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Abstract

We suggest the first strongly subexponential and purely combinatorial algorithm for solving the mean payoff games problem. It
is based on iteratively improving the longest shortest distances to a sink in a possibly cyclic directed graph.

We identify a new “controlled” version of the shortest paths problem. By selecting exactly one outgoing edge in each of the
controlled vertices we want to make the shortest distances from all vertices to the unique sink as long as possible. The decision
version of the problem (whether the shortest distance from a given vertex can be made bigger than a given bound?) belongs to the
complexity class NP ∩ CONP. Mean payoff games are easily reducible to this problem. We suggest an algorithm for computing
longest shortest paths. Player MAX selects a strategy (one edge from each controlled vertex) and player MIN responds by evaluating
shortest paths to the sink in the remaining graph. Then MAX locally changes choices in controlled vertices looking at attractive
switches that seem to increase shortest paths lengths (under the current evaluation). We show that this is a monotonic strategy
improvement, and every locally optimal strategy is globally optimal. This allows us to construct a randomized algorithm of complexity
min(poly·W, 2O(

√
n log n)), which is simultaneously pseudopolynomial (W is the maximal absolute edge weight) and subexponential

in the number of vertices n. All previous algorithms for mean payoff games were either exponential or pseudopolynomial (which is
purely exponential for exponentially large edge weights).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Infinite games on finite graphs play a fundamental role in model checking, automata theory, logic, and complexity
theory. We consider the problem of solving mean payoff games (MPGs) [15,29,28,16,37], also known as cyclic games
[20,30]. In these games, two players take turns moving a pebble along edges of a directed edge-weighted graph. Player
MAX wants to maximize and player MIN to minimize (in the limit) the average edge weight of the infinite path thus
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formed. MPGs are determined, and every vertex has a value, which each player can secure by a uniform positional
strategy. Deciding whether the value is above (below) a certain threshold belongs to the complexity class NP∩ CONP.
The well-known parity games, also in NP ∩ CONP, polynomial time equivalent to model checking for the �-calculus
[19,17], are polynomial time reducible to MPGs. Other well-known games with NP ∩ CONP decision problems, to
which MPGs reduce, are simple stochastic [12] and discounted payoff [31,37] games. At present, despite substantial
efforts, there are no known polynomial time algorithms for any of the games mentioned.

All previous algorithms for MPGs are either pseudopolynomial or exponential. These include a potential transforma-
tion method by Gurvich et al. [20] (see also Pisaruk [30]), and a dynamic programming algorithm solving k-step games
for big enough k by Zwick and Paterson [37]. Both algorithms are pseudopolynomial of complexity O(poly(n) ·W),
where n is the number of vertices and W is the maximal absolute edge weight. The algorithm [37] always makes
�(poly(n) · W) steps, and for the algorithm [20] there are known game instances on which it shows the worst case
�(poly(n) ·W) behavior, where W may be exponential in n. Reduction to simple stochastic games [37] and application
of the algorithm from [25] gives subexponential complexity (in the number of vertices n) only if the game graph has
bounded outdegree (see the remark below). The subexponential algorithms we suggested for simple stochastic games
of arbitrary outdegree in [4,5,11] make at most 2O(

√
n log n) iterations. However, in a reduction from MPGs [37], large

weights result in long rational coefficients. This prevents each iteration, which requires solving a linear program, to run
in strongly polynomial time, independent of the weights. Solving resulting linear programs by a combinatorial subex-
ponential algorithm [22,26,27] squares the overall complexity. This drawback is overcome with the new techniques
presented here, which avoid the detour over simple stochastic games and linear programming subroutines altogether.

We suggest the first strongly subexponential strategy improvement algorithm for MPGs, which starts with some
strategy of the maximizing player1 MAX and iteratively “improves” it with respect to a simple strategy evaluation
function, based on computing shortest paths in the residual graph. Iterative strategy improvement algorithms are known
for the related simple stochastic [21,13], discounted payoff [31], and parity games [34,3]. Until the present paper, a direct
combinatorial iterative strategy improvement for MPGs appeared to be elusive. Reductions to discounted payoff games
and simple stochastic games (with known iterative strategy improvement) lead to numerically unstable computations
with long rationals and solving linear programs. The algorithms suggested in this paper are free of these drawbacks.
Our method is discrete, requires only addition and comparison of integers in the same order of magnitude as occurring
in the input. In the combinatorial model of computation, the subexponential running time bound is independent of the
edge weights (strongly subexponential).

We present a simple and discrete randomized subexponential strategy improvement scheme for MPGs, and show
that for any integer p, the set of vertices from which MAX can secure a value > p can be found in time

min(O(n2 · |E| ·W), 2O(
√

n log n)),

where n is the number of vertices and W is the largest absolute edge weight. The first bound matches those from
[20,37,30], while the second part is an improvement when, roughly, n log n < log2 W .

The new strategy evaluation for MPGs may be used in several other iterative improvement algorithms, which are
also applicable to parity and simple stochastic games [34,21,13]. These include random single switch, all profitable
switches, and random multiple switches; see, e.g., [6,8]. They are simplex-type algorithms, very efficient in practice,
but without currently known subexponential upper bounds, and no nontrivial lower bounds.

By a known simple reduction from parity games [18,19,31,17] to MPGs, our algorithm can be immediately applied
for solving parity games. In contrast to the previous strategy improvement algorithms [34,3], our new algorithm is
conceptually much simpler, more efficient, and easier to implement.

Remark (On Ludwig’s [25] algorithm). The algorithm [25] is subexponential 2O(
√

n) only for binary simple stochastic
games, in which every vertex has outdegree at most two (more precisely, for games with outdegree bounded by a
constant). Although a simple stochastic game, with arbitrary vertex outdegrees, reduces to a binary one, this may lead

to a quadratic O(n2) blow-up in the number of vertices, and the algorithm [25] becomes exponential: 2O(
√

n2)=2O(n) in
the number of vertices. One may weakly argue that the algorithm [25] is anyway subexponential in the length of input,

1 The games are symmetric, and the algorithm can also be applied to optimize for the minimizing player. This is an advantage when the minimizing
player has fewer choices.
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since the length of input for arbitrary outdegree games is O(n2), for representing edges. However, a straightforward
brute-force algorithm systematically exploring all up to 2n log n positional strategies and selects the best one is also
subexponential in the length of input in this case! So the algorithm [25] does not show drastic advantages over the
brute-force one for arbitrary outdegree games. The first (really) subexponential 2O(

√
n log n) algorithms (in the number of

vertices n, which should be recognized as a the adequate measure of complexity) for simple stochastic games of arbitrary
outdegree are based on different (compared to [25]) randomization schemes and were first suggested in [4,3,6,8,11].
Note how the real subexponential bound 2O(

√
n log n) compares favorably to “subexponential” 2O(n).

Outline: Section 2 defines MPGs and introduces the associated computational problems. Section 3 describes the
longest shortest paths (LSP) problem and its relation to MPGs. In addition, it gives an intuitive explanation of our
algorithm and the particular randomization scheme that achieves subexponential complexity. Section 4 describes the
algorithm in detail and Section 5 proves the two main theorems guaranteeing correctness. In Section 6 we explain
how to improve the cost per iteration, while detailed complexity analysis is given in Section 7. Possible variants of the
algorithm are discussed in Section 8. Section 9 shows that the decision version of the LSP problem is in NP ∩ CONP.
In Section 10 we give an example graph family for which the wrong choice of iterative improvement policy leads to
an exponential number of iterations. Finally, in Section 11 we apply our algorithm to solving parity games.

2. Preliminaries

2.1. Mean payoff games

A mean payoff game (MPG for short) [29,28,16,20,37] is played by two adversaries, players MAX and MIN, on
a finite, directed, edge-weighted, leafless2 graph G = (V , E, w), where V = VMAX ∪ VMIN, VMAX ∩ VMIN = ∅,
E ⊆ V × V , and w : E → Z is the weight function. Starting from some designated initial vertex, the players move
a pebble along edges of the graph. Whenever, the pebble comes to a vertex v ∈ VMAX, player MAX makes a move by
selecting some edge (v, u) and the pebble goes to vertex u. Similarly, MIN selects a move when the pebble is in a vertex
from VMIN. The duration of the game is infinite and the resulting infinite sequence of edges e1e2e3 . . . is called a play.
Player MAX wants to maximize the payoff

�max = lim inf
k→∞

1

k
·

k∑
i=1

w(ei),

whereas player MIN wants to minimize the payoff

�min = lim sup
k→∞

1

k
·

k∑
i=1

w(ei).

A positional strategy for MAX is a function � : VMAX → V such that (v, �(v)) ∈ E for all v ∈ VMAX. Positional
strategies for MIN are defined symmetrically. Using a positional strategy �, the player always deterministically selects
the same successor �(v) in each vertex v where he makes a move, independently of the history of the play. It turns out
that in every MPG each vertex v has a value �(v) such that whenever a play starts in v, MAX has an optimal positional
strategy that secures him a payoff �max ��(v) against any strategy of MIN, and, vice versa, MIN has an optimal positional
strategy that secures him a payoff �min ��(v).3 Moreover, both players have uniform such strategies: the same optimal
positional strategy may be used independently of the initial vertex of the game. Revealing this strategy before a play
starts is not a disadvantage and does not lead to a suboptimal payoff. Accordingly, throughout the paper we restrict our
attention to positional strategies only. Given a positional strategy � for MAX, define G�= (V , E′), by deleting all MAX

edges not used in �, i.e., E′ = E\{(v, u)|v ∈ VMAX and �(v) �= u}. Note that if both players use positional strategies,
then any play will follow a (possibly empty) simple path to a simple cycle, where it will stay forever. The value of this
play is the average edge weight on this cycle. See [29,28,16,20,30,37,7] for details.

2 i.e., every vertex has at least one outgoing edge.
3 Thus, if both use optimal strategies, �max = �min = �(v). Deviating from an optimal strategy may only lead to a suboptimal payoff for the

player.
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2.2. Algorithmic problems for MPGs

We will address several computational problems for MPGs.
The decision problem: Given an MPG, a distinguished start vertex, and a threshold value p, can MAX secure a

payoff > p?
p-mean partition: Given p, partition the vertices of an MPG G into subsets G�p and G>p such that MAX can secure

a payoff > p starting from every vertex in G>p, and MIN can secure a payoff �p starting from every vertex in G�p.
Ergodic partition: Compute the value of each vertex of the game. This gives a partition of the vertices into subsets

with the same value. Such a partition is called ergodic [20].
Clearly, the p-mean partitioning subsumes the decision problem. Whenever one player fixes a positional strategy, an

optimal counterstrategy of the opponent can be computed in polynomial time, by using Karp’s minimum mean weight
cycle algorithm; see [14, p. 617]. Therefore, the decision problem is in NP∩CONP, and there is a straightforward expo-
nential (in the number of vertices of one player) time algorithm exploring all MAX strategies. Known pseudopolynomial
time algorithms were surveyed in the introduction.

Our basic algorithm solves the 0-mean partition problem, which subsumes the p-mean partition. Indeed, subtracting
p from the weight of every edge makes the mean value of all cycles (in particular, of optimal cycles) smaller by p, and
the problem reduces to 0-mean partitioning. The complexity remains the same for integer thresholds p, and changes
slightly for rational ones; see Section 7. Until Section 7.2 we assume such thresholds to be integral. In Section 7.2 we
extend the basic algorithm to solve the ergodic partition problem. Another problem to which our algorithm may be
extended is finding optimal strategies in MPGs.

Some of our proofs rely on an equivalent finite version of MPGs [16], where a play stops as soon as some vertex is
revisited and the mean value on the resulting cycle determines the payoff. Thus, for a play e1e2 · · · erer+1 · · · es , where
er · · · es is a simple cycle, the value is

∑s
i=r w(ei)/(s − r + 1). Ehrenfeucht and Mycielski [16] proved the following

equivalence (see also [7]).

Theorem 2.1. The value of every vertex in the finite duration version of MPGs equals its value in the infinite duration
version.

The next corollary will be used implicitly throughout the paper.

Corollary 2.2. A positional strategy � of MAX gives a value > p in a vertex, iff all cycles reachable from it in G� have
average value > p.

Since the partition threshold 0 has a special role in our exposition, we call the G>0 partition the winning set of MAX.

3. A high-level description of the algorithm

We start by informally describing the essential ingredients of our algorithm.

3.1. The longest shortest paths problem

The algorithm for computing 0-mean partitions in MPGs is based on a new “controlled” version of the well-known
single source4 shortest paths problem on directed graphs. Suppose a given digraph has some distinguished set of
controlled vertices, and we can select exactly one edge leaving every controlled vertex, deleting all other edges from
these vertices. Such a selection is called a positional strategy. We want to find a positional strategy that maximizes the
shortest paths from all vertices to the distinguished sink (also avoiding negative cycles that make the sink unreachable
and the distances −∞).

For a strategy � denote by G� the graph obtained from G by deleting all outgoing edges from controlled vertices,
except those used in �.

4 Actually, we use the symmetric and equivalent “single-sink” shortest paths problem as more adequate for our purposes. A sink is a vertex with
no outgoing edges.
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Formally, the problem is specified as follows.
THE LONGEST SHORTEST PATHS PROBLEM (LSP).
Given: (1) a directed edge-weighted graph G with a unique sink t,
(2) a distinguished set U ⊆ V [G] of controlled vertices, with t /∈U .
Find: a positional strategy � selecting exactly one outgoing edge from each vertex in U such that in the graph G�

the length of the shortest path from every vertex to sink t is as large as possible (over all positional strategies).
Distances. As usual, the length of a finite simple path to the sink in G� equals the sum of edge weights on the path.

In a cyclic G� the distances to the sink are defined as

(1) +∞ for every vertex on a positive weight cycle;
(2) −∞ for every vertex on a negative weight cycle;
(3) 0 for every vertex on a 0-weight cycle.

The last clause is motivated by our application to the 0-mean partition problem for MPGs, in which 0-weight loops
do not contribute to the G>0 partition. For the real LSP it would be more logical to postulate that every vertex on a
0-weight cycle has distance +∞ to the sink, as we do in Section 9.

We make sure that all strategies � generated by iterative improvement in every run of our algorithm are admissible,
i.e., the graph G� has no nonpositive weight cycles. Thus, computing shortest paths in G� always yields finite or +∞
distances, and the last two clauses in the distance definition above never need to apply.

For our purpose of finding 0-mean partitions in MPGs, it suffices to consider a version of the LSP problem with the
following additional input data.

Additionally given: an admissible strategy �0, which guarantees that in the graph G�0 there are no cycles with
nonpositive weights.

With this additionally supplied strategy �0 we know that the longest shortest distance from every vertex to the sink
t is at least finite, > − ∞. It is not excluded that �0 or the optimal strategy will make some distances equal +∞
(this is the goal of MAX, which he will try to figure out by iterative improvement starting with �0). We prove that our
algorithm never generates an inadmissible strategy. Treating 0-weight cycles by maintaining the admissibility invariant
for the algorithm (rather than just assuming wlog that 0-weight cycles are absent, as we do in Section 9) adds certain
complications, but pays off with a better complexity, as explained below.

The simplifying additional input strategy is easy to provide in the reduction from MPGs by adding 0-weight edges
from all MAX vertices to the sink.Actually, it is more difficult to obtain a subexponential iterative improvement algorithm
without this “additionally given” strategy. Indeed, it is conceivable that there are no admissible strategies at all, and
every strategy allows for reaching a negative cycle from every vertex (although we do not know that a priori). Then
there is no apparent way to figure this out, except the full exponential enumeration and verification of the strategy
space. This is because the neighborhood structure on this space is completely “flat” and moving between neighboring
strategies provides no improvement.

Note that for DAGs, the LSP problem can be easily solved in polynomial time by dynamic programming. Start by
topologically sorting the vertices and proceed backward from the sink (distance 0), using the known longest shortest
distances for the preceding vertices.

3.2. Relating the 0-mean partition and LSP problems

The relation between finding 0-mean partitions and computing longest shortest paths is now easy to describe. To find
a 0-mean partition in an MPG G, just add a retreat vertex t (belongs to MIN and will later become the sink) to the game
graph with a self-cycle edge of weight 0, then add a 0-weight retreat edge from every MAX vertex to t. From now on,
we assume that G has undergone this transformation. Clearly, we have the following property.

Proposition 3.1. Adding the retreat does not change the 0-mean partition of the game, except that the new retreat
vertex belongs to the G�0 part.

This is because we do not add anything allowing MAX to create new positive cycles, or MIN to create new nonpositive
cycles (except in retreat t). MAX will prefer playing to t only if all other positional strategies lead to negative cycles.

The key point is now as follows. Break the self-cycle in t and consider the LSP problem for the resulting graph, with
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t being the unique sink. The set VMAX becomes the set of controlled vertices, and the initial strategy (the “additionally
given” clause in the LSP definition above) selects retreat t in every controlled vertex, guaranteeing that no vertex has
distance −∞.5 We have the following equivalence.

Theorem 3.2. The partition G>0 consists exactly of those vertices for which the longest shortest path distance
to t is +∞.

Proof. The same MAX positional strategy simultaneously achieves positive weight cycles both in the MPG and the
corresponding LSP instance. Recall that by convention 0-weight cycles yield 0 distances to the sink. �

3.3. Blocking nonpositive cycles

As early as in 1991 Leonid Khachiyan [23] considered the following variant of the LSP problem, stated here using
our terminology.

BLOCKING NONPOSITIVE CYCLES.
Given: a directed edge-weighted leafless graph and a vertex subset, in which the controller must choose exactly one

outgoing edge per vertex and delete all other outgoing edges.
Find: a subset B of vertices from which the controller can make unreachable any nonpositive weight cycles.
In the decision version the question is whether a given vertex belongs to B. As an immediate consequence of the

preceding definitions we have the following.

Proposition 3.3.

(1) The problems 0-mean partition in MPGs and blocking nonpositive cycles are polynomial time equivalent.
(2) The decision version of blocking nonpositive cycles is in NP ∩ CONP.
(3) Blocking nonpositive cycles is polynomial time reducible to the LSP problem.

Note that in the LSP problem, except being interested in the+∞ distances to the sink (which corresponds to positive
cycles in blocking nonpositive cycles), we are additionally interested in computing finite distances. Our algorithm
iteratively improves these finite distances, until, hopefully, improving them to +∞. Our goal with the LSP problem
was exactly inventing the optimization (rather than decision) problem appropriate for iterative improvement.

To our knowledge, there are no other mentions of the LSP problem and its relation to MPGs in the literature.6

3.4. The algorithm

Our 0-mean partition algorithm computes LSP in the graph resulting from an MPG (after adding the retreat vertex and
edges, as explained above), by making iterative strategy improvements. Once a strategy is fixed, all shortest paths are
easily computable, by using the Bellman–Ford algorithm. Since there are negative weight edges, the Dijkstra algorithm
cannot be used. An improvement to the straightforward application of the Bellman–Ford algorithm is described in
Section 6.

The main step of our iterative strategy improvement algorithm is the so-called attractive switch. Comparing a current
choice made by the strategy with alternative choices, a possible improvement can be decided locally as follows. If
changing the choice in a controlled vertex to another successor seems to give a longer distance (seems attractive), we
make this change. Such a change is called a switch.

Switching is similar (but is the opposite) to the usual edge relaxation in the shortest paths algorithms. Suppose the
current distance (using the current strategy �) from a vertex v to the sink is d�(v), but for an edge (v, u) not used by �
we have d�(v) < w(v, u)+d�(u) (attractiveness). Then we switch the current edge (v, �(v)) to (v, u), get new strategy
�, and recompute the shortest distances.

5 Actually, there may exist negative cycles consisting only of vertices from VMIN. Such cycles are easy to identify and eliminate in a preprocessing
step, using the Bellman–Ford algorithm. In the sequel we assume that this is already done.

6 The authors would appreciate any references.
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We prove two crucial properties (Theorems 5.1 and 5.2, respectively):

(1) every such switch really increases the shortest distances (i.e., attractiveness is improving or profitable); this guar-
antees monotonic (acyclic) improvement, no backtracking is necessary;

(2) once none of the alternative possible choices is attractive, all possible positive weight cycles MAX can enforce are
found (i.e., a stable strategy is optimal).7

Although our subexponential algorithm proceeds by making just one attractive switch at a time, the evaluation of
the shortest paths for a fixed positional strategy gives a useful quality measure on strategies that can be used in other
iterative improvement schemes. Other algorithms, making many switches simultaneously are also possible and fit into
our framework. We discuss some such algorithms in Section 8.

Another interpretation of our algorithm is game-theoretic. MAX makes choices in the controlled vertices, and the
choices in all other vertices belong to MIN. For every strategy of MAX, MIN responds with an optimal counterstrategy,
computing the shortest paths from every vertex to the sink. After that, the algorithm improves MAX’s strategy by making
an attractive switch, etc. This game always terminates in finitely many iterations with a stable strategy that cannot be
improved. Randomization helps in obtaining a subexponential upper bound on the number of iterations.

3.5. Randomization scheme

The order in which attractive switches are made is crucial for the subexponential complexity bound. Section 10 gives
an example of a poor switching policy with an exponentially long chain of attractive switches. The space of all positional
strategies of MAX in an MPG/LSP instance can be identified with the Cartesian product of sets of edges leaving the
controlled vertices. Fixing any edge in this set and letting others vary determines a facet in this space.A facet corresponds
to a subgame in which one of the choices of player MAX is fixed in one vertex, and choices in all other vertices are
unconstrained. Edges of MAX are in one-to-one correspondence with game facets. In particular, deleting a MAX edge
(without creating a sink) determines a subgame in which MAX has fewer choices, and corresponds to eliminating one
facet. This allows us to define the algorithm recursively: a solution to a complicated game is determined using a solution
to a simpler game with one facet/edge less. Operating in terms of facets is very convenient and makes the connections
to combinatorial optimization transparent and explicit.

The algorithm for computing the LSP in an MPG/LSP instance G is as follows:

(1) Start from some strategy � that guarantees for shortest distances >−∞ in all vertices.8

(2) If � is the only possible MAX strategy in G, return it as optimal.
(3) Otherwise, randomly and uniformly select some facet F of G not containing �. Temporarily throw this facet away,

and recursively find a best strategy �∗ on the remainder, G\F . This corresponds to deleting a MAX edge not used
by � and finding a best strategy in the resulting subgame.

(4) If �∗ is optimal in G, return it as a result. Optimality is easily checked by computing shortest distances in G�∗
from all vertices of the graph to the sink,9 and testing whether there is an attractive switch from �∗ to the edge
defining F.

(5) Otherwise, make an attractive switch to F, set G= F , denote the resulting strategy by �, and repeat from step 2.

This algorithm incorporates the fairly well-known randomization scheme for combinatorial linear programming due
to Matoušek et al. [26,27], although we use it here for a nonconvex optimization. Applied to the LSP and MPG 0-mean
partition problems, it gives a subexponential 2O(

√
n log n) expected running time bound, where n is the number of MAX

7 The case when 0-weight cycles are interpreted as good (winning) for MAX is considered in Section 9.
8 We may assume that G contains no 0-weight cycles. This is important for the LSP problem and can be done without loss of generality; see the

proof of Theorem 5.2 and Section 9. This is not needed if we apply the algorithm for finding 0-mean partitions in MPGs, but we have to start with
an admissible strategy.

9 Note that the algorithm recurses by deleting edges/facets, but the set of vertices remains unchanged.
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vertices. The essential properties needed for the analysis of [26,27] to work are as follows:

• For every strategy � and (sub)game G in any run of the algorithm the set of facets Fi of G not containing � define a
partial ordering of subgames G\Fi by the value of their best strategies (this value is a vector of shortest distances
to the sink under a strategy; see Section 4.1).
• The algorithm always finds a globally optimal strategy in a subgame G\Fi (Fi selected randomly) and makes only

monotonic profitable switches (Theorems 5.2 and 5.1, respectively). Thus, after finding an optimal strategy in a
subgame G\Fi , the algorithm will never revisit any strategies in subgames G\Fj , where G\Fj is lower than G\Fi

or incomparable with it in the partial ordering above.

It follows that the so-called hidden dimension decreases randomly, and the subexponential analysis of [26,27] applies.
Another possibility consists in using the slightly more complicated randomization scheme of Kalai [22], as we did in
[3] for parity games, which leads to the same subexponential bound.

4. Retreats, admissible strategies, and strategy measure

As explained above, we modify an MPG by allowing MAX to “surrender” in every vertex. Add the retreat vertex t
of MIN with a self-cycle of weight 0 and a retreat edge of weight 0 from every MAX vertex to t. Clearly, MAX secures
a value > 0 from a vertex in the original MPG iff the same strategy does it in the modified game. Assume from now
on that the retreat has been added to G. Intuitively, the “add retreats” transformation is useful because MAX can start
by a strategy that chooses the retreat edge in every vertex, thus “losing only 0”. We call strategies “losing at most 0”
admissible.

Definition 4.1 (Admissibility). A strategy � of MAX in G is admissible if all cycles in G� are positive, except the cycle
over the retreat vertex t.

Our algorithm, starting from the initial “additionally given” admissible strategy, iterates through only admissible
strategies � of MAX (an important invariant). This guarantees that the only losing (for MAX, nonpositive) cycle in G�
is the self-cycle over t. Once MAX has at least one admissible strategy providing for shortest distances > − ∞, he
will never want to use any inadmissible strategies, which allow for distances −∞ for some vertices (negative cycles).
Hence optimal strategies can be searched for among admissible strategies only.

4.1. Measuring the quality of strategies

We now define a measure that evaluates the “quality” of an admissible strategy. It can be computed in strongly
polynomial time, as shown in Section 6.

Given an admissible strategy �, the best MIN can hope to do is to reach the 0-mean self-cycle over t. Any other
reachable cycle will be positive, by the definition of an admissible strategy. The shortest path from every vertex v to
t is well-defined, because there are no nonpositive cycles in G� (except over t). Therefore, we define the value of a
strategy in a vertex as follows.

Definition 4.2 (Vertex value wrt a strategy). For an admissible strategy � of MAX, the value val�(v) of vertex v is
defined as the shortest path distance from v to t in G�, or +∞ if t is not reachable.

It follows that for admissible strategies finite values may only result from shortest paths leading to the sink (retreat)
t. Note that for each admissible MAX strategy there is an optimal positional counterstrategy of MIN that guarantees the
shortest paths are taken in each vertex, namely the strategy defined by the shortest path forest; see, e.g., [14].

The relative quality of two admissible strategies is defined componentwise.

Definition 4.3 (Ordering strategies). Let � and �′ be two MAX admissible strategies. Say that � is better than �′,
formally denoted � > �′, if val�(v)�val�′(v) for all vertices v ∈ V , with strict inequality for at least one vertex. Say
that ���′, if � > �′ or they have equal values in all vertices.

The notation below will be useful for describing switches.
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Notation 4.4. If � is a strategy of MAX, x ∈ VMAX, and (x, y) ∈ E, then the switch in x to y changes � to the new
strategy �[x → y], defined as

�[x → y](v)
def=

{
y, if v = x,

�(v), otherwise.

The following definition makes a distinction between switches that improve the strategy value, and switches that
merely look like they do. Later, Corollary 5.5 shows that the two notions are in fact equivalent.

Definition 4.5 (Attractiveness, stability, and profitability). Given an admissible strategy �, a switch �[v → u] is

1. attractive, if val�(v) < w(v, u)+ val�(u);
2. profitable, if �[v → u] is admissible and �[v → u]> �.

A strategy without attractive switches is called stable.

Note that

• attractiveness is defined using the values with respect to the current strategy only (which is very easy to check),
whereas
• profitability requires to recompute the shortest distances after making a switch and checking admissibility and

distance improvements.

Our algorithm proceeds by making attractive switches only.

4.2. Requirements for the measure

The algorithm’s correctness and efficiency rely on the following properties:

(1) If � is an admissible strategy, and there is no better admissible strategy, then � is winning from all vertices in
MAX’s winning set G>0. This is evident from the definitions, since optimal strategies are among admissible ones;
see the explanation after Definition 4.1.

(2) Every attractive switch is profitable and preserves admissibility (Theorem 5.1).
(3) If an admissible strategy has no attractive switches, then there is no better admissible strategy (Theorem 5.2). In

other words, every stable strategy is optimal.

Property (2) guarantees monotonicity, termination, and a pseudopolynomial upper bound. Subexponential analysis
relies both on (2) and (3). Both properties allow the iterative improvement be guided by attractiveness, easily checkable
as soon as the measure has been computed. Testing profitability would otherwise require recomputing the measure for
every possible potential switch.

5. Correctness of the measure

In this section we state and prove the two major theorems, guaranteeing that every step of the algorithm (consisting
in making an attractive switch) is improving and that the final strategy is the best, respectively. Afterward, we give two
corollaries clarifying the relation between attractiveness and profitability.

5.1. Attractiveness implies profitability

Our first theorem states that any attractive switch is profitable. This means that we never have to actually evaluate
other strategies before selecting the next iterate. Instead we can let the improvement scheme be guided by attractiveness.
Monotonicity, guaranteed by Theorem 5.1, implies that every sequence of attractive switches will eventually terminate.
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The number of iterations will be at most pseudopolynomial, because distances increase in integral steps and every
vertex has a natural integral distance limit equal the number of vertices times the absolute weight of the heaviest edge.
Either we terminate before reaching this limit, or the distance becomes +∞. Recall that an admissible strategy does
not permit any negative or 0-weight cycles.

Theorem 5.1 (Attractive is profitable). If � is an admissible strategy then any strategy �′ obtained by an attractive
switch from � is admissible and better, i.e., �′> �.

Proof. Let � be admissible, �(vi) = vj be the current successor of vi , and consider an attractive switch for vi in �
resulting in a new strategy �′ ≡ �[vi → v′j ], selecting another successor v′j of vi . Recall that the (vi, t)-shortest path
problem is expressible by the following linear program:

maximize vi

subject to t = 0 for sink t ,

vi �w(i, j)+ vj for each edge (vi, vj ) of weight w(i, j).

Suppose d�= (d�(v1), . . . , d�(vn)) is the vector of shortest distances from all vertices to the sink in G�. This vector is
a feasible solution to the LP above (some components of d� may be +∞, meaning that MAX enforces positive cycles,
hence infinite distances to the sink; since � is admissible, there are no nonpositive cycles in G�). Let vi �w(i, j)+ vj

be the constraint corresponding to the edge (vi, vj ) currently selected by �, and vi �w(i, j ′) + vj ′ be the constraint
corresponding to an alternative edge (vi, vj ′) selected by �′. In order to speak about attractiveness, d�(vi) needs to
be finite. Note that the constraint vi �w(i, j) + vj corresponding to the current choice is satisfied by d� as equality;
otherwise, d�(vi) is not the shortest path distance. By attractiveness, d�(vi) < w(i, j ′) + d�(vj ′). Thus, replacing
(switching) the old constraint vi �w(i, j)+vi with the new vi �w(i, j ′)+vj ′ results in a new LP, which keeps the old
solution d� as feasible (thus we get �′��), but also allows for increasing the value of vi , maybe up to +∞ (thus we
get profitability). This holds because the new constraint is not tight for vi after substituting d�. Therefore, increasing vi

may only increase the right-hand sides of other constraints. Note that this argument is based on the special monotone
form of the linear constraints for the shortest path problem.

We also have to show that an attractive switch preserves strategy admissibility. By assumption, � is admissible, there-
fore, G� has no nonpositive cycles. Let us prove that G�′ possesses the same property. Suppose, toward a contradiction,
that G�′ has a nonpositive cycle C. This cycle should necessarily contain the vertex vi in which the switch was made and
the new edge (vi, vj ′) used by �′; otherwise, this cycle exists already in G�. Consider the path � from vj ′ to vi defined
by the cycle C. Since � also exists in G� (a switch in single vertex vi was made), d�(vj ′)�w(�)+ d�(vi), where w(�)

is the sum of edge weights in �, because d� is the vector of shortest distances. By attractiveness, d�(vi) < w(i, j ′) +
d�(vj ′) (strict!). But the last two inequalities imply 0 < w(�) + w(i, j ′) = w(C). Therefore, C is a positive cycle, a
contradiction. �

By a similar argument, making simultaneously several (rather than just one at a time) attractive switches is profitable,
but we do not need it here.

5.2. Stability implies optimality

Our second theorem shows that an admissible MAX strategy with no attractive switches is at least as good as any
other admissible strategy, i.e., is winning from every vertex in G>0. This means that if we are only looking for the
vertices from which MAX can enforce positive weight cycles (when solving MPGs) we can stop as soon as we find
an admissible stable strategy. Although there may be also inadmissible strategies that allow MAX to enforce 0-weight
cycles, such cycles are of no interest for MAX, because they do not add vertices to G>0. Section 9 deals with the case
where 0-weight cycles are considered good for MAX.

Theorem 5.2 (Stable is optimal). If � is an admissible strategy with no attractive switches, then ���′ for every other
admissible strategy �′.
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Proof. Suppose, � is a stable strategy, and let d� be the vector of shortest distances in G� to the sink (one component
per vertex). Suppose, toward a contradiction, that there is a better than � admissible strategy �′, providing a longer
distance d�′(v0) > d�(v0), in G�′ , for some vertex v0. Note that d�(v0) should be finite (for a distance improvement to
exist) and the shortest path in G� from v0 leads to the sink. It is convenient to let +∞�� +∞+w, for every relation
�� ∈ {� ,=, �} and finite w.

Since the components of d� are shortest distances, the relation d�(u)�d�(v)+w holds for every edge u
w→ v in G�,

with at least one � per vertex u satisfied as equality. Therefore, d�(u)= d�(v)+ w for every edge u
w→ v of MAX in

G� (tightness), because in G� MAX has exactly one edge per vertex. Moreover, d�(u)�d�(v′) + w′ for every other

edge u
w′→ v′ of MAX not in �, by stability of � (there are no attractive switches).

Let G
f
� and G+∞� be the partition of G� into the sets of vertices with finite and infinite shortest distances in d�. Thus,

v0 is in G
f
� . Note that in G (full game graph, not just G�) MAX has no edges from G

f
� to G+∞� . Otherwise, � has an

attractive switch to this edge (from a finite to infinite value), contradicting the stability assumption. Although MIN may
have edges from G

f
� to G+∞� , they are not parts of the shortest paths under �, and we may delete them. Let us also throw

away the part G+∞� , and in G
f
� for each MIN vertex leave just one outgoing edge u

w→ v, for which d�(u)= d�(v)+w

(such edges exist!). On the contrary, we return back all edges of MAX to the partition G
f
� . As explained above, they are

not leaving G
f
� . Denote the resulting graph G′.

In G′, MAX has all strategies available, while MIN has just one. Nevertheless, we will show that in G′ no admissible
MAX strategy �′ can improve over d�(v0). Suppose the contrary, and make the following potential transformation [20]
of G′, by changing the weight of each edge according to the rule:

w′(u, v)= w(u, v)− d�(u)+ d�(v).

After this transformation:

(1) all edges in � become 0-weight (by tightness);
(2) all other MAX edges become nonpositive (by stability, as explained above);
(3) all edges of MIN become 0-weight;
(4) weights of all cycles remain unchanged (by telescoping);
(5) weights of finite paths v0, . . . , vl change by a constant −d�(v0)+ d�(vl) (also by telescoping), hence the relation

(< ,=, >) between costs of two paths to the sink remains unchanged.

Let MAX use an allegedly better than � admissible strategy �′ from v0 in G′ undergone the potential transformation
above. Since MIN has just one available strategy, �′ defines a unique play, in which every edge traversed is nonpositive by
the explanation above. This play may be either finite, or infinite (actually both possibilities will lead to contradictions).

Suppose this play is finite, terminating in the sink. Let � and �′ be the paths from v0 to the sink t in G′ determined
by � and �′, respectively, and functions c, c′ give paths costs before and after the potential transformation. We have
c′(�′)= c(�′)−d�(v0)+d�(t)= c(�′)−d�(v0)+0= c(�′)−d�(v0)= c(�′)− c(�). Hence, c(�)+ c′(�′)= c(�′), and
c(�)�c(�′) whenever c′(�′)�0. But c′(�′)�0, because each edge traversed in �′ after the potential transformation is
nonpositive. Therefore, d�(v0)= c(�)�c(�′)= d�′(v0), and �′ provides no improvement over �, a contradiction.

If the play is infinite (i.e., does not terminate in the sink), then the cycle C formed by �′ with the unique MIN strategy
has all edges of nonpositive weight, i.e., C is a nonpositive weight cycle.10 But C exists already in G�′ , and �′ is
admissible by assumption (i.e., has no nonpositive cycles), a contradiction. �

As a consequence, we obtain the following.

Corollary 5.3. In any MPG G every admissible stable strategy is winning for player MAX from all vertices in G>0.

10 Note that if G has no 0-weight cycles at all, then the cycle C is negative; thus �′ is no better than �, a contradiction. We can achieve the
absence of 0-weight cycles by multiplying the weight of each edge by n + 1 and subtracting 1. Thus, all 0-weight cycles become negative and all
other cycles keep their signs. Although this is a possible and useful approach (see Section 9), it multiplies the maximal edge weight W by n, slightly
deteriorating the pseudopolynomial upper bound. Instead, to finish the proof we rely on strategy admissibility, which is maintained invariant during
attractive switching; cf., Theorem 5.1.
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The following property is not necessary for correctness, but clarifies the relation between attractiveness and prof-
itability.

Corollary 5.4. If an admissible strategy �′ is obtained from another admissible strategy � by one or more nonattractive
switches, then �′��.

Proof. Consider the game (V , E′, w′), where E′ = E\{(u, v) : u ∈ VMAX ∧ �(u) �= v ∧ �′(u) �= v} and w′ is w

restricted to E′. In this game � is stable and both �, �′ are admissible strategies. Hence, by Theorem 5.2, ���′. �

Finally, by using Theorem 5.1, we obtain the following equivalence.

Corollary 5.5. A single switch (between two admissible strategies) is attractive if and only if it is profitable.

6. Efficient computation of the strategy measure

For an admissible strategy � the shortest paths in G� (strategy measure) can be computed by using the Bellman–Ford
algorithm for single-sink shortest paths in graphs with possibly negative edge weights; see, e.g., [14]. This algorithm
runs in O(n · |E|) time, where n = |V |. Every vertex can have its shortest path length improved at most O(n · W)

times (W is the largest absolute edge weight; distances are increased in integral steps). Since there are n vertices, the
number of switches cannot exceed O(n2 · W). Together with the O(n · |E|) bound per iteration this gives total time
O(n3 · |E| · W). Here we show how to reuse the shortest distances computed in previous iteration to improve this
upper bound by a linear factor to O(n2 · |E| ·W). Since there are no known nontrivial lower bounds on the number of
improvement steps, it is practically important to reduce the cost of each iteration.

We first compute the set of vertices that have different values under the old and the new strategies � and �′, respectively,
and then recompute the values only in these vertices, using the Bellman–Ford algorithm. If the algorithm improves the
value of ni vertices in iteration i, we only need to apply the Bellman–Ford algorithm to a subgraph with O(ni) vertices
and at most |E| edges; hence it runs in time O(ni · |E|). Since the maximum possible number of integral distance
improvements in n vertices is n2 ·W , the sum of all ni’s does not exceed n2 ·W , so the total running time becomes at
most O(n2 · |E| ·W), saving a factor of n. It remains to compute, in each iteration, which vertices need to change their
values. Algorithm 1 does this, taking as arguments a game G, the shortest distances d : V → N∪ {∞} computed with
respect to the old strategy �, the new strategy �′, and the set of switched vertices U ⊆ V , where �′ differs from �.

Algorithm 1. Mark all vertices v for which val�(v) �= val�′(v).

MARK-CHANGING-VERTICES (G, U ⊆ V, d : V → N ∪ {∞})
(1) mark all vertices in U
(2) while U �= ∅
(3) remove some vertex v from U
(4) foreach unmarked predecessor u of v in G�′
(5) if w(u, x)+ d[x]> d[u] for all unmarked
(6) successors x of u in G�′
(7) mark u
(8) U ← U ∪ {u}

Theorem 6.1. If an attractive switch changes an admissible strategy � to �′, then for every vertex v ∈ V , the following
claims are equivalent.

(1) Algorithm 1 marks v.
(2) Every shortest path from v to t in G� passes through some switch vertex.
(3) val�(v) �= val�′(v).

Proof. (1)⇒ (2). By induction on the set of marked vertices, which expands as the algorithm proceeds. The base case
holds since the vertices marked before the while loop are the switch vertices; these clearly satisfy (2). For the induction
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step, assume the claim holds for every marked vertex and that vertex u is about to be marked on line 7. Let x be any
successor of u included in some shortest path from u to t in G�. Since w(u, x)+ d[x] = d[u], and by the condition on
line 5, x must be already marked. Hence, by the induction hypothesis, every shortest path through x passes through U.
This completes the induction step.

(2)⇒ (1). For an arbitrary vertex v, consider all its shortest paths in G�. Denote by v the maximal number of edges
passed by such a path before a vertex in U is reached (so v is the unweighted length of an initial segment). The proof is
by induction on v. The base case is clear: v=0 iff v ∈ U , and all vertices in U are marked. Assume that the claim holds
for all vertices u with u < k and consider an arbitrary vertex v with v= k. By the inductive hypothesis, all successors of
v that occur on a shortest path are marked. Hence, when the algorithm removes the last of them from U, the condition
on line 5 is triggered and v is marked.

(3) ⇒ (2). If some shortest path from v to t in G� does not pass through a switch vertex, then the same path is
available also in G�′ , hence val�(v)= val�′(v).

(2)⇒ (3). Assume (2) and consider an arbitrary shortest path from v to t in G�′ . If it contains any switch vertices,
let u be the first of them. The same path from v to u, followed by the path in G� from u to t, gives a shorter path in G�,
since the length of shortest paths strictly increase in switch vertices. If the path does not contain any switch vertices,
then by (2) it is longer than every shortest path in G�. �

We thus showed that Algorithm 1 does what it is supposed to. To finish the argument, we show that it runs in time
O(|E|), so it is dominated by the time used by the Bellman–Ford algorithm.

Proposition 6.2. Algorithm 1 can be implemented to run in time O(|E|).

Proof. Every vertex can be added to U and analyzed in the body of the while loop at most once. The condition on
line 5 can be tested in constant time if we keep, for each vertex u, the number of unmarked successors x of u with
w(u, x)+d[x]=d[u]. Thus, the time taken by the foreach loop is linear in the number of predecessors of v (equivalently,
in the number of edges entering v), and the claim follows. �

To improve the efficiency even further, instead of relying on Bellman–Ford’s O(n|E|) algorithm (applies to arbitrary
edge weights), we can use a faster Fredman–Tarjan’s O(|E|+n log(n)) implementation of Dijkstra’s algorithm (requires
nonnegative weights) based on Fibonacci heaps. Nonnegative edge weights can be ensured by the following trick
involving, once again, potential transformations. Recall that a potential for an edge-weighted DAG is a function p on
its vertices such that p(u)�p(v)+ w(u, v) for every graph edge (u, v). Knowing a potential, we can transform edge
weights by w′(u, v) := w(u, v)− p(u)+ p(v)�0 (by the potential property above), thus rendering all edge weights
nonnegative. Since a potential transformation changes the lengths of all paths from u to v by p(v)−p(u) (telescoping),
the shortest paths are preserved under such transformations, and we can safely rely on Dijkstra’s algorithm. The
only question is how to get a potential. Luckily, it turns out that we implicitly maintain potentials through repeated
computations of the shortest paths.

Indeed, let P be an instance of the linear program from the proof of Theorem 5.1 and d be its optimal solution.
Recall from the proof that making an attractive switch keeps the vector of shortest distances d, previously optimal
for P , as feasible for the new LP P ′ resulting from an attractive switch. But feasibility of d for P ′ means precisely
that d represents the required potential for P ′. Thus, shortest distances from one computation of the shortest paths are
potentials for the next iteration.

Therefore, the above O(n2 · |E| ·W) bound with the Bellman–Ford’s algorithm can be further improved to O(n ·
(|E| + n log n) ·W) with Dijkstra–Fredman–Tarjan’s algorithm. This allows for improving pseudopolynomial bounds
in Theorems 7.1 and 7.2, as well as in Section 11.

7. Complexity of the algorithm

Section 2 lists several computational problems for MPGs. We first show that our basic 0-mean partition algorithm
with small modifications also solves the p-mean partition and the splitting into three sets problems with the same
asymptotic running time bound. In Section 7.2 we show how to solve the ergodic partition problem, which introduces
a small extra polynomial factor in the complexity.



H. Björklund, S. Vorobyov / Discrete Applied Mathematics 155 (2007) 210–229 223

7.1. Complexity of partitioning with integer thresholds

The basic algorithm in Section 3 solves the 0-mean partition problem for MPGs. The p-mean partition problem with
an integer threshold p can be solved by subtracting p from all edge weights and solving the 0-mean partition problem.
As a consequence, we also solve the decision problem for integer thresholds p. Zwick and Paterson [37] consider a
slightly more general problem of splitting into three sets around an integer threshold p, with vertices of value < p,=p,
and > p, respectively. We can solve this by two passes of the p-mean partition algorithm. First, partition the vertices
into two sets with values �p and > p, respectively. Second, invert the game by interchanging VMIN and VMAX and
negating all edge weights, and solve the (−p)-mean partition problem. These two partitions correspond to the < p and
�p partitions of the original game, and combining the two solutions we get the desired three-partition for only twice
the effort.

We now analyze the running time of our algorithms, asymptotically the same for all versions of the problem mentioned
in the previous paragraph. The complexity of a strategy improvement algorithm consists of two parts: the cost of
computing the measure times the number of iterations necessary. Section 6 demonstrates that this combined cost is at
most O(n2 · |E| ·W). This is the same complexity as for the algorithm by Zwick and Paterson for the splitting into
three sets problem [37, Theorem 2.4]. If W is very big, the number of iterations can of course also be bounded by∏

v∈VMAX
outdeg(v), the total number of strategies for MAX.

Using the randomization scheme of Matoušek, Sharir, and Welzl from Section 3.5 we obtain the simultaneous bound
2O(
√

n log n), independent of W. Combining both bounds, we get the following theorem.

Theorem 7.1. The decision, p-mean partition, and splitting into three sets problems for MPGs can be solved in time

min(O(n2 · |E| ·W), 2O(
√

n log n)). (1)

The min in (1) means that both bounds apply simultaneously, for the same algorithm. One follows by monotonicity
and boundedness of distance improvements, the other by randomized analysis. As W increases, the second bound
becomes asymptotically better. Note that there are no nontrivial lower bounds for MPGs, and in our experiments with
random games both bounds in (1) do not seem tight. After all, over years many people conjectured/claimed MPGs
polynomial time solvable.

Note that a more precise estimation replaces n by |VMAX| in the subexponential bound, because we only consider
strategies of MAX and only vertices in VMAX matter. Also, n ·W can be replaced by an upper bound on the length of
the longest shortest path. For instance, one such bound is the sum, over all vertices, of the maximal positive outgoing
edge weights.

7.2. Computing the ergodic partition

We now explain how computing the values of all vertices of an MPG (ergodic partitioning) reduces to computing a
series of p-mean partitions. We first describe the ergodic partition algorithm, which uses an algorithm for the p-mean
partition problem with rational thresholds as a subroutine. We then analyze our algorithm for the case of rational
thresholds, and finally bound the total running time, including all calls to the p-mean partition algorithm.

Denote by w− and w+ the smallest and largest edge weights, respectively, and W = w+ − w−. Then the average
weight of any cycle (i.e., the value of any vertex in the MPG) is a rational number with denominator �n in the interval
[w−, w+]. We can find the value for each vertex by bisecting the interval, until each vertex value is contained in an
interval of length �1/n2. There is at most one possible value inside each such interval (because the difference between
two unequal mean cycle values is at least 1/n(n − 1)), and it can be found easily [20,37]. We start by solving the
p-mean partition problems dichotomizing the interval [w−, w+]with integral thresholds p while it is possible (making
slightly uneven partitions if necessary). After that, for bisecting the subintervals of length �1 we have to deal with
rational thresholds p/q for q �n2. We therefore have to solve the p-mean partition problem for rational nonintegral
thresholds p. As can be readily verified, our p-mean partition algorithm directly applies to this case, with a slightly
modified complexity analysis.

The combinatorial subexponential bound does not depend on thresholds being integers or rationals, but we need
to analyze the depth of the measure, because it is important for the pseudopolynomial bound. Recall that p/q-mean
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partitioning reduces to 0-mean partitioning by subtracting p/q from edge weights. After subtracting p/q from each

(integral) edge weight w, the weight of every path of length k to the sink has the form
(∑k

i=1wi

)
− kp/q. The sum∑k

i=1wi can take at most n ·W different values, and k can take at most n values, so each vertex can improve its value
at most n2 · W times, compared with n · W in the integral case.11 Thus, solving the 0-mean problem for rational
thresholds takes at most n times longer.

During the dichotomy process, we consider subproblems (partitions) with different number of vertices and different
thresholds in the range [w−, w+]. The largest absolute edge weight remains bounded by W, and the total number of
vertices in all the subproblems remains n. To find a correct value we need to bisect at most O(log(W ·n2))=O(log W +
log n) times. The complexity of one p-mean partitioning T (n) is superlinear in n, so T (i) + T (j)�T (i + j) (i.e.,
partitioning resulting in one vertex set empty is the worst case). Hence the total computation time does not exceed
O((log W + log n) · T (n)). We summarize this in the following theorem.

Theorem 7.2. The ergodic partition problem for MPGs can be solved in time

min(O(n3 · |E| ·W · (log n+ log W)), (log W) · 2O(
√

n log n)).

Zwick–Paterson’s algorithm for this problem has the worst case bound O(n3 · |E| ·W) [37, Theorem 2.3], which is
slightly better for small W, but worse for large W. Note that the algorithm [37] always makes �(n3 · |E| ·W) iterations,
on every game instance. We are not aware of any MPG instances on which our algorithm makes that many steps. The
algorithm described in this section is not strongly subexponential. A strongly subexponential algorithm for the MPG
ergodic partition problem is described in [38].

8. Variants of the algorithm

An extension of Theorem 5.1 shows that any combination of attractive switches improves the strategy value, and
thus any policy for selecting switches in each iteration will eventually lead to an optimal strategy. In particular, all
policies that have been suggested for parity and simple stochastic games apply. These include the all profitable, random
single, and random multiple switch algorithms; see, e.g., [6]. In our experiments with large random and nonrandom
game instances these algorithms witness extremely fast convergence. In this section we suggest two alternative ways
of combining policies.

Initial random multiple switching: Start with the MAX strategy retreating to the sink from each vertex. Prior to running
the randomized subexponential algorithm from Section 3.5, make a polynomially long sequence of random (multiple)
attractive switches, selecting them at each step uniformly at random. Use the last strategy obtained, if not yet optimal, as
an initial one in the randomized subexponential algorithm of Section 3.5. There is a hypothesis due to Williamson Hoke
[35] that every completely unimodal function (possessing a unique local maximum on every Boolean subcube) can be
optimized by the random single switch algorithm in polynomially many steps. The LSP problem exhibits a structure
similar to CU-functions (so the subexponential stage may never become necessary). Investigating these problems may
shed light on possibilities of polynomial time optimization for both.

Proceeding in stages: Another version of the algorithm starts as described in the previous subsection, and afterward
always maintains a partition of the vertices (from which the longest shortest distance is not yet +∞) into two sets: R
of vertices where MAX is still using the conservative strategy of retreating immediately to the sink, and N of all other
vertices. In all vertices in N ∩VMAX, MAX already switched away from retreating. Since the value of a vertex can only
increase, MAX will never change back playing to retreats in those vertices (so retreat edges from vertices in N may be
safely removed without influencing the 0-mean partition). We fix the choices in R and proceed as in Section 3.5, to find
the best strategy in controlled vertices in N. If the resulting strategy is globally optimal (contains no attractive switches
in R), we stop. Otherwise we make some or all attractive switches in vertices in R. Each stage of this version of the
algorithm is subexponential, and there are only linearly many such stages, because a vertex leaving R never returns
back.

11 Note that a straightforward approach, multiplying all rational edge weights with denominator q �n2 by q, thus reducing to the integral case,
would lead to a worse bound n3 ·W .
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9. The LSP problem is in NP ∩ CONP

The decision version of the LSP problem, restricted to determine whether the longest shortest path from a distin-
guished vertex s to the sink is bigger than a given bound D, is another example of a problem in NP ∩ CONP.

In the definition of the LSP problem in Section 3.1 we postulated that a 0-weight cycle (which actually makes the
sink unreachable) defines a 0 distance from every vertex on the cycle to the sink. This “unnatural” definition was
motivated by simplicity and by the LSP application for computing 0-mean partitions in MPGs. This was convenient
because 0-weight cycles are not interesting for MAX for reaching a positive mean value. Moreover, 0-weight cycles are
impossible in admissible strategies, and only such strategies are needed (visited) by our algorithms to compute 0-mean
partitions in MPGs.

However, in the LSP problem it is more natural to postulate that whenever MAX can enforce a 0-weight cycle, the
distance to the (unreachable) sink becomes+∞. We show here that a minor modification allows us to reuse Theorems
5.1 (attractiveness implies profitability) and 5.2 (stability implies optimality), as well as subexponential algorithms
from Sections 3.4, 3.5, to compute LSP, and to prove the NP ∩ CONP-membership.

The necessary modifications are achieved by making the following simplifying assumption about the instances of
the LSP problem.

Assumption. A graph in an LSP problem instance does not contain 0-weight cycles.

This assumption may be done without any loss of generality. Indeed, if the graph G has n vertices, we can multiply
all edge weights by n + 1 and add 1. As a result, all 0-weight cycles, if any, will disappear (become positive),
and the lengths l, l′ of all paths/simple cycles in G and the modified graph G′ will only differ within the factor of
(n+ 1), i.e., l(n+ 1) < l′� l(n+ 1)+ n. Consequently, all negative/positive cycles in the original graph will preserve
their signs.

Proposition 9.1. The decision version of the LSP problem (subject to the assumption above) is in NP ∩ CONP.

Proof. First note that we can add retreat edges to any LSP problem instance similarly as to MPGs: from any controlled
vertex, make an extra edge of weight−2 ·n ·W − 1 to the sink. Thus, we guarantee that there is an admissible strategy,
namely the one always using the retreat edge. In a solution to the transformed LSP problem, a vertex has value <−n·W ,
iff it can only reach the sink through a retreat edge, iff it has value −∞ in the original problem.

Both for YES- and NO-instances, the short witness is an optimal (stable) positional strategy � in controlled vertices
of the transformed problem. By computing the shortest paths to the sink in G�, i.e., computing the strategy measure,
it can be verified in polynomial time that no switch is attractive and thus that the strategy is optimal by Theorem 5.2.
This can be used as a witness forYES-instances by testing if the value is > D, and for NO-instances by testing whether
the value is �D. �

The absence of 0-weight cycles assumption is essential in the proof above. The example in Fig. 1 demonstrates a
0-weight cycle, and a stable strategy, which does not provide the optimal (in the LSP sense) solution.

For MPGs we were satisfied with the definition of optimality that only stipulates that MAX can secure positive
weight cycles whenever possible. Thus, in Fig. 1 the strategy “go to t” in the leftmost vertex is MPG-optimal, but not
LSP-optimal. In contrast, the LSP-optimality makes 0-weight cycles attractive (shortest distance to the sink equals
+∞). This was essentially used in the proof of Proposition 9.1 and can always be achieved by making the initial
transformation to satisfy the Assumption.

Fig. 1. Switching to the dotted edge is not attractive, but improves the values in all vertices to +∞.
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Fig. 2. LSP instances allowing for exponentially long chains of improving switches.

10. LSP: exponential sequences of attractive switches

One might conjecture that any sequence of attractive switches converges fast on any LSP problem instance, and
consequently MPGs are easily solvable by iterative improvement. It is not so easy to come up with “hard” LSP
examples. In this section we present a set of instances of the LSP problem and an improvement policy, selecting an
attractive switch in every step, leading to exponentially long sequences of strategy improvements. This shows that the
LSP problem is nontrivial, and the choice of the next attractive switch is crucial for the efficiency.

Consider the (2n+ 2)-vertex graph shown in Fig. 2, where round vertices belong to MAX, square ones to MIN, and
the leftmost vertex is the sink. The optimal strategy of MAX is marked by the dashed edges. Adding N is unnecessary
here (N may be set to 0 for simplicity), but will be needed later.

If the iterative improvement algorithm starts from the initial MAX strategy �0 shown by solid lines in binary vertices
and always makes the rightmost attractive single switch, it visits all 2n possible strategies of MAX, as can be readily
verified using enough paper and patience.

The LSP instances above can be generated from MPGs as follows. In Fig. 2, add a self-cycle of weight 0 in the
leftmost vertex. Add the retreat vertex and edges as explained in Section 3.2. If the algorithm starts by switching from
the “retreat everywhere” strategy to the initial strategy �0 above, and then always chooses the rightmost attractive
single switch, it follows exactly the same exponentially long chain of improving strategies, as in the LSP case. Adding
a large N is now essential to keep all the paths nonnegative; otherwise, the initial “switch from the retreat” would be
nonattractive.

Actually, the LSP-instances in Fig. 2 are “trivial”, because the graphs are acyclic and longest shortest distances are
easily computable by dynamic programming in polynomial time (in the left-to-right order), as mentioned in the end of
Section 3.1. These LSP-instances are also easily solvable by the “random single switches” policy, selecting an attractive
switch uniformly at random. The reason is as follows. The second from the left dashed edge remains always attractive,
and once the algorithm switches to this edge, it will never switch back. Such an edge defines a so-called absorbing
facet. Obviously, the random single switch algorithm is expected to switch to the absorbing facet in polynomially many,
namely O(n), steps. The problem that remains has one dimension less, and the preceding dashed edge determines an
absorbing facet. The algorithm converges in O(n2) expected iterations. Currently we are unaware of any LSP instances
that require superpolynomially many steps of the single random, multiple random, or all profitable (attractive) switches
algorithms.

The example of this section is inspired by the one due to Lebedev mentioned in [20], and kindly provided by
Gurvich. Unlike the GKK-algorithm [20], which is deterministic and bound to perform the exponential number of
iterations, corresponding exactly to the exponential sequence determined by the rightmost attractive switches above,
our randomized algorithms quickly solve the examples from this section.

11. Application to parity games

The algorithm described in this paper immediately applies to parity games, after an obvious translation. Parity games
are similar to MPGs, but instead of weighted edges they have vertices colored in nonnegative integer colors. Player
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EVEN (MAX) wants to ensure that in every infinite play the largest color appearing infinitely often is even, and player
ODD (MIN) tries to make it odd. Parity games are determined in positional strategies [18,7].

Transform a parity game into a MPG by leaving the graph and the vertex partition between players unchanged, and
by assigning every vertex12 of color c the weight (−n)c, where n is the total number of vertices in the game. Apply the
algorithm described in the preceding sections to find a 0-mean partition. Obviously, the vertices in the partition with
value > 0 are winning for EVEN and all other are winning for ODD in the parity game.

Actually, the new MPG algorithm, together with a more economic translation and more careful analysis, gives a
considerable improvement for parity games over our previous algorithm from [3], which has complexity

min(O(n4 · |E| · k · (n/k + 1)k), 2O(
√

n log n)),

where n is the number of vertices, |E| is the number of edges, and k is the number of colors. Thus, in the worst case the first
component in the upper bound may be as high as O(|E|·n5 ·2n), when the number of colors equals the number of vertices.
The MPG algorithm improves the first component in the upper bound to O(n2 · |E| ·(n/k+1)k), thus gaining a factor of
n2 ·k. To prove this bound, we assign weights to vertices more sparingly than in the straightforward reduction mentioned
above. It is readily verified that we may equally well give a vertex of color c the weight (−1)c ·∏c−1

i=0 (ni + 1), where
ni is the number of vertices of color i. In the worst case (when all ni are roughly equal), this gives W =O((n/k+ 1)k).

There are two reasons for this improvement. First, each vertex can improve its value at most n · (n/k + 1)k times,
compared with n2 ·(n/k+1)k in [3] (this is because the measure for every vertex in [3] is a triple, rather a single number,
containing additionally the largest cycle color and the path length, now both unneeded; however, the shortest distance
may be as big as the sum of all positive vertices). Second, we now apply the simpler and more efficient counterstrategy
algorithm from Section 6, which saves an extra factor nk.

Moreover, translating a parity game into an MPG allows us to assign weights even more sparingly, and this additionally
improves over (n/k+1)k . Indeed, if we want to assign a minimum possible weight to a vertex of color i, we may select
this weight (with an appropriate sign) equal to the total absolute weight of all vertices of preceding colors of opposite
parity, plus one. This results in a sequence w0 = 1, w1 =−(n0 ·w0 + 1), wi+2 =−(ni+1 ·wi+1 + ni−1 ·wi−1 + · · · +
1)=−ni+1 ·wi+1+wi . In the case of k=n (one vertex per color) it results in the Fibonacci sequence with alternating
signs: w0= 1, w1=−2, wi+2=−wi+1+wi , which is, in absolute value, asymptotically O(1.618. . .n), better than 2n.

Finally, the new MPG-based algorithm for parity games is easier to explain, justify, and implement.

12. Conclusions

We defined the longest shortest paths (LSP) problem and showed how it can be used as a basis for a discrete
(combinatorial) strategy evaluation for MPGs. Similar evaluations were already known for parity [34,3], discounted
payoff [31], and simple stochastic games [25], although not discrete for the last two classes of games. Our result implies
that any combinatorial strategy improvement policy may be applied to solve MPGs, thus avoiding the difficulties of
high precision rational arithmetic involved in reductions to discounted payoff and simple stochastic games, and solving
associated linear programs by either a nonstrongly polynomial, or a strongly subexponential subroutine. For comparison,
our algorithm uses a strongly polynomial subroutine for shortest paths in edge-weighted directed graphs.

Combining the new strategy evaluation with the algorithm for combinatorial linear programming suggested by Ma-
toušek, Sharir, and Welzl, allowed us to develop the first combinatorial subexponential 2O(

√
n log n) (and simultaneously

pseudopolynomial) algorithm for solving MPGs.
The remaining major open problem is whether any strategy improvement scheme for the games discussed (or any

other) has polynomial time complexity.
Since this paper was finished, there were several important developments. Khachiyan with colleagues [36,24] suc-

ceeded to prove that a version of the LSP problem restricted to nonnegative edge weights is polynomial time solvable.
The case of arbitrary weights, needed for the reduction from MPGs, resists. The idea of “controlled” optimization
problem, first implemented in the LSP, received a further development, in the form of a more general controlled
linear programming problem [2,1,9]. A new efficient approach to solving mean payoff and simple stochastic games
based on the linear complementarity problem has been introduced and investigated in [10,33]. An algorithm based

12 Formally, we have to assign this weight to every edge leaving a vertex, but it makes no difference.
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on representing an MPG as a linear program, solving it, and “tightening” a solution to a solution of the game was
proposed in [32].
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