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THE SYMPLECTIC SEMIGROUP
AND RICCATI DIFFERENTIAL EQUATIONS

JIMMIE LAWSON and YONGDO LIM

Abstract. In this paper, we study close connections that exist be-
tween the Riccati operator (differential) equation that arises in linear
control systems and the symplectic group and its subsemigroup of
symplectic Hamiltonian operators. A canonical triple factorization is
derived for the symplectic Hamiltonian operators, and their closure
under multiplication is deduced from this property. This semigroup
of Hamiltonian operators, which we call the symplectic semigroup,
is studied from the viewpoint of Lie semigroup theory, and resulting
consequences for the theory of the Riccati equation are delineated.
Among other things, these developments provide an elementary proof
for the existence of a solution of the Riccati equation for all t ≥ 0 un-
der rather general hypotheses.

1. Introduction

The main purpose of this paper is to demonstrate how the Lie theory
of subsemigroups of a matrix group or, more generally, a Lie group can
be applied to problems in geometric control theory. We have chosen to
do this in the form of a case study of a basic tool of control theory: the
familiar Riccati equation that arises in the context of linear control systems
with quadratic costs. The bulk of our theory carries through in the infinite
dimensional setting with little additional effort, and we develop our theory
in this context. This generalization is perhaps of some interest since both
classical control theory and the Lie theory of semigroups have typically been
developed in the finite-dimensional setting.

We recall the primary connection of Lie semigroup theory with geomet-
ric control theory. Suppose that the states of a control problem are points
of a Lie group and the controls are right invariant vector fields, or that
the control problem can be reinterpreted so that this is the case. If the
control functions are closed under concatenation, then the attainable set
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from the identity forms an infinitesimally generated subsemigroup of the
Lie group, and all attainable sets are translates of this semigroup. If this
attainability semigroup is closed in the group, then it is an example of a Lie
semigroup (i.e., a closed infinitesimally generated semigroup). In addition
to the techniques of geometric control, one has available the vast machin-
ery and structure theory of Lie groups and Lie algebras to study control
problems on Lie groups and the attainability semigroup. The attainability
semigroup has been used primarily to study questions of controllability (see,
for example, the survey [13]), but in this paper we seek to make a case that
a detailed understanding of the attainability semigroup can be useful for
attacking a variety of control questions. We refer the reader to [4, 5] for
the theory of Lie semigroups; a good background article on semigroups and
control is the survey article [8].

Connections between linear control theory, the Riccati equation, and
the symplectic group are well known (see, e.g., [3, 6, 14, 15] and the refer-
ences therein). In this paper, we focus on connections with the symplectic
subsemigroup, which consists of those symplectic transformations that are
sometimes called Hamiltonian. This semigroup has largely been overlooked
in the control context; see, however, Bougerol [1], which was an important
inspiration for our investigations. We exploit properties of the symplectic
group and symplectic semigroup both to rederive some familiar results con-
cerning the Riccati equation from this vantage point, hopefully with some
new insights along the way, and to further extend and generalize the theory.
We employ (and thus illustrate) a variety of basic tools from Lie group and
Lie semigroup theory such as pushing forward control systems from groups
to homogeneous spaces (Sec. 5) and the subtangential set of a semigroup,
called its Lie wedge (Sec. 8). But the primary structure theorem for the
symplectic semigroup, which is crucial to many of our applications, is its
triple decomposition as given in Sec. 6. The triple decomposition often
allows us to break up problems into much simpler subcases.

There exists an important order on the symmetric operators called the
Loewner order. In the last two sections we consider this order and its
connections with the symplectic semigroup and the Riccati equation.

Many of the results of this paper are not new, but rather are new deriva-
tions of known results from the perspective of Lie group and Lie semigroup
theory. Part of the purpose, as was already mentioned, is to give an accessi-
ble case study of Lie semigroup theory and its connections with the control
theory. However, this paper is also foundational for more advanced and
original applications of the symplectic semigroup to the study of Riccati
equations that we plan to publish in a subsequent paper or papers.
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2. Symplectic spaces and the symplectic group

In this section, we recall basic results concerning symplectic spaces and
the symplectic group. These results are well known, in particular, in the
finite-dimensional setting, but it will be convenient to have them at hand for
the general setting of this paper. Crucial for later purposes are the familiar
results Proposition 2.5 through Proposition 2.7 at the end of the section,
and the reader may choose simply to glance at them and move on.

Let V be a vector space over R, the real numbers. A symplectic form on
V is a nondegenerate, skew-symmetric bilinear form Q : V × V → R.

Definition 2.1. We give a standard construction for symplectic forms.
Let E be a Hilbert space over R with inner product β(·, ·) : E × E → R.

We seet VE := E ⊕ E; we denote elements of VE by column vectors
[
x
y

]
,

where x, y ∈ E. We define the symplectic form Q := QE on VE by

QE

([
x1

y1

]
,

[
x2

y2

])
:= β(x1, y2) − β(y1, x2).

The pair (VE , QE) is called a standard symplectic space over R.

Example 2.2. Let E = R be a one-dimensional Hilbert space over R.
Then VE = R ⊕ R and

QE

([
w1

w2

]
,

[
z1
z2

])
= det

[
w1 z1
w2 z2

]
, w1, w2, z1, z2 ∈ R.

Example 2.3. Let E = R
n with its usual Hilbert space structure. Then

VE = R
2n. The symplectic form restricted to the standard basis is given by

Q(ei, ej) =

⎧⎪⎨
⎪⎩

1 if j = i+ n,
−1 if i = j + n

0 otherwise.

The symplectic form Q can be expressed as the matrix product

Q(x, y) = x∗ · J · y,
where x∗ denotes the transpose and J denotes the (2n × 2n)-matrix given
in the block form as

J =
[

0 In
−In 0

]
.

Remark 2.4. Given any symplectic form Q on a finite-dimensional vector
space V , there exists a basis {ε1, . . . , ε2n} such that Q restricted to this basis
is given by the formulas in Example 2.3. Thus, the symplectic space (V,Q)
is isomorphic as a symplectic space to the standard one of Example 2.3
under the isomorphism that carries εi to ei.
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Let (VE , QE = Q) be a standard symplectic space, where E is a Hilbert
space. Then any bounded linear operator A : VE → VE has a block matrix
representation of the form

A =
[
A11 A12

A21 A22

]
, where Aij := πi ◦A ◦ ιj : E → E,

where ιj : E → VE is the natural embedding into the jth coordinate and
πi : VE → E is the projection into the ith coordinate, for i, j = 1, 2.
We denote by End(VE) (respectively, End(E)) the set of bounded linear
operators on VE (respectively, E) and by GL(VE) (respectively, GL(E)) the
set of invertible linear operators. We will always assume that the topology
is generated by the operator norm. Note that the operator norm topology
on End(VE) is the product topology of the operator norm topology for the
four block matrix operators in End(E).

We define an operator J ∈ End(VE) by

J =
[

0 I
−I 0

]
,

where I is the identity operator on E. Note that

J2 = −IVE
, J4 = IVE

;

in particular, J is invertible.
There is a Hilbert space inner product β(·, ·) defined on VE by

β

([
u
v

]
,

[
x
y

])
:= β(u, x) + β(v, y).

In terms of β, the symplectic form Q is given by Q(a,b) = β(a, Jb).
For a bounded linear transformation A on E or VE , let A∗ denote the

unique linear operator such that β(Ax, y) = β(x,A∗y) for all x and y in E
or VE , respectively. The operator A∗ is called the adjoint operator of A.

Observe that for M =
[
A B
C D

]
in End(VE), we have by a straightforward

computation:

β

([
A B
C D

] [
u
v

]
,

[
x
y

])
= β

([
u
v

]
,

[
A∗ C∗

B∗ D∗

] [
x
y

])
.

Thus, [
A B
C D

]∗
=

[
A∗ C∗

B∗ D∗

]
.

It follows that
J∗ = −J, JJ∗ = I.

The operator A is said to be symmetric if A∗ = A.
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We denote by M � for M ∈ End(VE) the unique linear operator such that
Q(Mx, y) = Q(x,M �y) for all x, y ∈ VE . Since

Q(x,M �y) = Q(Mx, y) = β(Mx, Jy) = β(x,M∗Jy)

= β(x, JJ∗M∗Jy) = Q(x, J∗M∗Jy),

we conclude that M � = J∗M∗J = −JM∗J . The operator M � is called the
symplectic conjugate of M .

For a standard symplectic space (VE , Q), we set

Sp(VE) :=
{
M ∈ GL(VE) : ∀x, y ∈ VE , Q(Mx,My) = Q(x, y)

}
.

Suppose that M ∈ Sp(VE). Then for all x, y ∈ VE ,

β(x, Jy) = Q(x, y) = Q(Mx,My) = β(Mx, JMy) = β(x,M∗JMy).

Thus, J = M∗JM , and the argument reverses to yield that M ∈ Sp(VE) if
M is invertible and M∗JM = J . We conclude that for M ∈ GL(VE),

M∗JM = J ⇐⇒ M ∈ Sp(VE).

Proposition 2.5. Let M ∈ GL(VE). The following conditions are equiv-
alent :

(1) M ∈ Sp(VE), i.e., M preserves Q(·, ·);
(2) M∗JM = J ;

(3) if M =
[
A B
C D

]
, then

(a) A∗C and B∗D are symmetric;
(b) A∗D − C∗B = I;

(4) M−1 = M �.
Thus, the set Sp(VE) is a group.

Proof. The equivalence of (1) and (2) was established in the remarks pre-
ceding the proposition. The equivalence of (2) and (3) is obtained by a
straightforward computation. The implication (2) ⇒ (4) follows from mul-
tiplying both sides of (2) on the left by −J , and left multiplying ofM �M = I
by J gives the reverse implication.

It follows from the definition that Sp(VE) is closed under composition
and from (4) that it is closed under inversion (since M �� = M); hence it is
a group.

Corollary 2.6. The set Sp(VE) is closed under taking adjoint. Hence

M =
[
A B
C D

]
∈ Sp(VE) if and only if

(1) AB∗ and CD∗ are symmetric;
(2) AD∗ −BC∗ = I.
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Proof. Let M ∈ Sp(VE). By item (4) of the preceding proposition, we have

(M∗)−1 = (M−1)∗ = (M �)∗ = (J∗M∗J)∗ = J∗M∗∗J = (M∗)�,

and, therefore, M∗ ∈ Sp(VE). The remaining assertion follows from apply-
ing the preceding proposition to M∗.

Recall that the Lie algebra sp(VE) consists of all X ∈ End(VE) such that
exp(tX) ∈ Sp(VE) for all t ∈ R.

Proposition 2.7. Let X ∈ End(VE). The following assertions are
equivalent :

(1) X ∈ sp(VE);
(2) X∗J + JX = 0;

(3) if X =
[
A B
C D

]
, then

(a) B and C are symmetric;
(b) D = −A∗.

Proof. (1) ⇐⇒ (2) Assume that X ∈ sp(VE). Then by item (2) of Propo-
sition 2.5, etX∗

JetX = J for all t ∈ R. Differentiating with respect to t
and evaluating at t = 0 yields the desired result. Conversely, if (2) holds,
then the function t �→ etX∗

JetX has the derivative (with respect to t)
etX∗

(X∗J + JX)etX = 0, and hence is a constant function. Evaluating
at t = 0 establishes that the constant is J .

(2) ⇐⇒ (3) This is a straightforward computation using the block
operator representation.

Remark 2.8. Results similar to the last three can be deduced for the
complex symplectic group obtained by starting from a complex Hilbert space
E and carrying out a similar construction. In this case, however, the role of
the adjoint in the preceding material is now played by the complex conjugate
of the adjoint, i.e., the transpose. With this modification, the results in the
rest of the paper can also be applied to the complex setting.

3. The Riccati equation

In this section, we continue with known results, but present them in a
manner that will be convenient for us. The results are a special case of
a theorem of J. Levin [11, Theorem 1] (the earliest reference that we are
aware of), except that we have merely observed that they be extended to
the infinite-dimensional case as well.

Let E be a Hilbert space and let VE = E ⊕ E be as in the previous
section. We consider the control system given by the basic group control
equation (BGCE) on Sp(VE):

ġ(t) = u(t)g(t), (BGCE)
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where u : I → sp(VE), I is a (finite or infinite) subinterval of R, is called a
steering or control function. In the case where E is finite-dimensional, we
assume that u(·) belongs to the class of measurable functions from I into
sp(VE) which are locally bounded, i.e., bounded on every finite subinterval,
and in the case of general E we assume that u(·) is a regulated function,
i.e., a function that on each finite subinterval of its domain is a uniform
limit of a piecewise-constant functions. A solution of (BGCE), called a
trajectory, is an absolutely continuous function x(·) from I into G such that
Eq. (BGCE) holds a.e., where a.e. means “on the complement of a set of
measure 0” in the finite-dimensional setting and “on the complement of a
countable set” otherwise. Control systems such as the one just described
are called right invariant, since right translates of solutions of (BGCE) are
again solutions. Using the homogeneity of Sp(VE), one readily obtains that
global solutions on all of I exist whenever local solutions exist. Thus, global
solutions always exist in the settings we are considering (see [8, Sec. 3]
and [4, Sec. IV.5]). The solution for the initial condition g(0) = idV (E) is
called the fundamental solution of the basic group control equation and is
denoted by Φ(t). By the right invariance, the general solution of (BGCE)
with initial condition g(t0) = g0 is then given by g(t) = Φ(t)(Φ(t0))−1g0.

We turn now to Ricatti equations.

Definition 3.1. An (operator) Riccati equation is a differential equation
on the space Sym(E) of bounded symmetric operators on E of the form

K̇(t) = R(t) +A(t)K(t) +K(t)A∗(t) −K(t)S(t)K(t), K(t0) = K0, (R)

where R(t), S(t), and K0 are all in Sym(E).

There is a close connection between the basic group control equation and
the Riccati equation.

Lemma 3.2. Suppose that g(·) is a solution of the following (BGCE)
on an interval I:

ġ(t) =
[
A(t) R(t)
S(t) −A∗(t)

] [
g11(t) g12(t)
g21(t) g22(t)

]
, R(t), S(t) ∈ Sym(E).

If g22 is invertible for all t ∈ I, then K(t) := g12(t)(g22(t))−1 satisfies

K̇(t) = R(t) +A(t)K(t) +K(t)A∗(t) −K(t)S(t)K(t)

on I. Furthermore, if

g(t0) =
[
I K0

0 I

]

for some t0 ∈ I, then K(t0) = K0.
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Proof. Using the product rule and the power rule for inverses and the equal-
ity of the second columns in the basic group control equation, we obtain

K̇ = ġ12(g22)−1 − g12g
−1
22 ġ22g

−1
22

= (Ag12 +Rg22)g−1
22 −K(Sg12 −A∗g22)g−1

22

= AK +R−KSK +KA∗.

The last assertion is immediate.

Corollary 3.3. Local solutions exist for the Riccati equation (R).

Proof. Global solutions exist for the basic group control equation (BGCE)
with the initial condition

g(t0) =
[
I K0

0 I

]

and the g22(t)-entry will be invertible in some neighborhood of t0. Now
apply the previous theorem.

4. The Spaces Λ and M
We fix the Hilbert space E and define

Λ :=
{[
B
D

]
: ∃A,C ∈ End(E) such that

[
A B
C D

]
∈ Sp(VE)

}
.

We also consider the lower block triangular subgroup P of Sp(VE) given by

P :=
{[
A 0
C D

]
∈ Sp(VE) : A,C,D ∈ End(E)

}
.

We note from Proposition 2.5 that such a lower triangular block matrix is
in Sp(VE) if and only if A∗ = D−1 and A∗C = D−1C is symmetric.

Proposition 4.1. Let
[
B1

D1

]
,

[
B2

D2

]
∈ Λ. The following assertions are

equivalent :

(1) there exist M1 =
[
A1 B1

C1 D1

]
, M2 =

[
A2 B2

C2 D2

]
∈ Sp(VE) such that

M1P = M2P;

(2) for all M1 =
[
A1 B1

C1 D1

]
, M2 =

[
A2 B2

C2 D2

]
∈ Sp(VE), we have M1P =

M2P;
(3) there exists Q ∈ GL(E) such that B1Q = B2 and D1Q = D2.

Proof. (1) ⇒ (3) This implication follows directly from the fact M2 ∈M1P;
the matrix Q is the lower right entry of the matrix P ∈ P such that M2 =
M1P .
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(3) ⇒ (1) Assume that (3) holds. Take
[
A B1

C D1

]
∈ Sp(VE). Then

[
A B1

C D1

] [
(Q∗)−1 0

0 Q

]
=

[
A(Q∗)−1 B1Q = B2

C(Q∗)−1 D1Q = D2

]
.

Note that the right-hand side is in Sp(VE), since the left-hand factors are.
Also the second factor on the left-hand side is in P, and (1) follows.

(1) ⇐⇒ (2) The implication from the right to the left is trivial. Assume
that (1) holds. It suffices to show that if there is another matrix M =[
A B1

C D1

]
∈ Sp(VE), then M1P = MP. Since M1 and M have the same

second column, when left multiplied by M1
−1, the second columns must

remain equal, i.e., M̂ := M1
−1M must be of the form

[∗ 0
∗ I

]
. Since M̂ ∈

Sp(VE), it follows that M̂ ∈ P, since it is block lower triangular. Thus,
M1P = MP.

Definition 4.2. We set
[
B1

D1

]
∼

[
B2

D2

]
if the equivalent conditions of

Proposition 4.1 hold. The relation ∼ is an equivalence relation (from part
(2) or (3)) and the quotient space Λ/ ∼ is denoted by M. We denote the

equivalence class of
[
B1

D1

]
by

(
B1

D1

)
.

There exists a natural projection π : Sp(VE) → Λ which sends a matrix
to its second column. Let ρ : Λ → M be the natural projection from Λ to
M which sends a column to its ∼-equivalence class. We endow M with the
quotient topology from ρ ◦ π.

Corollary 4.3. Consider ψ := ρ ◦ π : Sp(VE) → M. Then ψ(M1) =
ψ(M2) if and only if M1P = M2P. Thus the left transformation group
(Sp(VE),M), where the action is given by the left block matrix multiplication
by any representative of a ∼-equivalence class, is topologically conjugate to
the coset transformation group (Sp(VE),Sp(VE)/P) and the mapping ψ is
open.

Proof. The first assertion follows readily from Proposition 4.1, and the sec-
ond assertion follows readily from the first. It is standard that the quotient
mapping onto a homogeneous space is an open mapping.

This corollary allows us to identify M and the homogeneous space
Sp(VE)/P. In the finite dimensional setting P is a parabolic subgroup
and the homogeneous space is a flag manifold of Sp(VE).
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We say that a point
(
B
D

)
∈ M is finite if D is invertible (note from

item (3) of Proposition 4.1 that this invertibility is independent of which rep-

resentative is chosen). In this case, we may rewrite the point as
(
BD−1

I

)
.

Since for appropriate A and C[
A B
C D

] [
D∗ 0
0 D−1

]
=

[∗ BD−1

∗ I

]
∈ Sp(VE),

we conclude that (BD−1)∗I is symmetric, and hence BD−1 is symmet-

ric. Conversely, if E ∈ End(E) is symmetric, then
[
I E
0 I

]
∈ Sp(VE) and,

therefore,
(
E
I

)
∈ M.

Proposition 4.4. The correspondence A ↔
(
A
I

)
is a homeomorphism

between the set Sym(E) of symmetric operators in End(E) and the open set
M0 of finite points in M.

Proof. Since by item (3) of Proposition 4.1 we can represent each member
of M in at most one way with bottom entry I, we have from the preceding
discussion that the correspondence is a bijection.

Since the operator norm topology for the block operator matrices agrees
with the product topology from the operator norm topologies in each block,
we conclude that the mapping

β : Sym(E) → M defined by A �→
[
A
I

]
�→

(
A
I

)

is continuous.
Conversely, consider the open subset U ⊆ Sp(VE) of elements such that

the (2, 2)-block entry D is invertible. The open set U is the inverse image
of the set of finite points of M. Thus, the set M0 of finite points is open
in M, since the quotient mapping is open. The mapping[

A B
C D

]
�→ BD−1 : U → Sym(E)

is continuous and induces
(
B
D

)
�→ BD−1 on the quotient space M and,

therefore, the latter mapping is also continuous (note that the mappings do
go into Sym(E) by the paragraph preceding the proposition). Thus, the
correspondence is a homeomorphism.

Remark 4.5. Our presentation of the manifold M is nonstandard. Typ-
ically, at least in the finite-dimensional setting, one considers maximal
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isotropic subspaces of VE , sometimes called Lagrangian subspaces or po-
larizations. The “horizontal” subspace EH = E ⊕ {0} and the “vertical”
subspace EV = {0}⊕E are examples of them. If in our context we define a
polarization of VE to be an image of EV under a member of Sp(VE), then
we can identify the members of M with the polarizations of VE via the
correspondence (

B
D

)
↔

[
A B
C D

]
EV ,

[
A B
C D

]
∈ Sp(VE).

Another way of saying this is that we associate with
(
B
D

)
the column space

of
[
B
D

]
.

5. Extended solutions of Riccati equations

The results of the previous section allow us to extend the solution of a
Ricatti equation by considering it to be a differential equation on a larger
M with Sym(E) embedded as the set of finite points as outlined in the
previous section.

Consider on E the Riccati equation

K̇(t) = R(t) +A(t)K(t) +K(t)A∗(t) −K(t)S(t)K(t), K(t0) = K0, (R)

where t varies over some interval I containing t0. (We recall our standard
assumption that coefficient functions are locally bounded and measurable
in the finite dimensional case and regulated otherwise.) As we have seen in
Sec. 3, we can obtain a solution of the Riccati equation from the solution
of the basic group control equation

ġ(t) =
[
A(t) R(t)
S(t) −A∗(t)

] [
g11(t) g12(t)
g21(t) g22(t)

]
, g(t0) =

[
I K0

0 I

]

by setting K(t) = g12(t)(g22(t))−1 on any interval containing t0, where
g22(t) is invertible.

Note that, by the uniqueness of solutions we have g(t) = k(t), where we
define

k(t) := Φ(t)(Φ(t0))−1

[
I K0

0 I

]
,

since both satisfy (BGCE) and have the same initial point at t0.
Suppose that on the interval I we define a function K̃(·) on M by

K̃(t) = g(t)
(

0
I

)
= k(t)

(
0
I

)

= Φ(t)(Φ(t0))−1

[
I K0

0 I

] (
0
I

)
= Φ(t)(Φ(t0))−1

(
K0

I

)
. (ES)
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We observe that on any interval where g22(t) is invertible

K̃(t) =
(
g12(t)
g22(t)

)
=

(
g12(t)(g22(t))−1

I

)
=

(
K(t)
I

)
,

where the last equality follows from Lemma 3.2. The last expression also
agrees with the embedded image in M of the solution K(t). The function
K̃(·) on I is called the extended solution of the Riccati equation.

Consider the maximal interval around t0 for which g22(t) is invertible.
This interval is open since g22 is continuous and M0 is open in M. By
the uniqueness of solutions, any solution K1(·) of the Riccati equation (R)
and K̃(·) must agree on this interval (we consider Sym(E) as embedded in
M). If K1(·) admits a solution at the endpoint t1, then by the continuity
K1(t1) = K̃(t1), which is impossible since one is a finite point and the other
is not. Thus, we have established the following result.

Proposition 5.1. The Riccati equation (R) admits an extended solution
throughout the interval I on which it is defined. The maximal interval on
which (R) admits a solution is the largest interval containing t0 such that
the extended solution is finite.

The basic group control equation (BGCE) pushes forward to a control
system on the manifold M so that the restriction to Sym(E), the space
of finite points, agrees with the Riccati equation. We briefly describe this
“push-forward” construction. Let M be a smooth (of class C∞) manifold.
Assume that Ψ : G × M → M is a smooth action of a Lie group G on
M . In our case G = Sp(VE) and M = M endowed with the appropriate
smooth structure to make the action of Sp(VE) on M smooth. (This smooth
structure arises by taking the inverse of the embedding of Sym(E) into M
and its translates by members of Sp(VE) acting on M as an atlas of charts.)
We typically denote Ψ(g, x) by gx or g · x. Let V∞(M) denote the Lie
algebra of smooth vector fields on M . For x ∈ M , the smooth mapping
Ψx : G→M given by Ψx(g) = g · x has derivative at e, dΨx : TeG→ TxM ;
alternatively, dΨx(v), v ∈ TeG, is given by v �→ α̇(0), where α : R → M
is defined by α(t) = exp(tX) · x, where exp : g → G is the exponential
mapping and X(e) = v. The mappings dΨx give rise to a Lie algebra
homomorphism dΨ : g → V∞(M) given by dΨ(X)(x) = dΨx(X(e)) (note
that the appropriate match-up to obtain a Lie algebra homomorphism is
right invariant vector fields with left actions). We denote the vector field
dΨ(X) by �X. We consider the basic manifold control equation on M given
by the control differential equation

ẋ(t) = �u(t)(x(t)), (BMCE)

where u(·) : I → g is locally bounded and �u(t) = dΨ(u(t)).
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Proposition 5.2. The solution of (BMCE)

ẋ(t) = �u(t)(x(t)), x(t0) = x0

on M is given by x(t) = Φ(t)(Φ(t0))−1 · x0. The basic control differential
equation on M has a global solution for any initial value.

Proof. The first assertion follows from

ẋ(t) = dΨx0Φ̇(t)(Φ(t0))−1 = dΨx0

(
u(t)Φ(t)(Φ(t0))−1

)
= dΨx0 ◦ dρΦ(t)(Φ(t0))−1(u(t)e)

= dΨΦ(t)(Φ(t0))−1.x0(u(t)e) = �u(x(t)),

where ρg(h) = hg is a right translation in G. The existence of global
solutions now follows from the corresponding assertion for (BGCE). The
last assertion follows readily from the first.

Remark 5.3. In the case G = Sp(VE) and M = M under consideration,
we note from equation (ES) above that

K̃(t) = Φ(t)(Φ(t0))−1

(
K0

I

)
,

which is the solution of (BMCE) for the initial condition
(
K0

I

)
at the time

t0. Hence the extended solution of the Riccati equation is the solution of
(BGCE) pushed forward to (BMCE).

6. The symplectic semigroup

Let (VE , Q) be a standard symplectic space constructed from a real
Hilbert space H. A bounded symmetric operator A on E is positive semi-
definite if 〈x,Ax〉 ≥ 0 for all x ∈ E \ {0}. We denote by P (respectively,
P0) all positive semidefinite (respectively, positive semidefinite invertible)
bounded operators on E. We use the standard fact from the operator the-
ory that a positive semidefinite operator has a unique positive semidefinite
square root.

Lemma 6.1. If P,Q ∈ P, then I + PQ is invertible. If P ∈ P0 and
Q ∈ P, then P +Q ∈ P0.

Proof. We first show that I + PQ is injective. If (I + PQ)(x) = 0, then

0 = 〈Q(x), (I + PQ)(x)〉 = 〈Q(x), x〉 + 〈Q(x), PQ(x)〉.
Since both latter terms are nonnegative by the hypothesis, we have that

0 = 〈Qx, x〉 = 〈Q1/2x,Q1/2x〉,
and, therefore, Q1/2(x) = 0. It follows that

0 = (I + PQ)(x) = x+ PQ1/2(Q1/2x) = x,
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and, therefore, I + PQ is injective.
The same argument can be applied to the adjoint I + QP to conclude

that it is also injective, and hence its adjoint I + PQ has a dense image.
Suppose that (I +PQ)(xn) → 0. We claim that xn → 0. If not, then we

obtain a subsequence, again denoted by xn, such that xn is bounded away
from 0, i.e., there exists β > 0 such that β < ‖xn‖ for all n. Then un :=
xn/‖xn‖ = (εn/β)xn for some 0 < εn < 1. Since (1/β)(I + PQ)(xn) → 0,
it follows that (I + PQ)(un) → 0. Since ‖Q(un)‖ ≤ ‖Q‖ for all n, we have

〈Q(un), un〉 + 〈Q(un), PQ(un)〉 = 〈Q(un), (I + PQ)(un)〉 → 0.

Since both terms on the left-hand side are nonnegative, we have

〈Q1/2(un), Q1/2(un)〉 = 〈Q(un), un〉 → 0,

and, therefore, Q1/2(un) → 0. By the continuity of PQ1/2, it follows that
PQ(un) → 0 and hence ‖(I + PQ)(un)‖ → 1, a contradiction with (I +
PQ)(un) → 0.

We conclude by showing that I+PQ is surjective. Let y ∈ E. Then there
exists xn ∈ E such that yn := (I +PQ)(xn) → y, since I +PQ has a dense
image. Then the double indexed sequence yn − ym = (I + PQ)(xn − xm)
tends to 0 as m,n→ ∞. Then it follows from the previous paragraph that
the double indexed sequence xn − xm tends to 0 as m,n → ∞, i.e., the
sequence {xn} is a Cauchy sequence. Let x be its limit. By the continuity,
(I+PQ)(x) = y. Thus, I+PQ is surjective. By the Banach open-mapping
theorem, it is open and, therefore, the inverse is a bounded linear operator.
The last assertion follows from the relation P +Q = P (I + P−1Q).

Remark 6.2. Note that the proof is considerably simpler in the finite-
dimensional case. Indeed, it follows from the injectivity of I + PQ that it
is invertible.

We define the following four subsets:

S =
{[
A B
C D

]
∈ Sp(VE) : D is invertible, B∗D ∈ P, CD∗ ∈ P

}
,

S1 =
{[
A B
C D

]
∈ Sp(VE) : D is invertible, B∗D ∈ P0, CD∗ ∈ P

}
,

S2 =
{[
A B
C D

]
∈ Sp(VE) : D is invertible, B∗D ∈ P, CD∗ ∈ P0

}
,

S0 = S1 ∩ S2.

Remark 6.3. Note that S2 is the adjoint dual of S1 and that S is self-dual,
i.e., S is closed under adjoints.

Members of S are sometimes called Hamiltonian operators of Sp(VE).
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We define

ΓU =
{[
I B
0 I

]
: B ∈ P

}
, ΓU

0 =
{[
I B
0 I

]
: B ∈ P0

}
,

ΓL =
{[

I 0
C I

]
: C ∈ P

}
, ΓL

0 =
{[

I 0
C I

]
: C ∈ P0

}
.

Further, we define a group H of block-diagonal matrices by

H =
{[
A∗ 0
0 A−1

]
: A ∈ GL(E)

}
.

The following lemma is straightforward.

Lemma 6.4. All four sets ΓU , ΓL, ΓU
0 , and ΓL

0 are semigroups under
composition, the first two are closed, and ΓU

0 (respectively, ΓL
0 ) is a semi-

group ideal in ΓU (respectively, ΓL). The semigroup ΓU (respectively, ΓU
0 )

consists of all unipotent block upper triangular operators contained in S (re-
spectively, S1). Similarly, the semigroup ΓL (respectively, ΓL

0 ) consists of
all unipotent block lower triangular operators contained in S (respectively,
S2). The group H is closed in GL(VE) and consists of all block diagonal
matrices in Sp(VE). Furthermore, each of the four semigroups ΓU , ΓL, ΓU

0 ,
and ΓL

0 is invariant under conjugation by members of H.

Lemma 6.5. We have that S = ΓUHΓL, S1 = ΓU
0 HΓL, S2 = ΓUHΓL

0 ,
and S0 = ΓU

0 HΓL
0 . Furthermore, these “triple decompositions” are unique.

The multiplication mapping from ΓU ×H × ΓL to S is a homeomorphism.

Proof. Each member of S admits a triple decomposition of the form[
A B
C D

]
=

[
I BD−1

0 I

] [
(D−1)∗ 0

0 D

] [
I 0

D−1C I

]
. (6.1)

The triple decomposition is verified by a direct multiplication (applying
the equations A∗D − C∗D = I and B∗D = D∗B to see that the (1, 1)-
entry is A). Further, we note that if B∗D = D∗B ∈ P (respectively, P0),
then BD−1 = (D−1)∗D∗BD−1 ∈ P (respectively, P0), and hence the first
factor in the triple decomposition belongs to ΓU (respectively, ΓU

0 ). Similar
reasoning applies to the third factor after noting D−1C = D−1CD∗(D−1)∗.

Conversely, consider a product[
D−1 +BD∗C BD∗

D∗C D∗

]
=

[
I B
0 I

] [
D−1 0

0 D∗

] [
I 0
C I

]
∈ ΓUHΓL.

Then the (2, 2)-entry in the product is precisely D∗ and the middle block
diagonal matrix in the factorization is determined. Multiplying the (1, 2)-
entry of the product on the right by (D∗)−1 gives B and the (2, 1)-entry
on the left by (D∗)−1 gives C. Hence the triple factorization is uniquely
defined. Finally, note that (BD∗)∗D∗ = DB∗D∗ is positive semidefinite
since B is positive semidefinite (since the first block matrix belongs to ΓU ).
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Also (D∗C)(D∗)∗ = D∗CD, which is positive semidefinite since C is positive
semidefinite. Thus, the product block matrix belongs to S. Further, note
that DB∗D∗ (respectively, D∗CD) is invertible if B (respectively, C) is
invertible and, therefore, the decomposition holds also in Si, i = 0, 1, 2.

In regard to the last statement, we have seen that the mapping is a
bijection, it is continuous since multiplication (i.e., composition) is bijective,
and from (6.1) we see that the inverse factorization is also continuous on S.

Related triple decompositions in the finite dimensional setting have been
obtained by Wojtkowski [16] for the real symplectic group, by Koufany [7]
in the setting of euclidean Jordan algebras, and by the authors in the setting
of Lie algebras of Cayley type [9].

Remark 6.6. Similar triple decompositions occur for a larger set of sym-
plectic block matrices for which the (2, 2)-block D is invertible. For this
set of matrices, one has unique triple decompositions in the set product
NUHNL, where NU (respectively, NL) denotes the group of upper (re-
spectively, lower) block unipotent matrix operators. The preceding proof
adapts directly to this case.

The following semigroup property appears in the finite-dimensional set-
ting in [1, 16,17].

Theorem 6.7. We have that S is a semigroup. Furthermore, SSiS ⊆ Si

for i = 0, 1, 2, i.e., each Si is a semigroup ideal.

Proof. Let s1 = u1h1l1 and s2 = u2h2l2 be the triple decompositions for
s1, s2 ∈ S. Suppose that l1u2 = u3h3l3 ∈ ΓUHΓL. Then Lemma 6.4 implies
that

s1s2 = u1h1l1u2h2l2 = u1h1u3h3l3h2l2

= [u1(h1u3h
−1
1 )](h1h3h2)[(h−1

2 l3h2)l2]

belongs to ΓUHΓL. We observe that, indeed,

l1u2 =
[
I 0
C1 I

] [
I B2

0 I

]
=

[
I B2

C1 I + C1B2

]
,

and that the (2, 2)-entry is invertible by Lemma 6.1. Further, we have that

B∗
2(I + C1B2) = B∗

2 +B∗
2C1B2

is positive semidefinite (and is in P0 if B2 ∈ P0 by Lemma 6.1) and

C1(I + C1B2)∗ = C1 + C1B2C
∗
1

is positive semidefinite since C1 and B2 are positive semidefinite (and is in
P0 if C1 is in P0). Thus, l1u2 has the desired triple decomposition u3h3l3
and S is a semigroup by Lemma 6.5. The assertion that the Si are ideals
now follows readily from Lemmas 6.4 and 6.5 in a similar fashion.
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Definition 6.8. The semigroup S from Theorem 6.7 is called the sym-
plectic semigroup.

Corollary 6.9. The symplectic semigroup can be alternatively charac-
terized as

S =
{[
A B
C D

]
∈ Sp(VE) : A is invertible, C∗A ∈ P, BA∗ ∈ P

}
.

Proof. Let S ′ denote the set defined on the right-hand side of the equation
in the statement of the corollary. We observe that

∆
[
A B
C D

]
∆ =

[
D C
B A

]
for ∆ =

[
0 I
I 0

]
.

The inner automorphism M �→ ∆M∆ : GL(VE) → GL(VE) carries Sp(VE)
onto itself (verify, e.g., that it preserves condition (3) of Proposition 2.5),
interchanges the semigroups ΓU and ΓL, carries the group H to itself, and
interchanges the semigroup S and the set S ′. Therefore, S ′ is a semigroup
and

S ′ = ΓLHΓU ⊆ SSS = S.
Dually, S ⊆ S ′.

7. Fractional transformations

If M ∈ Sp(VE) and x,Mx ∈ M0, the set of finite points, then

Mx =
[
A B
C D

] (
X
I

)
=

(
AX +B
CX +D

)
=

(
(AX +B)(CX +D)−1

I

)
.

Identifying X ∈ Sym(E) with
(
X
I

)
, we have that

MX = (AX +B)(CX +D)−1,

as long as MX is finite.

Proposition 7.1. Let M =
[
A B
C D

]
∈ Sp(VE). Then identifying finite

points of M with symmetric operators and restricting M to the set of finite
points whose image under M is again finite, we have that M acts on this
set as the fractional transformation

Z �→ (AZ +B)(CZ +D)−1.

Members of S carry the set P (respectively, P0) into P (respectively, P0)
via such fractional transformations.
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Proof. We have already observed the first statement. For M =
[
A B
C D

]
in

S and Z in P (respectively, P0), we have the product[
A B
C D

] [
I Z
0 I

]
=

[∗ AZ +B
∗ CZ +D

]
.

The product on the right-hand side belongs to S (respectively, S1) by The-
orem 6.7. Therefore,

(AZ +B)∗(CZ +D) = (CZ +D)∗(AZ +B)

is in P (respectively, P0) by the definition of S and S1. Since the matrix
product on the right-hand side belongs to S, we have that CZ + D is
invertible. Hence

(AZ +B)(CZ +D)−1 = ((CZ +D)−1)∗[(CZ +D)∗(AZ +B)](CZ +D)−1

belongs to P (respectively, P0).

Proposition 7.2. The symplectic semigroup S is closed in Sp(VE).

Proof. Let S denote the closure of S in Sp(VE). By the continuity of the
multiplication, S is again a subsemigroup. For M ∈ S, let

Mn =
[
An Bn

Cn Dn

]
→M =

[
A B
C D

]
,

where Mn ∈ S for all n. Since B∗
nDn → B∗D and the set P of positive

semidefinite operators is closed in End(E), we conclude that B∗D ≥ 0.
Similarly, CD∗ ≥ 0 and the dual conditions C∗A ≥ 0 and BA∗ ≥ 0 hold.

It is standard that P0 is open in Sym(E) = M0 (we prove this later in
Lemma 9.2) and hence in M, since M0 is open in M. By the continuity
of the action of Sp(VE) on M, we conclude for M ∈ S that M(P0) ⊆ P0,
the closure being taken in M. Since M(P0) is open, we conclude that there
exists P > 0 such that

M

(
P
I

)
=

[
A B
C D

](
P
I

)
=

(
AP +B
CP +D

)
∈ P0.

It follows that CP +D is invertible. We have[
A B
C D

] [
I P
0 I

]
=

[
A AP +B
C CP +D

]
.

The final product is in S since it is a semigroup. Since the positivity con-
ditions hold for any member of S and since the (2, 2)-entry is invertible, we
conclude that the product is actually in S. But then, by the dual conditions
of Corollary 6.9, we conclude that the (1, 1)-entry A is invertible. If we now
apply Corollary 6.9 to M , we conclude that M ∈ S.
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8. Global Riccati solutions via semigroup theory

Lie’s fundamental theorems, which relate the Lie groups and Lie algebras,
have been extended to the Lie semigroups and their tangent objects. For a
closed subsemigroup S of a Lie group G, we set

L(S) :=
{
X ∈ g : exp(tX) ∈ S for all t ≥ 0

}
.

It follows directly from the Trotter product formula that L(S) is a closed
convex cone (see [4,5]); it is usually referred to as the Lie wedge of S, since it
is typically not a pointed cone. The semigroup S is said to be infinitesimally
generated if it is the closure of the semigroup generated by exp(L(S)).

Proposition 8.1. The symplectic semigroup S has the Lie wedge

L(S) =
{[
A B
C −A∗

]
: B,C ≥ 0

}
.

Proof. We initially set W equal to the right-hand side of the equation in
the statement of the proposition and establish that W = L(S). First, note
that any member X of W can be uniquely written as a sum

X =
[
A B
C −A∗

]
=

[
0 B
0 0

]
+

[
A 0
0 −A∗

]
+

[
0 0
C 0

]
= U +D + L

of a strictly upper block triangular, a block diagonal, and a strictly lower

block triangular matrix. Since exp(tU) =
[
I tB
0 I

]
∈ ΓU ⊆ S for all t ≥ 0,

we conclude that U ∈ L(S), and, similarly, L ∈ L(S). Clearly, exp(tD) ∈
H ⊆ S for all t and, therefore, D ∈ L(S) also. Since L(S) is a cone, it is
closed under addition, and we have X ∈ L(S). Therefore, W ⊆ L(S).

Conversely, assume that exp(tX) ∈ S for all t ≥ 0. Using the triple
decompositions of Lemma 6.5, we can write

exp(tX) = U(t)D(t)L(t) for each t ≥ 0.

Differentiating both sides with respect to t and evaluating at 0 yields

X = U̇(0) + Ḋ(0) + L̇(0).

Then

X12 = U̇(0)12 = lim
t→0+

U(t)12
t

≥ 0,

since by Eq. (6.1) in the proof of Lemma 6.5 and the following sentences
U(t) has its (1, 2)-entry greater than or equal to 0 for t ≥ 0. Similarly,
X21 ≥ 0.

Members of L(S) are often called Hamiltonian operators of the sym-
plectic Lie algebra. They are typically the Hamiltonian operators that one
considers in the context of continuous systems and differential equations,
while the Hamiltonian operators that make up the symplectic semigroup
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are the Hamiltonian operators that appear in discrete systems. Lie semi-
group theory clearly shows the relationship between Hamiltonian operators
at the symplectic group level and Hamiltonian operators at the symplectic
Lie algebra level.

Assume that we consider the basic group control equation for a general
Lie group modified so that the controls come from some nonempty subset
Ω ⊆ g with initial condition g(0) = e, the identity of the group. The
attainable set A(Ω) is the set of points that appear on trajectories of this
system for some t ≥ 0.

Proposition 8.2. The attainable set A = A(Ω) is a subsemigroup of G.
If g(·) is a trajectory of the system with [t1, t2], t1 < t2 in its domain, then
g(t2) = sg(t1) for some s ∈ A.

Proof. Let ui(·) : [0, Ti] → Ω be steering functions for i = 1, 2, and let gi(·),
i = 1, 2, be the corresponding trajectories. It is elementary to observe that
the concatenation steering function u = u1 ∗ u2 : [0, T1 + T2] → Ω has a
trajectory given by g(t) = g1(t) for 0 ≤ t ≤ T1 and g(t) = g2(t− T1)g1(T1)
for T1 ≤ t ≤ T2. In particular, g(T1 + T2) = g2(T2)g1(T1) and, therefore,
the attainable set is a semigroup.

Let u(·) be a steering function with domain containing [t1, t2] and the
corresponding trajectory g(·). Define γ(t) = Φ(t+ t1)(Φ(t1))−1. Define ũ(·)
on [0, t2 − t1] by ũ(t) = u(t+ t1). Then

γ̇(t) = u(t+ t1)Φ(t+ t1)(Φ(t1))−1 = ũ(t)γ(t), γ(0) = e.

It follows that γ(t2 − t1) ∈ A. But γ(t2 − t1) = Φ(t2)(Φ(t1))−1, and hence
Φ(t2) = sΦ(t1) for s = γ(t2 − t1).

Restricting this argument to the set of steering functions consisting of
piecewise constant mappings, one observes that the reachable set is the
semigroup consisting of finite products of members of exp(Ω) (see, e.g., [8]).
For the case where S is a closed subsemigroup and Ω = L(S), we conclude
from the definition of the latter that the attainable set for the class of
piecewise constant functions is contained in S. The density of the set of
piecewise constant controls and the continuous dependence of solutions on
controls then yield that the attainable set is contained in the closed set S.

From these observations and Proposition 7.2 we have the first assertion
of the following proposition.

Proposition 8.3. Each solution Φ(t) for t ≥ 0 of the basic group control
equation on Sp(VE)

ġ(t) = u(t)g(t), g(0) = idV (E), u(t) ∈ L(S),

is contained in the semigroup S, i.e., the attainable set is contained in S. If
Φ(s) ∈ Si for some s and some i = 0, 1, or 2, then Φ(t) ∈ Si for all t > s.
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Proof. It remains to prove only the last assertion. But this follows from
the second assertion of Proposition 8.2 and the fact that each Si is an ideal
of S.

Remark 8.4. If one considers the basic group control equation

ġ(t) = u(t)g(t), g(0) =
[
I K0

0 I

]
, u(t) ∈ L(S), K0 ∈ P,

then the solution Φ(t)g(0) evolves in S for t ≥ 0 by Proposition 8.3 and
the semigroup property of S. Thus, one can form the triple factorization of
Φ(t)g(0) as in Lemma 6.5. We note from the proof of Lemma 6.5 that the
(1, 2)-entry of the upper block-triangular factor is given by g12(t)(g22(t))−1,
which has initial value K0 and by Lemma 3.2 satisfies the Riccati equation
defined by the steering function u(·). Thus, the function that sends t to the
(1, 2)-block of the upper triangular factor of the triple decomposition yields
the solution of the corresponding Riccati equation. Similar remarks apply
over any interval, where g22(t) is invertible.

Our results on the symplectic semigroup lead to a semigroup-theoretic
proof of the following global existence result concerning the Riccati equa-
tion.

Theorem 8.5. The Riccati equation

K̇(t) = R(t) +A(t)K(t) +K(t)A∗(t) −K(t)S(t)K(t), K(t0) = K0,

has a solution in P for all t ≥ t0 if R(t), S(t) ≥ 0 for all t ≥ t0 and K0 ≥ 0.
If, in addition, K(t1) ∈ P0 for some t1 ≥ t0, then K(t) ∈ P0 for all t > t1.

Proof. The Riccati equation has an extended solution on M given by

K̃(t) = Φ(t)(Φ(t0))−1

(
K0

I

)

(see Eq. (ES) of Sec. 5). By Proposition 8.2, Φ(t)(Φ(t0))−1 ∈ S for all
t ≥ t0. Then it follows from Proposition 7.1 that K̃(t) ∈ P for t ≥ t0 and
thus is equal to K(t) (see Proposition 5.1).

If K(t1) ∈ P0 for some t1 ≥ t0, then for t > t1,

K(t) = K̃(t) = Φ(t)(Φ(t0))−1

(
K0

I

)

= sΦ(t1)(Φ(t0))−1

(
K0

I

)
= sK(t1)

for some s ∈ S by Propositions 8.3 and 8.2. The conclusion follows from
Proposition 7.1.

The next corollary gives a more general setting in which solutions of the
Riccati solution are considered (see, e.g., [15, Chap. 8.2]).
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Corollary 8.6. The Riccati equation

K̇(t) = −R(t) −A(t)K(t) −K(t)A∗(t) +K(t)S(t)K(t), K(t0) = K0,

has a solution in P for all t ≤ t0 if R(t), S(t) ≥ 0 for all t ≤ t0 and K0 ≥ 0.
If, in addition, K(t1) ∈ P0 for some t1 ≤ t0, then K(t) ∈ P0 for all t < t1.

Proof. The equation

L̇(t) = R(t0 − t) +A(t0 − t)L(t) + L(t)A(t0 − t)∗ − L(t)S(t0 − t)L(t)

with the initial condition L(0) = K0 has a solution for all t ≥ 0 by the
previous theorem and, therefore, K(t) := L(t0 − t) is the desired solution of
the differential equation given in the corollary.

9. The Loewner order

For X,Y ∈ Sym(E), we define

X < Y ⇐⇒ Y −X ∈ P0,

X ≤ Y ⇐⇒ Y −X ∈ P.
The order ≤ is sometimes called the Loewner order. For X ≤ Y (respec-
tively, X < Y ) we define the order intervals

[X,Y ] = {Z ∈ Sym(E) : X ≤ Z ≤ Y },
(X,Y ) = {Z ∈ Sym(E) : X < Z < Y },

respectively.

Lemma 9.1. If A ∈ Sym(E) satisfies ‖A‖ < 1, then I +A ∈ P0. Hence
{I +A : ‖A‖ < 1} is an open set containing I in P0.

Proof. Choose r ∈ R so that ‖A‖ < r < 1. Then by the Cauchy–Schwarz
inequality

−〈x,Ax〉 ≤ |〈x,Ax〉| ≤ ‖x‖ ‖Ax‖ ≤ ‖A‖ ‖x‖2 ≤ r‖x‖2 = 〈x, rI(x)〉,
and hence rI +A ≥ 0. Then I +A = (rI +A) + (1− r)I ≥ 0 belongs to P0

by Lemma 6.1. The last assertion now follows immediately.

Lemma 9.2. The set P0 is open in Sym(E), and hence open in M, if
we identify the symmetric operators with the finite points of M.

Proof. For P ∈ P0 the matrix[
P 1/2 0

0 P−1/2

]

belongs to the symplectic semigroup S and carries I to P and P0 into
P0 by Proposition 7.1. Thus, it carries the open set around I contained
in P0 (Lemma 9.1) onto an open set around P that is contained in P0.
Since Sym(E) is identified with the open set M0 of finite points in M
(Proposition 4.4), the last assertion follows.
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Proposition 9.3. For any A,B ∈ Sym(E) with B < A,
(i) the sets (−∞, A) = {Y ∈ Sym(E) : Y < A} and (B,+∞) = {Z ∈

Sym(E) : B < Z} are open;
(ii) the interval (B,A) is open.

Proof. We have (−∞, A) = A − P0 and (B,∞) = B + P0, which are open
since P0 is open. The intersection of these two sets is (B,A).

Proposition 9.4. For any A ∈ P0, the sets {(−(1/n)A, (1/n)A) :
n ∈ N} form a basis of open sets at 0 in Sym(E).

Proof. The sets (−(1/n)A, (1/n)A) are open by Proposition 9.3. Suppose
that −(1/n)A < X < (1/n)A belongs to Sym(E). Then there exist
P,Q ∈ P0 such that X = P + (−(1/n)A) and X + Q = (1/n)A. Elimi-
nating X, we obtain P + Q = (2/n)A and, therefore, P,Q < (2/n)A. We
have

‖P 1/2x‖2 = 〈x, Px〉 ≤ 〈x, (2/n)Ax〉 ≤ (2/n)‖A‖ ‖x‖2.

It follows that
‖P 1/2‖ ≤ (

√
2/

√
n)‖A‖1/2

and, therefore,
‖P‖ ≤ ‖P 1/2‖2 ≤ (2/n)‖A‖.

We conclude that

‖X‖ ≤ ‖P‖ + (1/n)‖A‖ ≤ (3/n)‖A‖.
Thus, the set (−(1/n)A, (1/n)A) is contained in the open ball around 0 of
radius (3/n)‖A‖.

Proposition 9.5. The closure of P0 in Sym(E) is P.

Proof. The fact that P is closed in Sym(E) follows immediately from its
definition. Since for A ∈ P, A = lim

n→∞A + (1/n)I and the members of the
sequence are in P0 by Lemma 6.1, the proposition follows.

A partial order ≤ on a topological spaceX is closed if ≤= {(x, y) : x ≤ y}
is closed in X ×X.

Proposition 9.6. The Loewner order ≤ is closed on Sym(E). Each
order interval [A,B] = {X ∈ Sym(E) : A ≤ X ≤ B} for A ≤ B is closed in
M (where, as usual, we identify Sym(E) with the finite points M0 of M).
The interior of [A,B] is equal to (A,B).

Proof. We observe that

{(X,Y ) : X ≤ Y } = {(X,Y ) : Y −X ∈ P},
and the latter set is closed since P is closed (by the previous proposition).

Consider the open set (−I, I) around 0. Since M is regular (the fact that
coset spaces are regular is a standard and elementary result in the theory
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of topological groups), there exists an open set U containing 0 such that
U ⊆ (−I, I), where the closure is taken in M. For any A ∈ P, choose
n > 0 so that (−(1/n)A, (1/n)A) ⊆ U ; this is possible by Proposition 9.4.
Then [0, (1/2n)A] = P ∩ ((1/2n)A−P) is closed in Sym(E), is contained in
(−(1/n)A, (1/n)A) and hence in U and, therefore, is closed in U and in M.
The diagonal operator in Sp(VE) with entries

√
2nI and (1/

√
2n)I carries

the closed interval [0, (1/2n)A] onto [0, A] and, therefore, the latter is also
closed in M. Since any closed interval [B,A] is the image of [0, A − B]

under the operator with block matrix entries
[
I B
0 I

]
, we conclude they all

are closed.
Consider a closed interval [A,B] for A ≤ B. Since (A,B) is open (Propo-

sition 9.3), it is contained in the interior of [A,B]. Conversely, if X is in
the interior of [A,B], then there exists some open set U containing 0 such
that X + U ⊆ [A,B]. By Proposition 9.4, there exists n ∈ N such that
(−(1/n)I, (1/n)I) ⊆ U . Then A ≤ X − (1/n)I < X < X + (1/n)I ≤ B
and, therefore, A < X < B. This concludes the proof.

Proposition 9.7. For an element A ∈ Sym(E), the following assertions
are equivalent :

(1) A ∈ P;
(2) A+X is invertible for all X ∈ P0;
(3) A+ rI is invertible for all r > 0.

Proof. Item (2) follows from item (1) by Lemma 6.1 and item (3) is a
trivial consequence of item (2). Assume (3) and suppose that A /∈ P.
Consider the segment {tA+ (1 − t)I : 0 ≤ t ≤ 1}. This connected segment
cannot lie entirely in the union of two disjoint open sets P0 and Sym(E)\P
and, therefore, must intersect the set P \ P0, which, by definition, consists
of noninvertible elements. Hence tA + (1 − t)I is not invertible for some
0 < t < 1. We conclude that the scalar multiple A + ((1 − t)/t)I is not
invertible, a contradiction.

Proposition 9.8. The inversion on P0 is order reversing.

Proof. If A ∈ P0 and I ≤ A, then

〈x,A−1x〉 = 〈A−1/2x,A−1/2x〉 ≤ 〈A−1/2x,A(A−1/2x)〉
= 〈A−1/2x,A1/2x〉 = 〈x, x〉,

and, therefore, A−1 ≤ I. Now

X ≤ Y ⇒ I = X−1/2XX−1/2 ≤ X−1/2Y X−1/2.

Thus inverting, we see that

I ≥ X1/2Y −1X1/2 ⇒ X−1 = X−1/2IX−1/2 ≥ Y −1.
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Hence the inversion on P0 is order-reversing.

Proposition 9.9. The closure P of P in M has the interior P0.

Proof. Since P0 is open in M (Lemma 9.2), it is contained in the interior
of P. For the converse, we consider the symplectic mappings on M given
by

tI :=
[
I 0
I I

]
, t−I :=

[
I 0
−I I

]
, J =

[
0 I
−I 0

]
.

Note that

JtI

(
B
D

)
=

(
D

−(B + I)

)
;

JtI

(
X
I

)
=

(
I

−(X + I)

)
=

(−(I +X)−1

I

)
, X ∈ P.

Since inversion is order-reversing on P0 and X → −X is order-reversing on
Sym(E), we conclude that JtI is order preserving on P.

We observe that

JtI

(
0
I

)
=

(−I
I

)
; JtI

(
(n− 1)I

I

)
=

(
(−1/n)I

I

)
.

We conclude that

JtI(P) ⊆
⋃
n

{
X ∈ Sym(E) : −I < X <

−1
n
I

}
,

since P =
⋃

[0, nI). (If A ∈ P0, then (1/n)A ∈ (−I, I) for some n by
Proposition 9.4 and, therefore, A < nI.) Thus, JtI(P) ⊆ [−I, 0) ⊆ [−I, 0].

Suppose that
(
B
D

)
is in the interior of P, the closure is taken in M.

Then

JtI

(
B
D

)
∈ intJtI(P) ⊆ int[−I, 0] = (−I, 0),

the last equality comes from Proposition 9.6. Hence

JtI

(
B
D

)
=

(−P
I

)

for some P ∈ P, 0 < P < I. Since the inverse of JtI is given by t−I(−J),
we have(

B
D

)
= t−I(−J)

(−P
I

)
= t−I

(−I
−P

)
= t−I

(
P−1

I

)
=

(
P−1 − I

I

)
.

Since P < I implies I < P−1, we conclude that P−1 − I > 0 and, therefore,(
B
D

)
∈ P0.
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The next proposition gives another important property of the symplectic
semigroups.

Proposition 9.10. Members of the symplectic semigroup S satisfy the
following monotonicity properties:

(i) for g ∈ S and X,Y ∈ P0, X ≤ Y if and only if g(X) ≤ g(Y );
(ii) for g ∈ S and X,Y ∈ P, X ≤ Y implies g(X) ≤ g(Y ).

Proof. (i) We verify this for each of the factors in the triple decomposition
of Lemma 6.5. This is straightforward for the upper triangular and diagonal
factors. Suppose that X,Y ∈ P0 and X ≤ Y . Then for C ∈ P[

I 0
C I

] (
X
I

)
=

(
X

CX + I

)
=

(
X(CX + I)−1

I

)
,

and, similarly, the image of Y is Y (CY +I)−1 = (C+Y −1)−1. Since, by the
previous proposition, inversion is order-reversing on P0, we conclude that
C +X−1 ≥ C + Y −1 and, therefore, (C +X−1)−1 ≤ (C + Y −1)−1. These
steps are reversible. Hence lower triangular matrices in S also preserve the
order on P0.

(ii) For X ≤ Y in P, we have X+(1/n)I ≤ Y +(1/n)I for each n > 0. By
the previous paragraph and Proposition 9.7, g(X+(1/n)I) ≤ g(X+(1/n)Y
for each n. Since the order relation ≤ is closed (Proposition 9.6), we have
by taking the limit as n→ ∞ that g(X) ≤ g(Y ).

10. Order and the Riccati equation

In this section, we briefly consider relationships that exist between the
Riccati equation and the Loewner order.

If the Riccati equation

K̇(t) = R(t) +A(t)K(t) +K(t)A∗(t) −K(t)S(t)K(t), K(t0) = K0,

has a solution on the interval [t0, t1], then we denote K(t1) by Γ(t0,K0, t1).

Proposition 10.1. Assume that in the Riccati equation R(t), S(t) ≥ 0
for all t ∈ R and K0 ≥ 0. Then for all t0 ≤ t1, Γ(t0,K0, t1) exists and is in
P. Furthermore, for K0 = 0 we have

Γ(t1, 0, t2) ≤ Γ(t0, 0, t2) for all t0 < t1 < t2.

Thus, the mapping t �→ Γ(t, 0, t1) : (−∞, t1] → P is a continuous order-
reversing mapping.

Proof. The first assertion follows from Theorem 8.5. By Proposition 5.2 we
have that

Γ(t0, 0, t2) = Φ(t2)(Φ(t0))−1

(
0
I

)
, Γ(t1, 0, t2) = Φ(t2)(Φ(t1))−1

(
0
I

)
.
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By Proposition 8.2, there exist s, s′ ∈ S such that Φ(t2) = sΦ(t1) and
Φ(t1) = s′Φ(t0). Then

Γ(t1, 0, t2) = Φ(t2)(Φ(t1))−1

(
0
I

)
= s

(
0
I

)

≤ ss′
(

0
I

)
= Φ(t2)(Φ(t0))−1

(
0
I

)
= Γ(t0, 0, t2),

where the inequality follows from the facts that s is order-preserving on P
(Proposition 9.10), s′(0) ∈ P (Proposition 7.1) and 0 is the least element in
P. Since

Γ(t, 0, t1) = Φ(t1)(Φ(t))−1

(
0
I

)
,

we conclude that the mapping t �→ Γ(t, 0, t1) is continuous on (−∞, t1).

We recall another important connection of the Loewner order with the
Riccati equation. The elegant, quick proof is taken from [2], although the
theorem appeared earlier in [12].

Proposition 10.2. Consider the Hamiltonian matrices in the symmet-
ric Lie algebra sp(VE)

H(t) =
[
A(t) R(t)
S(t) −A∗(t)

]
, H̃(t) =

[
Ã(t) R̃(t)
S̃(t) −Ã∗(t)

]

and the corresponding Riccati equations

K̇(t) = R(t) +A(t)K(t) +K(t)A∗(t) −K(t)S(t)K(t), K(0) = K0,

˙̃K(t) = R̃(t) + Ã(t)K̃(t) + K̃(t)Ã∗(t) − K̃(t)S̃(t)K̃(t), K̃(0) = K̃0.

Assume that
H̃J ≤ HJ,

i.e., [
R̃−R A− Ã

A∗ − Ã∗ S − S̃

]
≥ 0

and 0 ≤ K0 ≤ K̃0. Then for every t ≥ 0, we have K(t) ≤ K̃(t).

Proof. Global solutions K(·) and K̃(·) exist for all t ≥ 0 by Theorem 8.5.
The symmetric operator function U(t) := K̃(t) −K(t) satisfies the Riccati
differential equation

U̇ = (Ã−KS̃)U + U(Ã−KS̃)∗ − UB̃U +
[
I −X]

(HJ − H̃J)
[
I

−X
]

with a positive-semidefinite initial condition. The result now follows from
Theorem 8.5.
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11. Applications and future directions

In addition to developing and demonstrating important connections be-
tween control theory and Lie semigroup theory, the preceding material is
intended as a foundation for future research and development. The authors
have already completed a draft of a manuscript [10] in which the contraction
property of symplectic Hamiltonian operators acting on the convex cone P0

of positive definite operators equipped with the natural Finsler metric called
Thompson’s metric is established. Indeed, a Birkhoff formula for comput-
ing the constant of contraction of a Hamiltonian operator is derived in this
context. Such contraction formulas have a variety of applications in analy-
sis and in control theory (see, e.g., [1] for applications to Kalman filtering
theory). In [10] we exploit the contraction property of sympletic Hamiltoni-
ans with explicitly given contraction coefficients to study the convergence of
iterative schemes to find the solution of discrete algebraic Riccati equations
and rates of convergence of the solution.
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