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Abstract. In a recent and ongoing work, Baldwin and Klemperer explored a con-
nection between tropical geometry and economics. They gave a sufficient condition
for the existence of competitive equilibrium in product-mix auctions of indivisible
goods. This result, which we call the Unimodularity Theorem, can also be traced
back to the work of Danilov, Koshevoy, and Murota in discrete convex analysis.
We give a new proof of the Unimodularity Theorem via the classical unimodularity
theorem in integer programming. We give a unified treatment of these results via
tropical geometry and formulate a new sufficient condition for competitive equilib-
rium when there are only two types of product. Generalizations of our theorem in
higher dimensions are equivalent to various forms of the Oda conjecture in algebraic
geometry.

1. Introduction.

An auction is a mechanism to sell goods. It is a process that takes in a collection
of bids and produces a set of winners, the amount of goods each winner gets, and
the prices the winners have to pay. A product-mix auction is a sealed bid, static
auction for differentiated goods. That is, no one knows others’ bids, each agent
submits the bids only once, and there are different types of goods. The goods are
said to be indivisible if they can only be sold in integer quantities, and this is the
case that interests us. Each agent (bidder) indicates her valuation, or how much each
bundle of goods is worth to her. After seeing the bids, the economist sets the per-unit
price for each type of good, splits up the supply into possibly empty bundles, one
for each agent. Each agent pays for her assigned bundle according to the set prices.
A competitive equilibrium exists if there is a choice of prices and a way to exactly
divide up the supply so that each agent is assigned a bundle that maximizes her
utility. Competitive equilibrium is seen as a desirable, satisfaction-for-all outcome.
Thus, the central economic question is to find conditions under which competitive
equilibrium always exists, and if possible, is easy to compute.

The product-mix auction was first proposed by Klemperer [15,16] at the heels of the
2007 Bank of England crisis. As a game, its strength is in its simplicity. In par-
ticular, if competitive equilibrium exists, then agents who want to maximize their
utility should bid their true valuation of the bundles, and this is a desirable economic
outcome. The product-mix auction subsumes many models as special cases [2], while
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itself being a special case of multi-unit combinatorial auction [10]. Thus, the liter-
ature related to product-mix auction spreads across several fields, from economics
to optimization to discrete convex analysis. Each field has its own language, central
questions and notations, and consequently, discoveries are often repeated. Compet-
itive equilibrium in product-mix auction is an instance of general equilibrium, more
specifically, Walrasian equilibrium. This classical economic model dates back to Wal-
ras, a French mathematician in the late 19th century. However, in a product-mix
auction with indivisible goods, convex analysis and fixed point techniques often used
in general equilibrium theory do not immediately apply.

Danilov, Koshevoy and Murota took this view in considering Walrasian economies
with indivisible goods [7] and searched for conditions where the discrete analogue of
classical fixed point arguments still work. They obtained the Unimodularity Theorem
[7, Theorem 4] in 2001, although its proof appears three years later as a special case
of [8, Theorem 3]. A version of this theorem surfaces independently in the algebraic
geometry community, with Howard [13] rediscovering what is essentially [8, Theorem
3] in 2007. Then in 2012, the Unimodularity Theorem was once again independently
discovered by Baldwin and Klemperer in [1] in the form and context stated here,
whose tropical geometric proof we give in Section 4 below employs the same key
argument as [8,13]. Since then, Baldwin and Klemperer have used tropical geometry
to discover other sufficient conditions for competitive equilibrium in product-mix
auctions, most notably the Intersection Count Theorem [2, Theorem 5.12]. Their
novel lattice-counting approach is complementary to the results discussed here, see [2]
for further developments.

Our paper has two contributions. First, we rewrite product-mix auction as a partic-
ular integer program, cast competitive equilibrium as a linear versus integer pro-
gramming question, and show how the Unimodularity Theorem follows from the
usual unimodularity theorem in integer programming. It differs from the proof
of [2,7,8,13], where one needs to find classes of polytopes in which the operations of
taking Minkowski sums and taking integer points commute. Second, we give a uni-
fied treatment of competitive equilibrium in product-mix auctions, with self-contained
proofs from all the perspectives considered in the literature: discrete convex analysis,
tropical geometry, and integer programming. Utilizing connections to lattice poly-
topes, we give a new family of product-mix auctions where competitive equilibrium
is guaranteed to hold (cf. Theorem 6.4). Generalizations of this result are equivalent
to various forms of the Oda Conjecture in algebraic geometry. Our setup of Theo-
rem 6.4 is as far as possible from transverse intersections, which are the focus of the
developments in [2], and thus appears to be new.

Unlike [2], whose audience mainly consists of economists, this paper is an exposition
on product-mix auctions for a mathematical audience with minimal prior knowledge
on auction theory. Following [2], we choose to state the product-mix auction in
terms of tropical geometry, as it introduces an elegant language and key geometric
insights. The paper is organized as follows. After defining the product-mix auctions
in §2, we make connections to tropical geometry in §3 and give a simple proof to the
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Unimodularity Theorem in §4. Our integer programming approach to competitive
equilibrium appears in §5 where we give a new proof of the Unimodularity Theorem.
We discuss other integer programming formulations in §5.2, and connections to subset
sum in §5.3. Finally in §6 we make connections to the study lattice polytopes arising
from toric geometry, such as the Oda conjecture.

Notations. For a set A ⊂ Rn, let conv(A) ⊂ Rn denote its convex hull, convZ(A) =
conv(A) ∩ Zn denote its integer convex hull, |A| denote its cardinality.
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2. Product-Mix Auctions.

Suppose there are n types of indivisible goods. A good bundle is a point in Zn. For
j = 1, . . . , J , the j-th agent gives the economist her valuation function (bids)

uj : Aj → R,

where Aj ⊂ Zn and uj(a) is her bid for bundle a ∈ Aj. Here negative coordinates
(with possibly negative valuations) mean that the agent wants to sell the products.
In this setup the sellers and buyers play the same role.

The Minkowski sum

A =
J∑

j=1

Aj :=

{
J∑

j=1

aj | aj ∈ Aj for each j = 1, . . . , J

}

is the set of all possible good bundles in the economy that can potentially be matched
to this set of agents. For a fixed price vector p ∈ Rn, where pi is the price for one unit
of the i-th good, the utility of the j-th agent buying bundle a at price p is uj(a)−p ·a.
The demand set of the j-th agent at price p is the set of bundles that maximizes her
utility

(1) Duj(p) := arg max
a∈Aj
{uj(a)− p · a}.
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The aggregate valuation function U : A→ Rn is the maximum total valuation taken
over all ways to partition each bundle a ∈ A:

(2) U(a) := max

{
J∑

j=1

uj(aj) | aj ∈ Aj and
J∑

j=1

aj = a

}
.

The aggregate demand at p is the demand set of the aggregate valuation U

DU(p) := arg max
a∈A
{U(a)− p · a}.

One can check that it is the Minkowski sum of the individual demands

DU(p) =
J∑

j=1

Duj(p) ⊆ A.

The input of a product-mix auction of indivisible goods consists of the valuation
functions {uj | j = 1, . . . , J} and a fixed supply bundle a. The economist needs to
find a price vector p ∈ Rn so that a ∈ DU(p). If such a price exists, we say that a
competitive equilibrium exists at a.

Definition 2.1. The set {uj} of valuation functions has competitive equilibrium at
a ∈ convZ(A) if there exists a price p ∈ Rn such that a ∈ DU(p). We say that
competitive equilibrium exists if it exists for every a ∈ convZ(A).

When the valuations are all constant, competitive equilibrium exists at a ∈ convZ(A)
if and only if a ∈ A1 + · · · + AJ . When each Ai ⊂ Z, checking the existence of
competitive equilibrium is exactly the SUBSET-SUM problem, which is NP-complete.
However, in this case of n = 1, competitive equilibrium exists for constant valuation
if each Ai contains all lattice points in its convex hull. This is not true for n ≥ 2. For
example, A1 = {(0, 0), (1, 1)} and A2 = {(1, 0), (0, 1)} contain all the lattice points
in their respective convex hulls, but competitive equilibrium does not exist at (1, 1)
under any valuation, including constant valuation.

Economists are greatly interested in general conditions on {uj} (or {uj, a}) for the
existence of competitive equilibrium and algorithms for finding prices p and the win-
ner assignment at those prices. If there is one seller and J − 1 buyers, in general,
competitive equilibrium does not guarantee maximal profit for the seller. The seller
may make a bigger revenue by selling fewer products, see Example 1. Maximizing
profit for the seller is a different problem from finding competitive equilibrium. Often
profit maximization is the objective of combinatorial auctions [10], and thus results
in that literature do not transfer immediately.

Example 1. Suppose n = 1 and the seller has two objects of the same type to sell.
There are two agents, A1 = A2 = {0, 1, 2} with valuations

u1(0) = 0, u1(1) = 10, u1(2) = 11,

u2(0) = 0, u2(1) = 2, u2(2) = 3.
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(0,0),0

(0,1),1

(1,0),1

(0,1),3

(0,2),5 (1,2),9

(0,0),0 (0,0),0

(0,1),3

(0,2),5

(0,3),6

(1,0),1

(2,2),10

(1,1),4

(1,2),9

(1,3),10

Figure 1. A product-mix auction with two agents and two product
types. From left to right: sets A1, A2, A, shown with valuations u1, u2, U
next to the corresponding bundles. The polyhedral complex is the
regular subdivision ∆u1 ,∆u2 ,∆U , as explained in Example 4. Although
the point (1, 1) is in the set A1+A2, there is no price at which the bundle
(1, 1) is demanded, so competitive equilibrium fails at that point. See
Example 3.

The competitive equilibrium prices are {p | 1 ≤ p ≤ 2} where each agent buys one
item, so the maximal revenue under competitive equilibrium for the seller receives is
4. However, if the agent sets price p = 10, then agent one buys one object, agents
two buys nothing. Not all items are sold, so competitive equilibrium does not hold
at (1, 1), but the agent achieves a larger revenue of 10. �

We will demonstrate the failure of competitive equilibrium in two examples. Example
2 shows that if A ( convZ(A), competitive equilibrium can be sure to fail regardless
of the agents’ valuations uj’s. This is because the aggregated valuation U is only
finite on A (and is negative infinity elsewhere), so competitive equilibrium does not
hold for points outside of A. On the other hand, Example 3 shows that A = convZ(A)
is only necessary, but not sufficient, for competitive equilibrium to hold.

Example 2. Let A1 = {(0, 0), (1, 0)}, A2 = {(0, 0), (1, 2)}. For any valuation func-
tions u1, u2 with domains A1, A2 respectively, the domain of the aggregate valuation
U is the Minkowski sum A = A1 + A2 = {(0, 0), (1, 0), (1, 2), (2, 2)}. But convZ(A)
contains the point (1, 1) while A does not. Since (1, 1) is not in the domain of U ,
U((1, 1)) = −∞. Thus, competitive equilibrium on convZ(A) would fail at the point
(1, 1) for any valuations u1 and u2.

Example 3. Even when A = convZ(A), competitive equilibrium may fail to exist.
Suppose we have two types of goods and two agents, with valuation functions shown
in Figure 1. Although the bundle (1, 1) is in A, the aggregate valuation at (1, 1) is so
small that there is no price at which (1, 1) is in the aggregate demand set.
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(0,2)+(0,1)

(0,2)+(0,0)

(0,1)+(0,0)

(0,0)+(0,0)

(1,2)+(0,0)

(1,2)+(0,1)

(1,2)+(1,0)

(0,0)+(1,0)

Figure 2. The price space R2 is partitioned according to the demand
sets of the agents from Figure 1, see also Example 3. The regions are
labeled with the demanded bundles from each of the two agents. Note
that none of the aggregate demands is equal to (1, 1). If a price falls on
the boundary of multiple regions, then there are more than one bundles
in the demand set. The boundary between regions is the negative of the
union of tropical hypersurfaces; note the negative sign in (1) compared
to (3).

3. Tropical mathematics.

We now restate the problem of determining competitive equilibrium in product-mix
auctions in terms of tropical geometry. This formulation was first noted in the inspira-
tional paper of Baldwin and Klemperer [1]. For an extensive introduction to tropical
geometry, see the monograph of Maclagan and Sturmfels [18]. As a language, trop-
ical geometry gives a clean statement and proof of the Unimodularity Theorem (cf.
Theorem 4.2). Furthermore, it allows easy analysis of known families product-mix
auctions for which competitive equilibrium is guaranteed to exist. We demonstrate
such a family in Example 5.

Here we focus on the max-plus semiring (R ∪ {−∞},⊕,�), a set with tropical addi-
tion ⊕ and tropical multiplication � such that

r ⊕ s := max(r, s), and r � s := r + s for all r, s ∈ R ∪ {−∞}.

For our purpose, any function u : A ⊂ Zn → R defines three important objects:
the tropical Laurent polynomial fu, the tropical hypersurface T (fu), and the regular
subdivision ∆u of A. If the function u is the valuation function, then these three
objects are also called the utility, the locus of indifference prices (LIP), and the
demand complex respectively in the economics literature [2].

Let us elaborate. The tropical Laurent polynomial fu with powers in A ⊂ Zn and
coefficients u(a) ∈ R for a ∈ A is

(3) fu(x) =
⊕
a∈A

u(a)� x�a
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which is equal to the function x 7→ max{u(a) + a · x | a ∈ A}.
The tropical hypersurface T (fu) of a tropical polynomial fu in n variables is defined
as the set of x ∈ Rn where the set arg max{u(a) + a · x | a ∈ A} has cardinality at
least two. That is, the maximum the expression of fu(x) is achieved in at least two
terms. In the usual algebra, fu : Rn → R is a piecewise-linear convex function, and
T (fu) is the locus where the function f(x) is not smooth. The regular subdivision
∆u of A induced by u is defined as

∆u := {arg max
a∈A

[u(a)� x�a] | x ∈ Rn},

which is a collection of subsets of A. The elements of ∆u are called cells of the
subdivision. The convex hull of a cell is called a face. Note that a cell is a finite set
of integer points while a face is a polytope. A point a ∈ A is called a marked point
or a lifted point of the subdivision if it is contained in one of the cells. Every point in
A is contained in a face, but not necessarily in a cell, of the subdivision.

The regular subdivision ∆u is dual to the tropical hypersurface fu in the sense that
there is a natural bijection between positive dimensional faces of ∆u and the faces
of the tropical hypersurface, as follows. Given the tropical polynomial fu as above,
consider the following equivalence relation on Rn: two points x, x′ ∈ Rn are equivalent
if

arg max{u(a) + a · x | a ∈ A} = arg max{u(a) + a · x′ | a ∈ A}.

This gives a partition of Rn where each equivalence class is a relatively open convex
polyhedron, defined by linear equations and strict linear inequalities. The tropical
hypersurface is the union of the equivalence classes of dimension < n in this partition.
The correspondence

x↔ arg max{u(a) + a · x | a ∈ A}

is a bijection between the equivalence classes in Rn and faces of ∆u.

When all the coefficients u(a) of the tropical polynomial fu = ⊕a∈Au(a) � x�a are
equal to 0 (or any other fixed constant), then the tropical hypersurface depends only
on the Newton polytope P = convA. On the other hand, given an integral polytope
P , let f be a tropical polynomial with constant coefficients whose Newton polytope
is P . We define T (P ) to be the tropical hypersurface T (f), which is a subfan of the
normal fan of P consisting of the normal cones to the faces of positive dimension in
P .

The connection to product-mix auctions is clear upon comparison with the equations
in the previous section. Plugging in x = −p, fu(−p) is the maximal utility of an agent
with valuation u at price p, −T (fu) is the set of prices where the agent is indifferent
between two bundles, and the cells in ∆u are precisely all the possible demand sets
Du(p) as we vary the price p, that is, ∆u = {Du(p) | p ∈ Rn}. More importantly, both
aggregation over multiple agents and competitive equilibrium are simple to describe
in tropical terms, as follows.
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Lemma 3.1. Let u1, . . . , uJ be valuation functions of J agents on supports A1, . . . , AJ ⊂
Zn respectively. Let U be their aggregate valuation function on A =

∑J
j=1A

j. The
following hold

• fU = fu1 � . . .� fuJ ,
• T (fU) =

⋃J
j=1 T (fuj), and

• DU(p) = Du1(p) + . . .+DuJ (p) for any price vector p ∈ Rn

• Competitive equilibrium exists at a point a ∈ Zn if and only if it is a marked
point in ∆U .

Example 4. Revisit Example 3. Figures 1 shows the regular subdivisions ∆u1 on
the far left, ∆u2 in the middle, and the regular mixed subdivision ∆U in the far right.
Figure 2 shows the negatives of the tropical hypersurfaces T (fu1) in blue and T (fu2)
in red. Their set union is negative of the tropical hypersurface T (fU). The point
(1, 1) is not marked, and thus competitive equilibrium fails.

We give a geometric interpretation of when a given point in a regular subdivision ∆u

is marked (or lifted). Visualize a function u : A ⊂ Zn → R as lifting each point a ∈ A
to a height u(a) in a new dimension, producing the graph of the function u

(4) lift(A) := {(a, u(a)) | a ∈ A} ⊂ A× R.
Let ũ be the concave majorant of u, that is, the smallest concave function on conv(A)
such that ũ(a) ≥ u(a) for all a ∈ A. Think of ũ as a piecewise-linear surface formed
by extending a cling wrap over lift(A). The projection linear pieces of ũ onto conv(A)
are the faces of ∆u, the regular subdivision of A induced by u. A point a ∈ Zn is
lifted (or marked) if and only if ũ(a) = u(a), that is, it is literally lifted high enough
by u so that it touches the cling wrap ũ. With this view, the following lemma is
straightforward from the definitions.

Lemma 3.2. Let u1, . . . , uJ be valuation functions of J agents on supports A1, . . . , AJ ⊂
Zn respectively. Let U be their aggregate valuation function on A =

∑J
j=1A

j. The
following are equivalent

(1) Competitive equilibrium exists.

(2) A = convZ(A) and U = Ũ on A.
(3) For every p ∈ −T (fU), DU(p) = convZ(DU(p)).
(4) For every vertex p ∈ −T (fU), DU(p) = convZ(DU(p)).

Computationally, the second condition says that checking competitive equilibrium

involves evaluating U and Ũ at all points in A. The last condition says that this
can also be done by checking a finite set of prices, namely, those which appear as the
negative of the vertices of the tropical hypersurface T (fU). This is because such prices
define support vectors for the inclusion-maximal faces of ∆U . If all lattice points in
all maximal faces of ∆U are marked, then all points of A are marked in ∆U .

We say that u : A ⊂ Zn → R is concave if A = convZA and u = ũ on A. We
conclude with following Lemma 3.3, a characterization for competitive equilibrium
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on a given face. This Lemma shows that competitive equilibrium is equivalent to
checking whether Minkowski sum commutes with taking lattice points. Danilov and
Koshevoy used this in their proof of the Unimodularity Theorem [7,8]. Such questions
also appear in connections to toric varieties [11]. We build on this link in Section 6,
employing theorems from algebraic geometry to obtain new theorems and conjectures
on competitive equilibrium. See Baldwin and Klemperer [2, Theorem 5.16, Theorem
5.21] for other criterion for competitive equilibrium on a given face via lattice counting
approaches.

Lemma 3.3. Let u1, . . . , uJ be concave valuation functions of J agents, let U be
their aggregate valuation function. For p ∈ Rn, competitive equilibrium holds at all
a ∈ DU(p) if and only if

(5) convZ(DU(p)) = convZ(Du1(p)) + . . .+ convZ(DuJ (p)).

Proof. Proof. By Lemma 3.1, DU(p) = Du1(p) + . . . + DuJ (p). Since the valuations
uj are concave, convZ(Duj(p)) = Duj(p) for j = 1, . . . , J . Thus,

DU(p) = convZ(Duj(p)) + . . .+ convZ(Duj(p)).

By Lemma 3.2, competitive equilibrium holds at all a ∈ DU(p) if and only if convZ(DU(p)) =
DU(p). Thus, such competitive equilibrium holds if and only if (5). � �

4. The Unimodularity Theorem.

We are now ready to state and prove the Unimodularity Theorem as formulated by
Baldwin and Klemperer [1] in 2012. Another version was first discovered Danilov,
Koshevoy and Murota [7, Theorem 4] in 2001, motivated by Walrasian economies.
Both proofs, presented in this section, rely on the same key result, Lemma 4.3, which
itself was independently discovered by Howard [13] in 2007. We will present a different
proof of the Unimodularity Theorem in §5.

A non-zero integer vector is called primitive if the greatest common divisor of its
coordinates is 1. A set of vectors D ⊂ Zn is called unimodular if every linearly
independent subset of n vectors in D spans Zn over Z.

Definition 4.1. Let D be a set of primitive integer vectors in Zn and A ⊂ Zn. We
say that a valuation u : A → R is of demand type D if every edge of the subdivision
∆u is parallel to a vector in D.

In other words, u is of demand type D if all the integer facet normals of T (fu) lie in
D. Since the tropical hypersurface T (fU) is the union of T (fuj) for all j = 1, . . . , J ,
it follows that the aggregate valuation U is of demand type D if and only if uj is of
demand type D for all j = 1, . . . , J .

Theorem 4.2 (Unimodularity Theorem. [2,7]). A set D of primitive integer vectors
is unimodular if and only if every collection of concave valuation functions {uj | j =
1, . . . , J} of demand type D has competitive equilibrium.
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+ =

Figure 3. The Minkowski sum of two polytopes can be subdivided
without introducing new edge directions so that each maximal face is a
Minkowski sum of faces of of complementary dimensions. This can be
done, for instance, by translating one of the tropical hypersurfaces in a
generic direction and taking the dual subdivision.

To prove the above theorem, we first recall a lemma, which has appeared in [2,8,13].
For completeness we provide a proof inspired by [2], which is different from previous
proofs.

Lemma 4.3. Suppose D is unimodular. If P and Q are lattice polytopes with edge
directions in D, then convZ(P +Q) = convZ(P ) + convZ(Q).

Proof. Proof. Translating P and Q to contain the origin and replacing Zn with
spanR(P+Q)∩Zn if necessary, we may assume without loss of generality that dim(P+
Q) = n. First consider the case when P and Q are contained in complementary affine
spaces, that is, when

(6) dim(P +Q) = dim(P ) + dim(Q).

Let B and C be maximal linearly independent subsets of primitive edge directions of
P and Q respectively. Then B ∪ C is a basis of Rn from the dimension assumption
above. Moreover it forms a Z-basis for Zn because D is unimodular. With respect
to this basis, P and Q lie in complementary coordinate subspaces, so the Minkowski
sum P + Q coincides with the Cartesian product P × Q, and we have the desired
result.

Now, suppose that (6) does not hold. Let v ∈ Rn be a vector in general position
such that the tropical hypersurfaces T (P ) and T (Q) − v intersect transversely, i.e.
two faces intersect only if the dimension of their Minkowski sum is equal to n. Then
the union T (P ) ∪ (T (Q)− v) is dual to a subdivision of P +Q whose faces have the
form σ+ τ where σ and τ are faces of P and Q with complementary dimensions. See
Figure 3.

Let a be any lattice point in P + Q. Then a belongs to one such face σ + τ . Since
σ are τ are faces of P and Q, their edge directions belong to D as well. The same
argument as above gives σ+ τ = σ× τ and hence (σ+ τ)∩Zn = (σ ∩Zn) + (τ ∩Zn),
which gives a ∈ (P ∩ Zn) + (Q ∩ Zn). � �
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Proof. Proof of the Unimodularity Theorem (Theorem 4.2). Suppose the set D is
unimodular and that all valuations uj : Aj → R are concave of demand type D. For
each p ∈ Rn, conv(Duj(p)) are lattice polytopes with edge directions in D. By
Lemma 3.3 and 4.3, competitive equilibrium holds for all points in DU(p). Thus,
competitive equilibrium holds by part 4 of Lemma 3.2. For the converse, suppose
D is not unimodular. We need to construct a product-mix auction of demand type
D without competitive equilibrium. We will construct one where the valuations are
trivial, that is, zero on their supports and −∞ elsewhere. By Lemma 3.3, it is
sufficient to show that there exists A1, . . . , Ar ⊂ Zn with primitive edges in D, Aj =
convZ(Aj), and such that

∑
j A

j ( convZ(
∑

j A
j). Since D is not unimodular, there

exist linearly independent vectors v1, . . . , vn ∈ D where spanZ{v1, . . . , vn} ( Zn. Let
Ai = {0, vj}. Then A1 + · · · + An consists of the vertices of the parallelopiped with
edges v1, . . . , vn, but convZ(A1 + · · ·+ An) consists of other lattice points because of
non-unimodularity. � �

Example 5 (Gross substitutes and M \-concave valuations). In [14] Kelso and Craw-
ford introduced the gross substitute condition for set functions and showed that com-
petitive equilibrium exists under this condition. To explain this property, let us
consider a special case. Suppose the set of available bundles for each agent is {0, 1}n,
that is, there is only one item of each type for sale. A valuation u has the gross
substitute property if increasing the price of some items does not decrease the de-
mand of other items. That is, for any price vectors p ≤ q and a bundle a ∈ Dp(u),
there is a bundle b ∈ Dq(u) such that {i ∈ a : pi = qi} ⊂ b where the bundles a
and b are considered as subsets of [n]. This implies that the edge directions in ∆u

cannot have two positive (or two negative) entries. So the primitive edge directions
are in directions ei or ei − ej where ei’s are standard unit vectors in Zn. These
vectors form the unimodular system A\

n, which is the projection of the root system
An = {±(ei − ej) | 1 ≤ i < j ≤ n+ 1} ⊂ Zn+1 along a coordinate direction.

In [19, §4, §11], Murota defines M \-concave functions, generalizing the gross sub-
stitute property to other sets of bundles in Zn. In particular, a concave function
u : A → R, where A ⊂ Zn, A = convZ(A), is M \-concave if it can be extended to
a concave function on conv(A), and the faces in the regular subdivision ∆u are pro-
jections of M-convex sets along a coordinate direction. The M-convex sets are also
known as generalized permutohedra [20] or polymatroids. This implies that the set
of primitive edge direction of cells in ∆u belong to A\

n. Since A\
n is unimodular, by

the Unimodularity Theorem, competitive equilibrium holds. See [19, §11] for further
discussions on equivalent characterizations of gross substitutes and connections to the
min-cost flow problem and algorithms.

5. Competitive Equilibrium via Integer Programming.

In this section, we show that competitive equilibrium at a point exists if and only
if the linear program (P) below has an integral optimal solution (Theorem 5.1), or
equivalently, that the linear program defined by (15)-(18) has an integral optimal
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solution (Proposition 5.5). The first program is new, and it makes explicit the con-
nection to the unimodularity of the demand type D. In particular, via the well-known
unimodularity result in integer programming [21, §19], the Unimodularity Theorem
follows as a corollary of Theorem 5.1. The second linear program follows from view-
ing product-mix auction as a multi-unit combinatorial auction. While it does not
immediately yield a proof of the Unimodularity Theorem, it may be computation-
ally and intuitively easier to work with. As an example, we consider the problem of
profit maximization under the competitive equilibrium constraint using these linear
programs.

5.1. Integer programming proof of the Unimodularity Theorem. First we
give a sketch of the main ideas. Recall that we lift points in A ⊂ Zn to A × R by a

height function U : A → R, then take the concave majorant Ũ , which is a function

on conv(A). We say that a point a ∈ A is lifted if Ũ(a) = U(a).

Fix a point a∗ ∈ A. Our goal is to characterize when a∗ is lifted. Regardless of
whether it is lifted or not, a∗ belongs to some face of the regular subdivision ∆U of A
induced by U . Order cells by set inclusion, say that σ is smaller than τ if σ ⊆ τ . Let
D∗ be the smallest cell such that a∗ ∈ conv(D∗). Then all vertices of D∗ are lifted to

the same face of the graph of Ũ in conv(A)× R.

The point a∗ can be expressed, not necessarily uniquely, as some reference point
ã ∈ D∗ plus a rational linear combination of the edge directions of the face D∗. The
aggregate valuation function U is defined to be the maximum among certain sums of

individual valuation under decomposing a∗ into integral bundles, while Ũ(a∗), which
is affine linear on conv(D∗), is the maximum over some rational linear combinations.
Whether a∗ is lifted can be phrased as whether a particular linear program has an
integral solution.

Furthermore, when the set of edges D is unimodular, the set of edges of the face
conv(D∗) is also unimodular, and we can use this to show that the linear program
is guaranteed to have an integral solution. In what follows we make the ideas above
precise and also show the choice of reference point ã does not matter, so we have one
well-defined integer program and its linear relaxation.

Let ∂D∗ be the set of vertices of conv(D∗). Let S(a∗) denote the set of price vectors
that support conv(D∗), that is,

S(a∗) = {p ∈ Rn | Ũ(ã)− p · ã ≥ Ũ(a)− p · a for all ã ∈ ∂D∗, a ∈ A}.

For vertex ã ∈ ∂D∗, the singleton set {ã} is a cell of ∆U . Thus {ã} = DU(p) =
Du1(p) + · · · + DuJ (p) for some p ∈ Rn, so ã can be written uniquely as ã =

∑
j ã

j

where each ãj is a vertex of the subdivision ∆uj of Aj. Then S(a∗) is the set of p ∈ Rn

such that

(7) uj(bj)− p · bj ≤ uj(ãj)− p · ãj for all ã ∈ ∂D∗, bj ∈ Aj, for all j = 1, . . . , J.
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After rewriting, we get that

p · (ãj − bj) ≤ uj(ãj)− uj(bj) for all bj ∈ Aj, j = 1, . . . , J and for all ã ∈ ∂D∗.

Suppose there is a total of N such constraints on p. Let V be the n×N matrix whose
columns are the vectors ãj − bj as above, taken over all ãj and bj’s. Let c ∈ RN be
the vector with entries

(8) uj(ãj)− uj(bj)

corresponding to columns ãj − bj of V respectively. Then we can rewrite S(a∗) as

S(a∗) = {p ∈ Rn | V >p ≤ c}.

Let ã be any point in ∂D∗. Consider the following program in decision variable
p ∈ Rn:

maximize p · (ã− a∗)(D)

subject to V >p ≤ c.

It is the dual of the following primal linear program in decision variable x ∈ RN

minimize c>x(P)

subject to V x = ã− a∗, x ≥ 0.

Theorem 5.1. Let a∗ ∈ A and ã ∈ ∂D∗. Competitive equilibrium for {uj} exists
at a∗ if and only if the optimum of the linear program (P) over x ∈ RN equals its
optimum over x ∈ ZN .

We break the proof of Theorem 5.1 into two smaller lemmas. Lemma 5.2 says that
the optimal solutions of the programs (D) and (P) are independent of the choice of
ã. Lemma 5.3 says that the objective of (P) is minimized exactly when a∗ is lifted.

Lemma 5.2. Every feasible solution is optimal in (D), with objective function value

U(ã)− Ũ(a∗).

Proof. Proof. Consider the graph of the function Ũ on conv(A), which is a subset of
conv(A) × R. All points in the face conv(D∗) is lifted accordingly to an upper face
the convex hull of the graph. For any p ∈ S(a∗), the vector (−p, 1) supports this face.
Since both a∗ and ã belong to conv(D∗), we have

Ũ(a∗)− p · a∗ = Ũ(ã)− p · ã.

Then the value of the objective function in (D) is

(9) p · (ã− a∗) = Ũ(ã)− Ũ(a∗) = U(ã)− Ũ(a∗).

The second equality follows since ã is a vertex, hence a marked point, in the subdi-

vision ∆U . Since the value U(ã)− Ũ(a∗) does not depend on p, it follows that every
feasible solution is optimal in (D). � �
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Lemma 5.3. Any feasible solution x ∈ ZN of (P) satisfies

(10) c>x ≥ U(ã)− Ũ(a∗).

Equality holds for some feasible x ∈ ZN if and only if U(a∗) = Ũ(a∗).

Proof. Proof. By Lemma 5.2, we know that U(ã) − Ũ(a∗) is equal to the optimal
objective value p · (ã − a∗) of the primal problem (P). Weak linear programming
duality [21, §7] then implies (10).

It remains to show the condition for equality to occurs. Any feasible x satisfies
ã−V x = a∗. Recall that columns of V are vectors pointing from points in Aj toward
vertices of ∆uj . Since ã is a vertex of D∗, there exists a unique decomposition

ã = ã1 + · · ·+ ãJ

such that ãj is a vertex of Duj(p), for p such that D∗ = DU(p). Hence any feasible
solution x ∈ Zn gives a way of writing

(11) a∗ = (ã1 + v1) + · · ·+ (ãJ + vJ),

for some vectors v1, . . . , vJ such that each ãj + vj lies in the integer affine span of Aj.

Consider the lift of ãj + vj to Rn × (R∪ {−∞}) by the valuation uj. If ãj + vj /∈ Aj,
then it is lifted to −∞. Since uj is concave and (−p, 1) supports the lift of D∗, we
have

(12) uj(ãj + vj)− p · (ãj + vj) ≤ uj(ãj)− p · ãj

with equality if and only if ãj + vj ∈ Duj(p).

Summing over all j’s, we get

(13)
J∑

j=1

uj(ãj + vj)− p · a∗ ≤ U(ã)− p · ã.

Hence
(14)

U(ã)−Ũ(a∗)
(9)
= p·(ã−a∗)

(13)

≤ U(ã)−
J∑

j=1

uj(ãj+vj) =
J∑

j=1

(
uj(ãj)− uj(ãj + vj)

)
= c>x,

where x gives the coefficients in writing the vj’s as sums of columns in V ; see (11).
The last equality in (14) then follows from the definition of the vector c in (8).

Equality is achieved in (10) and (14) for some feasible x ∈ ZN if and only if equality is
achieved in (12) for every j = 1, . . . , J . This happens if and only if the decomposition
of a∗ in (11) by such x satisfies ãj+vj ∈ Duj(p) for some p ∈ S(a∗), for all j = 1, . . . , J .
But this is the definition of a∗ ∈ DU(p). So, assuming that (P) is feasible, equality

occurs in (10) if and only if U(a∗) = Ũ(a∗). � �
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Proof. Proof of Theorem 5.1. Consider Lemma 5.2. By the linear programming

duality, the optimal value of the linear program (P) over x ∈ RN is also U(ã)− Ũ(a∗).
If (P) is feasible over x ∈ ZN , then Lemma 5.3 implies the desired statement. If (P) is
not feasible over x ∈ ZN , then a∗ is not in A, so there is no competitive equilibrium at
a∗, and the linear and integer program (P) do not agree. Thus the desired statement
also holds true in this case. � �

Corollary 5.4. Theorem 5.1 implies the Unimodularity Theorem.

Proof. Proof. Suppose that all the valuation uj are concave and of unimodular
demand type. Then any point bj ∈ Aj can be reached from any vertex ãj of the
subdivision ∆uj by walking along the primitive edge directions of the subdivision
because of the unimodularity of the set of directions. Thus in (D) and (P), we can
remove from V and c all the columns except those corresponding to the primitive edge
directions of the subdivisions. We are then left with a unimodular matrix V which
gives the same optima for the linear and integer programs as before. A well known
result in integer programming states that (P) always has integral optimal solutions
(see [21, §19]), so by Theorem 5.1 competitive equilibrium exists for all points a∗ ∈ A.
This is precisely the difficult direction of the Unimodularity Theorem. � �

5.2. Weighted set packing and the Cayley trick. Let us fix a supply bundle
a∗ and assume that 0 ∈ Aj for every j. Consider the following set packing problem
where the decision variables are y(a, j) for j = 1, . . . , J and a ∈ Aj.

maximize
J∑

j=1

∑
a∈Aj

y(a, j)uj(a)(15)

subject to y(a, j) ≥ 0 for all j = 1, . . . , J and a ∈ Aj(16) ∑
a∈Aj

y(a, j) = 1 for all j = 1, . . . , J(17)

J∑
j=1

∑
a∈Aj

y(a, j)a = a∗(18)

For a bundle a ∈ Zn, y(a, j) = 1 means that we assign the bundle a to agent j. The
constraints (16), (17) and (18) state, respectively, that each agent j is assigned a
non-negative fraction of bundles, that the total mass of bundles they receive is one,
and that a total of a∗ items is assigned to all agents together. The objective (15) asks
for an assignment that maximizes the total valuation.

Proposition 5.5. Competitive equilibrium for {uj} exists at a∗ if and only if there
exists an integral optional solution to the linear program defined by (15)-(18), that is,
an optimal solution for which all y(a, j) are integers.
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Proof. Proof. By definition (2), the aggregated valuation U(a∗) is the optimum for

the integer program (15). Let Ũ be the concave majorant of U and ũj be the concave
majorant of uj for j = 1, . . . , J . Note that

(19) Ũ(a∗) = max

{
J∑

j=1

ũj(aj) : aj ∈ conv(Aj) and
∑
j∈J

aj = a∗

}
.

Since each uj is concave, uj = ũj on each Aj. Since conv(A) = conv(A1) + . . . +

conv(AJ), for any a∗ ∈ conv(A) ∩ Zn the concave majorant Ũ(a∗) is the optimum
for the linear program (15). Existence of competitive equilibrium at a∗ means that

U(a∗) = Ũ(a∗), so we have the statement of the proposition. � �

The linear program (15)-(18) can be rephrased in terms of the “Cayley trick” as
follows. The Cayley configuration of the collection A1, . . . , AJ ⊂ Zn is a point config-
uration in ZJ × Zn consisting of the points

Cay(A1, . . . , AJ) = ({e1} × A1) ∪ · · · ∪ ({eJ} × AJ).

The Cayley trick says that there is a natural bijection between mixed subdivisions
of the Minkowski sum A =

∑
iAi and subdivisions of the Cayley configuration

Cay(A1, . . . , AJ) [22]. There are powerful theories and software for understanding
the later [9], and thus this trick is often used to compute and understand mixed sub-
divisions. Let C be the matrix whose columns are the points in Cay(A1, . . . , AJ). Let
u be the vector of valuations uj(a) whose entries naturally correspond to columns of
C. Then (15)–(18) can be stated simply as

maximize u · y(20)

subject to y ≥ 0 and Cy =

(
1
a∗

)
(21)

where 1 is the all-one vector in ZJ . That is, competitive equilibrium is a special
optimization question defined using Cayley configurations, which coincides with the
weighted set packing problem.

The two linear programs in Theorem 5.1 and Proposition 5.5 are different ways to view
competitive equilibrium. Depending on the problem, one formulation can be easier
to work with. To illustrate, suppose competitive equilibrium exists at a∗. Suppose
we want to find a price p that gives competitive equilibrium at a∗ and also maximizes
the profit p · a for the seller at the same time.

From the viewpoint of the programs (D) and (P), one needs to solve

maximize p · a∗(22)

subject to V >p ≤ c.

However, forming V and c requires one to find all the vertices ã of D∗ and their
decomposition into sums of vertices ãj in ∆uj . In this case, the set packing view
(15)-(18) gives a more efficient formulation below. Similar questions were studied by
Bikhchandani and Mamer in [3].



PRODUCT-MIX AUCTIONS AND TROPICAL GEOMETRY 17

Lemma 5.6. Let (y∗(a, j))j=1,...,J ;a∈Aj be an optimal integral solution of (15). The
equilibrium price p ∈ Rn that maximizes profit for the seller is the solution to the
following linear program

maximize p · a∗
(23)

subject to uj(a)− p · a ≥ uj(b)− p · b, for every j = 1, . . . , J,

every a ∈ Aj with y∗(a, j) = 1, and every b ∈ Aj adjacent to a in ∆uj .

Proof. Proof. Let F be the set of feasible solutions of the linear program in the
Lemma. We wish to show that F = S(a∗) = {p ∈ Rn | a∗ ∈ DU(p)}.
If p ∈ F , then {a ∈ Aj | y∗(a, j) = 1} ⊂ Duj(p), so a∗ ∈ DU(p), since

a∗ =

 ∑
aj∈Aj :y∗(aj ,j)=1

aj

 ∈
J∑

j=1

Duj(p) = DU(p).

This shows that F ⊆ S(a∗).

Now suppose that p ∈ S(a∗). That is, there are bj ∈ Duj(p) such that a∗ =
∑J

j=1 b
j.

For each j, let aj be the unique element of Aj for which y∗(aj, j) = 1. Since bj ∈
Duj(p), we have uj(bj)− p · bj ≥ uj(aj)− p · aj, and

U(a∗)− p · a∗ =
J∑

j=1

(
uj(bj)− p · bj

)
≥

J∑
j=1

(
uj(aj)− p · aj

)
= U(a∗)− p · a∗.

This shows that all the inequalities in (7) are attained at equality, so uj(bj)− p · bj =
uj(aj)− p · aj for all j. Thus aj ∈ Duj(p) for all j, and p is a feasible solution of (23).

� �

5.3. Competitive equilibrium and subset sum. Our various formulations of
competitive equilibrium result in several algorithms on verifying the existence of com-
petitive equilibrium at a given point a∗. Without further assumptions, they all involve
the subset sum problem, and are thus all NP-complete.

There are different layers of difficulties. Firstly, for an arbitrary bundle a∗ ∈ Zn,
verifying if a∗ ∈ A =

∑J
j=1A

j is a subset sum problem, even when there is only one

type of good (n = 1). Secondly, suppose we know that a∗ ∈ A. One may assume
as in Proposition 5.5 that uj is concave and 0 ∈ Aj for every j. Then for n = 1, all
agents have unimodular demand type, so competitive equilibrium trivially holds for
n = 1. For n > 1, however, the Unimodularity Theorem may not apply. By Lemma
3.2, competitive equilibrium at a∗ holds if and only if U(a∗) = Ũ(a∗) where U is
the aggregate valuation and Ũ is its concave majorant. Computing U(a∗) is again a
subset sum problem. This is spelled out in Proposition 5.5. Knowing that a∗ ∈ A
means the linear program (15) has a feasible real solution over R, but this does not
guarantee an integral solution.
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Alternatively, suppose we know one price p ∈ Rn such that a∗ ∈ DU(p). As the indi-
vidual valuations {uj} are concave, one can compute Duj(p). One can then setup the
integer program (P), whose solution guarantees competitive equilibrium by Theorem
5.1. The program (P) asks whether one can write a∗ as ã plus an integral combination
from a given set of vectors V . It is yet another instance of subset sum.

Under the assumption that a∗ ∈ A, the Unimodularity Theorem replaces the sub-
set sum problems in (15) and (P) by a sufficient, easy-to-check condition (namely,
unimodularity of a set of vectors) for competitive equilibrium to hold at a∗.

The Subgroup Indices Theorem of Baldwin and Klemperer [2, Theorem 5.16] give an
alternative criterion when the tropical hypersurfaces {Tuj} have transverse intersec-
tions. This means the values uj(a) for a ∈ Aj are sufficiently general, so that all
intersections of the tropical hypersurfaces T (fuj) locally looks like transverse inter-
section of affine spaces. This can always be achieved by adding a small real number
to each value uj(a), for example. Assuming that one knows the face DU(p) and its
decomposition as Minkowski sums of Duj(p) for j = 1, . . . , J , transverse intersec-
tion implies that all but at most n of the faces Du1(p), . . . , DuJ (p) are vertices, say,
Duj(p) = {aj} for j = n + 1, . . . , J . This effectively reduces the dimension of the
subset sum problem, from decomposing a∗ into a sum of J terms to that of at most n
terms. See [2] and discussions therein on sufficient conditions for competitive equilib-
rium in this setting. From a computational viewpoint, transverse intersections alone
do not guarantee competitive equilibrium at some given a∗. Instead, it guarantees
that for fixed n, competitive equilibrium can be jointly checked at all points in time
polynomial in J .

6. Stable auctions and the Oda conjecture

6.1. Stable auctions and competitive equilibrium for n = 2. Consider a product-
mix auction with J agents and n product types. Let us partition the agents into dis-
joint, non-empty subsets, and compute the product-mix auction on each one. What
properties of these subset auctions would guarantee that the original auction has
competitive equilibrium? Such divide-and-conquer conditions are naturally attrac-
tive, both theoretically and computationally. In this section, we give such a sufficient
condition when n = 2 (Theorem 6.4). The analogous statement in higher dimensions
is equivalent to the Oda conjecture in toric geometry, discussed in Section 6.3.

Suppose all the subset auctions individually have competitive equilibrium. This con-
dition is clearly not sufficient to guarantee competitive equilibrium overall. For in-
stance, when each subset contains exactly one agent, the existence of competitive
equilibrium in each subset is equivalent to individual valuations being concave. How-
ever, there are product-mix auctions with concave individual valuations but without
competitive equilibrium. Counter-intuitively, we show that individual competitive
equilibrium in the subset auctions is not even necessary. That is, our conditions in
Theorem 6.4 allow for competitive equilibrium to fail for some of the subset auctions,
yet they guarantee that the joint auction has competitive equilibrium.
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Theorem 6.4 is complementary to results in [2], which focus on transverse intersections
of tropical hypersurfaces. In a way, our setup is as far as possible from transverse
intersections: the hypothesis implies that the tropical hypersurface for a subset of the
agents contains the union of the rest.

Definition 6.1 (Stable auction). Consider a product-mix auction with J ≥ 1 agents
with concave valuations, and n ≥ 1 product types. Partition the agents into K ≤ J
disjoint, non-empty sets, and run the product-mix auction separately on each set.
Let Uk be the aggregate valuation of the k-th set of agents, for 1 ≤ k ≤ K. We call
such a partition stable if the first subset auction has competitive equilibrium, and

(24) T (fUk) ⊆ T (fU1) for all k = 1, . . . , K.

We say that a product-mix auction is stable if it has a stable partition. �

Intuitively, the stable condition (24) says that the first subset auction is ‘rich’ enough
to capture much information about the original auction. Note that we require com-
petitive equilibrium to hold only for the first subset auction. For the other subset
auctions, competitive equilibrium is allowed to fail. Instead, we put restrictions on
their tropical hypersurfaces via (24). There are two ways to interpret this condition.
First, by Lemma 3.1,

T (fU) =
J⋃

j=1

T (fuj) =
K⋃
k=1

T (fUk) = T (f(U1)).

In other words, suppose one were to iteratively compute T (fU), the set of price
indifferences, by adding in one agent at a time. Then (24) means that this set
does not change after the first subset of agents are processed. That is, the locus of
indifference prices stabilizes, hence the name stable auction. This notion of stability
is about union of tropical hypersurfaces, not to be confused with stable intersections
in tropical geometry.

One can also understand (24) in terms of the demand sets DU1 , . . . , DUK . For each
price p ∈ R2, we can count how many product bundles are demanded in each subset
auction at this price, ignoring scalings by constant multiples. Lemma 6.3 states that
if for all prices p, this number does not go up after the first subset auction, then (24)
holds.

We now give a simple sufficient condition for the condition (24). The following defi-
nition generalizes the concept of a primitive edge direction.

Definition 6.2. For P ⊂ Zn, the primitive polytope of P , denoted P↓, is the smallest
polytope Q ⊂ Zn such that c ·Q = P for some c ∈ N.

Lemma 6.3. The statement (24) is true if

(25) |(DU1(p))↓| ≥ |(DUk(p))↓| for all k = 1, . . . , K.

That is, at any price p ∈ R2, there are at least as many primitive demanded good
bundles in the first auction as those in the others.
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Proof. Proof. Note that for any polytope P ⊂ Zn, |P | ≥ |P↓| ≥ 1, and |P↓| = 1 if
and only if |P | = 1. If −p ∈ T (fUk), then |DUk(p)| ≥ 2, so |(DUk(p))↓| ≥ 2. By (25),
|DU1(p)| ≥ 2. Thus −p ∈ T (fU1), so (24) holds. � �

Theorem 6.4. For n = 2 product types, a stable product-mix auction has competitive
equilibrium.

Proof. Proof. Consider a stable partition with K subset auctions. By Lemma 3.1,
T (fU) =

⋃K
k=1 T (fUk) = T (fU1). Therefore, without loss of generality, one can fix

the first auction, and assume that all the remaining auctions consist of a single agent
only. Now, let p be a vertex of −T (fU). By Lemma 3.2, it is sufficient to show that
competitive equilibrium holds for all points in convZDU(p). Since each valuation Uk

is concave by assumption, by Lemma 3.3, we need to show that

(26) convZ(DU1(p) + . . .+DUK (p)) = convZ(DU1(p)) + . . .+ convZ(DUK (p)).

As T (fU) = T (fU1) ⊇ T (fUk), the normal fan of DU1(p) refines the normal fan of
DUk(p) for all k = 1, . . . , K. Theorem 1 of [12] precisely states that this normal fan
condition implies (26). This concludes the proof. � �

Corollary 6.5. For n = 2 product types, if all agents have identical concave valua-
tions, then competitive equilibrium exists for all relevant supply bundles, regardless of
demand types.

The next example shows that a product-mix auction can be stable even though some
subset of agents together do not have a competitive equilibrium.

Example 6. Suppose n = 2 and J = 3. Let A1 = {(0, 0), (1, 2), (1, 0), (1, 1), (2, 2)},
A2 = {(0, 0), (1, 0)}, A3 = {(0, 0), (1, 2)}. Let the valuations u1, u2, u3 be zero on
A1, A2 and A3, respectively, and −∞ elsewhere. Partition the agents into K = 2
sets, the first consists of agent 1, the second consists of agents 2 and 3. Here D =
{(1, 0), (1, 2)} is not a unimodular set, and indeed, competitive equilibrium fails at
(1, 1) for the second subset auction. The first auction with just agent 1 has competitive
equilibrium. One can verify that (25) holds. By Theorem 6.4, the auction with all
three agents has competitive equilibrium. This is readily verified in Figure 4.

6.2. Identical valuations and the integer decomposition property. The ana-
logue of Corollary 6.5 fails for three or more product types. That is, for n ≥ 3, there
exists product-mix auctions where all agents have identical concave valuations, yet
competitive equilibrium fails. The immediate consequence is that the analogue of
Theorem 6.4 fails in dimension ≥ 3.

Proposition 6.6. For n ≥ 3, there are auctions where

• all the agents have identical concave valuations, and
• competitive equilibrium fails.

In particular, for n ≥ 3, there are stable auctions without competitive equilibrium.



PRODUCT-MIX AUCTIONS AND TROPICAL GEOMETRY 21

Figure 4. The regular subdivisions of the three individual valuations
(left) and the aggregate valuation (right). Figure accompanies Exam-
ple 6, where a stable product-mix auction has competitive equilibrium
for all but fails for a subset of the agents.

Proof. Proof. It is sufficient to do one explicit example for n = 3. Consider two
agents (J = 2) with three product types (n = 3). Let

A′ := {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Note that A′ = convZA
′. Let u′ : Z3 → R be any function supported on A′, and

−∞ elsewhere. Let the two agents have identical valuations u1 = u2 = u′. As
points in A′ are affinely independent, the corresponding subdivision ∆u′ is trivial.
Let A = A′ + A′ = {a+ b : a ∈ A′, b ∈ A′}. The vertices of A are the four points

{(0, 0, 0), (2, 2, 0), (2, 0, 2), (0, 2, 2)}.

Let a∗ = (1, 1, 1). Then a∗ = 1
4
(0, 0, 0) + 1

4
(2, 2, 0) + 1

4
(2, 0, 2) + 1

4
(0, 2, 2), so a∗ ∈

convZ(A). However, a∗ /∈ A, so competitive equilibrium fails at a∗. � �

Let us consider what the Unimodularity Theorem has to say about the counterexam-
ple in the proof of Proposition 6.6. Let D be the set of primitive edge directions of A′.
This set is not unimodular: among other vectors, it contains (0, 1, 1), (1, 0, 1), (1, 1, 0),
whose span over Z does not contain (1, 1, 1), for instance. The Unimodularity The-
orem says that from D, there exists some product-mix auction of demand type D
that fails competitive equilibrium. We exhibited such an example in its proof. The
theorem does not imply that the particular case in the proof of Proposition 6.6 has
to fail.

The example above is an instance of a general question about integral polytopes.
Suppose we fix an integral polytope P ⊂ Rn, and suppose all the J agents have
identical valuations, which are 0 on P ∩ Zn and −∞ else. The trivial partition with
one agent in each subset is stable. Thus, our auction is stable. By Lemma 3.3,
competitive equilibrium means

(27) (J · P ) ∩ Zn = (P ∩ Zn) + · · ·+ (P ∩ Zn)︸ ︷︷ ︸
J times
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A polytope P that satisfies (27) for all J ∈ N is said to have IDP (integer decomposi-
tion property). Polytopes with IDP are also called integrally closed or normal, but we
will use the term IDP because it has the most consistent meaning across literature.
Corollary 6.5 says that for n ≤ 2, all integral polytopes have IDP [12]. This is no
longer true for n ≥ 3. The tetrahedron A′ in Example 6.6 is an integral polytope
that does not have IDP. However, a result of Bruns, Gubeladze, and Trung [5, The-
orem 1.3.3] says that for any integral polytope P and any integer c ≥ dim(P ) − 1,
the dilated polytope cP has IDP. See [6, Theorem 1.1] for an easy proof. We can
interpret this result in terms of product mix auctions as follows.

Definition 6.7 (c-refinement). For c ∈ N, the c-refinement of a valuation u : A ⊂
Zn → R is a function ū : c · A ⊂ Zn → R, such that ū is the concave majorant of
function defined by ū(c ·a) = c ·u(a) for all a ∈ A. The c-refinement of a product-mix
auction with valuations (u1, . . . , uJ) is one with valuations (ū1, . . . , ūJ), where ūj is
the c-refinement of uj for j = 1, . . . , J .

Refinements reflects the effect of changing the base unit of in a product-mix auction.
For instance, suppose that instead of selling bananas and apples in boxes of 10 each,
one now sells them individually. Instead of querying the agents at the new points,
one infers their values by discretizing the original valuation along a grid with width
1/10, and then multiply by 10 to get back a product-mix auction. Doing this for all
agents result in a product-mix auction in a finer unit, hence the name refinement.

The c-refinement of a valuation function u does not change the set of primitive edges
in ∆u, and thus does not change its demand type. The c-refinements of an arbi-
trary auction can fail to have competitive equilibrium. The Bruns–Gubeladze–Trung
theorem translates to a special class of stable auctions where there always exists c-
refinements with competitive equilibrium. This can be seen as a weak analogue of
Corollary 6.5 in higher dimension.

Theorem 6.8 ( [5, 6]). Consider an auction with n product types, where all agents
have identical concave valuations u : A→ R for some A ⊂ Zn. Then the c-refinement
of this auction has competitive equilibrium for any c ≥ n− 1.

In other words, in this situation competitive equilibrium exists if we are willing to
subdivide each unit into n − 1 pieces. The result holds regardless of the demand
types.

Proof. Proof. Let ∆u denote the regular subdivision of A, the demand complex, for
each agent. For J agents, with the aggregate valuation U , each cell of the regular
subdivision ∆U has the form σ + · · · + σ (J times) for some cell σ of ∆u. Since u is
concave, convZ(σ) = σ. Then by Bruns–Gubeladze–Trung, for any integer c ≥ n− 1,
the dilation c · σ has IDP for all cells σ in ∆U . This implies that J · (c · σ) =
convZ(J · c · σ) ∩ Zn, as needed. So the refinement Ū has competitive equilibrium.

� �
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This theorem should be not be confused with the statement that the linear pro-
gram in (P) has a rational solution. The later guarantees that to each fixed point
a ∈ convZ(A), one can find a ca ∈ N such that the ca-refined auction has competitive
equilibrium at a. Applied over all points a ∈ convZ(A), this says that for an appro-
priate c∗ ∈ N, the auction has competitive equilibrium for all points in c∗ · convZ(A).
However, this set can be strictly smaller than convZ(c∗ · A), the support of the c∗-
refinement of the auction. Therefore, the c∗-refined auction may not have competitive
equilibrium.

6.3. Theorem 6.4 in higher dimensions and the Oda Conjecture. To gener-
alize Theorem 6.4 or the more modest Corollary 6.5 to dimensions n ≥ 3, we need
sufficient conditions to ensure that polytopes have IDP. Unfortunately, except for
some limited cases, there are no known simple criterion. The most famous conjecture
in this direction is the smooth polytope conjecture. A full-dimensional lattice polytope
in Rn is called smooth if at every vertex, the primitive integral edge directions are
linearly independent and unimodular. Smoothness here does not refer to ‘roundness’,
but rather to the fact that the toric variety defined by such polytopes are smooth. Up
to unimodular transformations there are finitely many smooth polytopes in a given
dimension containing a given number of lattice points, see [4].

Conjecture 6.9 (Smooth Polytope Conjecture). Smooth polytopes have IDP.

In proving Theorem 6.4, we relied on [12, Theorem 1]. Its counterpart in higher
dimension, which generalizes the Smooth Polytope Conjecture, is the Oda Conjecture
below. For further discussions and recent progress on this conjecture, see [17].

Conjecture 6.10 (Oda Conjecture). In any dimension n ≥ 1, equation (5) is true
if one polytope Fi is smooth and its normal fan refines the normal fan of Fj for all
j = 1, . . . , J .

We restate the Oda conjecture in terms of the stable auction below. Obvious adapta-
tion of the proof of Theorem 6.4 shows these two conjectures are equivalent. In partic-
ular, any other sufficient condition for competitive equilibrium in stable product-mix
auctions is equivalent to weaker forms of the Oda conjecture.

Conjecture 6.11 (Oda Conjecture in terms of stable auctions). Suppose a product-
mix auction with aggregate valuation U is stable and that each maximal face in the
regular subdivision ∆U is smooth. Then the product-mix auction has competitive equi-
librium.
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