
SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 3, pp. 930–951

A BIRKHOFF CONTRACTION FORMULA WITH APPLICATIONS
TO RICCATI EQUATIONS∗

JIMMIE LAWSON† AND YONGDO LIM‡

Abstract. In this paper we show that the symplectic Hamiltonian operators on a Hilbert space
give rise to linear fractional transformations on the open convex cone of positive definite opera-
tors that contract a natural invariant Finsler metric, the Thompson or part metric, on the convex
cone. More precisely, the constants of contraction for the Hamiltonian operators satisfy the classical
Birkhoff formula: the Lipschitz constant for the corresponding linear fractional transformations on
the cone of positive definite operators is equal to the hyperbolic tangent of one fourth the diameter
of the image. By means of the close connections between Hamilitonian operators and Riccati equa-
tions, this result and the associated machinery are applied to obtain convergence results for discrete
algebraic Riccati equations and Riccati differential equations.
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1. Introduction. Connections between linear control theory, the Riccati equa-
tion, and the symplectic group are well known; see, for example, Hermann [13], Shay-
man [22], Jurdjevic [14, Chapter 8], and [23], and the references cited in those sources.
In this paper we focus particularly on connections to the symplectic subsemigroup,
which consists of those symplectic transformations that are sometimes called Hamil-
tonian. In [15] we studied in some detail this subsemigroup of symplectic operators in
the infinite dimensional setting and its close connection to Riccati differential equa-
tions arising in linear control systems. The canonical triple factorization of symplectic
Hamiltonian operators and their action via linear fractional transformation on the
open convex cone P0 of positive definite operators on a Hilbert space have played
key roles in the study of Riccati equations via Lie semigroup theory. In this paper
we study the contraction property of symplectic Hamiltonian operators acting on the
convex cone P0 for the natural invariant Finsler metric (Thompson’s part metric),
and apply it to finite- and infinite dimensional discrete algebraic Riccati equations
and Riccati differential equations.

One of our main results is the Birkhoff theorem (section 5) for symplectic Hamil-
tonian operators with respect to Thompson’s metric p(X,Y ): each symplectic Hamil-
tonian g =

[
A B
C D

]
, regarded as the self map on P0 given by the linear fractional

transformation

g.X = (AX + B)(CX + D)−1,
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satisfies the contraction formula

sup
X,Y ∈P0
X �=Y

p(g(X), g(Y ))

p(X,Y )
= tanh

(
diam(g)

4

)
,

where diam(g) denotes the diameter of the image g(P0) for the Thompson’s met-
ric. The diameter is completely determined by diam(g) = p(BD−1, AC−1) when
both BD−1 and AC−1 are positive definite; otherwise diam(g) = ∞ (Theorem
5.8). This beautiful and important formula had its origin with Birkhoff [4] for
Möbius transformations with positive entries with respect to the Riemannian met-
ric p(a, b) = | log a − log b| on the positive reals. Liverani and Wojtkowski [18] and
Lim [16] have generalized it to fractional transformations on the symmetric cone of
positive definite matrices and on symmetric cones arising from Euclidean Jordan al-
gebras with respect to the invariant Finsler metric associated with the spectral norm.
In the linear setting, the Birkhoff formula for positive linear maps on Banach spaces
for Hilbert’s projective (pseudo)metric [5] is well known, with many applications in
analysis [4], [8], [17]; see also [20], [21] and the references therein. It has also found
applications in control theory, primarily in filtering theory; see, e.g., [3], [7].

In the connections between linear control theory, the Riccati equation, and sym-
plectic Hamiltonians, the contraction property of symplectic Hamiltonians with ex-
plicitly given contraction coefficient is applied to the iterative method of solution for
discrete algebraic Riccati equations,

X = A∗XA−A∗XB(R + B∗XB)−1B∗XA + H,

and to the asymptotic behavior of solutions of the Riccati differential equation,

K̇(t) = R(t) + A(t)K(t) + K(t)A∗(t) −K(t)S(t)K(t),

on an arbitrary Hilbert space. Bougerol [6] has proved that symplectic Hamilto-
nian matrices are contractions for the standard Riemannian metric on the symmetric
space of positive definite matrices and given applications to Kalman filtering theory
(cf. [12], [9]). However, in the Riemannian metric case, there is no explicit formula
for the contraction coefficient of Hamiltonian matrices. In section 7, we prove that
under the invertiblity condition of A and BR−1B∗, the discrete Riccati equation has
a unique positive solution X∞ approached by any iteration Xn ∈ P0 with the rate of
convergence determined by the computable Birkhoff constant with respect to Thomp-
son’s part metric. Using the best estimation given by the Birkhoff constant on the
Lie wedge of the symplectic Hamiltonian semigroup studied in section 6, we prove
in section 8 that, under the uniform boundedness condition S1/2(t)R(t)S1/2(t) ≥ μI,
the solution K(t) of the Riccati differential equation with K(0) ∈ P0 is exponen-
tially attracting for Thompson’s part metric. These results, obtained mainly from the
Birkhoff formula and the invariant Finsler metric, provide new techniques for study
of Riccati equations, even for the finite dimensional case, where illustrative numerical
experiments can be calculated.

2. Symplectic Hamiltonian operators. In this section we review some basic
material on the algebraic structure of the symplectic Lie group and the associated
symplectic Hamiltonian semigroup from [15].

Let E be a real Hilbert space with inner product 〈·, ·〉 : E × E → R, and let
VE = E ⊕E. We denote members of VE by column vectors

[ x
y

]
, where x, y ∈ E. The
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standard symplectic form Q on VE is defined by

Q

([
x1

y1

]
,

[
x2

y2

])
:= 〈x1, y2〉 − 〈y1, x2〉.

We denote by End(VE) (resp., End(E)) the set of bounded linear operators on VE

(resp., E), and by GL(VE) (resp., GL(E)) those that are invertible. We shall always
assume that the topology is generated by the operator norm. For a bounded linear
transformation A on E, let A∗ denote the unique linear operator such that 〈Ax, y〉 =
〈x,A∗y〉 for all x, y in E. We call A∗ the adjoint of A. We say that A is symmetric if
A∗ = A. A bounded symmetric operator A on E is positive semidefinite if 〈x,Ax〉 ≥ 0
for all x ∈ E. We denote by P (resp., P0) all positive semidefinite (resp., positive
semidefinite invertible) bounded operators on E.

For (VE , Q) a standard sympletic space, the symplectic Lie group is defined by

Sp(VE) := {M ∈ GL(VE) : ∀x, y ∈ VE , Q(Mx,My) = Q(x, y)}

and has the following characterizations.

Proposition 2.1 (see Proposition 2.5 of [15]). Let M ∈ GL(VE). The following
are equivalent:

1. M ∈ Sp(VE); i.e., M preserves Q(·, ·).
2. M∗JM = J, where J =

[
0 I
−I 0

]
∈ End(VE).

3. If M has block matrix form [ A B
C D ], then

(a) A∗C, B∗D are symmetric;
(b) A∗D − C∗B = I.

Members of Sp(VE) viewed as linear operators on VE are called linear sympletic
maps.

Recall that the symplectic Lie algebra sp(VE) consists of all X ∈ End(VE) such
that exp(tX) ∈ Sp(VE) for all t ∈ R.

Proposition 2.2. Let X ∈ End(VE). The following are equivalent:

1. X ∈ sp(VE).
2. X∗J + JX = 0.
3. If X =

[
A B
C D

]
, then

(a) B and C are symmetric;
(b) D = −A∗.

We consider four subsets of Sp(VE):

S =

{[
A B
C D

]
∈ Sp(VE) : D is invertible, B∗D ∈ P, CD∗ ∈ P

}
,

S1 =

{[
A B
C D

]
∈ Sp(VE) : D is invertible, B∗D ∈ P0, CD∗ ∈ P

}
,

S2 =

{[
A B
C D

]
∈ Sp(VE) : D is invertible, B∗D ∈ P, CD∗ ∈ P0

}
,

S0 = S1 ∩ S2.

We define

ΓU =

{[
I B
0 I

]
: B ∈ P

}
, ΓU

0 =

{[
I B
0 I

]
: B ∈ P0

}
,
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ΓL =

{[
I 0
C I

]
: C ∈ P

}
, ΓL

0 =

{[
I 0
C I

]
: C ∈ P0

}
.

We further define a group H of block diagonal matrices by

H =

{[
A∗ 0
0 A−1

]
: A ∈ GL(E)

}
.

Theorem 2.3. We have that S is a subsemigroup of Sp(VE) and SSiS ⊆ Si for
i = 0, 1, 2; i.e., Si is a semigroup ideal. We alternatively have that S = ΓUHΓL, S1 =
ΓU

0 HΓL, S2 = ΓUHΓL
0 , and S0 = ΓU

0 HΓL
0 . Furthermore these “triple decompositions”

are unique: the multiplication mapping from ΓU ×H ×ΓL to S is a homeomorphism.
Proof. The proof follows from Theorem 6.7 and [15, Lemmas 6.4, 6.5]. See also

[6], [9].
The unique triple factorization of a symplectic Hamiltonian M =

[
A B
C D

]
∈ S is

given by

M =

[
I BD−1

0 I

] [
(D−1)∗ 0

0 D

] [
I 0

D−1C I

]
.

This factorization occurs more generally for any member M ∈ Sp(VE) with invert-
ible (2, 2)-entry. The semigroup S of the preceding theorem is called the sympletic
semigroup, and members of S are sometimes called Hamiltonian operators of Sp(VE).

3. Fractional transformations and compressions. In this section we show
that Hamiltonians arise exactly as compressions of the open convex cone of positive
definite operators under the canonical fractional transformation action.

We consider the lower block triangular subgroup P of Sp(VE) given by

P :=

{[
A 0
C D

]
∈ Sp(VE) : A,C,D ∈ End(E)

}
.

We note from Proposition 2.1 that such a lower triangular block matrix is in Sp(VE)
if and only if A∗ = D−1 and A∗C = D−1C is symmetric. We denote by M the
homogeneous space

M := Sp(VE)/P.

In the finite dimensional setting, P is a parabolic subgroup and the homogeneous space
is a flag manifold of Sp(VE). The set Sym(E) of symmetric operators in End(E) is
embedded into M as a dense open subset (see Lemma 9.2 of [15]):

X �→
[
I X
0 I

]
P ∈ M.

If M =

[
A B
C D

]
∈ Sp(VE) and X ∈ Sym(E) such that CX + D is invertible,

then

M

[
I X
0 I

]
P =

[
I (AX + B)(CX + D)−1

0 I

]
P.

This defines the (partial) action by fractional transformations of Sp(VE) on Sym(E) ⊆
M:

M.X = (AX + B)(CX + D)−1 if (CX + D)−1 exists.(3.1)
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For X,Y ∈ Sym(E), we define

X < Y :⇐⇒ Y −X ∈ P0,

X ≤ Y :⇐⇒ Y −X ∈ P.

The order ≤ is sometimes called the Loewner order. For X ≤ Y (resp., X < Y ) we
define the order intervals

[X,Y ] = {Z ∈ Sym(E) : X ≤ Z ≤ Y },
(X,Y ) = {Z ∈ Sym(E) : X < Z < Y },

respectively.
Proposition 3.1 (see Propositions 9.6 and 9.7 of [15]). The sets {(−(1/n)A,

(1/n)A) : n ∈ N} form a basis of open sets at 0 in Sym(E) for any A ∈ P0. For an
element A ∈ Sym(E), the following are equivalent:

1. A ∈ P;
2. A + X is invertible for all X ∈ P0;
3. A + rI is invertible for all r > 0.

Proposition 3.2 (see Propositions 9.6 and 9.9 of [15]). Each order interval
[A,B] = {X ∈ Sym(E) : A ≤ X ≤ B} for A ≤ B is closed in M, the interior of
[A,B] is equal to (A,B), and the closure P of P in M has interior P0.

Let us call a member of Sp(VE) a compression if it carries P0 into itself under
the action of fractional transformation (3.1).

Lemma 3.3. If M =
[
A B
C D

]
∈ Sp(VE) is a compression and the image of 0E ∈

Sym(E) ⊆ M under M is in P, then M belongs to the sympletic semigroup S.
Proof. The image of 0E under M is BD−1. This means that D is invertible, and

hence M has a triple decomposition in Sp(VE) of the form

M =

[
I BD−1

0 I

] [
(D−1)∗ 0

0 D

] [
I 0

D−1C I

]
.

Since 0E ∈ M corresponds to P in Sp(VE)/P, we conclude that the last two factors
of M applied to it return 0E . Thus, by (3.1),

M.0E =

[
I BD−1

0 I

]
.0 = BD−1.

Since the latter is in P by hypothesis, we conclude that BD−1 is positive semidefinite,
and hence that the first factor of M is in S. The second factor is trivially in S.

Let X ∈ P0. Then[
I 0

D−1C I

]
.X =

[
D∗ 0
0 D−1

] [
I −BD−1

0 I

]
M.X,

where the right-hand side must be in Sym(E) ⊆ M. It follows that D−1CX + I is
invertible for all X ∈ P0. Since X is invertible, (D−1CX + I)X−1 = D−1C + X−1

is invertible for all X ∈ P0. It then follows from Proposition 3.1 that D−1C is in P.
Thus the third factor of M is also in S.

Theorem 3.4. Let M ∈ Sp(VE). The following are equivalent:
1. M.P0 ⊆ P;
2. M is a compression;
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3. M ∈ S.
Proof. If M.P0 ⊆ P, then since M is a homeomorphism, it must carry P0 into

intP, which by Proposition 3.2 is P0. Thus M is a compression. The converse is
immediate. Hence items 1 and 2 are equivalent.

It turns out that elements of S carry P0 into itself (Proposition 7.1 of [15]).
Conversely suppose that M.P0 ⊆ P0. Define Mn = M ◦ tn, where tn has matrix
representation

[
I (1/n)I
0 I

]
. Since tn.0 = (1/n)I, we conclude that Mn.0 ∈ P0. Hence

by the preceding lemma, Mn ∈ S.
Let A := M.I. By hypothesis we may write the result in this form with A ∈ P0.

Since A is in the open order interval (0, 2A), we have for n large enough that Mn.I ∈
(0, 2A). Since Mn is order-preserving (Proposition 3.5), we have

0 ≤ Mn.0 ≤ Mn.I ≤ 2A.

Since the interval [0, 2A] is closed in M (Proposition 3.2), we conclude that

M.0 = lim
n

Mn.0 ∈ [0, 2A].

We can now apply the preceding lemma to M to conclude that M ∈ S.
Proposition 3.5 (see Proposition 9.10 of [15]). Members of the symplectic

semigroup S satisfy the following monotonicity properties:
1. For g ∈ S and X,Y ∈ P0, X ≤ Y if and only if g(X) ≤ g(Y ).
2. For g ∈ S and X,Y ∈ P, X ≤ Y implies g(X) ≤ g(Y ).

4. Hamiltonian operators and the standard sector. There is an alternative
context in which Hamiltonian operators arise naturally. We consider the quadratic
form Q on the symplectic space (VE , Q),

Q(w) = 〈x, y〉, w =

[
x
y

]
∈ VE ,

and the standard sector of the symplectic space (VE , Q), which is defined by

C = {w ∈ VE : Q(w) ≥ 0}.

By C◦ we denote the interior of C:

C◦ = {w ∈ VE : Q(w) > 0}.

By continuity g(C◦) ⊂ C◦ for any Q-monotone g. Each member of H, the subgroup
of block diagonals in Sp(VE), acts as an Q-isometry.

The following is immediate from the triple decompositions of S and S0 (Theorem
2.3) and the preservation of (strict) Q-monotonicity under composition.

Theorem 4.1. Each member of S (resp., S0) is Q-monotone (resp., strictly
Q-monotone). Furthermore, each member of S (resp., S0) increases (resp., strictly
increases) the quadratic form.

Remark. The quadratic form Q and the associated sector C define two natural
closed subsemigroups in Sp(VE) containing the symplectic semigroup S: the subsemi-
group of (strictly) monotone maps and the subsemigroup of (strictly) symplectic maps
(strictly) increasing the quadratic form. It turns out that these are all the same in
the finite dimensional case [19].
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We derive an explicit relationship between the action of symplectic Hamiltonians
on the sector C◦ and the Möbius action of fractional transformation on the positive
definite cone P0.

Lemma 4.2. Let
[ x
y

]
∈ C◦. Then there exists a positive definite operator P on E

such that y = Px. In particular,

C◦ =

{[
x
Px

]
: x �= 0, P ∈ P0

}
.

Proof. Let W be the subspace generated by x and y. If x and y are linearly
dependent, then y = λx for some λ > 0, so we may take P = λI. Suppose that W is
two-dimensional. Then it is enough to construct a positive definite operator A on W

sending x into y by observing that P :=

[
A 0
0 IW⊥

]
is positive definite.

Suppose that x = (x1, x2), y = (y1, y2) ∈ R2 such that l := x1y1 + x2y2 > 0. We
will solve the equations ax1 + bx2 = y1, bx1 + dx2 = y2 with a > 0, ad > b2.

Case 1. If x1 = 0, then take b = y1/x2, d = y2/x2 > 0, and a (positive) large
enough. If x2 = 0, then take b = y2/x1, a = y1/x1 > 0, and d large enough.

Case 2. x1 �= 0 and x2 �= 0: If x1x2 > 0, then take

b < min

{
y1

x2
,
y1y2

l

}
, a =

(y1 − bx2)

x1
, d =

(y2 − bx1)

x2
.

If x1x2 < 0, then take b > max{y1/x2, y1y2/l}, a = (y1 − bx2)/x1, and d = (y2 −
bx1)/x2.

A slice of the sector C◦ consists of sets of the form

Px =

{
Px :=

[
Px
x

]
: P ∈ P0

}
.

The preceding lemma shows that the sector C◦ is the disjoint union of slices.
Proposition 4.3. Let g =

[
A B
C D

]
∈ S. Then for P > 0,

g(Px) = (g.P )(CP+D)x.

Proof. We calculate that[
A B
C D

] [
Px
x

]
=

[
(AP + B)x
(CP + D)x

]
=

[
(AP + B)(CP + D)−1y

y

]
=

[
(g.P )y

y

]
,

where y = (CP + D)x.

5. Contractions and the Birkhoff formula. In this section, we show that
each element of S (resp., S0) is a contraction (resp., strict contraction) of P0 for
a natural invariant metric on it, with an explicit contraction constant given by the
Birkhoff formula.

For A,B ∈ P0, we define

M(A/B) := inf{t > 0 : A ≤ tB},
m(A/B) := sup{t > 0 : tB ≤ A}.
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Then M(A/B) = m(B/A)−1. Thompson’s metric (sometimes called the part metric)
on P0 is defined by

p(A,B) = log(max{M(A/B),M(B/A)});

see, e.g., [24], [25], [20].
Lemma 5.1. The set P0 becomes a complete metric space with respect to the

metric p, and the metric p induces the topology of P0.
Proof. The space Sym(E) of symmetric operators equipped with the operator

norm is a Banach space satisfying that 0 ≤ A ≤ B implies ‖A‖ ≤ ‖B‖. It follows
from Proposition 3.1 that for A,B ∈ P0 there exists t ∈ R such that A ≤ tB. It then
follows from Lemma 3 of [24] that the Thompson metric p is indeed a metric and is
complete on P0, and by Proposition 1.1 of [21] that the Thompson metric induces the
same topology.

Lemma 5.2. The metric p is invariant under the block diagonal group H and
inversion j(A) = A−1.

Proof. The lemma follows directly from the observations

∀D ∈ GL(E),M(D∗AD/D∗BD) = M(A/B), M(A−1/B−1) = M(B/A),

where the last equality follows from the fact that inversion on P0 is order-reversing
(cf. Proposition 9.8 of [15]).

A map γ : [0, 1] → P0 is said to be a minimal geodesic for the metric p if, whenever
0 ≤ t1 ≤ t2 ≤ 1, we have

p(γ(t1), γ(t2)) = (t2 − t1)p(γ(0), γ(1)).

Proposition 5.3 (see Proposition 1.10 of [20]). Let A,B ∈ P0. Then

γ(t) = A1/2(A−1/2BA−1/2)tA1/2

is a minimal geodesic curve from A to B with respect to p.
For X ∈ Sym(E), the order unit norm for the order unit I is given by

‖X‖ = inf{t > 0 : −tI ≤ X ≤ tI}.

Lemma 5.4. On Sym(E) we have the following:
1. The order unit norm agrees with the operator norm on Sym(E).
2. For X ∈ P0, m(X/I) = ‖X−1‖−1.
3. The map X �→ m(X/I) is continuous on P.

Proof. Part 1. Let us temporarily denote the order unit norm by ‖X‖or. Then

|〈x,Xx〉| ≤ ‖x‖(‖X‖ ‖x‖) = ‖X‖〈x, Ix〉 = 〈x, ‖X‖Ix〉

implies that ‖X‖or ≤ ‖X‖. For ‖x‖ = 1 and X ≥ 0, we have

‖X1/2x‖2 = 〈X1/2x,X1/2x〉 = 〈x,Xx〉 ≤ 〈x, ‖X‖orIx〉 = ‖X‖or.

It follows that ‖X‖ ≤ ‖X1/2‖2 ≤ ‖X‖or. We then have for arbitrary symmetric X

‖X‖2 = ‖X∗X‖ = ‖X2‖ = ‖X2‖or ≤ ‖X‖2
or,

since −tI ≤ X ≤ tI implies that t2I −X2 = (tI + X)1/2(tI −X)(tI + X)1/2 ≥ 0.
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2. For X ∈ P0, we have directly that

m(X/I) = sup{t > 0 : tI ≤ X} = sup{t > 0 : (1/t)I ≥ X−1}
= sup{(1/s) > 0 : X−1 ≤ sI} = ‖X−1‖−1.

3. It follows from part 2 that the function X �→ m(X/I) is continuous on P0. For
X ∈ P, let 0 ≤ Xn → X. Then for ε > 0, Xn + εI → X + εI in P0, which in turn
implies m(Xn + εI/I) → m(X + εI/I). Since m(A+ εI/I) = m(A/I) + ε for A ∈ P,
the desired conclusion follows.

Remarks. (1) The map X �→ m(X/I) on P0 is one of special interest; it agrees
with the smallest eigenvalue function in the finite dimensional case.

(2) For X ∈ P0, ||X|| = M(X/I), and hence p(I,X) = max log{||X||, ||X−1||}.
Thus for X,Y ∈ P0,

p(X,Y ) = p(I,X−1/2Y X−1/2) = log max{||X−1/2Y X−1/2||, ||X1/2Y −1X1/2||}.

Identifying the tangent bundle TP0 of P0 with P0 × Sym(E), we define a Finsler
structure on P0 by

|X|A := ||A−1/2XA−1/2||

for A ∈ P0, X ∈ Sym(E). Then it is easy to see that | · |A is a norm on the tangent
space Sym(E) at A.

Theorem 5.5 (see Theorem 1.1 of [21]). Let A,B ∈ P0. Then

p(A,B) = inf

{∫ 1

0

|ψ′(t)|ψ(t)dt

}
,

where the infimum is taken over all piecewise C1 maps ψ from A = ψ(0) to B = ψ(1).
In particular,

p(A,B) =

∫ 1

0

|γ′(t)|γ(t)dt,

where γ(t) = A1/2(A−1/2BA−1/2)tA1/2.
For notational convenience, we denote for A ∈ P and D ∈ GL(E),

tA :=

[
I A
0 I

]
∈ ΓU ,

t̃A :=

[
I 0
A I

]
∈ ΓL,

hD :=

[
D∗ 0
0 D−1

]
∈ H.

Then under the action of fractional transformation (3.1),

tA(B) = A + B, hD(B) = D∗BD, t̃A(B) = (A + B−1)−1 = (jtAj)(B)

for B ∈ P0, where j(A) = A−1, the inversion operator on P0.
Proposition 5.6. Let X,Y ∈ P0 and let D ∈ GL(E). Then

tX ◦ hD ◦ t̃Y = hY −1/2D ◦ tY 1/2(D−1)∗XD−1Y 1/2 ◦ t̃I ◦ hY 1/2 .
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Proof. The proof is straightforward.

Set ∞ :=
[

0 I
−I 0

]
P ∈ M. It is easy to see that for g ∈ Sp(VE), g · ∞ = ∞ if and

only if g is an upper triangular block matrix.

Lemma 5.7. Let 0 < A ≤ B. If X,Y ∈ [A,B], then p(X,Y ) ≤ p(A,B).

Proof. Suppose that p(X,Y ) = logM(X/Y ). Since A ≤ X ≤ M(X/A)A ≤
M(X/A)Y, we have M(X/Y ) ≤ M(X/A). The fact A ≤ X implies that m(X/A) ≥ 1
and hence M(A/X) = m(X/A)−1 ≤ 1. Thus M(X/A) ≥ 1. Therefore

p(X,Y ) = logM(X/Y ) ≤ logM(X/A) = p(A,X).(5.1)

Now, X ≤ B ≤ M(B/A)A implies that M(X/A) ≤ M(B/A) and hence by (5.1)

p(X,A) = logM(X/A) ≤ logM(B/A) ≤ p(B,A).

Therefore p(X,Y ) ≤ p(A,B). Similarly, we have that p(X,Y ) ≤ p(A,B) when
p(X,Y ) = logM(X/Y ).

Theorem 5.8. Let g ∈ S0. Then g(P0) = (g(0), g(∞)), g(P) = [g(0), g(∞)] ⊆
P0, and the diameter Δ(g) of g(P0) for the metric p is the distance p(g(0), g(∞)). If
g ∈ S \ S0, then Δ(g) = ∞.

Proof. Let g = tX ◦ hD ◦ t̃Y ∈ S0. By Theorem 2.3, X,Y ∈ P0. Then g(0) = X
and g(∞) = X+D∗Y −1D. Suppose that Z ∈ (X,X+D∗Y −1D). Then Z = X+A =
X+D∗Y −1D−B for some A,B ∈ P0. Note that A = D∗Y −1D−B, so A < D∗Y −1D.
Since the inversion j is order-reversing on P0 (cf. Proposition 9.8 of [15]), W :=
(DA−1D∗ − Y )−1 ∈ P0. This implies that Z = X + A = g(W ) ∈ g(P0). Conversely,
suppose that Z ∈ g(P0). Then Z = g(W ) = X+D∗(Y +W−1)−1D for some W ∈ P0.
It is obvious that X < Z. Since W−1 ∈ P0, we have that Y −1 > (Y +W−1)−1. Thus
D∗Y −1D > D∗(Y + W−1)−1D. This implies that

g(∞) − Z = (X + D∗Y −1D) − (X + D∗(Y + W−1)−1D) > 0.

Therefore Z ∈ (g(0), g(∞)). So, g(P0) = (g(0), g(∞)). The second assertion follows
from this, Proposition 3.1, the fact that g acts as a homeomorphism on M, and our
computation of g(0) and g(∞).

That the diameter of g(P0) = (g(0), g(∞)) is the Thompson distance p(g(0), g(∞))
follows from the preceding lemma.

Suppose that g = tA ◦hD ◦ t̃B ∈ S \S0. Then by Theorem 2.3 either A or B lies in
P \ P0. Suppose that A ∈ P \ P0. Pick C ∈ g(P0) with C > 0. Let Yn = g( 1

nI) ∈ P0.
Then Yn → g(0) = A. Since g(0) = A ∈ P\P0, for each k > 0, there exists nk > 0 such
that Ynk

/∈ [ 1
kC, kC], that is, Ynk

� kC or 1
kC � Ynk

. By definition, M(C/Ynk
) ≥ k

or M(Ynk
/C) ≥ k. Therefore log k ≤ p(C, Ynk

) → ∞, and hence Δ(g) = ∞. Similarly,
if g(∞) = B ∈ P \ P0, then Δ(g) = ∞.

Lemma 5.9. Let A,X ∈ P0. Then

|(I + A)−1U(I + A)−1|X+(I+A−1)−1 ≤
(√

m(X/I) +
√

1 + m(X/I)
)−2

|U |A

for all U ∈ Sym(E).

Proof. First, we show that

(I + A)X(I + A) + A2 + A ≥
(√

m(X/I) +
√

1 + m(X/I)
)2

A.
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It immediately follows from m(X/I)I ≤ X that

m(X/I)(I + A)2 = m(X/I)(I + A)I(I + A) ≤ (I + A)X(I + A).

We then have

(I + A)X(I + A) + A2 + A

≥ m(X/I)(I + A)2 + A2 + A

= (m(X/I) + 1)A2 + m(X/I)I + (2m(X/I) + 1)A

≥ 2
√
m(X/I)(m(X/I) + 1)A + (2m(X/I) + 1)A

= (
√

m(X/I) +
√

1 + m(X/I))2A,

where the second inequality follows from the fact that the square of
√

m(X/I) + 1A−√
m(X/I)I is positive semidefinite.

Set k := (
√
m(X/I) +

√
1 + m(X/I))−2. Then −tI ≤ kA−1/2UA−1/2 ≤ tI for

some t > 0, or equivalently (−t/k)A ≤ U ≤ (t/k)A. From the first paragraph, we
obtain that

−t
(
(I + A)X(I + A) + A2 + A

)
≤ −t

k
A ≤ U ≤ t

k
A ≤ t((I + A)X(I + A) + A2 + A).

Since (I + A)−1(A2 + A)(I + A)−1 = (I + A−1)−1, this implies that

−t(X + (I + A−1)−1) ≤ (I + A)−1U(I + A)−1 ≤ t(X + (I + A−1)−1)

and hence

−tI ≤ (X + (I + A−1)−1)−1/2(I + A)−1U(I + A)−1(X + (I + A−1)−1)−1/2 ≤ tI.

Therefore from the definition of the order unit norm,

||(X+(I+A−1)−1)−1/2(I+A)−1U(I+A)−1(X+(I+A−1)−1)−1/2|| ≤ k||A−1/2UA−1/2||,

and the lemma follows immediately.
Lemma 5.10. Let X ∈ P0 and let 0 < α < β. Then

M(X + βI/X + αI) ≥ m(X/I) + β

m(X/I) + α
≥ 1.

In particular,

M

(
X +

β

β + 1
I/X +

α

α + 1

)
≥

m(X/I) + β
β+1

m(X/I) + α
α+1

≥ 1.

Proof. If X + βI ≤ t(X + αI) for t > 0, then

m(X/I) + β = m(X + βI/I) ≤ m(t(X + αI)/I) = t(m(X/I) + α).

Let us introduce the Lipschitz constant (the least coefficient of contraction) of
g ∈ S,

N(g) = sup
A,B∈P0
A �=B

p(g(A), g(B))

p(A,B)
.
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Note that N(g1g2) ≤ N(g1)N(g2).

Theorem 5.11. Let g ∈ S. Then

N(g) = tanh

(
Δ(g)

4

)
.

Proof. Let g ∈ S0. Note that N(g) = N(h ◦ g ◦ h′) for any h, h′ ∈ H by the
H-invariance of the metric. By Proposition 5.6, we may assume that g = tX ◦ t̃I
for some X ∈ P0. Then g(0) = X, g(∞) = X + I, and hence Δ(g) = p(X,X + I) =
logM(X+I/X) = log(1+M(I/X)) = log(1+ 1

m(X/I) ). A straightforward calculation

yields

tanh

(
Δ(g)

4

)
= tanh

(
1

4
log

(
1 +

1

m(X/I)

))

=
(1 + 1

m(X/I) )
1
4 − (1 + 1

m(X/I) )
− 1

4

(1 + 1
m(X/I) )

1
4 + (1 + 1

m(X/I) )
− 1

4

=
(√

m(X/I) +
√

1 + m(X/I)
)−2

.(5.2)

Furthermore, for the differential of the mapping g(Y ) = X + (I + Y −1)−1, we have

dg(A)(U) = (I + A−1)−1(A−1UA−1)(I + A−1)−1 = (I + A)−1U(I + A)−1

for A ∈ P0, U ∈ Sym(E).

Let A,B ∈ P0, and let γ(t) = A
1
2 (A− 1

2BA− 1
2 )tA

1
2 be the minimal geodesic curve

passing from A to B. Then by Lemma 5.9,

p(g(A), g(B)) ≤
∫ 1

0

|(g ◦ γ)′(t)|g(γ(t))dt

=

∫ 1

0

|dg(γ(t))(γ′(t))|g(γ(t))dt

=

∫ 1

0

|(I + γ(t))−1γ′(t)(I + γ(t))−1|X+(I+γ(t)−1)−1dt

≤ (
√
m(X/I) +

√
1 + m(X/I))−2

∫ 1

0

|γ′(t)|γ(t)dt

= (
√
m(X/I) +

√
1 + m(X/I))−2p(A,B),

where in the last equality we have used the fact that the distance p(A,B) is equal to
the Finsler length of the geodesic curve γ(t). Therefore

N(g) ≤
(√

m(X/I) +
√

1 + m(X/I)
)−2

.

To show that equality holds, it is enough to show that

(√
m(X/I) +

√
1 + m(X/I)

)−2

≤ sup
α,β∈R

+

α<β

p(g(αI), g(βI))

p(αI, βI)
.
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By Lemma 5.10, we obtain that

sup
α,β∈R

+

α<β

p(g(αI), g(βI))

p(αI, βI)
= sup

α,β∈R
+

α<β

p(X + (I + α−1I)−1), X + (I + β−1I)−1)

p(αI, βI)

= sup
α,β∈R

+

α<β

logM
(
X + β

β+1I/X + α
α+1I

)
log β

α

≥ sup
α,β∈R

+

α<β

log
m(X/I)+ β

β+1

m(X/I)+ α
α+1

log β
α

= sup
α,β∈R

+

α<β

log
g(β)

g(α)

log β
α

,

where g =
[

1+m(X/I) m(X/I)
1 1

]
∈ SL(2,R) is the usual Möbius transformation on R.

By the Birkhoff formula on the positive reals [4],

sup
α,β∈R

+

α<β

log
g(β)

g(α)

log β
α

= tanh

(
Δ(g)

4

)

= tanh

(
1

4
log

(
1 +

1

m(X/I)

))
5.2
=

(√
m(X/I) +

√
1 + m(X/I)

)−2

.

This shows that the Birkhoff formula holds for S0.
It follows from previous result that every member of S0 is a strict contraction.

By definition we have that the operator gn :=
[

I 0
(1/n)I I

]
is in S2, the operator hn :=[

I (1/n)I
0 I

]
is in S1, and gn, hn → e, the identity element of Sp(VE). Then for any

g ∈ S, gnhng → g and gnhng ∈ S0 since S1 and S2 are ideals by Theorem 2.3 and
S0 = S1 ∩ S2 by definition. It follows from standard continuity arguments and the
density of S0 in S that all members of S are contractions.

Define σ : S → R+ = [0,∞) by

σ(tAhD t̃B) =
(√

m(Q/I) +
√

1 + m(Q/I)
)−2

, where Q = B1/2(D−1)∗AD−1B1/2.

Then σ is well defined from the unique triple factorization of S (Theorem 2.3) and
is continuous by Lemma 5.4. By Proposition 5.6 and the calculation above, σ(g) =

N(g) = tanh
(Δ(g)

4

)
for any g ∈ S0. Let g = tAhD t̃B ∈ S \ S0. Then either A or

B is not invertible; thus m(B1/2(D−1)∗AD−1B1/2/I) = 0, and hence σ(g) = 1. By
Theorem 5.8, tanh(Δ(g)/4) = 1. For small positive ε, pick gε ∈ S0 sufficiently close
to the identity such that σ(g) − ε ≤ σ(gεg). Then

σ(g) − ε ≤ σ(gεg) = N(gεg) ≤ N(gε)N(g) ≤ N(g) ≤ 1,

which shows that N(g) = 1 = σ(g) = tanh(Δ(g)/4). Thus the Birkhoff formula holds
for S \ S0, which completes the proof.

We refer the reader to the references [6] and [12] for applications of contraction
results to Riccati transformations and control. There it is shown that the Riccati
transformation of linear filtering/control theory is a contraction on the space of pos-
itive definite matrices. The metric used there is the standard Riemannian metric on
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the symmetric space of positive definite matrices. Since we extend these results to the
infinite dimensional case as well, it has been necessary to substitute the Thompson
metric for the Riemannian metric. We have sharpened the results in another sense by
calculating the constant of contraction, the one given by the Birkhoff formula. These
formulas have been derived in the finite dimensional case in [18].

6. The Birkhoff formula on the Lie wedge. For the symplectic semigroup
S, which is a closed subsemigroup of the symplectic Lie group Sp(VE), the Lie wedge
of S,

L(S) := {X ∈ g : exp(tX) ∈ S ∀ t ≥ 0},

which is the tangent object of S in the Lie algebra, is explicitly described as follows.
Proposition 6.1 (see Proposition 8.1 of [15]). The symplectic semigroup S has

Lie wedge

L(S) =

{[
A B
C −A∗

]
: B,C ≥ 0

}
.

Setting

h =

{[
A 0
0 −A∗

]
: A ∈ End(VE)

}
,

W =

{[
0 R
S 0

]
: R,S ≥ 0

}
,

we have L(S) = h ⊕ W. In particular, h is the Lie subalgebra of the subgroup H of
block diagonal matrices.

We recall the Birkhoff constant map

N : S → [0, 1], N(g) = tanh
(�(g)

4

)
= sup

X,Y >0
X �=Y

p(g(X), g(Y ))

p(X,Y )
,

and define

f : L(S) → [0,∞),

[
A R
S −A∗

]
�→

√
m(S1/2RS1/2/I).

Then f is a continuous, homogeneous, AdH -invariant function and is an extension of
the map X �→ m(X/I) on P.

Theorem 6.2. We have log ◦N ◦ exp ≤ −2f on L(S).
Proof. Let

[
0 R
S 0

]
∈ W ◦, the interior of W, i.e., R,S > 0. Then

exp

[
0 R
S 0

]
=

[
S−1/2 0

0 S1/2

]
· exp

[
0 S1/2RS1/2

I 0

]
·
[

S1/2 0
0 S−1/2

]
,

and it follows by homogeneity of the Thompson metric that

N

(
exp

[
0 R
S 0

])
= N

(
exp

[
0 S1/2RS1/2

I 0

])
.
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Setting X = S1/2RS1/2 and g = exp
[

0 X
I 0

]
, we have

g =

[
coshX1/2 X1/2 sinhX1/2

X−1/2 sinhX1/2 coshX1/2

]

and therefore

g(0) = X1/2 sinhX1/2(coshX1/2)−1 = X1/2 tanhX1/2, g(∞) = X1/2 cothX1/2.

Then

�(g) = p(g(0), g(∞))

= p(X1/2 tanhX1/2, X1/2 cothX1/2)

= p(I, coth2 X1/2)

= logM(cothX1/2/I)2

≤ log coth2 m(X1/2/I),

where the third equality follows from the homogeneity of the metric, the fourth from
cothX1/2 ≥ I, and the last inequality from the fact that for t > 0, tI ≤ X implies
tnI ≤ Xn and hence (exp t)I ≤ expX and consequently (coth t)I ≥ cothX. By direct
computation we have

N(g) = tanh
(�(g)

4

)
≤ tanh

(
1

2
log cothm(X1/2/I)

)
= e−2m(X1/2/I) = e−2

√
m(X/I).

By continuity of N(·) and m(·/I), the asserted inequality holds for arbitrary members
of W.

Finally, the assertion of the inequality on all of L(S) follows from the preceding,
from the fact that both sides of the inequality reduce to 0 on h, from the Lie–Trotter
product formula, and from the multiplicative property of the Birkhoff constant func-
tion: N(gh) ≤ N(g)N(h).

Remark. In the finite dimensional case, the inequality in Theorem 6.2 becomes
an equality on W : log ◦N ◦ exp = −2f . This follows from the fact that

|| cothX|| = coth ||X−1||−1, X > 0.

Set R =
{
[ 0 X
I 0 ] : X > 0

}
⊆ W ◦, the interior of W.

Theorem 6.3. We have

S0 = ΓU
0 HΓL

0 = H(expR)H = H(expW ◦).

Proof. The first equality follows by Theorem 2.3. We have observed in the proof
of Theorem 6.2 that expW ◦ ⊆ H(expR)H and hence H expW ◦ ⊆ H(expR)H. Since
W ◦ is AdH -invariant, (expR)H ⊆ H expW ◦, and therefore H(expR)H ⊆ H expW ◦,
the third equality is proved.

Let X > 0. Then

exp

[
0 X
I 0

]
=

[
coshX1/2 X1/2 sinhX1/2

X−1/2 sinhX1/2 coshX1/2

]

=

[
I X1/2 tanhX1/2

0 I

] [
(coshX1/2)−1 0

0 coshX1/2

] [
I 0

X−1/2 tanhX1/2 I

]
∈ S0 = ΓU

0 HΓL
0



A BIRKHOFF CONTRACTION FORMULA 945

because X1/2 tanhX1/2 > 0 and X−1/2 tanhX1/2 > 0. The ideal property of S0

implies that H(expR)H ⊆ S0. However, the explicit triple decomposition and Propo-
sition 5.6 imply that

exp

[
0 X
I 0

]
∈ H ·

[
0 (sinhX1/2)2

I 0

] [
I 0
I I

]
·H,

and thus each element in the right-hand side belongs to H(expR)H. Suppose that
g ∈ S0 = ΓU

0 HΓL
0 . Then by Proposition 5.6, g = hD1

[
I A
0 I

][
I 0
I I

]
hD2

for some A > 0

and Di ∈ GL(E). Set X = [log(A1/2 + (A + I)1/2)]2. Then X > 0, and by direct
computation sinhX1/2 = A1/2, so that g ∈ H(expR)H.

7. Discrete algebraic Riccati equations. The discrete algebraic Riccati equa-
tion (DARE) arises in the context of minimizing a quadratic cost for discrete-time lin-
ear time-invariant systems (see, for example, [23, Chapter 8.4]). We consider (DARE)
on a Hilbert space E:

X = A∗XA−A∗XB(R + B∗XB)−1B∗XA + H,(7.1)

where R and H are symmetric and positive definite [10].
It will be convenient to work with a simpler form of (DARE). We begin with the

following result.
Lemma 7.1.

1. If A + B is invertible, then A(A + B)−1B = A−A(A + B)−1A.
2. B(I + B∗XB)−1 = (I + BB∗X)−1B.

Proof. For the first assertion move the longer term from the right-hand side to
the left, factor, and simplify. For the second eliminate the inverses by moving the
expressions to the other side of the equation.

Lemma 7.1 can be used to show that (DARE) is equivalent to

X = A∗X(I + GX)−1A + H, G = BR−1B∗.(7.2)

Indeed,

X −XB(R + B∗XB)−1B∗X

= X −XBR−1/2(I + R−1/2B∗XBR−1/2)−1R−1/2B∗X

C=BR−1/2

= X −XC(I + C∗XC)−1C∗X

Lemma 7.1(2)
= X −X(I + CC∗X)−1CC∗X

G=CC∗
= X −X(I + GX)−1GX

Lemma 7.1(1)
= X −X

(
I − (I + GX)−1

)
= X(I + GX)−1.

Theorem 7.2. If A is invertible and G = BR−1B∗ is positive definite, then
(DARE) has a unique positive definite solution X∞ and the iteration

Xn+1 = H + A∗Xn(I + GXn)−1A

starting at any point X0 ∈ P0 converges to X∞ with

p(X∞, Xn) ≤ Ln

1 − L
p(X1, X0),
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where Λ = H−1/2A∗G−1/2, L = tanh
(
(1/4) log ‖I + ΛΛ∗‖

)
.

Proof. We note that positive definite solutions of (DARE) correspond to positive
definite fixed points of the map

X �→ A∗X(I + GX)−1A + H(7.3)

on P0. Under the fractional transformation, the mapping (7.3) becomes

X �→ H + A∗X(I + GX)−1A =

[
I H
0 I

] [
A∗ 0
0 A−1

] [
I 0
G I

]
.X.

The operator of the right-hand side,[
I H
0 I

] [
A∗ 0
0 A−1

] [
I 0
G I

]
,(7.4)

belongs to S0 and hence is a strict contraction for Thompson’s metric p by Theorems
5.11 and 5.8. By completeness of the metric, it has a unique fixed point on the
positive definite cone P0, and therefore (DARE) has a unique positive definite solution.
Obviously the solution X∞ is represented as a limit of iteration Xn+1 = H+A∗Xn(I+
GXn)−1A with initial point in P0. Set X∞ = limn→∞ Xn, X0 > 0. The p-diameter of
the map X �→ H + A∗X(I + GX)−1A is computed from Theorem 5.8:

Δ = p(H,H + A∗G−1A) = p(I, I + ΛΛ∗) = log ||I + ΛΛ∗||,

where Λ =: Λ(H,R,A,B) = H−1/2A∗G−1/2. Then its contraction constant is

L := tanh

(
Δ

4

)
= tanh

(
log ||I + ΛΛ∗||

4

)
,

and the error bound may be estimated by p(X∞, Xn) ≤ Ln

1−L p(X1, X0).
Remark. We observe that the unique positive definite solution S(H,R,A,B) in

the above theorem depends on the parameters H,R,A,B, where H,R vary over the
positive definite operators and A,B over invertible operators on E. This defines the
solution map of DARE

S : P0 × P0 × GL(E) × GL(E) → P0, (H,R,A,B) → S(H,R,A,B).

In the finite dimensional case it is shown in [2] that the solution map is continuous
and extends to the set of singular A. Under the additional condition that A is stable
(leaves the unit ball invariant) but without the invertibility condition of G = BR−1B∗,
(DARE) has a unique positive definite solution (Corollary 5.7 of [11]).

Remark. In [9] (DARE) is called the standard symplectic form (SSF) when both
H and G are invertible, which is the case of Theorem 7.2; that is, the associated
symplectic Hamiltonian (7.4) is in S0. An efficient numerical method is developed,
the so-called structure-preserving doubling (SDP) algorithm, which requires the fact
that the (positive) powers of the associated symplectic Hamiltonian Z remain in
SSF (Theorem 2.1 of [9]). We have already obtained the semigroup property (even
ideal property) of S0 in Theorem 2.3. The SDP algorithm produces the sequence

Z2k

, k = 1, 2, . . . , and the rate of convergence is estimated in terms of eigenvalues of
the associated symplectic pencil (Theorem 3.1 of [9]; see also [10]).
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Remark. The unique positive definite solution of (DARE) or (7.3) lies in the open
order interval

(H,H + A∗G−1A).

Thus it is more effective to begin the iteration method starting at a point in this inter-
val. There are three positive definite operators lying in the interval. The harmonic-
geometric-arithmetic inequalities of the positive definite operators A,B > 0 (cf. [1]),

2(A−1 + B−1)−1 ≤ A#B := A1/2(A−1/2BA−1/2)1/2A1/2 ≤ A + B

2
,

imply that the open order interval (H,H+A∗G−1A) contains the harmonic, geometric,
and arithmetic means of H and H + A∗G−1A:

2(H−1 + (H + A∗G−1A)−1)−1, H#(H + A∗G−1A), H +
A∗G−1A

2
.

One can also show that 1
2 (H + H#(H + 4A∗G−1A)) lies in the interval (H,H +

A∗G−1A).

8. Stability of Riccati differential equations. We consider the control sys-
tem given by the basic group control equation (BGCE) on Sp(VE):

(BGCE) ġ(t) = u(t)g(t),

where u : I → sp(VE), I a (finite or infinite) subinterval of R, is called a steering or
control function. In the case that E is finite dimensional, we assume that u(·) belongs
to the class of measurable functions from I into sp(VE), which are locally bounded,
that is, bounded on every finite subinterval, and in the case of general E we assume
that u(·) is a regulated function, that is, a function that on each finite subinterval of
its domain is a uniform limit of piecewise constant functions. A solution of (BGCE),
called a trajectory, is an absolutely continuous function x(·) from I into G such that
the equation (BGCE) holds a.e., where a.e. means on the complement of a set of
measure 0 in the finite dimensional setting and the complement of a countable set
otherwise. The solution for initial condition g(0) = idV (E) is called the fundamental
solution of the basic group control equation and denoted Φ(t). By right invariance
the general solution to (BGCE) with initial condition g(t0) = g0 is then given by
g(t) = Φ(t)(Φ(t0))

−1g0.
Proposition 8.1 (see [15, Proposition 8.3]). Each solution Φ(t) for t ≥ 0 of the

basic group control equation on Sp(VE),

ġ(t) = u(t)g(t), g(0) = idV (E), u(t) ∈ L(S),

is contained in the semigroup S; i.e., the attainable set is contained in S. If Φ(s) ∈ Si

for some s and some i = 0, 1, or 2, then Φ(t) ∈ Si for all t > s.
We return to the material on the Lie wedge of the symplectic semigroup at the

beginning of section 6. Note that L(S) = h⊕W has interior h⊕W ◦ in sp(VE), where

W ◦ =

{[
0 R
S 0

]
: R,S > 0

}
.

Since the exponential function is locally a homeomorphism in a neighborhood N(0) of
the 0-matrix, we conclude that members of (h +W ◦)∩N(0) are carried by the expo-
nential map into the interior of S. Since for any Y ∈ sp(VE), exp(Y ) = (exp(1/n)Y )n
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and S is a subsemigroup, we conclude that exp(h + W ◦) is carried into the interior
of S. It follows readily from the homeomorphic triple decomposition of Theorem 2.3
that the interior of S is contained in S0 (indeed they are equal), so exp(h+W ◦) ⊆ S0.

We need the following elementary lemma.
Lemma 8.2. Let Φ : R+ ×X → X be a continuous semiflow of the nonnegative

reals on a Hausdorff space X. Set φt(x) = Φ(t, x). If φt has exactly one fixed point
for each t = 1/2n, n ∈ N, then the fixed point is a common one for all φt, t ∈ R+.

Consider on the Hilbert space E the Riccati differential equation

(RDE) K̇(t) = R(t) + A(t)K(t) + K(t)A∗(t) −K(t)S(t)K(t), K(t0) = K0,

where the coefficient functions are locally bounded and measurable in the finite dimen-
sional case and regulated otherwise. It was shown in [15, section 5] that the solution
of equation (RDE) for the case that R(t), S(t),K0 ≥ 0 arises through the fundamen-
tal solution of basic control equation (BGCE) acting by fractional transformations on
P ⊆ M:

K(t) = Φ(t)(Φ(t0))
−1(K0), where u(t) =

[
A(t) R(t)
S(t) −A(t)∗

]
.

In the case of constant coefficients with R,S > 0, then for t > 0, Φ(t) = exp(tM) lies
in S0 (as we have seen), where M =

[
A R
S −A∗

]
. It follows that for each t > 0, exp(tM)

is a strict contraction on P0 by Theorems 5.8 and 5.11 and hence has a unique fixed
point. Hence by the preceding Lemma 8.2 we conclude that there is a common fixed
point P ∗ for all φt, t ≥ 0. Hence the vector field, given by (RDE), must have a
0-vector at P ∗, i.e., the algebraic Riccati equation (ARE)

R + AK + KA∗ −KSK = 0, R, S > 0,

must have a unique positive definite solution. (Note that another solution would
yield another fixed point for the φt.) We have thus rederived from our machinery the
following familiar result.

Proposition 8.3. The ARE

R + AK + KA∗ −KSK = 0, R, S > 0,

has a unique positive definite solution.
Recall the homogeneous function defined on the Lie wedge L(S),

f : L(S) → [0,∞),

[
A R
S −A∗

]
�→

√
m(S1/2RS1/2/I).

Corollary 8.4. Let Φ(t) be the fundamental solution of the basic control equa-
tion

ġ(t) = u(t)g(t), g(0) = idV (E), u(t) ∈ L(S).

If there exists μ > 0 such that u(t) ∈ f−1([μ,∞)) for all t ≥ 0, then N(Φ(t)) ≤ e−2tμ

for each t ≥ 0.
Proof. The density of the set of piecewise constant controls yields that Φ(t) is a

limit of finite products of elements of the form

exp(α1X1) exp(α2X2) · · · exp(αnXn),
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where
∑n

i=1 αi = t and αi ≥ 0, Xi ∈ f−1([μ,∞)) for i = 1, 2, . . . , n. Theorem 6.2
ensures that

N(expαiXi) ≤ e−2f(αiXi) = e−2αif(Xi) ≤ e−2αiμ

and hence

N(exp(α1X1) exp(α2X2) · · · exp(αnXn)) ≤ e−2α1μe−2α2μ · · · e−2αnμ = e−2tμ.

By continuity (see the last part of the proof of Theorem 5.11), N(Φ(t)) ≤ e−2tμ.

Example. Let u(t) =
[A(t) R(t)
S(t) −A(t)∗

]
∈ L(S). Then u(t) ∈ f−1([μ,∞)) for all t ≥ 0

if and only if m(S1/2(t)R(t)S1/2(t)/I) ≥ μ2 for all t ≥ 0, and this includes the case
when S(t) is invertible and R(t) ≥ μ2S−1(t) for all t ≥ 0.

The next theorem shows that under general conditions two solutions of the Riccati
differential equation (RDE) exponentially converge toward each other.

Theorem 8.5. Let K1(t),K2(t) be two solutions with initial values K1(t0) =
K1 > 0 and K2(t0) = K2 > 0 of the Riccati differential equation

K̇(t) = R(t) + A(t)K(t) + K(t)A∗(t) −K(t)S(t)K(t), where R(t), S(t) ≥ 0.

If there exists μ > 0 and t1 ≥ t0 such that m(S(t)1/2R(t)S(t)1/2/I) ≥ μ2 for all
t ≥ t1, then

p(K1(t),K2(t)) ≤ e−2(t−t1)μp(K1,K2)

for t ≥ t1.

Proof. Let u(t) =
[A(t) R(t)
S(t) −A(t)∗

]
. Since R(t), S(t) ≥ 0, then u(t) ∈ L(S), t ≥ t0.

Let Φ(t) be the fundamental solution of the basic group control equation

ġ(t) = u(t)g(t), g(0) = idVE
.

Then

K1(t) = Φ(t)Φ(t0)
−1(K1) = Φ(t)Φ(t1)

−1Φ(t1)Φ(t0)
−1(K1)

and K2(t) = Φ(t)Φ(t1)
−1Φ(t1)Φ(t0)

−1(K2). Note that Ψ(t) := Φ(t+ t1)Φ(t1)
−1 is the

fundamental solution of the basic group control equation

ġ(t) = u(t + t1)g(t), g(0) = idV (E).

By assumption,

u(t + t1) ∈ f−1([μ,∞)) =

{[
A R
S −A∗

]
∈ L(S) : m(S1/2RS1/2) ≥ μ2

}
,

and by the previous corollary N(Ψ(t)) ≤ e−2tμ for all t ≥ 0. Similarly, Φ(t1)Φ(t0)
−1 ∈

S, a contraction. Therefore for t ≥ t1

p(K1(t),K2(t)) = p(Ψ(t− t1)Φ(t1)Φ(t0)
−1(K1),Ψ(t− t1)Φ(t1)Φ(t0)

−1(K2))

≤ e−2(t−t1)μp(Φ(t1)Φ(t0)
−1(K1),Φ(t1)Φ(t0)

−1(K2))

≤ e−2(t−t1)μp(K1,K2).
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There has been extensive study of conditions for the existence of a (positive
definite) solution K to the ARE

R + AK + KA∗ −KSK = 0, R, S > 0;

see, for example [23, Chapter 8.4]. The preceding allows one to draw results in the
converse direction.

Corollary 8.6. If K∗ is the unique positive definite solution for the constant
coefficient ARE, then all solutions of the corresponding Riccati differential equation
K̇ = R + AK + KA∗ − KSK, R,S > 0, that enter the space of positive definite
operators converge exponentially toward K∗.

Proof. We consider a trajectory of the given Riccati differential equation that
takes on a value K0 > 0 at some time t0. Then the trajectory satisfies (RDE) with
initial condition K0 at time t0. Since K∗ satisfies ARE, the value of the Riccati
differential equation at K∗ is 0, and thus the solution through K∗ is constant. Since
the coefficients R,S are constant and positive definite, the appropriate boundedness
condition of the previous theorem for S1/2RS1/2 is satisfied. Hence the first trajectory
converges exponentially toward the second trajectory with constant value K∗.
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