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POLICY ITERATION FOR PERFECT INFORMATION

STOCHASTIC MEAN PAYOFF GAMES WITH BOUNDED FIRST

RETURN TIMES IS STRONGLY POLYNOMIAL

MARIANNE AKIAN AND STÉPHANE GAUBERT

Abstract. Recent results of Ye and Hansen, Miltersen and Zwick show that
policy iteration for one or two player (perfect information) zero-sum stochastic
games, restricted to instances with a fixed discount rate, is strongly polyno-
mial. We show that policy iteration for mean-payoff zero-sum stochastic games
is also strongly polynomial when restricted to instances with bounded first
mean return time to a given state. The proof is based on methods of nonlinear
Perron-Frobenius theory, allowing us to reduce the mean-payoff problem to
a discounted problem with state dependent discount rate. Our analysis also
shows that policy iteration remains strongly polynomial for discounted prob-
lems in which the discount rate can be state dependent (and even negative)
at certain states, provided that the spectral radii of the nonnegative matrices
associated to all strategies are bounded from above by a fixed constant strictly
less than 1.

1. Introduction

Motivation and earlier works. Policy iteration algorithm is a classical algorithm to
solve discounted Markov decision problems (one player games) with finite state
and actions spaces. A policy is a map from the set of states to the set of actions,
representing a Markovian decision rule. The algorithm constructs a sequence of
policies such that the associated sequence of values is strictly decreasing (assuming
that the player minimizes her cost function). Hence, its number of iteration is
bounded by the number of policies. The method carries over to discounted zero-
sum games with perfect information, still with finite state and action spaces. It now
makes external iterations in the space of policies of the first player, and at each step,
solves an auxiliary Markov decision problem, making then internal iterations in the
space of policies of the second player. Again, the first player never selects twice
the same policy, which entails that the algorithm does terminate in a time which is
bounded by the product of the numbers of policies of both players. This yields an
exponential bound on the execution time, as the number of policies of one player can
be exponential in the number of states. However, this general exponential bound
does not capture the experimental efficiency of the algorithm on most applications.

Some recent results shed light on the behavior of policy iteration as a function
of some particular parameters, such as the discount factor. Friedmann constructed
in [10] an infinite family of 2-player discounted deterministic games with a discount
factor tending to 1, showing that the number of policy iterations can indeed be ex-
ponential. Fearnley [8] and Andersson [3] extended his result to 1-player stochastic
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games. However, Ye showed in [19] that policy iteration solves 1-player discounted
games with a fixed discount factor λ < 1 in strongly polynomial time (λ is not part
of the input). Then, Hansen, Miltersen and Zwick extended this result in [11] to
zero-sum 2-player discounted games with perfect information, and improved Ye’s
bound. They showed that the number of external iterations of the policy iteration
algorithm for 2-player games with a fixed discount factor λ < 1 is bounded by:

(1) (m+ 1)(1 +
log(n2/(1− λ))

− log(λ)
) = O(

m

1− λ
log

n

1− λ
),

where n is the number of states, andm is the total number of actions of both players,
that is the number of triples (i, a, b) where i is a state, a is an action of first player,
and b is an action of second player.
Contribution. We show that policy iteration still has a strongly polynomial behavior
for a class of mean payoff games, as well as for a more general class of discounted
games.

As a preliminary step, we show that we can improve the bound (1), in the
original situation considered in [11]. We replace this bound by the following one
(Theorem 5):

(2) smax := (m1 − n)(1 + ⌊
log(1− λ)

log(λ)
⌋) = O(

m1 − n

1− λ
log

1

1− λ
),

withm1 the total number of actions of the first player, that is the number of couples
state-action (i, a). The above new bound is obtained by adapting the technique of
Ye and Hansen, Miltersen and Zwick to nonlinear maps which allows us in particular
to replace m by m1. Note that the bound (2) is linear in the size of the input, for
a fixed λ.

Then, we consider games with state dependent discount factors, possibly greater
than 1 locally. We establish a strongly polynomial bound for the number of iter-
ations (Corollary 10) which differs from (1) and (2) in that the discount factor λ
is now replaced by the maximum of the spectral radii of all the transition matri-
ces associated to pairs of policies of both players. We introduce a natural scaling
transformation, which has the property of leaving invariant the combinatorial trace
of the policy iteration algorithm. This scaling is obtained using techniques of non-
linear Perron-Frobenius theory [16, 2]. An advantage of the present bound is that
it is invariant by scaling. For instance, with a state dependent discount factor < 1,
it leads to a tighter bound than the one which may be derived from (1) or (2).

Finally, we derive (Corollary 15) a strongly polynomial bound for the subclass
of mean payoff games such that there is a distinguished state to which the mean
return time is bounded by a constant K = 1/(1 − λ), for every choice of policies.
This condition implies that each transition matrix associated to a pair of policies
of both players has a unique recurrence class, and that there is a state which is
common to each of these classes.

The paper is organized as follows. We present background materials on zero-sum
two-player stochastic games in Section 2, and on policy iterations in Section 3. We
state our results in Section 4. Proofs or sketches of proofs, as well as some results
of Perron-Frobenius theory on which they are based, can be found in the following
sections.
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2. Two player zero-sum stochastic games with discrete time and

mean payoff

2.1. The game processes. Two player zero-sum stochastic games were intro-
duced by Shapley in the early fifties, see [18]. We recall in this section basic defini-
tions in the case of finite state space and discrete time (for more details see [18, 9]).
When there is only one player (the set of actions of one of the two players is reduced
to a singleton), such a game is more commonly called a Markov Decision Process
(MDP), we refer to [13, 6, 17] for this topic.

We consider the finite state space [n] := {1, . . . , n}. A stochastic process (ξk)k≥0

on [n] gives the state of the game at each point time k, called stage. At each of these
stages, two players, called “min” and “max” (the minimizer and the maximizer)
have the possibility to influence the course of the game.

The stochastic game Γ(i0) starting from i0 ∈ [n] is played in stages as follows.
The initial state ξ0 is equal to i0 and known by the players. Player min plays first,
and chooses an action α0 in a set of possible actions Aξ0 . Then the second player,
max, chooses an action β0 in a set of possible actions Bξ0 . The actions of both

players and the current state determine the payment rα0β0

ξ0
made by min to max

and the probability distribution j 7→ Pα0β0

ξ0j
of the new state ξ1. Then the game

continues from state ξ1, and so on.
At a stage k, each player chooses an action knowing the history defined by ζk =

(ξ0, α0, β0, · · · , ξk−1, αk−1, βk−1, ξk) for min and (ζk, αk) for max. We call a strategy
for a player, a rule which tells him the action to choose in any situation. Assume
Ai ⊂ A and Bi ⊂ B for some sets A and B. We shall consider only pure Markovian
strategies for min (resp. max). The latter are sequences σ̄ := (σ0, σ1, · · · ) (resp.
δ̄ := (δ0, δ1, · · · )) where σk is a map [n] → A such that σk(i) ∈ Ai for all i ∈ [n]
(resp. δk is a map [n]× A → B such that δk(i, a) ∈ Bi ∀i ∈ [n], a ∈ Ai). They are
said to be stationary if they are independent of k. Then σk is also denoted by σ and
δk by δ. Also σ̄ and δ̄ are identified with σ and δ respectively. A pure Markovian
stationary strategy is also called a feedback policy or simply a policy.

A strategy σ̄ = (σk)k≥0 (resp. δ̄ = (δk)k≥0) together with an initial state

determines stochastic processes (αk)k≥0 for the actions of min, (βk)k≥0 for the

actions of max and (ξk)k≥0 for the states of the game. For instance, for each pair

of feedback policies (σ, δ) of the two players, the state process (ξk)k≥0 is a Markov

chain on [n] with transition probability

P (ξk+1 = j | ξk = i) = P
σ(i)δ(i,σ(i))
ij for i, j ∈ [n] ,

and αk = σ(ξk) and βk = δ(ξk, αk).

2.2. Non-uniformly discounted and mean payoff games. The payoff of the
game Γ(i) starting from i is the expected sum of the rewards at all steps of the game
that max wants to maximize and min to minimize. In this paper we shall consider
games with an infinite horizon and a discount factor γ, which is not uniform in
that it depends both on the state and actions, γ : [n]×A×B → [0,∞). We allow
γ(i, a, b) to take values larger that 1 for some (i, a, b). The reward at time k is
defined to be the payment made by min to max multiplied by all discount factors
from time 0 to time k − 1. Thus, when the strategies σ̄ for max and δ̄ for min are
fixed, the infinite horizon discounted payoff of the game Γ(i, σ̄, δ̄) starting from i is
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given by

Jγ(i, σ̄, δ̄) = E
σ̄δ̄
i

[

∞
∑

k=0

(

k−1
∏

ℓ=0

γ(ξℓ, αℓ, βℓ)
)

rαkβk

ξk

]

,

where Eσ̄,δ̄i denotes the expectation for the probability law determined by the choice
of strategies. When γ ≤ 1, meaning that γ(i, a, b) ≤ 1 holds for all i ∈ [n], a ∈ A,
b ∈ B, the above discounted game can be seen equivalently as a game which has,
at each stage, a stopping probability equal to 1− γ(i, a, b).

In all the paper, we shall assume, that

(A1) the action spaces Ai and Bi, i ∈ [n], are finite sets.

We shall write γ ≪ 1 when the discount factor is such that γ(i, a, b) < 1 holds for
all i ∈ [n], a ∈ A, b ∈ B. This is the case if and only if there exists a scalar λ such
that:

(A2) γ(i, a, b) ≤ λ, for all i ∈ [n], a ∈ A, b ∈ B, with λ ∈ [0, 1).

Then, one can transform the above discounted game into a game with an additional
state (a “cemetery” state) and a discount factor identically equal to λ (independent
of state and actions). We can then apply to this situation earlier results concerning
constant discount factors.

We shall also consider mean payoff games, defined as follows. When the strategies
σ̄ for min and δ̄ for max are fixed, the (undiscounted) payoff in finite horizon τ of
the game Γ(i, σ̄, δ̄) starting from i is

Jτ (i, σ̄, δ̄) = E
σ̄δ̄
i

[

τ−1
∑

k=0

rαkβk

ξk

]

,

and its mean payoff is

J(i, σ̄, δ̄) = lim sup
τ→∞

1

τ
Jτ (i, σ̄, δ̄).

The discounted infinite horizon game with a discount factor γ ≪ 1, the finite
horizon game and the mean payoff game, are all known to have a value, denoted
respectively by vγi , v

τ
i and ρi,

vγi := inf
σ̄

sup
δ̄

Jγ(i, σ̄, δ̄) = sup
δ̄

inf
σ̄
Jγ(i, σ̄, δ̄),(3)

vτi := inf
σ̄

sup
δ̄

Jτ (i, σ̄, δ̄) = sup
δ̄

inf
σ̄
Jτ (i, σ̄, δ̄),(4)

ρi := inf
σ̄

sup
δ̄

J(i, σ̄, δ̄),= sup
δ̄

inf
σ̄
J(i, σ̄, δ̄),(5)

for all initial states i ∈ [n], where the infimum is taken among all strategies σ̄ for
min and the supremum is taken over all strategies δ̄ for max (we refer the reader
to [18] for finite horizon or discounted infinite horizon games with constant discount
factor, and to [14] for mean payoff games).

Optimal strategies for both players (together with the value of the game Γ for
every initial state) can be obtained by the dynamic programming approach [18],
which we next recall.
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2.3. Dynamic programming equations. When considering finite horizon or
mean-payoff games, we assume that the discount factor γ(i, a, b) at every state
and node is identically equal to 1, written γ ≡ 1. To handle in the same setting the
discounted and the mean payoff cases, it will be convenient to consider the following
unnormalized nonnegative cooefficients, rather than the transition probabilities:

Mab
ij = γ(i, a, b)P abij ∀i, j ∈ [n], a ∈ Ai, b ∈ Bi .

We wil also use the following notation, for all i ∈ [n], a ∈ Ai, b ∈ Bi and v ∈ R
n:

F (v; i, a, b) =
∑

j∈[n]

Mab
ij vj + rabi ;(6a)

F (v; i, a) = max
b∈Bi

F (v; i, a, b);(6b)

F (v; i) = min
a∈Ai

F (v; i, a).(6c)

The dynamic programming or Shapley operator associated to all above games is
the self-map f of Rn given by:

(7) [f(v)]i := F (v; i), ∀i ∈ [n], v ∈ R
n.

The value vτ = (vτi )i∈[n] of the finite horizon game satisfies the dynamic pro-
gramming equation [18] associated to the operator f :

vτ+1 = f(vτ ), τ = 0, 1, . . .

with initial condition v0 ≡ 0 (v0i = 0, i ∈ [n]).
Similarly, the value vγ = (vγi )i∈[n] of the discounted infinite horizon game, with

a discount factor γ ≪ 1, is the unique solution v ∈ R
n of the (stationary) dynamic

programming equation [18]:

(8) v = f(v).

Also, optimal strategies are obtained for both players by taking pure Markovian
stationary strategies σ for min and δ for max such that, for all i ∈ [n], and a ∈ Ai,
σ(i) attains the minimum in the expression of F (v; i) in (6c), and δ(i, a) attains
the maximum in the expression of F (v; i, a) in (6b).

The dynamic programming operator f is always order-preserving, i.e., v ≤ w =⇒
f(v) ≤ f(w) where ≤ denotes the partial ordering of Rn (v ≤ w if vi ≤ wi for all
i ∈ [n]). When γ ≤ 1, f is also additively subhomogeneous, meaning that it satisfies
f(λ + v) ≤ λ + f(v) for all λ ∈ R nonnegative (λ ≥ 0) and v ∈ R

n, where
λ+ v := (λ+ vi)i∈[n]. This implies that f is nonexpansive in the sup-norm. When
in addition Assumption (A2) holds, the map f is contracting in the sup-norm with
contraction factor λ, that is:

‖f(v)− f(w)‖ ≤ λ‖v − w‖ ,

where ‖ · ‖ denotes the sup-norm of Rn (‖v‖ = max{|vi| | i ∈ [n]}). Then, one can
solve the fixed point equation (8) of f by using the fixed point iterations, also called
value iterations in the optimal control or game context: vk+1 = f(vk). They will
converge geometrically towards the solution v with factor λ: limk→∞ ‖vk− v‖1/k ≤
λ. However the complexity of this algorithm is known to be only pseudo polynomial.
Indeed the number of necessary iterations will depend on the norm of the solution,
which depends itself on the modulus of the parameters.

When now γ ≡ 1, f is additively homogeneous, meaning that it commutes with
the addition of a constant vector, i.e., that f(λ + v) = λ + f(v) for all λ ∈ R and
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v ∈ R
n. Then, the mean payoff of the game can be studied through the following

additive eigenproblem

(9) η + v = f(v) .

Here, the vector v ∈ R
n is called an additive eigenvector of f associated to the

additive eigenvalue η ∈ R. If such an additive eigenpair exists, then, the value of
the mean payoff game represented by f is equal to η for all initial states. Opti-
mal strategies are obtained in the same way as for the discounted infinite horizon
problem.

3. Policy iteration algorithm: presentation and preliminary

properties

3.1. Assumptions and notations. Assume first that f is given by (7), with F
as in (6), Mab

ij nonnegative scalars, and Ai and Bi finite sets (Assumption (A1)).
Then, the sets of feedback policies AM := {σ : [n] → A | σ(i) ∈ Ai ∀i ∈ [n]} and
BM := {δ : [n] × A → B | δ(i, a) ∈ Bi ∀i ∈ [n], a ∈ Ai} are finite. Now for every
pair of policies σ ∈ AM and δ ∈ BM of the first and second players, we define the
following matrices and vectors:

M (σδ) = (Mσiδi
ij )ij=1,...,n, and r(σδ) = (rσiδi

i )i=1,...,n ,

and respectively the affine and nonlinear maps f (σδ) and f (σ) from R
n to itself

which coordinates are given, for all v ∈ R
n, by:

f
(σδ)
i (v) = F (v; i, σi, δi),(10a)

f
(σ)
i (v) = F (v; i, σi).(10b)

Then, we can write, for all v ∈ R
n,

f (σδ)(v) = M (σδ)v + r(σδ),(11a)

f (σ)(v) = max
δ∈BM

f (σδ)(v),(11b)

f(v) = min
σ∈AM

f (σ)(v) ,(11c)

where in these expressions, the maximum and the minimum mean the supremum
and infimum with respect to the partial order of R

n. Note that it is attained
for an element of BM and AM respectively. Indeed, from (10), the i-th entry of
f (σδ) and f (σ) depends only on the policy at state i. We shall say that a set of
vectors V ⊂ R

n is rectangular if V = π1(V ) × · · · × πn(V ), where πi : R
n → R

denotes the projection on the ith coordinates. It follows that the set of vectors
{f (σ)(v) | σ ∈ AM} is rectangular, and that for each σ, the set {f (σδ)(v) | δ ∈ BM}
is also rectangular.

The maps f (σδ) and f (σ) satisfy the same properties as the ones stated in Sec-
tion 2.3 for f . They are all order preserving. When γ ≤ 1 (resp. γ ≡ 1), they are
additively subhomogeneous (resp. homogeneous), hence nonexpansive in the sup-
norm. When Assumption (A2) holds, these maps are contracting in the sup-norm
with contraction factor λ.
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3.2. Policy iteration algorithm for discounted games. Here we are interested
in solving Equation (8) by using the policy iteration algorithm for discounted games,
introduced by Howard [13] for 1-player games, and by Hoffman and Karp [12], and
Denardo [7] for 2-player games. It will be convenient to consider the following
general algorithm.

Algorithm 1 (General policy iteration algorithm).
Input : A set AM, and maps f and f (σ), from R

n to itself, for σ ∈ AM, satisfy-
ing (11c), for all v ∈ R

n.
Output : A fixed point v of f and a policy σ ∈ AM such that f(v) = f (σ)(v).

(1) Initialization: Set s = 0. Select an arbitrary strategy σ0 ∈ AM.
(2) Compute the fixed point vs of f (σs).
(3) Improve the policy: choose an optimal policy for vs, that is σs+1 ∈ AM

such that f(vs) = f (σs+1)(vs), with σs+1 = σs as soon as this is possible.
(4) If σs+1 = σs, then the algorithm stops and returns vs and σs. Otherwise,

increment s by one and go to Step 2.

When AM is as in Section 3.1, and f (σ) satisfies also (10b), Step 3 is equivalent
to

σs+1
i ∈ argmin

a∈Ai

F (vs; i, a), i ∈ [n],

and we can also choose σs+1 in a conservative way, that is such that, for all i ∈ [n],
σs+1
i = σsi as soon as this is possible. Algorithm 1 can also be applied to a map f

satisfying (11c) with the min operation replaced by the max operation.
When f is as in Section 3.1, the policy iteration algorithm for 2-player games

consists in two levels of nested instances of the previous algorithm.

Algorithm 2 (Policy iteration algorithm for 2-player games).
Input : A map f given as in Section 3.1.
Output : The value v of the game associated to f and an optimal policy σ ∈ AM.

• Apply Algorithm 1 (that is construct the sequences σs of policies and vs of
values, s ≥ 0).

• The solution vs in Step 2 is the value of the game with fixed policy σs. It
is computed as follows:

– Apply Algorithm 1 to the set BM instead of AM, the map f (σs) instead
of f and the maps f (σsδ) with δ ∈ BM instead of the maps f (σ) with
σ ∈ AM. This constructs sequences of policies δs,l and values vs,l, with
l ≥ 0.

– When the latter algorithm stops, put vs = vs,l. Then δs,l is an optimal
policy of the second player of the game with fixed policy σs for the
first player.

• When the algorithm stops, return vs, σs and δs,l with s equal to the final
index of the external iteration of Algorithm 1, and l the final index of the
internal iteration of Algorithm 1.

Note that in the nested application of Algorithm 1, Step 2 consists in solving a
linear system, which can be done either by a direct linear solver, or approximately,
by an iterative method. In the present paper, we require an exact solution.

The usual assumption for the validity of the above algorithms is Assumption (A2).
Under this assumption, one can show (see for instance [4] for one-player games
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and [7] for 2-player games) that the sequence of values (vs)s≥0 (resp. (vs,l)l≥0 for
some fixed s ≥ 0) of Algorithm 2 is nonincreasing (resp. nondecreasing) and con-
verges towards the unique fixed point v of f (resp. vs of f (σs)), and deduce in
particular that Algorithm 2 (resp. each nested application of Algorithm 1 in Algo-
rithm 2) never visits twice the same policy of the first (resp. second) player (except
before stopping). Then, since the action spaces are finite, the algorithm (resp.
nested policy iterations) stops after a finite time.

These properties can indeed be obtained from the following result concerning
Algorithm 1.

Proposition 1. Let AM, f and f (σ) be as in Algorithm 1. Assume that AM is
finite, that the maps f (σ) are order preserving and contracting in the sup-norm
with the same contraction factor λ. We have:

(1) f is also order preserving and contracting in the sup-norm with contraction
factor λ;

(2) the iterations of Algorithm 1 are well defined;
(3) the sequence vs is nonincreasing and converges towards the unique fixed

point v of f ;
(4) more precisely: v ≤ vs+1 ≤ f(vs) ≤ vs;
(5) the sequence σs never visits twice the same policy (except when the stopping

condition is satisfied);
(6) hence Algorithm 1 stops after a finite time.

From Point 4, we see that the sequence (vs)s≥0 of policy iteration algorithm 2
converges faster towards v than the value iteration algorithm starting from v0. One
can also deduce the following contraction property (see for instance [11]).

Corollary 2. Under the assumptions of Proposition 1, the sequence vs satisfies the
following contraction property in the sup-norm: ‖vs+1 − v‖ ≤ λ‖vs − v‖.

3.3. Policy iteration algorithm for mean-payoff games. Now, we assume
that γ ≡ 1, and are interested in solving the optimality equation of the mean
payoff problem, Equation (9), by policy iteration. The first algorithm doing so
was introduced by Hoffman and Karp [12], assuming all the matrices M (σδ) to be
irreducible. This algorithm is very similar to the algorithm for discounted games,
so we only present here the differences.

Algorithm 3 (General policy iteration algorithm for the mean payoff additive
eigenproblem).

Same as Algorithm 1, except that

• f and f (σ) are assumed to be additively homogeneous;
• the initialization includes the selection of an arbitrary state c ∈ [n];
• instead of a fixed point v of f , the algorithm is returning an additive eigen-
vector v and associated eigenvalue η of f (η + v = f(v)) such that vc = 0;

• the computation of a fixed point vs of f (σs) is replaced by the computation
of an additive eigenvector vs and associated eigenvalue ηs of f (σs) (ηs+vs =
f (σs)(vs)), such that vsc = 0.

Note that since the maps f and f (σ) are additively homogeneous, changing c
into another state c̃ does not change the admissible sequences of policies, and only
modifies the additive eigenvectors by additive constants. Indeed, for any given
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input, σs, ηs and vs are respectively admissible sequences of policies, additive
eigenvalues, and additive eigenvectors with c, if and only if σs, ηs and ṽs = vs− vsc̃
are respectively admissible sequences of policies, additive eigenvalues, and additive
eigenvectors with c̃.

Algorithm 4 (Hoffman and Karp policy iteration algorithm for 2-player mean–
payoff games).

Same as Algorithm 2, except that

• we assume that γ ≡ 1;
• instead of the value v of the game associated to f , the algorithm is returning
the value η and a bias v such that vc = 0;

• Algorithm 1 is replaced by Algorithm 3;
• the algorithm constructs the sequences of values ηs and bias vs of the game
with a fixed policy σs, with vsc = 0, and for each s ≥ 0, it constructs the
sequences of values ηs,l and bias vs,l, l ≥ 0, of the game with fixed policies
σs and δs,l of the first and second player, with vs,lc = 0.

Some or all of the following properties can be found in [4] for one-player games
and [12] for 2-player games.

Proposition 3. Assume all the matrices M (σδ), σ ∈ AM, δ ∈ BM, are irreducible.
Then, the sequence of values (ηs)s≥0 (resp. (ηs,l)l≥0 for some fixed s ≥ 0) of Al-
gorithm 4 is nonincreasing (resp. nondecreasing) and converges towards the unique
eigenvalue η of f (resp. ηs of f (σs)). Also the sequence of bias (vs)s≥0 (resp.
(vs,l)l≥0 for some fixed s ≥ 0) of Algorithm 4 converges towards the unique bias v

of f such that vc = 0 (resp. vs of f (σs) such that vsc = 0).

Corollary 4. Assume all the matrices M (σδ), σ ∈ AM, δ ∈ BM, are irreducible.
Then, Algorithm 4 (resp. each nested application of Algorithm 3 in Algorithm 4)
never visits twice the same policy of the first (resp. second) player (except when
the stopping condition is verified). Hence, the policy iterations (resp. nested policy
iterations) stop after a finite time.

Note that the above algorithms cannot be applied to multichain games (such
that some matrices M (σδ) have at least two final classes), since then, the value of
the game is not any more given by a constant η independent of the initial state.
See [5, 1] for a discussion of the multichain case.

4. Bounds on the number of policy iterations

In the sequel, we shall state as far as possible our results in the framework of the
general policy iteration algorithms 1 and 3, the application of these results to the
zero-sum two-player game policy iteration algorithms 2 and 4 being immediate.

4.1. Revisiting the bound of Ye and Hansen, Miltersen and Zwick with

non linear maps. The following improvement of [11] is obtained by the same
arguments as in [11], except that we use the nonlinear maps f (σ) directly instead
of the affine maps f (σδ), and that we use only sup-norms, whereas ℓ1 norms were
used in some places in [11].

Theorem 5. Let AM, f , f (σ) and λ be as in Proposition 1. Assume also that AM

is as in Section 3.1, and that f (σ) satisfies (10b).
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Then the policy iteration algorithm 1 stops after at most smax iterations, where

smax := (m1 − n)(1 + ⌊ log(1−λ)
log(λ) ⌋) and m1 is the cardinality of SA := {(i, a) | i ∈

[n], a ∈ Ai}.

4.2. Discounted games with state dependent discount factors. We denote
by r(M) the spectral radius of a n×n matrixM , that is the maximum of the moduli
of its eigenvalues. When ϕ ∈ R

n has strictly positive coordinates and v ∈ R
n, we set

ϕ−1 := (ϕ−1
i )i∈[n] ∈ R

n and ϕv := (ϕivi)i∈[n] ∈ R
n (these are the usual notations,

if we identify R
n to the set of functions from [n] to R). For all self-maps f of Rn,

we denote by Sϕ(f) its scaling by ϕ, which is the map Sϕ(f) : v 7→ ϕ−1f(ϕv).
It is easy to see that if f is order preserving so is Sϕ(f).a The following result
shows that these scalings leave invariant the sequences of policies generated by the
policy iteration algorithm. A sequence of policies and fixed points will be said to
be admissible for a given input if there is a valid run of the algorithm on this input
producing this sequence.

Proposition 6 (Scaling Invariance). Let AM, f and f (σ) be as in Algorithm 1,

and let ϕ ∈ R
n have strictly positive coordinates. Denote f̃ := Sϕ(f) and f̃ (σ) =

Sϕ(f
(σ)). Then, AM, f̃ and f̃ (σ) constitute a valid input of Algorithm 1. Moreover,

σs and ṽs = ϕ−1vs constitute an admissible sequence of policies and fixed points
for this input, if and only if σs and vs constitute an admissible sequence of policies
and fixed points for the original input AM, f and f (σ).

For a set M of n × n matrices M ⊂ R
n×n, we shall define its rectangular hull,

denoted rec(M), as the set of matrices N such that, for all i ∈ [n], the row i of N
coincides with the row i of some elementM of M. When g is a polyhedral self-map
of Rn, so that Rn can be covered by finitely many polyhedra on which g is affine,
we shall denote by imD(g) the finite set of matrices representing the differential of
g in each of these polyhedra.

The proof of the following result is based on nonlinear Perron-Frobenius theory
and in particular on some results in [16, 2].

Theorem 7. Let AM, f and f (σ) be as in Algorithm 1. Assume that AM is as in
Section 3.1, that f (σ) satisfies (10b), and that the maps f (σ) are order preserving
and polyhedral. Let M(σ) = rec(imD(f (σ))) and M = ∪σ∈AM

M(σ). Assume that
the spectral radii of all the matrices M in M are strictly less than 1, and denote by
ω the maximum of these spectral radii. Then for all λ such that ω < λ < 1, there
exists ϕ ∈ R

n with strictly positive coordinates such that the scaled maps f̃ := Sϕ(f)

and f̃ (σ) = Sϕ(f
(σ)) are contracting in the sup-norm with contraction factor λ.

Using Theorem 7 and Proposition 6, we obtain:

Corollary 8. Under the assumptions of Theorem 7, the conclusion of Proposition 1
holds.

Applying Theorem 7, Proposition 6, and Theorem 5 to all λ such that ω < λ < 1,
we obtain:

Corollary 9. Under the assumptions of Theorem 7, the conclusion of Theorem 5
holds with λ = ω.

Corollary 10. Let AM, BM and f be given as in Section 3.1. Assume that the
spectral radii of all the matrices M (σδ), σ ∈ AM, δ ∈ BM, are strictly less than
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1, so that ω̄ := maxσ∈AM,δ∈BM
r(M (σδ)) < 1. Then the conclusion of Theorem 5

holds for the policy iteration algorithm for 2-player games, Algorithm 2 (instead of
Algorithm 1), with λ = ω̄.

Corollary 11. Let λ ∈ [0, 1) be fixed. Then, the policy iteration algorithm solves in
strongly polynomial time the instances of zero-sum 2-player “discounted” stochastic
games with perfect information and state dependent discount factors (possibly lo-
cally greater than 1) that are such that the spectral radii of the transition matrices
associated to every pair of policies of the two players is bounded by λ.

4.3. Mean-payoff games with a renewal state. For a Markov matrix M and
states i, j, we shall denote:

Tij(M) = E[inf{k ≥ 1 | Xk = j} | X0 = i] ,

the expected first mean return time to state j of a Markov chain Xk with transition
matrix M and initial state i. It is easy to see that Tic(M) < +∞ for all i ∈ X if
and only if M has a unique final (recurrent) class and that c belongs to this class.
The state c is called a renewal state.

The following transformation will allow us to replace a self-map f of Rn by a
sup-norm contraction. This will play a similar role to the scaling transformation
used in the discounted case.

Let ϕ ∈ R
n have positive coordinates and c ∈ [n]. Then, the map Lϕ which

to a couple (η, v), with η ∈ R and v ∈ R
n such that vc = 0, associates the vector

w = η + ϕ−1v ∈ R
n is an affine isomorphism, with inverse given by: η = wc and

v = ϕ(w−wc). For all self-maps f of Rn, we shall denote by Lϕ(f) the self-map of
R
n, such that for all w, v ∈ R

n and η ∈ R with vc = 0 and w = η + ϕ−1v, we have
Lϕ(f)(w) = ϕ−1(η(ϕ − 1) + f(v)).

Proposition 12. Let AM, f , and f (σ) be as in Algorithm 3, and let ϕ ∈ R
n

have strictly positive coordinates and c ∈ [n]. Denote f̃ := Lϕ(f) and f̃ (σ) =

Lϕ(f
(σ)). Then, AM, f̃ and f̃ (σ) are a valid input of Algorithm 1. Moreover σs

and ṽs = ηs + ϕ−1vs constitute an admissible sequence of policies and fixed points
for Algorithm 1 on this input, if and only if σs, ηs and vs constitute an admissible
sequence of policies, additive eigenvalues and additive eigenvectors for Algorithm 3
on the original input AM, f , f (σ), when c is chosen.

Theorem 13. Let AM, f , and f (σ) be as in Algorithm 3. Assume that AM is as in
Section 3.1, that f (σ) satisfies (10b), and that the maps f (σ) are order preserving
and polyhedral. Let M(σ) = rec(imD(f (σ))) and M = ∪σ∈AM

M(σ). Then, all
matrices M in M are Markov matrices. Assume that they all have a unique final
class, and there there is a state c ∈ [n] which is common to each of these classes,
so that

Tic := max
M∈M

Tic(M) < +∞ ∀i ∈ [n] .

Let ϕ ∈ R
n be the vector with coordinates ϕi = Tic ≥ 1, and K = maxi∈[n] Tic.

Then, the transformed maps f̃ := Lϕ(f) and f̃ (σ) = Lϕ(f
(σ)) are order-preserving

and contracting in the sup-norm with contraction factor λ = (K − 1)/K.

Corollary 14. Under the assumptions of Theorem 13, Assertions 2,3,5, and 6
of Proposition 1 hold for Algorithm 3 instead of Algorithm 1, with vs replaced by
ηs + ϕ−1vs, and v replaced by η + ϕ−1v.
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Applying Theorem 13, Proposition 12, and Theorem 5, we obtain:

Corollary 15. Under the assumptions of Theorem 13, the policy iteration algo-

rithm 3 stops after at most smax iterations, where smax := (m1−n)(1+⌊ log(K)
log(K/(K−1))⌋) =

O((m1 − n)K logK), K = maxi∈[n] Tic, and m1 is the cardinality of SA.

Corollary 16. Let AM and f be given as in Section 3.1, with γ ≡ 1. Assume that
every matrix M (σδ), σ ∈ AM, δ ∈ BM, has a unique final class, and there is a state
c ∈ [n] which is common to each of these classes, so that

T̄ic := max
σ∈AM,δ∈BM

Tic(M
(σδ)) < +∞ ∀i ∈ [n] .

Then, the conclusion of Corollary 15 holds for the Hoffman and Karp policy itera-
tion algorithm for 2-player mean-payoff games, Algorithm 4 (instead of Algorithm 3)
with K = maxi∈[n] T̄ic.

Corollary 17. Let K ∈ [1,+∞) be fixed. Then, the Hoffman and Karp policy
iteration algorithm solves in strongly polynomial time the instances of zero-sum 2-
player stochastic mean-payoff games with perfect information having a distinguished
state to which the mean return time is bounded by K for all choices of policies of
both players.

5. Proof of the preliminary results of Section 3

The following proof is similar to the proofs of the same properties for Algorithm 2
that can be found for instance in [4].

Proof of Proposition 1. Let AM, f and f (σ) be as in the proposition. From (11c),
f is order preserving and contracting in the sup-norm with contraction factor λ.

Hence the maps f (σ) and f have a unique fixed point, which implies that Step 2
of Algorithm 1 is well defined.

Let (vs)s≥1 be the sequence of Algorithm 1. We have vs = f (σs)(vs) ≥ f(vs) =

f (σs+1)(vs). In particular, vs ≥ f (σs+1)(vs), which implies that the sequence

(f (σs+1))k(vs) is nonincreasing. By the fixed point theorem for the contracting

map f (σs+1), the former sequence converges towards the unique fixed point, which

by definition is vs+1. This implies in particular that vs ≥ f (σs+1)(vs) ≥ vs+1, so
that the sequence (vs)s≥1 is nonincreasing.

Moreover, from the above equations, we deduce that vs ≥ f(vs) ≥ vs+1. In
particular, the sequence fk(vs) is nonincreasing. Again, by the fixed point theorem
for the contracting map f , the former sequence converges towards the unique fixed
point v of f , hence vs ≥ v for all s. Since the sequence (vs)s≥1 is nonincreasing
and lower bounded by v, it converges towards some vector w ≥ v. Then, from the
above equations, we also get that vs ≥ f(vs) ≥ vs+1 ≥ v, for all s, passing to the
limit and using the continuity of f , we deduce that w = f(w), and since f has a
unique fixed point, we deduce that w = v.

Assume by contradiction that the sequence σs visits twice the same policy. This

means that σs
′

= σs for some s′ > s ≥ 0. Since the map f (σs) = f (σs
′

) has a unique
fixed point, we get that vs = vs

′

. Since we already proved that the sequence (vs)s≥0

is nonincreasing, we obtain vs ≥ vs+1 ≥ vs
′

. This implies that vs = vs+1, hence
vs = f(vs), so that, by definition, the algorithm necessarily stops at iteration s if it

did not stopped before, hence the iteration s′ does not occur, and σs
′

is computed
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only if s′ = s+ 1 and so the algorithm cannot visits twice the same policy, except
when the stopping condition is verified.

This implies that Algorithm 1 stops after at most a number of iterations equal
to the cardinality of the set AM. �

Proof of Corollary 2. From vs ≥ f(vs) ≥ vs+1 ≥ v, we get that ‖vs+1 − v‖ ≤
‖f(vs)− v‖ and since f is contracting with factor λ, we deduce that ‖vs+1 − v‖ ≤
λ‖vs − v‖. �

6. Proof of Theorem 5

Let v denote the unique fixed point of f , and for all σ ∈ AM, denote by R(σ) =
f (σ)(v)− v the residual induced by v on the fixed point equation of f (σ). By (11c),
we have minσ∈AM

R(σ) = 0, so R(σ) ≥ 0 for all σ ∈ AM. Moreover, σ is an optimal
policy of the game if and only if R(σ) = 0, or equivalently ‖R(σ)‖ = 0. Finally,

by (10b), R
(σ)
i = Rσi

i for all i ∈ [n], where Rai = F (v; i, a) − vi for all i ∈ [n]
and a ∈ Ai plays the role of a new reward such that the value of the dynamic
programming equation is identically equal to zero.

Let vs and σs be the sequences of values and policies constructed in Algorithm 1.
Since vs ≥ v, vs = f (σs)(vs), and f (σs) is order preserving, we get that vs ≥
f (σs)(v) ≥ f(v) = v, hence 0 ≤ R(σs) ≤ vs − v and taking the supremum over all
coordinates (or states), we get that ‖R(σs)‖ ≤ ‖vs−v‖. Now, since vs is the unique
fixed point of the λ-contracting map f (σs), we get that ‖vs−f (σs)(v)‖ ≤ λ‖vs−v‖.
Then, ‖vs − v‖ ≤ ‖vs − f (σs)(v)‖ + ‖R(σs)‖ ≤ λ‖vs − v‖ + ‖R(σs)‖. From all the
above inequalities, we get that

‖R(σs)‖ ≤ ‖vs − v‖ ≤
1

1− λ
‖R(σs)‖ .

Combining these inequalities with the contraction of policy iterations shown in
Corollary 2 (‖vs+1 − v‖ ≤ λ‖vs − v‖), we obtain that for all t ≥ s+ p,

‖R(σt)‖ ≤ µ‖R(σs)‖, with µ =
1

1− λ
λp .

Moreover when p = 1 + ⌊log(1 − λ)/ log(λ)⌋ (which is the least integer such that
p > log(1 − λ)/ log(λ)), we have µ < 1.

For all σ ∈ AM, let us denote by G(σ) the graph of σ: G(σ) = {(i, σi) | i ∈ [n]}.

Since R
(σ)
i = Rσi

i for all i ∈ [n], we get that ‖R(σ)‖ = max(i,a)∈G(σ) R
a
i . Assume

σs is not optimal, then ‖R(σs)‖ > 0 and let (i, a) realizes the maximum of Rai on

G(σs). If t ≥ s+p, with p as before, and (i, a) ∈ G(σt), we get that Rai ≤ ‖R(σt)‖ ≤

µ‖R(σs)‖ = µRai with µ < 1 and Rai > 0, which is impossible. This shows that
(i, a) 6∈ G(σt), hence G(σt) ⊂ SA \ {(i, a)}, for all t ≥ s + p. Let us construct a
sequence SAs of subsets of SA, equal to the empty set for all s < p, and such that
for all s ≥ p, SAs is the union of SAs−1 with the set of couples (i, a) realizing the
maximum of Rai on G(σs−p). We get that G(σt) ⊂ SA \ SAt, for all t ≥ 0 and that
for all s ≥ p, there exist (i, a) ∈ SAs \SAs−p, as long as Algorithm 1 did not stop, so
that the cardinality of SAs increases at least by one after each group of p iterations.
Hence, SA \ SAp(m1−n) has at most n elements, and since, for all t ≥ p(m1 − n),

G(σt) ⊂ SA \ SAp(m1−n) and G(σt) has exactly n elements, we deduce that, if the

algorithm did not stop before iteration number t, there is only one choice for G(σt)
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with t ≥ p(m1 − n), hence σt = σt+1, and the algorithm stops at iteration number
t.

7. Spectral radius notions and the results of Section 4.2

Let C be a closed convex cone of Rn, let
◦

C denote its interior, and let h be a
nonlinear continuous positively homogeneous map from C to itself (h(λv) = λh(v)
for all λ > 0 and v ∈ C). The following definitions are taken from [15]:

• v is an eigenvector of h in C, and λ is an eigenvalue associated to v, if
h(v) = λv.

• The cone eigenvalue spectral radius of h is the supremum of its eigenvalues
in C:

r̂C(h) := sup{λ ≥ 0 | ∃v ∈ C\{0} such that h(v) = λv} .

• The Collatz-Wielandt number of h is defined as:

cwC(h) := inf{λ > 0 | ∃v ∈
◦

C such that h(v) ≤ λv} .

• The Bonsall’s spectral radius of h is defined as:

rC(h) := inf
k≥1

‖hk‖
1/k
C , with ‖h‖C := sup

x∈C, ‖x‖=1

‖h(x)‖ ,

for any given norm ‖ · ‖ on R
n.

The equality r̂R+
(h) = cwR+

(h) in the following result was established by Nuss-
baum [16, Theorem 3.1]. The last equality is done in [2] in a more general infinite
dimensional context, together with the first one.

Theorem 18 ([16, Theorem 3.1], and [2]). For a continuous, positively homoge-
neous, order preserving selfmap h of C = R

n
+, all the above spectral radius notions

of h coincide:

r̂R+
(h) = cwR+

(h) = rR+
(h) .

We denote by r(h) this constant.

The following result can be deduced easily from Theorem 18. It is also proved
in an infinite dimensional context in [2].

Proposition 19. Let Π be a set, and h and hπ, π ∈ Π, be continuous, positively
homogeneous, order preserving selfmaps of Rn+. Assume that for all v ∈ R

n
+, h(v) =

maxπ∈Π hπ(v), meaning that h(v) ≥ hπ(v) for all π ∈ Π, and that there exists π ∈ Π
such that h(v) = hπ(v). Then

r(h) = max
π∈Π

r(hπ) .

Proof of Theorem 7. Since f is order preserving, so is Sϕ(f). If f is a polyhedral
map such that all the matrices M ∈ imD(f) satisfy Mϕ ≤ λϕ, then, all the
matrices M ′ ∈ imD(Sϕ(f)) satisfy M ′

1 = ϕ−1Mϕ ≤ λ1, where 1 is the vector
with all coordinates equal to 1. Then, since M ′ has also nonnegative coordinates,
because Sϕ(f) is order preserving, we get that M ′ is contracting in the sup-norm
with contraction factor λ. Then, using the polyhedral and continuity properties of
f , it is easy to see that Sϕ(f) is also contracting in the sup-norm with contraction
factor λ.
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Let us show the above property for all maps f (σ). For this, consider the self-map
f̄ of Rn given by:

(12) f̄(v) := sup
M∈M

(Mv) ,

where M is as in the theorem. Since all the matrices involved in the previous
formula have nonnegative entries, the corresponding self-maps of R

n are order-
preserving. Since AM is finite and the maps f (σ) are polyhedral, the set M is
finite. Since in addition AM is as in Section 3.1, the set M is the Cartesian product
of the sets of its rows, hence the supremum in (12) is a maximum. Then, applying
Proposition 19, we get that

r(f̄ ) = max
M∈M

r(M) = ω.

In particular the maximum is attained, hence < 1. Now, from Theorem 18, we get
that ω = r(f̄) = cwR+

(f̄), hence for all λ > ω, there exists ϕ ∈ R
n with positive

coefficients such that f̄(ϕ) ≤ λϕ. This implies that all the matricesM ∈ imD(f (σ))
satisfyMϕ ≤ λϕ, which by the above arguments implies that Sϕ(f

σ) is contracting
in the sup-norm with contraction factor λ. �

Proof of Proposition 6. By definition of Sϕ(f), we have v = f(v) if and only if
w = Sϕ(f)(w) for w = ϕ−1v. Moreover, the transformation of maps f , Sϕ(f)(w) =
ϕ−1f(ϕw) preserves the order on the maps f . Hence if vs and σs are respectively
sequences of fixed points, and policies of Algorithm 1 for f and f (σ), then ws =
ϕ−1vs and σs are respectively sequences of fixed points and policies of Algorithm 1
for Sϕ(f) and Sϕ(f

(σ)). �

8. The results of Section 4.3

Lemma 20. Let M be a n × n Markov matrix with a unique final class, and let
c ∈ [n] belong to this final class. Denote by M(c) the matrix obtained from M
by putting to zero all entries in the c-th column. Then, the vector ϕ ∈ R

n with
coordinates ϕi = Tic(M) satisfies ϕ = 1 +M(c)ϕ.

Lemma 21. Let M be a n × n Markov matrix with a unique final class, and let
c ∈ [n] belong to this final class. Consider a vector ϕ ∈ R

n with positive coordinates
such that ϕ ≥ 1 + M(c)ϕ, and let K be a bound on its coefficients, K ≥ ‖ϕ‖.
Construct the n × n matrix M(c,ϕ) by replacing the c-th column of M with the
vector (1/ϕc)(ϕ− 1−M(c)ϕ). Then, M(c,ϕ) has nonnegative entries and satisfies

(13) M(c,ϕ)ϕ = ϕ− 1 ≤ λϕ ,

with λ = (K − 1)/K. Moreover, for all η ∈ R and v ∈ R
n such that vc = 0, we

have

(14) Mv + η(ϕ − 1) =M(c,ϕ)(v + ηϕ) .

Corollary 22. Under the conditions of Lemma 21, the map f(v) = Mv is such
that Lϕ(f)(w) = ϕ−1M(c,ϕ)(ϕw) = M ′w, for some matrix M ′ with non negative
entries and row sums less or equal to λ. Hence, Lϕ(f) is order-preserving and
contracting with contraction factor λ.

Proof. Indeed, Lϕ(f)(w) = ϕ−1M(c,ϕ)(ϕw) follows from (14). Since by (13),
M(c,ϕ)ϕ ≤ ϕ, we deduce that M ′

1 ≤ λ1 where 1 denotes the the vector with
all coordinates equal to 1. �
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Proof of Theorem 13. If f is a polyhedral map such that, all matrices M ∈ imD(f)
satisfy the conditions of Lemma 21 (with the same fixed ϕ and c), then by Corol-
lary 22, all matrices M ′ ∈ imD(Lϕ(f)) satisfy the conclusions of Corollary 22.
This implies by the continuity of f and Lϕ(f), that Lϕ(f) is order-preserving and
contracting with contraction factor λ.

Let us show the above property for all maps f (σ). For this, consider the self-map
f̄ of Rn given by:

(15) f̄(v) := max
M∈M

(M(c)v) .

Note that it coincides with map of (12) on the set of vectors v such that vi = 0, but
we shall apply it to all vectors. Since all matrices involved in the previous formula
have a unique final class and that this class contains c, we get that they have all
a spectral radius strictly less than 1. By the same arguments as in the previous
section, the map f̄ has a spectral radius strictly less than one, so is contracting
for the sup-norm after a scaling by some vector ψ (or equivalently is contracting
the weighted sup-norm ‖v‖ψ = ‖vψ−1‖). In particular the equation ϕ = 1 + f̄(ϕ)
has a unique solution ϕ, and since the set of M is rectangular, this equation is
the dynamic programming equation of an infinite horizon discounted 1-player game
problem. The interpretation of ϕ as the value of this 1-player game problem gives
that ϕi = Tic for all i ∈ [n]. Since ϕ = 1 + f̄(ϕ) ≥ 1 +M(c)ϕ for all M ∈ M,

and a fortiori for all M ∈ imD(f (σ)) and σ ∈ AM, which implies that M satisfies
the conditions of Lemma 21 with ϕ and c, we get by the above arguments that the
maps Lϕ(f

σ) are contracting in the sup-norm with contraction factor λ. �

Proof of Proposition 12. By definition of Lϕ(f), we have η + v = f(v) if and only
if w = Lϕ(f)(w) for w = η + ϕ−1v. Moreover, the transformation of maps f ,
Lϕ(f)(w) = ϕ−1(η(ϕ− 1) + f(v)), is preserving the order on the maps f . Hence if
ηs, vs and σs are respectively the sequences of eigenvalues, eigenvectors, and policies
of Algorithm 3 for f and f (σ), then ws = ηs + ϕ−1vs and σs are respectively the
sequence of fixed points and policies of Algorithm 1 for Lϕ(f) and Lϕ(f

(σ)). �
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