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KALMAN FILTERING WITH RANDOM COEFFICIENTS AND
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Abstract. The Riccati transformation of linear filtering/control theory is shown to be a contraction on
the space of positive symmetric matrices. This is used to describe the asymptotic behavior of the filter for
systems with stochastic stationary parameters.
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Introduction. In this paper we study the asymptotic properties of the Kalman filter
in a random stationary environment, under weak controllability and observability
conditions. We show that the covariance matrix of the conditional error converges in
law and that the filter is exponentially stable. This is a direct generalization of Kalman’s
classical results.

Our main tool is the following. Consider the classical Riccati transformation that
associates the error covariance matrix at time n + to the error covariance matrix at
time n. We show that this transformation is a contraction with respect to the Riemannian
metric on the set of positive symmetric matrices. This important fact does not seem to
have been noticed before. For instance, it leads to a straightforward proof of Kalman’s
results on the asymptotic behavior of the filter. It can also be useful in other parts of
filtering or control theory.

For the convenience of the reader who is not interested in random environment,
we present our results in three parts. Section is devoted to the study of the above-
mentioned contraction property in the classical set-up. Filtering with random para-
meters is considered in 2. Section 3 is an appendix that proves the general
results on iteration of random Lipschitz contractions (needed in 2).

Let us describe the main results of this paper. We consider the linear system

X,, A,,X,,_ + F,,e,,, n >- 1,
(1)

;, C,X, +

where X Ed, e,, lp, r/,,, Y,, l q. In the parameters A, F,, and C,, are deterministic
matrices with size d d, d p and q d, respectively. The random vectors {(e,
n I} are independent; they have the same Gaussian law with mean 0 and covariance
matrix equal to the identity. We assume that Xo has a Gaussian law with mean Xo
and covariance matrix Po. We always suppose that the matrices A are nonsingular
(our approach does not apply in the singular case).

For any n_-> l, let be the sigma-algebra generated by the random vectors
Y, Y2,..., Y,, and

() x::_(x,/.),

(3) P, :: IE((X.- ,,)(X.- ...)*/o.).
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When o,, is known, ’,, is the best estimate of X,,, and P,, is the conditional error
covariance matrix. Let (respectively, o) denote the set of d d nonnegative
(respectively, positive) symmetric matrices. For any n in and P , we set

(4) +,,(P) (A,,PA*,, + S,,)(I + R,,S. + R.A.PA*,,)-’,

where R,, C*,,C,, and S,, F,,F,*,; then ,,(P) , and n maps oin Po. The classical
Kalman’s recursive equations can be written as

(6)

P,, .(P,,_,)

f(,, (An P,,R,,A,,),,_, + PnC*, Yn

(see, e.g., Balakrishnan [3, Relations 4-1-19, -27, -31, -34]). The main result of is
that the maps , are contractions on o, if we equip this set with the Riemannian
metric 6, which is invariant under conjugacy (see Theorem 1.7). Moreover, the fact
that these contractions are strict and/or uniform depends on the observability and the
controllability properties of the linear system (1). These results are proved in their
natural context, namely, by looking at the symplectic matrices that act on the set of
symmetric matrices by preserving o. In that setting, they can be seen as generalizations
of the Perron-Frobenius theorem. We also could have considered the recursion associ-
ated with _(X,,/,,._) for which analogous results hold true (see [8]).

Section 2 is devoted to filtering in a random stationary environment. We consider
again the linear equation (1), but we now suppose that the parameters An, F, and Cn
are stochastic and that {(An, Fn, C,), n >-1} is a stationary ergodic process. Under

suitable hypotheses (see Hypothesis in 2), system (1) is conditionally Gaussian, and
X, and Pn are also given by the recursive equations (5) and (6) of Kalman. These
hypotheses hold, for instance, when the parameters are independent of the noises. We
first describe in 2.1 some actual situations that can be described by such systems.
Then, in 2.2 we introduce weak controllability and observability assumptions (in
contrast with the uniform conditions of Kalman). These conditions can hold for systems
that are usually neither controllable nor observable. Fault-tolerant systems usually
have this property. Under these assumptions, we describe the asymptotic behavior of
the conditional error covariance matrices Pn. Our main result is Theorem 2.4. We show
that there exists a stationary o-valued process {Pn, n /} with the following universal
property" "Almost surely, for any solution Pn of (5), IlPn-ffnl] converges to 0 as
n +oo." In particular, P converges in law. In 2.3 we prove that the filter (6) is
exponentially stable. These results are deduced from properties of processes that are
defined by iterations under stationary Lipschitz maps (Relation (5) and Theorem 1.7
show that the process Pn is of this type). These properties are interesting for their own
sake; they are established in 3.

This paper is self-contained and in some sense elementary. Some of its ideas are
already in the literature. The trick of studying the filtering of Riccati’s equation through
the action of symplectic matrices is, of course, well known (see, e.g., Hermann [15],
Shayman [24], and their references). Our semigroup Y( has been introduced already
by Wojtkowski [31], [32] in a different context. The contraction property of the Riccati
transformation is a generalization ofthe contraction property of matrices with nonnega-
tive elements for the Hilbert metric, due to G. Birkhoff [5]. It’s also related with the
contraction properties of product of random matrices on boundaries. In Bougerol [7]
we recover some of the results obtained here by making use of the Osseledets theorem
and the Lyapunov exponents of the associated Hamiltonian matrices.
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All our results can be generalized easily to the continuous-time case, either by a
direct study or by a reduction to discrete-time.

1. Contraction properties of Riccati equation.
l.l. The semigroup of Hamiltonian matrices. We consider the classical linear

system (1) with deterministic parameters (An, Fn, Cn), n 1,

Xn A,,Xn_ + Frith,

Y,, C,,X,,+q,,,

defined in the Introduction. We always suppose that the matrices An are invertible.
We associate to this system the so-called Hamiltonian matrices Mn of order 2d written
in block form as

(7) Mn RnAn (I + RnS,,)A,*,-’

where Rn C*n Cn and Sn FnF*,. These matrices are in the symplectic group Sp(d, ).
This group is defined as the set of all the matrices M of order 2d such that M*JM J,
where J (_o o), (i is the identity matrix of order d and M* is the transpose of M).
This relation can be written as M-I= JM*J, thus we see that M* is also in Sp(d, ).
If we write

(,4M--
(2

where the entries are d x d matrices, then BA* and A*C are symmetric and A*D-
C*B=I.

Let (respectively, o) be the set of d d nonnegative (respectively, positive)
symmetric matrices (we recall that a matrix M is nonnegative, respectively, positive,
when for all x O, x*Mx >= O, respectively, >0). The set of all Hamiltonian matrices is

I( C e Sp(d, N); A is invertible, BA* , A*C

Indeed, every matrix Mn defined previously is in f, and every matrix ( ) in is
the Hamiltonian matrix of the linear system (1) with the constant parameters An A,
Fn /BA*, Cn /CA-1, and dimensions p =q d. We define three subsets , 2,
and Y(0 of Y by

A

We remark that 2 is the dual of (in the sense that M Y( if and only if M* ).
The following semigroup property of already appeared in a different context,
implicitly in Ol’shanskii [22] and explicitly in Wojtkowski [31] and [32].

PROPOSITION 1.1. The product of matrices in Y( is in Y. The product of a matrix in
Y( with a matrix in 9 (respectively, 2, Y(o) is in Y( (respectively, , Y(o). In other
words, Y is a semigroup of matrices, and , Y(, and Y(o are two-sided ideals of Y(.
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We will need the following well-known lemma.
LEMMA 1.2. When P and Q are in , then I + PQ is invertible.

Proof If P is positive, we can find an invertible matrix M such that p-l= M*M
and Q= M*DM, where D is diagonal with nonnegative entries. Then I/PQ=
M-(I + D)M. Thus, the eigenvalues of I + PQ are greater than one. By density, this
remains true even if P is only nonnegative. [3

Proof of Proposition 1.1. Let M1 and M2 be two matrices in , and M MzM.
-1 and P2 A71B_ SinceFor i= 1, 2, or 3 we write M ( i), and we set Q CIAI

M1 Y(, the matrix A*CI is in and the fact that QI A*-I(A*CI)A- yields that QI
is in . Similarly, Pz is also in . We have

A3--- A2A1 + B2C A2(I + AIB2CA-I)A1 A2(I + P2Q)AI.

Hence, it follows from the previous lemma that A is invertible. We will make use of
the relation

A*2 D2 C*2 B2+ I C*2 AzP2 + I A* CPz + I

in the next computation. Since C3 CAI + D2CI, one has

AC3 A* (I + QIPz)A*( CzA1 + D2CI)

a*(I + QIP)(A*zCzA + A*zC2PzC, + C)
(8)

a* (I + Q,Pz)A* Cz(A1 + P2C,)+ A* C1 + C* PzC,

a*(I + Q, Pz)A*C2(I + P_Q,)A, + A*C, + C*P_C,.

This shows that AC3 is a nonnegative symmetric matrix. Similarly (or using transposi-
tions) we see that A3B is also nonnegative. This proves that M is in Y(. Thus, Y( is

* C3 isa semigroup. If, moreover, ACz or A*C is invertible, then (8) shows that A3
positive definite. Hence, 2 is an ideal of Yg. Similarly, g(, and thus Y(o, is also an
ideal of .

The following result will be useful later to link the fact that a linear system is
observable or controllable with the fact that the associated Hamiltonian matrices are
in Ygi or in g(2.

PROPOSITION 1.3. Let M. (A-;I ;’,), n , be matrices in gg. Then M.M,,_I M
is in 1 if and only if

Det (A* C, + A* A*2 CA, +." + a* A*._,A*. C.A._, al) O,

and M.M._, M1 is in 77(2 if and only if
Det B.A*. + A.B._,A*._1A*. +... + A. A2BIA* A*2 A*. O.

Proof For any M =(ac ) in g(, let (M)= A*C and a(M)= A. We first show
that, if M1 and M are in g(, then for any x in

(9) sC(MM1)x =0

if and only if

(10) :(M,)x=0 and (Mz)AIx=O.

We use the following two properties"
(i) When P, Q g and (P + Q)x 0, then Px Qx 0;
(ii) For any matrix M, if P and M*PM x =0, then PMx =0.

We know by (8) that if QI CA-( and P AIB, then

(11) (MM,) A* (I + Q, Pz)A*2 C2(I + PzQ,)A + A* C, + C* P2C.
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The right-hand side is a sum of nonnegative symmetric matrices. Therefore, we see
that if (9) holds, then A*Cx -0 and A*C2(I + P2Q)Ax =0. This implies that Cx =0
(since A is invertible) and A*C2AlX =0 (since QAx--Cx=0); thus, (10) holds.
The converse also follows easily from (11). Using the equivalence between (9) and
(,10) we see that the following statements are equivalent:

(M,...M_M,)x=O,

,e;,,(M,)x 0 and (M,,... M)a(M,)x O,

O(M)x=O and (M2)a(M)x=O,...,

and (M)a(M,_)... a(M)x=O.

Since the matrices (M) are nonnegative and a(M) invertible, this is also equivalent
to

{(M,)+a(M,)*(M:)a(M,)+’" "+ a(M,)* a(M,,_,)*(M,)

a(M._,).., a(M1)Ix 0.

This proves the first claim. The second claim is obtained by duality.
B1.2. Cotraetio. roerty. For any matrix M =( ) in N we define a map

M :o o by

(12) u(T)=(AT+B)(CT+D)-’, To.
The fact that the right-hand side is a well-defined element of o will be shown in
Proposition 1.5. A straightforward computation shows that the map M defines
an action of the semigroup on o, in the sense that, for any M, N in ,
(13) N=N
(in fact this action is induced by the linear action of symp!ectic matrices on
d-dimensional linear subspaces offTM). We remark that the relation (4), which defines
the maps , can be written as

O,(P) (A,P + S.A-’)(R.A,,P + (I + R.S.)A-’)-.
This shows that ., ,,. Therefore, by (5), the error covariance matrix P. satisfies

(14) P, ,,(P,_,).
This equation is called the discrete Riccati equation. The classical continuous matrix
Riccati equation on o is similar. Indeed, under some mild regularity and boundedness
assumptions, if P,, +, is the solution of the matrix-valued differential equation

P,=A,P,+P,A-P,R,P,+S,, Po o,
where R,, S,, 0, are in , then there exists a family N,, 0, of matrices in such
that P, =,(Po) (cf., Hermann [15]).

DEFINITION 1.4. The Riemannian distance 8 on o is defined by: for any P, Q o,

8(P, Q)= Log2 A,
i=1

where A,..., Ad are the eigenvalues of the matrix PQ-.
It is shown in Maass [19, Thm. p. 27] (see also Tetras [27]), that 8 is the usual

Riemannian distance on o when this set is considered as the Riemannian symmetric
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space Gl(d, N)/O(d) (this metric is associated to the arc length ds2=tr {(P- dP)2},
which is invariant under conjugacy and coincides with the Euclidean arc length on
the logarithms of the diagonal matrices in o). In particular, (o, 6) is complete and
6 induces the usual topology. The main property of this distance is its invariance under
conjugacy and under inversion. For any invertible matrix A and for all P, Q in o,

8(APA*, AQA*)= 6(P, Q)= 8(P-’, O-’).
We next prove that the transformations 4 are contractions of (o, 3) when M 6 Y(.

PROPOSITION 1.5. Let M ( ) be a matrix in . Then
(i) For any Tin (respectively, o), CT+ D is invertible and (AT+ B)( CT+ D)-is in (respectively, o).
(ii) IfM 2, then for any T in , (AT+ B) CT+ D)- is in o.
Proof Let T 6 . The matrices P A- B, Q CA-, and S A T+ P)A* are in. Since

CT+ D QAT+ QAP+ A*-’ QS + I)A*-’,
it follows from Lemma 1.2 that CT+ D is invertible. Now, the relation

(AT+ B)( CT+ D)-’ (AT+ AP)A*(QS + I)-’ S( QS + 1) -1

easily implies the proposition (we note that this is equal to (S-+ Q)- when S is
invertible). Iq

We always use the Euclidean norm on NJ and the associated operator norm on
the set of matrices: if M is a matrix of order d, we let [[.M Sup{l] Mx[[; x NJ, IIx]] 1}.

PROPOSITION 1.6. Let T, S be matrices in o and a Max(I T[[, [[S[I ). Then for all

6(T+P,S+P)<=6(T,S)a+
where/3 Inf{(nx, x); [Ix[[ 1}.

Proof The mean value theorem yields that, when 0 < a, b =< m and r > 0, then

a+r m a
<_ Log+(15) Log

b+r-m+r -(where Log+ x Max(Log x, 0)). It is known and not difficult to prove (see Gantmacher
[14, Ch. 10, 7]) that the eigenvalues of TS- are real, positive, and that they have
the following Min-Max representation. Let

a,( r, S) <_- a_( T, S) -<... -< a,( r, S)

be the eigenvalues of TS- written in ascending order. Then

h(T’S)=Min{Max{(Tx’x)" } }(Sx, x),XV VeF(k)

where F(k) is the set of k-dimensional linear subspaces of Na. We prove that

(16) ILog a T+ P, S + P)I ILog a T, S)I,

for any 1 <= k =< d. We first suppose that ak(T+ P, S + P) > 1. Relation (15) entails that

Log(TX, x)+(Px, x)=< a

(Sx, x)+(Px, x) a + fl
Log+

Tx, x)
(Sx, x)
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Thus,

ILog ,x T + P, S + P)I Log Ak T+ P, S + P)

((S+P)x,x),XV VF(k)

Min {Max {Log Tx, x) + Px, x) } }(Sx, x)+(Px, x),Xe V VeF(k)

Min{Max{Lg+(Tx’x)" } }(Sx, x),X V VF(k)

--< Log+ hk T, S).

Since the left-hand term is positive, this first gives that Log+ hk (T, S)= [Log hg (T, S)[,
and then that (16) holds. When A(T+ P, S+ P)= I, (16) is obvious. When
h(T+ P, S + P) < 1, we use the relation ha(T+ P, S + P) 1/A,_+(S + P, T+ P), and
we apply (16) to Ao_a+(S+P, T+P). Finally, (16) implies immediately the
proposition.

THEOREM 1.7. efollowing properties hold"
(i) For any M in , and T, S in o,

3.(O (T), Ou(S)) 3(T, S).

(ii) For any M in or in , and T, Sin o,
3(Ou(T), Ou (S)) < 3( L S).

(iii) For any M in o, there exists p(M), 0 < p(M) < 1, such that, for all T, S in o,
(Ou(T), Ou (S)) p(M)( T, S).

Proof Let M=( ]) be a matrix in . The matrices P=A-*B and Q=CA-are in and

We consider the transformations re(T)= T+ P, ro(T)= T+Q, A(T)=ATA* and
w(T) T- defined on o. By making use of (13) we obtain

(17) O(T) (oo o )(T).

We have already noticed that T and are isometries of the metric space (o, ). It
follows from Proposition 1.6 that re and ro are contractions. This and (17) prove (i).
If M is in ,, then Q is invertible. Hence, ro is a strict contraction by Proposition
1.6. Similarly, when M is in , P is inveible and re is a strict contraction. Thus,
(ii) follows from (17). Let us prove (iii). We consider an M in o. Then both P and
Q are invertible. Moreover, for any T in o, re(T) P (in the sense that re(T) P ),
which implies that (ore)(T) APA*, and thus,

(oo)(T) (AeA*)-.
Let if= [I(APA* -’II and e Inf{(Qx, x); Ilxll II. It follows from Proposition 1.6 that
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for all T and T2 in 0,

(’ro[(o’’yA’rp)( T,)], ro[(cr yare)( T2)])

<__ " ((o.oyAO.p)(T,) (o’o’yAoT"p)(T2))
’+e

<-_ 6(T,,T2).+e
Since o- is an isometry, this relation and (16) yield that (iii) holds with
p(M)=/(+e).

As an application, let us outline a short proof of a classical result of Kalman. We
suppose that the linear system with constant coefficients

Xn AXn_
is controllable and observable. Let M be the Hamiltonian matrix (here independent
of n) defined by (7). It follows from Proposition 1.3 that there is an integer p > 0 such
that Mp is in Wo. Therefore, by Theorem 1.7, M has a power that is a uniform
contraction. This implies by the fixed point theorem that there exists a matrix P in
such that all the solutions Pn of (5) converge to P when n +o, as soon as Po is in o.

2. Filtering with random parameters. We now study the asymptotic behavior of
linear filtering in a random environment. We consider the case where the parameters
A,,, Fn, Cn of the linear equation (1) are stochastic. More precisely, we suppose that
the following hypothesis holds.

Hypothesis H. For all n _>- 1, the quantities An, Fn, C,, e,, r/, are random variables
defined on a probability space (f, f, ) and {(An, F,, C,), n .->_ 1} is a strictly stationary
ergodic process. There is a o’-algebra fo contained in f such that, if 0%
o-(fo, Y,..., Yn) is the r-algebra generated by fo and by Y, Y2,..., Yn, then for
all n _-> 1,

(i) An, Fn, and Cn are fn- measurable.
(ii) The random vector (en, r/n) has a Gaussian law with mean zero and covariance

matrix equal to the identity matrix. It is independent of Xn_ and fn--
(iii) C.onditionally on fo, the random vector Xo has a Gaussian law with mean

Xo and covariance matrix Po.
This set-up is called conditionally Gaussian. The conditional expectationsn :(X,n / o%) and the conditional error covariance matrices Pn

-((Xn-Xn)(Xn--ffn)*/fn) are given by the recursions (5) and (6) (see, e.g., Whittle
[29, p. 260]). Work on such systems with stochastic parameters goes back to Kalman
[17], [18]. A recent reference is De Koning [12] (see also Nahi [21]). An important
example is the following: suppose that {(e,,, r/,,), n => 1} is a sequence of independent
normalized Gaussian random vectors, independent of a stationary ergodic process
(An, Fn, Cn), n _>-1. Then, if fro r{(An, Fn, Cn), n >-1}, the hypothesis (H) holds.

In 2.1, we present some examples of real situations that can be modeled by these
equations. In 2.2, we describe the asymptotic behavior of Pn as n +oo. The exponen-
tial stability of the filter is proved in 2.3. We will always suppose that the matrices
An are nonsingular. Without loss of generality, we can and will suppose that the
stationary process (A,,, F,,, Cn) is defined on (, f,

2.1. Examples.
2.1.1. Filter with periodic parameters. We suppose that there exist functions A, B,

C on fl 7/p7/such that, for all

(An(oO), ,(,o), C,(oo)) (A(o + n), B(o + n), C(oo + n)),
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where co + n is the sum modulo p. Let -i be the set of all the subsets of 1), and let
P be the uniform measure on 1). We also consider a sequence of noises
n >= 1, defined on some (1)2, 2, P2). Then these coefficients define a linear system on
the probability space l)=l)z, =1(R):, =(R)2, for which (H) holds.
These systems with periodic parameters have been studied recently, for instance, by
De Souza and Goodwin [13], and Bittanti, Colaneri, and Di Nicolao [6].

2.1.2. Random sampling. In several situations, a linear system can be observed
only at random times To < T <.... This so-called stochastic sampling phenomenon
can occur because of technical imperfections in the instrumentation. It may also be
applied intentionally, for instance, when a digital computer is time shared in a stochastic
manner as suggested by Kalman [17]. In Snyder and Fishman [25], thetracking of
fireflies, which can be observed only by their flashes, is studied (we can easily imagine
some more realistic examples); see also Chang 11 ]. These systems are used in modeling
of ARMA processes with missing data.

The basic model is the usual time-invariant system

(18) X, AX,_, + Fe,,, Y,, CX, + 7,,.

We suppose that the state is observed only at random times T,, n => 0, independent of
this system, and that T,,+- T,, n-> 0} is a stationary ergodic process with values in
*. If we let Z,, XT,. and W,, YT,. then

L.- ,._,-
Z,, A ’-T"-’Z,,_ + E AkFET,,-k, W,, CZ,, +

=0

For each n-> 1, let A,, A,.-C-, and let F, be a symmetric matrix such that
T -T -1

F2, A’FF*A*’.
-0

Using if necessary a generalized inverse of F,,, it is easy to see that there exists a
sequence of independent Gaussian random variables a, n,/3, q, with mean 0 and
covariance matrix equal to the identity, independent of the sequence {(A,,, F,,), n => 1},
such that

0

We obtain that

(19) Z. A.Z._, + F.a.. W,, CZ. +
This is a system with stochastic parameters for which (H) holds. In this setting, the
asymptotic properties of the filter have been studied by Viano [28] under the additional
assumption that the matrix A is stable and that C*C is invertible. We are able to treat
the case where the system (18) is only controllable and observable. We remark that
no uniform controllability property of (19) can be expected when the T,’s are not
bounded. When the random variables T,+- T, are independent and identically dis-
tributed, the error covariance P,, n , is a Markov chain on go. But this process is
singular (it does not satisfy the Harris irreducibility condition). Even in that case, it
does not seem easy to study its asymptotic behavior without recourse to contractions
properties.

2.1.3. Fault-tolerant filtering. Consider a failure-prone linear system. It can be,
for instance, a manufacturing plant or a space-station under the bombardment of
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meteorites. We can assume that the plant state has two equations: at time n, either
X,, MXn_ + en if the system is operational, or X, NXn_ + en if the system is in a
state of failure and undergoing repair. The failure/repair process may be modeled by
a stationary sequence An, n >= 1, of random matrices such that An {M, N}. Such
systems are considered, for instance, in Akella and Kumar [1] and in Mariton [20]
(see also Willems and Willems [30]). If Yn CXn + rln, the associated filtering system
will satisfy (H).

We may also consider a filtering system with a failure-prone observation process.
This can be due to the instrumentation or to the fact that at some unexpected times,
the state cannot be determined. For instance, we can think of the tracking of a plane,
which is sometimes hidden by clouds. A model for this situation can be

Xn AXn_ + Fen, Yn CnXn + rln,

where Cn is equal to some matrix C when the observation process is operational and
some other matrix D, otherwise. Notice that it is natural to assume that under failure,
i.e., when Cn --D, the system is not observable.

It follows from the results of the next section that the filter has very good asymptotic
properties. This shows that in some sense, Kalman’s filtering is fault tolerant. Of course,
users are already aware of this fact.

2.1.4. Estimation of AR processes with AR parameters. Suppose that we observe
an univariate autoregressive (AR) process Z,, p,,Z,,_ + tin where the parameters Pn
satisfy 0n ap,,__ + e,,. Here, {(en, r/,), n _-> 1} is a sequence of independent normalized
Gaussian random variables. These models occur, for instance, in stochastic adaptative
control (see, e.g., Caines and Meyn [10]). If we want to estimate the parameter a, it
is useful to compute the conditional law of On, once Z,..., Z,, are observed. Let
Xn Pn, Yn Zn, An a, F,, 1, and Cn Z,,-t. This system can be written as (1). If
a (-1, 1), then the parameter sequence is stationary and Hypothesis (H) holds.

2.2. Asymptotic properties of the error covariance matrix. We consider a linear
system (1) with random parameters for which (H) holds. In particular, the process
(An, Fn, Cn) is stationary and ergodic. In the sequel, 6 is the distance on o introduced
in Definition 1.4. We recall that R, C,* Cn and S,, F,,F,*,. For any n >- 1, let

12n:{wY;Det(A*R,A,+A*A*R2A2A,+’’’+A*...A*RnAn...A,)#0},

and

En {O9 f; Det (S,, + AnSn_,A,*, +"" + A,,. A2S,A A*,) 0}.

DEFINITION 2.1. The system (1) is called weakly observable if for some n > 0,
[(12n) > 0; it is called weakly controllable if for some n > 0, P(En) > 0.

When the parameters are deterministic, we recover the usual observability and
controllability conditions. But these notions are much weaker than the one commonly
used in the study of time-dependent systems (see, e.g., Jazwinski [16], Anderson and
Moore [2]). In some of the examples given in 2.1, only these weak conditions were
natural. We will need the following lemmas.

LEMMA 2.2. Let Mn, n t, be the sequence ofHamiltonian matrices associated with
a linear system (1) satisfying (H). If the system is weakly observable (respectively, weakly
controllable), then, almost surely, Mn. M is in Y( (respectively, W2) for all n t large
enough.
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Proof. If the system is weakly observable, then l)(-k) > 0 for some k -> 1. Proposi-
tion 1.3 yields that Mk(eO)Mk_(o)... M(o) is in t when o lk. Thus, P(Mk...
Y(l) > 0. It follows from the ergodic theorem that for almost all o there exists an
integer p, depending on o, such that Mp/k(O)... Mp/(oo) Y(. Since Y( is an ideal
in (cf. Proposition 1.1) this shows that, almost surely, for n large enough, M,.... When the system is weakly controllable, the proof is similar.

LEMMA 2.3. For any Q o,
(20) Max (Log IIQII, Log IIQ-’II)<--(Q, I)=<--d Max (Log IIQII, Log IIQ-’II).

Proof If A,-<_...-<_ Ad are the eigenvalues of Q, then A, 1/IIQ-’II and Ad
Since 3(Q, I)

i=
Lg Ai, the conclusion of the lemma is clear.

Our main result is the following theorem. It implies that"
(i) The filtering process is successful, since the conditional error covariance matrix

P, does not explode. This error is asymptotically stationary. For instance, it converges
in law (see Corollary 3.3).

(ii) Even for a fixed o f (outside an exceptional subset of measure 0), there is
no optimal choice of the initial condition Po, since all the sequences P, have the same
asymptotic behavior. An analogous result for the usual distance on is shown in
Proposition 2.5.

THEOREM 2.4. We consider a linear system (1) with stochastic parametersfor which
(a) Condition (H) holds.
(b) The system is weakly observable and weakly controllable.

-1(c) The random variables LogLog+ ilA,II, togtog+ Ila, II, togtog+ IIC, II, Log-
Log+ F, are integrable.

Then, there exists an ergodic stationary o-valued process {P,, n 7?}, that is solution of
(5). Furthermore, there is a negative real number a < 0 such that, almost surely, for any
solution P, of (5)for which Po o,

1
lim Log (P., P. _-< a < O.
n+o

Proof. We are going to apply Theorem 3.1, proved in the Appendix, to the sequence
{,, n 7/} of random contractions of the metric space (o, ) defined by (4). We first
check the condition (C1) of this theorem, namely that for some P in o,
IF[Log 6((P), P)] is finite. Actually, we choose P equal to the identity matrix/. Let
T= AA*+S. We get (I) T(I+RT)-= (T- +R)-. Since T-(T-+R)-t is
a nonnegative matrix, we have

[[,(I)ll--< II( T-/ R,)-’ =< TII--< Ila,a,* / IlS, II--< [[a, / IIF,
and

11,(I)-’ I1-<-II T-’+ Rill <= T-’II / IIR, II--< II(A,A,*)-’ / IIU, II-<-IlaT’ -/ C, .
By Lemma 2.3,

(21) 8(,(I), 1)2_-< d Max (Log II,(I)ll, Log

Using these inequalities and hypothesis (c) from Theorem 2.4, we see that
IE[.Log 8((I), I)] is finite. Now we check that Condition (C2) holds. By Theorem
1.7, , is a contraction. Thus, it suffices to show that the coefficient of contraction
p(dpo ) is smaller than 1 for some p>0, with positive probability. Let M,
n N, be the Hamiltonian matrices associated to (1). It follows from Lemma 2.2 that,
almost surely, for all p large enough, Mp... M is both in and in 2. Since
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Y(o Y( Y(2, this yields that for some p, P(Mp... M Yo) # 0. By (12), po. .Ol
M, M,, and therefore, p(p(po.., o) < 1) # 0 by Theorem 1.7 (iii). Thus, Condition
(C2) of Theorem 3.1 holds. This theorem implies the result.

PROPOSITION 2.5. We suppose that the hypotheses of Theorem 2.4 hold and that
Log+ Ila,[I, Log+ Ilav’ll, Log+ IIC, II, and Log+ [IF, are integrable. Then, almost surely,
for any solution Pn of (5) for which Po o,

1
(22) lim Log < 0.

n-+ n

Proof Since Pn and P, are symmetric positive matrices, we can find matrices K,
and D, such that P, K*,K,, Pn K*,DK,, and such that D, is a diagonal matrix

(n), (n)

_
with positive entries Zl Aa We have (P,,/3,)= { - Lof A’}/e. It follows
from Theorem 2.4 that

1
lim Log ILog A (n)

+c n

for i= 1,..., d. This implies that

(23) lim
1
Log [1-AI")l <

+c n

As in the proof above, we see that IE[((I), I)] is finite by (21). Moreover, by Lemma
2.3, Log 11--< Thus, it follows from Proposition 3.4 that, almost surely,

(24) lim Log I1  11 o.n+ n

For each x eRa, IlK.xll---(K*K.x,x)<= [I/  xll, so that IlKnl[<= IIP II. This yields that

(n)I[P, Pn -< K*(D, I)K, <- I1K, I111 mn I <= ffn max l1 A I.

It is clear that (22) is a consequence of (23), (24), and of this inequality. [3

Remark. It is not difficult to see that the conclusion of the theorem also holds
when Po is only in . (The main point is to note that since the system is weakly
controllable, there is almost surely an integer k such that Mk... M is in , by Lemma
2.2, which implies that Pk ---CM...M,(Po) is in o, by Proposition 1.5 (ii).)

2.3. Stability of the filter. We show that the linear equation (6) of the filter is
exponentially stable. We make use of the classical method of Lyapunov, as in Anderson
and Moore [2], for instance.

THEOREM 2.6. We consider a system (1) with stochastic parameters for which"
(i) Hypothesis (H) holds.
(ii) The system is weakly observable and weakly controllable.

-1(iii) The random variables Log+ IIA,II, Log+ [[a, II, Log+ IIC, II, Log+ IIF, are
integrable. Then the equation (6) of the filter is exponentially stable: namely, there is a
real number 3’ > 0 such that, almost surely,

lim
1
Log [[(a, P,R,A,) (a, P,R,A,)II <-- -, < O,

n+ n

for any solution { P,, n t} of (5) such that Po o.
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We need the following classical lemma. It is an immediate consequence, of the relation

2. X. (A. P.R.A.)(..._, X._,) + P.C*. rl. + (P.R. I)F.e.,

which itself results from (1) and (6).
LEMMA 2.7. Let B.=A.-P.R.A. and T.=P.R.P.+(I-P.R.)S.(I-PnR.)*.

Then, P. B.Pn_,B*n + Tn.
LEMMA 2.8. Let O,, T,, + B,T,__IB* +. + B,,. B2TIB B*. Under the

hypotheses of Theorem 2.6, there exists n such that P(Det (G,) # 0) > 0.

Proof We follow an argument in Anderson and Moore [2], where a similar result
is proved. For each integer > 1, let Ki PiC* and Hi (1-PiRi). We consider the
two d x (p + q)n matrices

Wn (Kn, F,, AnKn_,, A,,F,_,, anan_, A2K,, anan_, A2F,)

V. (K., H,,F., BnKn_,, B,,Hn_,Fn_,, B.B,,_, B2K,, B.B._,

It is easy to see by straightforward manipulations that there exists a (p + q)n x (p + q)n
upper triangular matrix Un, with all diagonal terms equal to l, such that V W.U..
We remark that

Wn W*n Sn 4- AnSn-,A*n 4-... 4- A. A2S,A*2 A,*,.

Since the system is weakly controllable, there exists a positive integer n such that the
subset En, where the right-hand side is invertible, is of positive measure. On ’n, the
rank of W, is d. The same property holds for V, since V, WnU and since Un is
invertible. Then the lemma results from the fact that G V, V*.

Proofof Theorem 2.6. For notational simplicity we suppose that P(Det (G) # 0) >
0. The general case is treated in the same way (by looking at the sequence
where n is given by Lemma 2.8). For any n , let h,
with the convention that h,, 0, if T, is not invertible. Let p be a positive integer. For
a fixed xv ,/, we define a finite sequence Xo, x,..., xp, by the backward recursion
x, B*+x,+. Let V, x*,P,,x,,. We have

gn+ g > l IlXn 2>Xn+l Tn+lXn+l n+l +1

/n+l
V.+

O’n+

so that, if z, (1- An O’n) then V,-<_ "/’n+l Wn+l" Therefore,

Ilxoll -<-- PG’II Vo <- PG’II , -v <- PG’II ,... Pp IIx .
Since Xo B* B*px,, this implies that

U... B, _-< ,...
and

1
Log By... B, 112 ! Log a +- Log o’ +- Log zi.

P p p pi=l

As in the proof of (24) we can apply Proposition 3.4 to see that, almost surely,

lim Log o-, =< O.
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Therefore, it follows from Birkhoff’s ergodic theorem (see the proof of Corollary 3.2)
that, almost surely,

lim Log lIB,,... B, IJ-<Z(Log ’,).
p -t-oo p

Since we have supposed that P(Det (GI) # 0) > 0, we know that IF(Log -)
Remark 1. The exponential rate 7 can be chosen to be equal to the smallest

positive Lyapunov exponent of the associated Hamiltonian matrices. This is shown in
Bougerol [7]. 2. It is not difficult to see that the theorem also holds if we only suppose
that Po .

3. Appendix. Iteration of stationary Lipschitz functions. In this appendix, we estab-
lish some general properties of the processes that are obtained by iteration of random
Lipschitz functions. At least in particular cases, similar results are already known. But
we think that our set-up and formulation can be useful in several situations; we applied
them in 2.

Let (E, 6) be a complete separable metric space. A Lipschitz map 4:E- E is a
map for which

P(Cfl) := Sup { 6(ch(x)’ ch(y)) }6(x,y)
;x,yE,x#y

is finite. If & and q are such Lipschitz maps, then

(25) p(b q) _< p(ch)p(q).

When p(&)<-1, the map b is called a contraction. It is called a uniform contraction
when p()<l. We consider a stationary ergodic process {&,,n7/} defined on a
probability space (, s, P), where each b, :E E is a random Lipschitz map (we
suppose that the maps (to, x) D. x E - the(x) E are measurable when E is equipped
with its Borel or-algebra; for notational convenience, we do not write to explicitly).
We consider the processes .X, n e N, on E for which the following difference equation
holds:

(26) X. ch.(X._,).

The following theorem is more or less known. It generalizes results of Sunyach [26],
Brandt [9], and Barnsley and Elton [4]. We recall that Log+ x Max (Log x, 0). If E’
is a countable dense subset of E, then p(bl) is the supremum of the countable set
{;(b(x), ch(y))/6(x,y); x, y E’, x# y}; thus, p(&l) is measurable.

THEOREM 3.1. Let {dn, n 7/} be a stationary ergodic sequence of Lipschitz maps
from E into E. We suppose that the following conditions hold"

(C 1) For some x in E, :[Log+ 6(b (x), x) is finite.
(C2) The random variable Log+ p (chl) is integrable, andfor some integer p > O, the

real number

a =-IF[Log
P

is strictly negative.
Then there exists an ergodic stationary process {Xn, n 7/} with values in E, solution of
(26), such that, almost surely,

lim -1 Log 6 (X., n) -<- a < 0
+o r

for any process {Xn, rl 0}, such that Xn )n (Xn-1) for all n > O.
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(27)

Proof. Let us first show that, almost surely,

1
k-.+lim - Log p (b0 b_l b_k <= a.

By (25),

1 1
k-,+c.lim a:

Log (bo-- /9

thus, the left-hand side of (27) is a subinvariant function. By ergodicity, it is constant,
almost surely. Let/3 be this constant. We know that for any nonnegative integrable
random variable Z, Y/ P(Z> k) is finite Therefore, the integrability condition ink=0

(C2) entails that, for any e>0, Y’.k=oP(Log+p(ql)>ke)<+oo. Since all the b,’s
have the same law, this entails that /o (Log/ p(b_k)> ke)< +oo, so that by thek=O

Borel-Cantelli lemma, almost surely,

Log p (b_a) _-< O.

By making use of this inequality, and of the fact that if k mp + r, where r is an integer
in [0, p),

Log p(b0o b_ ob_a)-< Log p (b_.;p b_,p_,
0

+ Log p(b_,,,p 4_,)

we see that

/3-< lim "__- Log p (b_,p b_,,_,
k-+ mp i=0

It follows from Birkhoff’s ergodic theorem that the expectation of the right-hand side
is equal to c, proving (27). On the other hand, it follows as above from the integrability
condition (C1) and from the Borel-Cantelli lemma that for some fixed x in E, almost
surely,

1
lim Log 6(b_ (x), x) <0.(28) +v

Now

((oO_,o... _)(x), (6oO6_,o... 6_ 4,__,)(x))

_<_p(oO_,o... _)(x, __,(x)),

thus, (27) and (28) imply that, almost surely,

1
lim Log 8((b0 oh, 4_och__,)(x))< ce.+ o...o_)(x)(o -,

Since c <0, this shows that {(boOb_, ock_k)(x), kN} is a Cauchy sequence for
almost all to f. We suppose that E is complete, thus, this sequence converges. In
the same way, we see that (4, 4,_, ock,,_k)(X) converges, almost surely, for each
fixed n 27, when k-> +. Let

(29) X,= lim (4),o4,,_o.. "o&,_k)(X).
k+oo



KALMAN FILTERING AND CONTRACTIONS 957

Since {(])k, k_} is a stationary ergodic process, and since we can write X,
F(k, k =< n) for some measurable function F independent of n 7/, we see that , is
itself a stationary ergodic process. It is clear that it is a solution of (26). Finally, let
{Xn, n _--> 0} be any.process satisfying (26). Since

a(X.. X.)= a((6. 6._, 6,)(Xo). (6. 6._, 6,)(So))
--< p(6. 6.-, O,)(Xo, Xo).

we see that, almost surely,
1

lim -1 Log 8(X,, X,) =-< :(Log
,,-+o n p

This concludes the proof of the theorem. U
Remark. Suppose that Log/ p() is integrable, then if : {Log 6((Xo),Xo)} is

finite for some Xo in E, then it is finite for all x E since
a(,(x), x)-< a(,(x), ,(Xo)) + a(,(Xo), Xo)+ a(Xo, x)

((() (X()), X(,) -- (p(l)l) -- 1 ( (X(,, X).
COROLLARY 3.2. Let 7r be the common law of the X,’s. Under the hypotheses above,

almost surely, for any sequence X, satisfying (26), and for any bounded continuous

function f: E ,
lim -1 f X I fdrc.
n-+c FI i=

Proof The hypotheses on E imply that there exists a countable set D of bounded
continuous functions on E such that any sequence of probability measures /x, on E
converges weakly to a probability measure /x if and only if fdt "-> fdtx for any f
in D (see, e.g., Parthasarathy [23, Thm. I1.6.6]). Let l(f) be the subset of f, where
1/n Y,__I f(.’i) converges to Ifa. Since (’,,) is stationary and ergodic, P(f(f))
by Birkhoff’s ergodic theorem. Let 12o be the intersection of the set, where 6(X,, X,)
converges to 0 and of all the sets f(f), f D. It follows from Theorem 3.1 that
P(12o)--1. We fix an to in 12o. Let m be the empirical measure of the sequence
{,(to), n_-> 1}, defined by Ifdm, 1In Z,=, f(.(to)), when f: E- is bounded and
continuous. The sequence {mn, n >- 1} converges weakly to 7r. Moreover, since

(30) -+lim -nl ,=, f(X,(to)) +olim -nl ,=, f(fC,(to)) f fact
when f is uniformly continuous. This, in turn, yields that the empirical measure of the
sequence {X,(to), n => 1} converges weakly to 7r, i.e., that (30) holds for any function

f that is bounded and continuous (see Parthasarathy [23, Thm. 11.6.1]). I-]

COROLLARY 3.3. Under the hypotheses of the previous theorem, all the solutions Xn
of (26) converge in law to the same limit

This corollary is an immediate consequence ofthe theorem. The following technical
proposition has been used in 2.

PROPOSITION 3.4. Suppose that the random maps ch, are contractions, that
E[6(th(x), x)] isfinitefor some x in E, and thatfor somep
O. Then, almost surely,

lim
1

6(x, Xn)=0
+c

for any sequence {X,,, n >= 0} for which (26) holds.
Proof For any n > l,
(x, (. ._, ,)(x)) <_-(x, (.o )(x))

+ ((. )(x), (6.o... ,)(x))
(X, (n 2)(X))-]-p(n 2)1(X, el(X))"
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So that, by induction,

(3) (x, (.o._,o 4,,)(x))<_- p(4. ,+,)(x. ,(x)).
i=1

Since the th,’s are contractions, this implies in particular, using (25), that

(x. (6.o._, 6,)(x))--< (x, 6.(x))+ E o(6,+,)(x, 6,(x)).
i=1

Thus, by Birkhoff’s ergodic theorem, almost surely,

lim 6(x,(b. (l)(X)) lim n p(Ci+l)(X, )i(X) [E[p((I)(x,
n+oo / n-+oo /’/ i-----1

Similarly, for any fixed k in , we obtain from (31) that, when n > k,

(X, (n l)(X)) p(no i+ )(X,
i=n-k+l

+ E 0(,+ o,+)a(x. ,(x))
i=l

and by the ergodic theorem,

lim
1
8(x,(&, &l)(x)) < lim 1 0(6,+ ,+,),(x, 6,(x))

(3
n---+oo n n--+o n

2) __< [p(o ,)(x, Co(x))].
Now, p(k "OChl)8(x, cho(X)) converges, almost surely, to 0 as k+ and is
dominated by the integrable function 8(x, &o(X)). Thus, its expectation goes to 0 by
Lebesgue’s theorem; from (32) we obtain

lim -1 8(x, (oh,, ch,,- &)(x)) 0
n+oc F/

almost surely. Finally, since X,, (&,,o ,h)(X0), we see that

((X, Xn)((X (n l)(X))--- a((no ,)(x), (n i)(X(,)
<_- ,S(x. (,o 4,,)(x)) + (x. Xo),

so that

8(x,X,,)/n-O as n +c.
Remark. When the random maps oh,, are independent and identically distributed,

then E(6(X,,x)) is finite under the hypothesis of this proposition. In that case, its
conclusion follows directly from the Borel-Cantelli lemma.
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