → R, we have:

St[V1 + V2](x) = St[V1](x) + St[V2](x), ∀x ∈ Rn(7)

St[sup{V1, V2}](x) = sup{St[V1](x), St[V2](x)}, ∀x ∈ Rn(8)

2.3. Steady HJB equation. For any δ ∈ (0, γ), define

Gδ := {V semiconvex , V (x) 6
cA(γ − δ)2

c2σ
|x|2, ∀x}.(9)

Then the value function V is the unique viscosity solution of the following corresponding
HJB PDE in the class Gδ for sufficiently small δ [McE07]:

0 = −H(x,∇V ) = −max
m∈M

Hm(x,∇V ).(10)

where

Hm(x, p) = (Amx)′p+
1

2
x′Dmx+

1

2
p′Σmp.

It was shown in [McE07] that for δ sufficiently small and V 0 ∈ Gδ,

lim
T→∞

ST [V 0] = V(11)

uniformly on compact sets.

2.4. Max-plus based approximation. We review the basic steps of the algorithm
proposed in [McE07] to approximate the value function V . Firstly using (11) we are
allowed to approximate V by ST [V 0] for some sufficiently large T . We then choose a
time-discretization step τ > 0 and a number of iterations N such that T = Nτ to
approximate ST by

ST = {Sτ}N ' {S̃τ}N

where S̃τ = sup
m∈M

Smτ . At the end of N iterations, we get our approximated value function

represented by:
V ' sup

i1,··· ,iN
SiNτ · · ·Si1τ [V 0].

If we choose V 0(x) = 1
2
x′Px as a quadratic function, then the approximated value function

will be the maximum of |M|N quadratic functions. This so-called curse-of-complexity
can be reduced by performing a pruning process at each iteration of the algorithm to
remove some quadratic functions, see [MDG08].

5



2.5. Approximation errors. As pointed out in [MK10], the approximation error comes
from two parts. The first error source is

ε0(x, T, V
0) := V (x)− ST [V 0](x).

This is due to the approximation of the infinite-horizon problem by a finite-horizon prob-
lem. The second source of error is

ε(x, τ,N, V 0) := SNτ [V
0](x)− {S̃τ}N [V 0](x),

due to the approximation of the semigroup by a time-discretization. In Section 2.4 we
mentioned that in practice a pruning procedure is needed so as to reduce the number of
quadratic functions. More precisely, let {fi}i∈I be a finite set of quadratic functions and

f = sup
i∈I

fi.(12)

A pruning operation P applied to f produces an approximation of f by selecting a subset
J ⊂ I:

f ' P [f ] = sup
j∈J

fj.

If we take into account the pruning procedure, then the second error source should be
written as:

εPτ (x, τ,N, V 0) = SNτ [V
0](x)− {Pτ ◦ S̃τ}N [V 0](x),(13)

where Pτ represents a given pruning rule. We mark the subscript τ since it is expected
that the pruning procedure be adapted with the time step τ . In particular, we say that
Pτ is a pruning procedure generating an error O(τ r) if there is L > 0 such that for all
function f of the form (12),

Pτ [f ] 6 f 6 (1 + Lτ r)Pτ [f ].(14)

The special case without pruning procedure can be recovered by considering r = +∞.

3. Contraction properties of the indefinite Riccati flow

Before showing the main results, we present here an essential ingredient of our proof:
the contraction properties of the indefinite Riccati flow.

3.1. Loewner order and Thompson’s part metric. We recall some basic notions
and terminology. We refer the readers to [Nus88] for more background.

We consider the space of n-dimensional symmetric matrices Sn equipped with the
operator norm ‖ · ‖. The space of positive semi-definite (resp. positive definite) matrices

is denoted by S+
n (resp. Ŝ

+

n ). The Loewner order ”6” on Sn is defined by:

A 6 B ⇔ B − A ∈ S+
n .

For A 6 B we define the order intervals:

[A,B] := {P ∈ Sn |A 6 P 6 B}.

For P1, P2 ∈ Ŝ
+

n , following [Nus88], we define

M(P1/P2) := inf{t > 0 : P1 6 tP2}

Definition 3.1. The Thompson part metric between two elements P1 and P2 of Ŝ
+

n is

dT (P1, P2) := log(max{M(P1/P2),M(P2/P1)}).
6



3.2. Contraction rate of the indefinite Riccati flow. For each m ∈ M, define the
function Φm: Sn → Sn:

Φm(P ) = (Am)′P + PAm + PΣmP +Dm.(15)

Associated to each Φm we define the flow map by:

Mm
t [P0] = P (t), t ∈ [0, T )

where P (t) : [0, T ) → Sn is a maximal solution of the following initial value problem on
Sn:

Ṗ = Φm(P ), P (0) = P0.(16)

When V 0(x) = 1
2
x′P0x with P0 ∈ Sn, a classical result [YZ99] states that

Smt [V 0](x) =
1

2
x′Mm

t [P0]x, t ∈ [0, T ).(17)

The standard Riccati equation refers to a vector field of the form (15) with −Σm and Dm

positive semi-definite. Here we are concerned with the indefinite Riccati equation since
the matrix coefficient Σm is positive semi-definite.

The contraction property and the contraction rate calculus of the standard Riccati flow
in Thompson’s metric have been given in [LW94] and [LL07]. However, their approach
depends on the algebraic property of the associated symplectic operator, which fails
in the indefinite case. In [GQ12], the authors give a general explicit formula for the
local contraction rate of a flow, in Thompson’s metric, from which it follows that under
additional constraints on the matrix coefficients, the Riccati flow is still a local contraction
in the indefinite case. Below is the additional assumption needed to apply this new
contraction result:

Assumption 3.2. There is mD > 0 such that

x′Dmx > mD|x|2, ∀x ∈ Rn,m ∈M
and

c2σ
γ2
mD > (cA −

√
c2A − cDc2σ/γ2)

2.

In the sequel we denote

λ1 =
γ2(cA −

√
c2A − cDc2σ/γ2)
c2σ

, λ2 :=
√
mDγ2/c2σ.

Remark 3.3. Under Assumption 3.2, we can choose ε > 0 sufficiently small so that

Mm
t0

[0] > εI, for some t0 > 0,m ∈M.(18)

Since Φm(0) = Dm > mDI for all m ∈ M, we can let ε be sufficiently small such that
Φm(εI) > 0 for all m ∈ M. Besides, for any λ ∈ [λ1, λ2), we have Φm(λI) 6 0 for all
m ∈M. Then it follows from a standard result on the Riccati equation that:

Mm
t [P0] ∈ [εI, λI], ∀m ∈M, t > 0, P0 ∈ [εI, λI].(19)

The main ingredient to make our proofs is the following theorem:

Theorem 3.4 (Corollary 4.6 in [GQ12]). Under Assumptions 2.1 and 3.2, for any λ ∈
[λ1, λ2), there is α > 0 such that for all P1, P2 ∈ (0, λI],

dT (Mm
t [P1],M

m
t [P2]) 6 e−αtdT (P1, P2), ∀t > 0,m ∈M.

7



3.3. Extension of the contraction result to the space of functions. Now we extend
the definition of Thompson’s metric to the space of non-negative functions. For two
functions f, g : Rn → R, we consider the standard partial order ”6” by:

f 6 g ⇔ f(x) 6 g(x), ∀x ∈ Rn,

which coincides with the Loewner order on the set of quadratic forms. Similarly, for
f, g : Rn → R+ we define

M(f/g) := inf{t > 0 : f 6 tg}

We say that f and g are comparable if M(f/g) and M(g/f) are finite. In that case, we
can define the ”Thompson metric” between f, g : Rn → R+ by:

dT (f, g) = log(max{M(f/g),M(g/f)}).(20)

Then the following lemma can be easily proved using the definition:

Lemma 3.5. Let f, g : Rn → R+ be given by pointwise maxima of non-negative functions

f := sup
i∈I

fi, g := sup
i∈I

gi

Then

dT (f, g) 6 sup
i∈I

dT (fi, gi).(21)

The following result is a consequence of the order-preserving character of the Riccati
flow and of the contraction property in Theorem 3.4.

Lemma 3.6. Under Assumptions 2.1 and 3.2, let λ ∈ [λ1, λ2) and ε > 0 such that (19)
holds. Then there is α > 0 such that for any two functions V1 and V2 of the form:

V1(x) = sup
j∈J

1

2
x′Pjx, V2(x) =

1

2
x′Qx,

where Q,Pj ∈ [εI, λI] for all j ∈ J , we have

dT (SiNt/N · · ·S
i1
t/N [V1], S

iN
t/N · · ·S

i1
t/N [V2]) 6 e−αt log(

λ

ε
)

for all t > 0, N ∈ N and (i1, · · · , iN) ∈MN .

Proof. For all P,Q ∈ [εI, λI], by (19) and Theorem 3.4 we have

dT (M iN
t/N · · ·M

i1
t/N [P ],M iN

t/N · · ·M
i1
t/N [Q]) 6 e−αtdT (P,Q)

for all t > 0, N ∈ N and (i1, · · · , iN) ∈ MN . Now by the max-plus linearity of the
semigroup (8), Lemma 3.5 and the relationship between the semigroup and the flow (17),
we get

dT (SiNt/N · · ·S
i1
t/N [V1], S

iN
t/N · · ·S

i1
t/N [V2])

6 sup
j∈J

dT (M iN
t/N · · ·M

i1
t/N [Pj],M

iN
t/N · · ·M

i1
t/N [Q])

6 e−αt sup
j∈J

dT (Pj, Q) 6 e−αt log(
λ

ε
).

�
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4. Finite horizon error estimate

We first study the finite horizon truncation error ε0(x, T, V
0). Below is one of our main

results:

Theorem 4.1. Under Assumptions 2.1 and 3.2, let λ ∈ [λ1, λ2) and ε > 0 such that (18)
and (19) hold. There exist α > 0 and K > 0 such that,

ε0(x, T, V
0) 6 Ke−αT |x|2, ∀x,

for all T > 0 and V 0(x) = 1
2
x′P0x with P0 ∈ [εI, λI].

The remaining part of the section is devoted to the proof of the above theorem. We
shall need the following technical lemma. The proof is deferred to Section 6.1.

Lemma 4.2 (Approximation by piecewise constant controls). Let V 0 : Rn → R be a
given locally Lipschitz function. For any T > 0 we have

ST [V 0] = sup
N

sup
i1,···iN

SiNT/N · · ·S
i1
T/N [V 0].

From now on we make Assumptions 2.1 and 3.2. We also fix λ ∈ [λ1, λ2) and ε > 0
satisfying (18) and (19).

Remark 4.3. Since the interval [εI, λI] is invariant by any operator {Smτ }τ>0,m∈M, it is
direct from Lemma 4.2 that

ε

2
|x|2 6 ST [V 0](x) 6

λ

2
|x|2, ∀T > 0(22)

for all V 0(x) = 1
2
x′Px with P ∈ [εI, λI].

Corollary 4.4. The value function V is a pointwise supremum of quadratic functions

V (x) = sup
j∈J

1

2
x′Pjx

where Pj ∈ [εI, λI] for all j ∈ J .

Proof. By definition, we have:

V (x) = sup
T>0

ST [0](x), ∀x.

By (18), there is t0 > 0 and m ∈M such that

Mm
t0

[0] > εI.

Besides, by the monotonicity of the semigroup,

ST [Smt0 [0]](x) 6 ST [St0 [0]](x), ∀x, T > 0

and
ST [0](x) 6 ST [Smt0 [0]](x), ∀x, T > 0.

Since
V (x) = sup

T>0
ST [0](x) = sup

T
ST [St0 [0]](x), ∀x,

we get that:
sup
T
ST [Smt0 [0]](x) 6 V (x) 6 sup

T
ST [Smt0 [0]](x), x.

Hence by Lemma 4.2:

V (x) = sup
T
ST [Smt0 [0]] = sup

T
sup
N

sup
i1,···iN

SiNT/N · · ·S
i1
T/NS

m
t0

[0].

9



Now using the invariance of the interval [εI, λI] in (19), we know that

M iN
T/N · · ·M

i1
T/NM

m
t0

[0] ∈ [εI, λI],

for all T > 0, N ∈ N and i1, . . . , iN ∈ M. Consequently V is a pointwise maximum of
quadratic functions 1

2
x′Pjx with Pj ∈ [εI, λI]. �

Using the above lemma we show that:

Proposition 4.5. There is α > 0 such that for all V 0(x) = 1
2
x′P0x with P0 ∈ [εI, λI],

dT (V, ST [V 0]) 6 e−αT log(
λ

ε
), ∀T > 0.

Proof. By Corollary 4.4, the value function V is a pointwise supremum of quadratic
functions:

V (x) = sup
j∈J

1

2
x′Pjx

where Pj ∈ [εI, λI] for all j ∈ J . Let any V 0(x) = 1
2
x′P0x with P0 ∈ [εI, λI]. By

Corollary 3.6, we have:

dT (SiNT/N · · ·S
i1
T/N [V ], SiNT/N · · ·S

i1
T/N [V 0]) 6 e−αT log(

λ

ε
)

for all T > 0, N ∈ N and (i1, · · · , iN) ∈MN . We also know from Lemma 4.2 that

V = ST [V ] = sup
N

sup
i1,...,iN

SiNT/N . . . S
i1
T/N [V ],

and that

ST [V 0] = sup
N

sup
i1,...,iN

SiNT/N . . . S
i1
T/N [V 0].

Therefore by Lemma 3.5,

dT (V, ST [V 0]) = dT (ST [V ], ST [V 0])
6 sup

N
sup
i1,···iN

dT (SiNT/N · · ·S
i1
T/N [V ], SiNT/N · · ·S

i1
T/N [V 0])

6 e−αT log(λ
ε
).

�

Now we have all the necessary elements to prove Theorem 4.1.

Proof of Theorem 4.1. Let any V 0(x) = 1
2
x′P0x with P0 ∈ [εI, λI]. By Proposition 4.5

and (20), there is α > 0 such that

V (x) 6 ee
−αT log(λ/ε)ST [V 0](x), ∀T > 0, x ∈ Rn.

Thus there is constant L > 0 such that

V (x) 6 (1 + Le−αT )ST [V 0](x), ∀T > 0, x ∈ Rn

This leads to

ε0(x, T, V
0) 6 Le−αTST [V 0](x) 6

λL

2
e−αT |x|2, ∀T > 0, x ∈ Rn.

where the last inequality follows from (22). It is clear that the constant K = λL
2

is
independent of P0 ∈ [εI, λI]. �
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5. Discrete-time approximation error estimate

In this section we analyze the discrete-time approximation error εPτ (x, τ,N, V 0). Our
main result is:

Theorem 5.1. Let r > 1. Suppose that for each τ > 0 the pruning operation Pτ generates
an error O(τ r) (see (14)). Under Assumptions 2.1 and 3.2, let λ ∈ [λ1, λ2) and ε > 0
such that (19) holds. Then there exist τ0 > 0 and L > 0 such that

εPτ (x, τ,N, V 0) 6 Lτmin{1,r−1}|x|2, ∀x,
for all N ∈ N, τ 6 τ0 and V 0(x) = 1

2
x′P0x with P0 ∈ [εI, λI].

The remaining part of the section is devoted to the proof of Theorem 5.1. We first
state a technical lemma which is proved in Section 6.2.

Lemma 5.2. Let K ⊂ Sn be a compact convex subset. There exist τ0 > 0 and L > 0 such
that

Sτ [V
0](x) 6 S̃τ [V

0](x) + Lτ 2|x|2, ∀x,
for all τ ∈ [0, τ0] and V 0(x) = 1

2
x′P0x with P0 ∈ K.

Now we take into account the pruning procedure and analyze the error of the following
approximation

Sτ ' Pτ ◦ S̃τ .
Below is a direct consequence of Lemma 5.2 and (19).

Corollary 5.3. Let ε, λ, r and Pτ be as in Theorem 5.1. Then there exist τ0 > 0 and
L > 0 such that:

Sτ [V
0](x) 6 (1 + Lτmin{2,r})Pτ ◦ S̃τ [V 0](x), ∀x,

for all τ ∈ [0, τ0] and V 0(x) = 1
2
x′P0x with P0 ∈ [εI, λI].

We are ready to give a proof of Theorem 5.1:

Proof of Theorem 5.1. Denote s = min{2, r}. Let any λ′ > 0 such that

λ < λ′ < λ2.

Denote δ = λ′/λ. Consider the two compact convex subsets K0 = [εI, λI] and K1 =
[εI, λ′I]. It is easily verified that:

Φm(λ′I) 6 0, ∀m ∈M.

Therefore for all P0 ∈ K0, P1 ∈ K1, t > 0 and m ∈M,

Mm
t [P0] ∈ K0, Mm

t [P1] ∈ K1.(23)

By Corollary 5.3, there is τ0 and L > 0 such that for all τ ∈ [0, τ0] and V 0 = 1
2
x′Px with

P ∈ K1:

Sτ [V
0] 6 (1 + Lτ s)Pτ ◦ S̃τ [V 0].(24)

Let τ0 > 0 be sufficiently small such that:

(1 + Lτ s)
1

1−e−ατ 6 δ, ∀τ ∈ [0, τ0].

Let any V 0(x) = 1
2
x′P0x with P0 ∈ K0 and τ ∈ [0, τ0], we are going to prove by induction

on N ∈ N the following inequalities:

SNτ [V
0] 6 (1 + Lτ s)1+e

−ατ+···+e−(N−1)ατ{Pτ ◦ S̃τ}N [V 0], ∀N ∈ N.
11



The case N = 1 is already given in (24). Suppose that the above inequality is true for
some k ∈ N, that is,

Skτ [V
0] 6 Lk{Pτ ◦ sup

m
Smτ }k[V 0]

where Lk = (1 + Lτ s)1+e
−ατ+···+e−(k−1)ατ

. We denote by Ik ⊂Mk the subset such that

{Pτ ◦ sup
m
Smτ }k[V 0] = sup

(i1,··· ,ik)∈Ik
Sikτ · · ·Si1τ [V 0].

Thus,

Skτ [V
0] 6 sup

(i1,··· ,ik)∈Ik
LkS

ik
τ · · ·Si1τ [V 0].(25)

From (23), we know that for all (i1, · · · , ik) ∈ Ik
M ik

τ · · ·M i1
τ [P0] ∈ K0.(26)

Besides,

1 6 Lk 6 (1 + Lτ s)
1

1−e−ατ 6 δ.

Thus for all (i1, · · · , ik) ∈ Ik,
Lk(M

ik
τ · · ·M i1

τ [P0]) ∈ K1(27)

Recall that

LkS
ik
τ · · ·Si1τ [V 0](x) =

Lk
2
x′(M ik

τ · · ·M i1
τ [P0])x,

then by applying (25) and (24), we obtain that

S(k+1)τ [V
0] = Sτ [Skτ [V

0]]
6 sup

(i1,··· ,ik)∈Ik
Sτ [LkS

ik
τ · · ·Si1τ [V 0]]

6 sup
(i1,··· ,ik)∈Ik

(1 + Lτ s)Pτ ◦ S̃τ [[LkSikτ · · ·Si1τ [V 0]]]
(28)

Now by Theorem 3.4, there is α > 0 such that for all P1, P2 ∈ K1 and m ∈M
dT (Mm

τ [P1],M
m
τ [P2]) 6 e−ατdT (P1, P2)

Therefore from (26) and (27) we get that for any (i1, . . . , ik) ∈ Ik and m ∈M
dT (Mm

τ M
ik
τ · · ·M i1

τ [P0],M
m
τ [Lk(M

ik
τ · · ·M i1

τ [P0])])
6 e−ατdT (M ik

τ · · ·M i1
τ [P0], Lk(M

ik
τ · · ·M i1

τ [P0])) = e−ατ logLk.

This implies that

Mm
τ [Lk(M

ik
τ · · ·M i1

τ [P0])] 6 Le
−ατ

k Mm
τ M

ik
τ · · ·M i1

τ [P0], ∀m ∈M
which is,

Smτ [LkS
ik
τ · · ·Si1τ [V 0]] 6 Le

−ατ

k Smτ S
ik
τ · · ·Si1τ [V 0], ∀m ∈M.

Therefore we deduce from the inequality (28):

S(k+1)τ [V
0] 6 (1 + Lτ s)Pτ [ sup

m∈M,(i1,··· ,ik)∈Ik
Smτ [LkS

ik
τ · · ·Si1τ [V 0]]]

6 (1 + Lτ s)Le
−ατ

k Pτ [ sup
m∈M,(i1,··· ,ik)∈Ik

Smτ S
ik
τ · · ·Si1τ [V 0]]

= (1 + Lτ s)1+e
−ατ+···+e−kατ{Pτ ◦ S̃τ}k+1[V 0].

Thereby we proved that

SNτ [V
0] 6 (1 + Lτ s)

1
1−e−ατ {P ◦ S̃τ}N [V 0], ∀N ∈ N.

12



Note that

lim
τ→0+

(1 + Lτ s)
1

1−e−ατ − 1

τ s−1
=
L

α
,

from which we deduce the existence of τ0 and K > 0 such that for all τ ∈ [0, τ0], N ∈ N
and V 0(x) = 1

2
x′Px with P ∈ [εI, λI]

{Sτ}N [V 0] 6 (1 +Kτ s−1){P ◦ S̃τ}N [V 0].

which leads to

εPτ (x, τ,N, V 0) 6 Kτmin{1,r−1}{P ◦ S̃τ}N [V 0] 6
Kλ

2
τmin{1,r−1}|x|2.

�

Remark 5.4. It should be pointed out that the crucial point is having α > 0. If this is
not the case (α = 0), then the iteration (28) only leads to:

dT (SNτ [V
0], {Pτ ◦ S̃τ}N [V 0]) 6 LNτ s, ∀N ∈ N.

6. Proofs of the technical lemmas

6.1. Proof of Lemma 4.2. For two functions µ, ν ∈ DT we consider the metric d(µ, ν)
defined by the measure of subset on which the two controls µ and ν differ from each
other:

d(µ, ν) =

∫ T

0

1µ6=νdt.(29)

The proof of Lemma 4.2 needs the next lemma. It shows that the objective function is
continued on the variable µ ∈ DT with respect to the metric d defined in (29).

Lemma 6.1. Let V 0 : Rn → R be a locally Lipschitz function. Let x ∈ Rn and T > 0.
Given µ ∈ DT and w ∈ WT , for any ε > 0, there is δ0 > 0 such that

|J(x, T ;V 0;µ,w)− J(x, T ;V 0; µ̃, w)| 6 ε,

for all µ̃ ∈ DT such that d(µ, µ̃) 6 δ0.

Proof. Let any µ̃ ∈ DT and denote:

δ = d(µ, µ̃).

Let ξ and ξ̃ be respectively the solutions to (6) under the control (µ,w) and (µ̃, w). Thus

ξt − ξ̃t =

∫ t

0

Aµsξs + σµsws − (Aµ̃s ξ̃s + σµ̃sws)ds, ∀t ∈ [0, T ].

Denote

L = max(max
m
‖Am‖,max

m
|σm|,max

m
‖Dm‖, (

∫ T

0

(|ξs|+ |ws|)2ds)1/2).

We have:

|ξt − ξ̃t| 6
∫ t
0
|Aµsξs − Aµ̃sξs|+ |Aµ̃sξs − Aµ̃s ξ̃s|+ |σµs − σµ̃s||ws|ds

6
∫ t
0
L|ξs − ξ̃s|ds+

∫ t
0

1µ 6=µ̃(‖Aµs − Aµ̃s‖|ξs|+ |σµs − σµ̃s ||ws|)ds
6
∫ t
0
L|ξs − ξ̃s|ds+ 2L

∫ t
0

1µ6=µ̃(|ξs|+ |ws|)ds
6
∫ t
0
L|ξs − ξ̃s|ds+ 2L(

∫ t
0

1µ6=µ̃ds)
1/2(
∫ t
0
(|ξs|+ |ws|)2)1/2

6
∫ t
0
L|ξs − ξ̃s|ds+ 2L2δ

1
2 , ∀t ∈ [0, T ].
13



By Gronwall’s Lemma,

|ξt − ξ̃t| 6 2L2δ
1
2 eLt 6 Lδ

1
2 , ∀t ∈ [0, T ].

Then
|ξ̃t| 6 sup

t∈[0,T ]
|ξt|+ Lδ

1
2 6 L,∀t ∈ [0, T ].

Note that L is independent of µ̃. Now by the local Lipschitz property of V 0 and the
boundedness of ξ and ξ̃, there is L > 0 such that:

|V 0(ξT )− V 0(ξ̃T )| 6 L|ξT − ξ̃T | 6 Lδ
1
2

Besides,

|
∫ T
0
ξ′tD

µtξt − ξ̃′tDµ̃t ξ̃tdt|
6
∫ T
0
|ξ′tDµt(ξt − ξ̃t)|+ |ξ̃′tDµt(ξt − ξ̃t)|+ |ξ̃′t(Dµt −Dµ̃t)ξ̃t|dt

6 L
∫ T
0

(|ξt − ξ̃t|+ 1µ 6=µ̃)dt

6 L(δ
1
2 + δ)

Thus there is a constant L independent of µ̃ such that:

|J(x, T ;V 0;µ,w)− J(x, T ;V 0; µ̃, w)| 6 L(δ
1
2 + δ)

whence for any ε > 0 there is δ0 > 0 such that

|J(x, T ;V 0;µ,w)− J(x, T ;V 0; µ̃, w)| 6 ε

for all µ̃ ∈ DT such that d(µ, µ̃) 6 δ0. �

Using this, we can prove Lemma 4.2:

Proof of Lemma 4.2. Let V 0 be a locally Lipschitz function. Fix x ∈ Rn. Let µ ∈ Dτ
and w ∈ Wτ be ε

2
-optimal for Sτ [V

0](x), that is:

Sτ [V
0](x) 6 J(x, τ ;V 0;µ,w) +

ε

2
.(30)

By Lemma 6.1, there is δ0 > 0 such that:

|J(x, τ ;V 0; µ̃, w)− J(x, τ ;V 0;µ,w)| 6 ε

2
(31)

for all µ̃ ∈ Dτ such that d(µ, µ̃) 6 δ0. Now it remains to prove that there is at least
one piecewise constant function µ̃ ∈ Dτ such that d(µ, µ̃) 6 δ0. To this end, by Lusin’s
theorem [Fol99], there is a compact K ⊂ [0, τ ] such that∫ τ

0

1K > τ − δ0

and the restriction of µ on K is continuous, thus uniformly continuous. Let δ > 0 such
that for all t, s ∈ K and |t− s| 6 δ,

|µ(t)− µ(s)| 6 1

2

which implies
µ(t) = µ(s).

Now let N0 ∈ N such that 1
N0

< δ. We construct a piecewise constant function µ̃ ∈ Dτ
as following. For i ∈ {0, 1 · · · , N0 − 1}, let

µ̃(
i

N0

τ) =

{
µ(s), if there is s ∈ K ∩ [ i

N0
τ, i+1

N0
τ)

1, else
14



and

µ̃(t) = µ̃(
i

N0

τ), t ∈ [
i

N0

τ,
i+ 1

N0

τ).

Since µ(s) = µ(t) for all s, t ∈ K ∩ [ i
N0
τ, i+1

N0
τ), it follows that

µ(t) = µ̃(t), ∀t ∈ K.
Thus ∫ τ

0

1µ6=µ̃dt 6
∫ τ

0

1− 1Kdt 6 δ0.

So d(µ, µ̃) 6 δ0 and µ̃ is constant on interval [ i
N0
τ, i+1

N0
τ) for all i ∈ {0, 1, · · · , N0 − 1}.

Hence, by (31),

J(x, τ ;V 0;µ,w) 6 J(x, τ ;V 0; µ̃, w) +
ε

2
6 sup

i1,··· ,iN0

S
iN0

τ/N0
· · ·Si1τ/N0

[V 0](x) +
ε

2

Now by (30), we get

Sτ [V
0](x) 6 sup

i1,··· ,iN0

S
iN0

τ/N0
· · ·Si1τ/N0

[V 0](x) + ε 6 sup
N

sup
i1,··· ,iN

SiNτ/N · · ·S
i1
τ/N [V 0](x) + ε.

This is true for any ε > 0, we conclude that:

Sτ [V
0](x) = sup

N
sup

i1,··· ,iN
SiNτ/N · · ·S

i1
τ/N [V 0](x)

for all x ∈ Rn. Thus
Sτ [V

0] = sup
N

sup
i1,··· ,iN

SiNτ/N · · ·S
i1
τ/N [V 0].

�

6.2. Proof of Lemma 5.2. The proof of Lemma 5.2 shall need the following estimates:

Lemma 6.2. Let K ⊂ Sn be a compact convex subset. There exist τ0 > 0 and L > 0 such
that

‖Mm
τ [P ]− P − τΦm(P0)‖ 6 Lτ 2 + Lτ‖P − P0‖

for all P, P0 ∈ K, τ ∈ [0, τ0] and m ∈M.

Proof. Let τ0 > 0 such that for all P ∈ K, m ∈M, the Riccati equation

Ṗ = Φm(P ), P (0) = P,

has a solution in [0, τ0]. Therefore,

K̃ := {Mm
t [P ] : t ∈ [0, τ0], P ∈ K,m ∈M}

is compact. Besides, for P ∈ K and m ∈ M, the function Mm
· [P ] : [0, τ0] → Sn is twice

differentiable in the variable t and it satisfies:

Ṁm
t [P ] = Φm(Mm

t [P ]), M̈m
t [P ] = DΦm(Mm

t [P ]) ◦ Φm(Mm
t [P ]), t ∈ [0, τ0].

By the mean value theorem, for all P, P0 ∈ K and τ ∈ [0, τ0]

‖Mm
τ [P ]− P − τΦm(P )‖ 6 sup

t∈(0,τ)
‖DΦm(Mm

t [P ]) ◦ Φm(Mm
t [P ])‖τ 2

and
‖Φm(P )− Φm(P0)‖ 6 sup

Q∈K
‖DΦm(Q)‖‖P − P0‖.

Let
L = max{sup

m
sup
P∈K̃
‖DΦm(P ) ◦ Φm(P )‖, sup

m
sup
P∈K
‖DΦm(P )‖},
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then we have
‖Mm

τ [P ]− P − τΦm(P0)‖ 6 Lτ 2 + Lτ‖P − P0‖
for all P, P0 ∈ K, τ ∈ [0, τ0] and m ∈M. �

Using Lemma 6.2 we give a proof of Lemma 5.2:

Proof of Lemma 5.2. Let any 0 < δ < 1 and K̃ ⊂ Sn be the compact convex defined by:

K̃ := conv(∪P0∈KB(P0, δ)).

By Lemma 6.2, there exists τ1, L1 > 0 such that for all m ∈M, P, P0 ∈ K̃ and τ ∈ [0, τ1]

Mm
τ [P ] 6 P + τΦm(P0) + (L1τ

2 + L1τ‖P − P0‖)I.(32)

Let
L2 = sup{‖Φm(P )‖ : m ∈M, P ∈ K},
L0 = max(L1, L1L2),

τ0 = min( δ
2L2

,
√

δ
2eL0

, 1
L1
, τ1).

Let any N ∈ N ,(i1, · · · , iN) ∈MN , τ ∈ [0, τ0] and V 0(x) = 1
2
x′P0x with P0 ∈ K. We are

going to prove by induction on k ∈ {1, · · · , N} that:

M ik
τ/N . . .M

i1
τ/N [P0] 6 P0 +

τ

N
Φi1(P0) + · · ·+ τ

N
Φik(P0) + L0(1 +

1

N
)k
τ 2k2

N2
I(33)

When k = 1, since τ
N
∈ [0, τ0] and P0 ∈ K̃, by (32) we get:

M i1
τ/N(P0) 6 P0 + τ

N
Φi1(P0) + L1(

τ
N

)2I

6 P0 + τ
N

Φi1(P0) + L0(1 + 1
N

)( τ
N

)2I.

Suppose that (33) is true for some k ∈ {1, · · · , N − 1}. That is:

M ik
τ/N · · ·M

i1
τ/N [P0] 6 P0 + ∆k(34)

where ∆k = τ
N

Φi1(P0) + · · ·+ τ
N

Φik(P0) + L0(1 + 1
N

)k τ
2k2

N2 I. Since

‖∆k‖ 6 kτ
N
L2 + L0(1 + 1

N
)k τ

2k2

N2

6 τL2 + L0eτ
2 6 δ,

we have that P0 + ∆k ∈ K̃ and by (32):

M
ik+1

τ/N [P0 + ∆k] 6 P0 + ∆k + τ
N

Φik+1
(P0) + (L1

τ2

N2 + L1
τ
N
‖∆k‖)I

6 P0 + τ
N

Φi1(P0) + · · ·+ τ
N

Φik(P0) + L0(1 + 1
N

)k τ
2k2

N2 I

+ τ
N

Φik+1
(P0) + L1

τ2

N2 I + L1
τ
N

[kτ
N
L2 + L0(1 + 1

N
)k τ

2k2

N2 ]I
= P0 + τ

N
Φi1(P0) + · · ·+ τ

N
Φik(P0) + τ

N
Φik+1

(P0)
τ2

N2 [L0(1 + 1
N

)kk2 + L1 + L1L2k + L1L0(1 + 1
N

)k τk
2

N
]I

6 P0 + τ
N

Φi1(P0) + · · ·+ τ
N

Φik(P0) + τ
N

Φik+1
(P0)

+ τ2

N2 [L0(1 + 1
N

)k(k2 + k + 1) + L0(1 + 1
N

)k k
2

N
]I

6 P0 + τ
N

Φi1(P0) + · · ·+ τ
N

Φik(P0) + τ
N

Φik+1
(P0)

+ τ2(k+1)2

N2 L0(1 + 1
N

)k+1I

Thus, by (34) and the monotonicity of the flow:

M
ik+1

τ/N M
ik
τ/N · · ·M

i1
τ/N [P0] 6M

ik+1

τ/N [P0 + ∆k]

6 P0 + τ
N

Φi1(P0) + · · ·+ τ
N

Φik(P0) + τ
N

Φik+1
(P0) + L0(1 + 1

N
)k+1 τ

2(k+1)2

N2 I.

We conclude that:

M iN
τ/N · · ·M

i1
τ/N [P0] 6 P0 + τ

N
Φi1(P0) + · · ·+ τ

N
ΦiN (P0) + eL0τ

2I
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Denote:

g(x) = sup
m∈M

1

2
(x′P0x+ x′Φm(P0)x).

By Lemma 6.2 we have that

P0 + τΦm(P0) 6Mm
τ [P0] + L1τ

2I, ∀τ ∈ [0, τ0],m ∈M.

That is

g(x) 6 Smτ [V 0](x) +
L1

2
τ 2|x|2, ∀τ ∈ [0, τ0],m ∈M.

Therefore,

SiNτ/N · · ·S
i1
τ/N [V 0](x) = 1

2
x′M iN

τ/N · · ·M
i1
τ/N [P0]x

6 1
2
(x′P0x+ τ

N
x′Φi1(P0)x+ · · ·+ τ

N
x′ΦiN (P0)x+ eL0τ

2|x|2)
6 g(x) + eL0

2
τ 2|x|2

6 supm S
m
τ [V 0](x) + Lτ 2|x|2, ∀x ∈ Rn

where L = eL0+L1

2
is clearly independent of V 0, N , (i1, · · · , iN) and τ 6 τ0. We conclude

that:

sup
N

sup
i1,··· ,iN

SiNτ/N · · ·S
i1
τ/N [V 0](x) 6 sup

m
Smτ [V 0](x) + Lτ 2|x|2

for all τ ∈ [0, τ0] and V 0(x) = x′P0x with P0 ∈ K. Finally we apply Lemma 4.2 to obtain
the desired result. �

7. Further discussions and a numerical illustration

7.1. Linear quadratic Hamiltonians. The contraction result being crucial to our anal-
ysis (see Remark 5.4), it is impossible to extend the results to the general case with linear
terms as in [McE09]. However, the one step error analysis (Lemma 5.2) is not restricted
to the pure quadratic Hamiltonian. Interested reader can verify that the one step error
O(τ 2) still holds in the case of [McE09]. Then by simply adding up the errors to time T ,
we get that:

ε(x, τ,N, V 0) 6 L(1 + |x|2)Nτ 2 = L(1 + |x|2)Tτ.

Note that the term |x|2 is replaced by (1 + |x|2) for the general Hamiltonian with linear
terms. This estimate is of the same order as in [McE09] with much weaker assumption,
especially the assumption on Σm.

7.2. A tighter bound on the complexity. From Theorem 4.1 and 5.1, we obtain a
tighter bound on the complexity of the algorithm (compared to [MK10]):

Corollary 7.1. Under Assumptions 2.1 and 3.2, to get an approximation of V of order
ε, the number of iterations is

O(
− log ε

ε
), as ε→ 0,

whence the number of arithmetic operations is:

O(|M|O(− log ε
ε

)n3), as ε→ 0.(35)
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7.3. Convergence time. Theorem 5.1 shows that for a sufficiently small τ and a prun-
ing procedure of error τ 2, the discrete-time approximation error εPτ (x, τ,N, V 0) is O(τ)
uniformly for all N > 0. Meanwhile, by Theorem 4.1, the finite horizon approxima-
tion error ε0(x, T, V

0) decreases exponentially with the time horizon T . Therefore, for a
fixed sufficiently small τ , the total error ε0(x, T, V

0) + εPτ (x, τ,N, V 0) decreases at each
propagation step and becomes stationary after a time horizon T such that

ε0(x, T, V
0) 6 εPτ (x, τ,N, V 0).(36)

If the estimate O(τ) is tight, then (36) implies that the stationary time T is bounded by
the relation:

O(e−αT ) 6 O(τ).

Therefore the stationary time T is bounded by O(− log(τ)), which implies that nu-
merically the total error stops decreasing after a number of iterations N bounded by
O(− log(τ)/τ).

To give an illustration, we implemented this max-plus approximation method, incorpo-
rating a pruning algorithm in [GMQ11] to a problem instance satisfying Assumption 2.1
and 3.2 in dimension n = 2 and with |M| = 3 switches. The pruning algorithm gener-
ates an error of order at most τ 2 at each step. We use the maximal absolute value of
H(x,∇V ) (10) on the region [−2, 2]× [−2, 2] as the back-substitution error, denoted by
|H|∞, to measure the approximation. We observe that for each τ , the back-substitution
error |H|∞ becomes stationary after a number of iterations, see Figure 1 for τ = 0.0006.
We run the instance for different τ and for each τ we collect the time horizon T when

Figure 1. Plot of log |H|∞ w.r.t. the iteration number N

the back-substitution error becomes stationary. The plot shows a linear growth of T
with respect to − log(τ), which is an illustration of the exponential decreasing rate in
Theorem 4.1.

Figure 2. Plot of the convergence time T w.r.t − log(τ)
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