
The complexity of mean payo� games on graphs �Uri Zwick y Mike Paterson zJuly 26, 1995AbstractWe study the complexity of �nding the values and optimal strategies ofmean payo� games ongraphs, a family of perfect information games introduced by Ehrenfeucht and Mycielski andconsidered by Gurvich, Karzanov and Khachiyan. We describe a pseudo-polynomial timealgorithm for the solution of such games, the decision problem for which is in NP \ co-NP.Finally, we describe a polynomial reduction from mean payo� games to the simple stochasticgames studied by Condon. These games are also known to be in NP \ co-NP, but nopolynomial or pseudo-polynomial time algorithm is known for them.1 IntroductionLetG = (V;E) be a �nite directed graph in which each vertex has at least one edge going out of it.Let w : E ! f�W; : : :; 0; : : : ;Wg be a function that assigns an integral weight to each edge of G.Ehrenfeucht and Mycielski [EM79] studied the following in�nite two-person game played on sucha graph. The game starts at a vertex a0 2 V . The �rst player chooses an edge e1 = (a0; a1) 2E. The second player then chooses an edge e2 = (a1; a2) 2 E, and so on inde�nitely. The�rst player wants to maximise lim infn!1 1nPni=1 w(ei). The second player wants to minimiselim supn!1 1nPni=1 w(ei). Ehrenfeucht and Mycielski show that each such game has a value �such that the �rst player has a strategy that ensures that lim infn!1 1nPni=1 w(ei) � �, whilethe second player has a strategy that ensures that lim supn!1 1nPni=1 w(ei) � �. Furthermore,they show that both players can achieve this value using a positional strategy , i.e., a strategy inwhich the next move depends only on the vertex from which the player is to move.As the players in these mean payo� games move alternatively, we may assume, without lossof generality, that the graph G = (V;E) on which such a game is played is bipartite, with V1and V2 being the partition of the vertices into the two `sides' and with E = E1 [ E2 such thatE1 � V1 � V2 and E2 � V2 � V1. If the original graph is not bipartite, we simply duplicate theset of vertices.To obtain their results for the in�nite game, Ehrenfeucht and Mycielski [EM79] also considerthe following �nite version of the game. Again the game starts at a speci�c vertex of the graphG = (V;E), which is assumed to be bipartite. The players alternate in choosing successive edgesthat form a path, but the game ends as soon as a cycle is formed. The outcome of the gameis then the mean weight of the edges on this cycle. The �rst player wants to maximise and thesecond player to minimise this outcome. This game is a �nite perfect information two-person�Supported in part by the ESPRIT Basic Research Action Programme of the EC under contract No. 7141(project ALCOM II).yDepartment of Computer Science, School of Mathematical Sciences, Raymond and Beverly Sackler Facultyof Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail address: zwick@math.tau.ac.il.zDepartment of Computer Science, University of Warwick, Coventry CV4 7AL, England. E-mail address:Mike.Paterson@dcs.warwick.ac.uk. 1



game and so, by de�nition, has a value. Ehrenfeucht and Mycielski [EM79] show that the value �of this �nite game is also the value of the in�nite game described above. Furthermore, they show,surprisingly perhaps, that both players have positional optimal strategies for the �nite game.The positional optimal strategies of the �nite game are also positional optimal strategies for thein�nite game.Gurvich, Karzanov and Khachiyan [GKK88], unaware of the work of Ehrenfeucht and Mycielski[EM79], considered a slightly wider class of mean payo� games which they refer to as cyclicgames . A cyclic game is played on a directed graph G = (V;E) with a weight function w :E ! f�W; : : :; 0; : : : ;Wg. The vertices of G are again divided into two classes V1 and V2. Thisneed not be a bipartite partition however. The players again form a path starting at a �xedvertex a0 2 V . Whenever the endpoint of the path formed is in V1, the �rst player choosesthe next edge; whenever it is in V2, the second player makes the choice. Note that a playermay be able, or may be forced, to play a few times in succession. The goal of the �rst playeris again to maximise, and of the second to minimise, the long-term average weight of the pathformed. Gurvich et al. [GKK88] note that a general theorem of Moulin [Mou76] on stationaryoptimal strategies in stochastic games implies that both players of a cyclic game have positionaloptimal strategies. The theorem of Moulin is proved non-constructively using a �xed pointtheorem. Gurvich et al. [GKK88] give an exponential time algorithm for �nding such positionaloptimal strategies thereby giving a constructive proof of their existence. Cyclic games withprohibitions , a further generalisation of cyclic games, were considered by Karzanov and Lebedev[KL93]. Generalizations of mean payo� games to n players, where n > 2, have been consideredby Alpern [Alp91].Ehrenfeucht and Mycielski [EM79] give no e�cient algorithm for �nding optimal strategies forthe �nite and in�nite games. Gurvich, Karzanov and Khachiyan [GKK88] give, as mentioned,an exponential time algorithm for these tasks. We complement their works by exhibiting anO(jV j3�jEj�W ) time algorithm for �nding the values of the mean payo� games played on a graphG = (V;E) with vertex classes V1 and V2. The graph G need not be bipartite so our algorithmapplies to the slightly wider class of games considered by Gurvich et al. [GKK88]. The algorithm�nds the values of all the vertices of the graph; games starting at di�erent vertices may havedi�erent values, of course. We also give an O(jV j4�jEj�log(jEj=jV j)�W ) time algorithm for �ndingpositional optimal strategies for both players. Our algorithm is polynomial in the size of thegraph but only pseudo-polynomial in the weights. Our algorithm is polynomial if the weightsare presented in unary notation. In particular, our algorithms work in polynomial time if theweights are taken from, say, f�1; 0;+1g. This is already a non-trivial case.At the end of [GKK88], there is a claim that there exists a polynomial time algorithm for �ndingvalues and optimal strategies of cyclic games. According to Karzanov (personal communication),this claim was made by mistake. Lozovanu [Loz91],[Loz93] also considers cyclic games andclaims a strongly polynomial time algorithm for them. He describes a simple reduction fromcyclic games to simple acyclic games. Unfortunately, his reduction is not valid: the �rst playerin his acyclic games gains some control over the length of the cycles formed in the cyclic games.His reduction fails, for example, on the complete bipartite graph with vertex sets V1 = fv0; v2g,V2 = fv1; v3g and edge weights given by w = 0 for edges (0; 1); (1; 2); (2; 3); (3; 0), w = 1 for(1; 0); (3; 2), and w = �1 for (0; 3); (2; 1).We also consider situations in which one player knows in advance the positional strategy theother player is going to use. Using a result of Karp [Kar78] we show that an optimal counter-2



strategy can be found in strongly polynomial time. This immediately implies that the decisionproblem associated with the game is in NP\co-NP. Similar observations were made by Karzanovand Lebedev [KL93].The decision problem corresponding to mean payo� games (MPG's) is thus in NP\co-NP as wellas in ~P (pseudo-polynomial time), but is not yet known to be in P. This gives the MPG problema rare status shared only by a few number-theoretic problems, such as primality [Pra75].Condon [Con92] has recently studied the complexity of simple stochastic games (SSG's) intro-duced originally by Shapley [Sha53]. Condon shows that the decision problem corresponding toSSG's is also in NP \ co-NP. While MPG's are deterministic, SSG's are games of chance. Wedescribe a simple reduction from MPG's to SSG's in two steps. We �rst describe a reductionfrom MPG's to discounted payo� games (DPG's), and then a reduction from DPG's to SSG's.The reduction from MPG's to SSG's shows that SSG's are at least as hard as MPG's. It alsosupplies an alternative proof that the MPG problem is in NP \ co-NP, though we believe thatthe MPG problem is strictly easier then the SSG problem. As attempts to obtain polynomialtime algorithms for SSG's have not yet borne fruit, it may be interesting to focus attention onthe possibly easier problem of obtaining a polynomial time algorithm for MPG's.Various path-forming games, such as the many di�erent versions of geography were studiedby Bodlaender [Bod93], Fraenkel and Simonson [FS93] and Fraenkel, Scheinerman and Ullman[FSU93]. Many of these games are PSPACE-complete. It is therefore somewhat surprising thatthe mean payo� games that we are considering do have relatively e�cient algorithms.Mean payo� games arise naturally when trying to design algorithms for various on-line problems.Some possible applications of mean payo� games are described in Section 7.The rest of the paper is organized as follows. In the next section we describe an algorithm for�nding the values of a game. In Section 3 we describe an algorithm for �nding optimal strategies.In Section 4 we consider the case of playing against a known positional strategy. In Section 5we introduce discounted payo� games (DPG's) and describe a reduction from MPG's to DPG's.In Section 6 we describe the simple stochastic games (SSG's) studied by Condon [Con92] andpresent a reduction from DPG's to SSG's. In Section 7 we describe some applications of meanpayo� games. We end in Section 8 with some concluding remarks and open problems.2 Finding the values of a gameLet G = (V1; V2; E) be the graph on which the game is to be played, where V1 are the verticesof the �rst player and V2 are the vertices of the second player, let w : E ! f�W; : : : ; 0; : : : ;Wgbe a weight function on its edges, and jV j = n, where V = V1 [ V2. Recall that the graph Gneed not be bipartite, there may be edges between di�erent vertices of V1 and between di�erentvertices of V2.Our �rst goal is to �nd, for each vertex a 2 V , the value �(a) of the �nite and in�nite gamesthat start at a. The proof, given by Ehrenfeucht and Mycielski, that the values of the �niteand in�nite games are equal, extends easily to the case in which the graph G = (V1; V2; E) isnot bipartite. To reach this goal we consider a third version of the game. This time the twoplayers play the game for exactly k steps constructing a path of length k, and the weight of thispath is the outcome of the game. The length of the game is known in advance to both players.We let �k(a) be the value of this game started at vertex a 2 V , where player I or II plays �rstaccording to whether a 2 V1 or a 2 V2. 3



Theorem 2.1 The values �k(a), for every a 2 V , can be computed in O(k �jEj) time.Proof: It is easy to see that for every a 2 V and every k � 1 we have�k(a) = �max(a;b)2Efw(a; b) + �k�1(b)g if a 2 V1 ,min(a;b)2Efw(a; b) + �k�1(b)g if a 2 V2 .Clearly, �0(a) = 0 for every a 2 V . The values �k(a), for every a 2 V , can be easily computedusing these recursive formulae in O(k �jEj) time. 2It seems intuitively clear that limk!1 �k(a)=k = �(a), where �(a) is the value of the in�nitegame that starts at a. The next theorem states that this is indeed the case. In the proof of thistheorem we rely on the result, proved by Ehrenfeucht and Mycielski and by Gurvich, Karzanovand Khachiyan, that both players have positional optimal strategies. A positional strategy forplayer I is just a mapping �1 : V1 ! V such that (a1; �1(a1)) 2 E for every a1 2 V1. Similarly,a positional strategy for player II is a mapping �2 : V2 ! V such that (a2; �2(a2)) 2 E for everya2 2 V2.Theorem 2.2 For every a 2 V we have:k ��(a)� 2nW � �k(a) � k ��(a) + 2nW :Proof: Let �1 : V1 ! V2 be a positional optimal strategy for player I in the �nite game startingat a. We show that if player I plays using the strategy �1 then the outcome of a k-step gameis at least (k � n)��(a)� nW . Consider a game in which player I plays according to �1. Push(copies of) the edges played by the players onto a stack. Whenever a cycle is formed, it followsfrom the fact that �1 is an optimal strategy for player I in the �nite game, that the mean weightof the cycle formed is at least �(a). The edges that participate in that cycle lie consecutively atthe top of the stack. They are all removed and the process continues. Note that at each stagethe stack contains at most n edges and the weight of each of them is at least �W . Player I cantherefore ensure that the total weight of the edges encountered in a k-step game starting from ais at least (k� n)��(a)� nW . This is at least k ��(a)� 2nW as �(a) � W .Similarly, if player II plays according to a positional optimal strategy �2 : V2 ! V1 of the �nitegame that starts at a, she can make sure that the mean of each cycle closed is at most �(a).At most n edges are left on the stack and the weight of each of them is at most W . She cantherefore ensure that the total weight of the edges encountered in a k-step game starting at a isat most (k � n)��(a) + nW � k ��(a) + 2nW . 2We can now describe the algorithm for computing the exact values of the �nite and in�nitegames.Theorem 2.3 Let G = (V1; V2; E) be a directed graph and let w : E ! f�W; : : :; 0; : : : ;Wg bea weight function on its edges. The value �(a), for every a 2 V , corresponding to the in�niteand �nite games that start at all the vertices of V can be computed in O(jV j3�jEj�W ) time.Proof: Compute the values �k(a), for every a 2 V , for k = 4n3W . This can be done,according to Theorem 2.1, in O(jV j3�jEj�W ) time. For each vertex a 2 V , compute an estimate�0(a) = �k(a)=k. By Theorem 2.2, we get that�0(a)� 12n(n� 1) < � 0(a)� 2nWk � �(a) � � 0(a) + 2nWk < � 0(a) + 12n(n� 1) :4



100 0 0 W WW W 1 0 0a path of length n a cycle of length na cycle of length n� 1 0Figure 1: An example in which k = 
(n3 �W ) is needed.The value �(a) is a rational number with a denominator whose size is at most n. The minimumdistance between two possible values of �(a) is at least 1=n(n � 1). The exact value of �(a)is therefore the unique rational number with a denominator of size at most n that lies in theinterval (�0(a)� 12n(n�1) ; � 0(a) + 12n(n�1)). This number is easily found. 2The example given in Figure 1 shows that to obtain the correct values using the algorithmdescribed above it may be necessary to take k = 
(n3W ). Slightly less accuracy is needed if wejust want to know whether the value of each position is negative, zero or positive. This decisionproblem can therefore be decided more e�ciently.Theorem 2.4 Let G = (V1; V2; E) be a directed graph and let w : E ! f�W; : : :; 0; : : : ;Wg bea weight function on its edges. Let T be an integer threshold. A decision whether �(a) < T ,�(a) = T , or �(a) > T , for every a 2 V , can be made in O(jV j2 �jEj�W ) time.Proof: The distance between T and the closest rational number with a denominator of size atmost n is 1=n. It is therefore enough to compute the values �k(a) for k = 4n2W , and this takesonly O(jV j2�jEj�W ) time. 23 Finding the optimal strategiesGiven an algorithm for �nding the value of any vertex of a graph, positional optimal strategiescan be found using a simple method, which successively eliminates sets of edges using a `grouptesting' technique.Theorem 3.1 Let G = (V1; V2; E) be a directed graph and let w : E ! f�W; : : :; 0; : : : ;Wg bea weight function on its edges. Positional optimal strategies for both players, for games playedon this graph, can be found in O(jV j4 �jEj�log(jEj=jV j)�W ) time.Proof: Start by computing the values �(a) for every a 2 V . If all the vertices a 2 V1 haveoutdegree one, then player I has a unique strategy and this strategy is positional and optimal.Otherwise, consider any vertex a 2 V1 with outdegree d > 1. Remove any dd=2e of the edgesleaving a, and recompute the value of a, � 0(a) say, for the resulting graph. If � 0(a) = �(a) thenthere is a positional optimal strategy for the player I which does not use any of the removed edges;if �0(a) 6= �(a) then there is a positional optimal strategy for this player using one of the removed5



edges. Whichever is the case, we can now restrict attention to a subgraph G0 with at least bd=2cfewer edges. Let d(a) be the initial outdegree of vertex a 2 V . After O(Pa2V1 log d(a)) suchexperiments we are left with a positional optimal strategy for player I. A positional optimalstrategy for player II is found in a similar way. AsPa2V log d(a) � jV j�log(jEj=jV j), we get thatthe complexity of this algorithm is O(jV j4 �jEj�log(jEj=jV j)�W ), as required. 2An interesting open problem is whether �nding positional optimal strategies is harder than justcomputing the values of a game. The algorithm we describe calls the full value-�nding algorithmrepeatedly, but uses only the value at a single vertex and ignores any information about theoptimal moves of the players in the truncated games. Unfortunately, optimal moves in thetruncated games may not conform to positional strategies. We think however that it should bepossible to use the additional information gathered and improve our algorithm.The running times of all the algorithms described so far depend on the size of the weights. Thisdependency can be avoided at the (high) price of an exponential running time in the size of thegraph.Theorem 3.2 Let G = (V1; V2; E) be a directed graph with a real weight function w : E ! R.Let V = V1 [ V2. Positional optimal strategies for both players, for games played on this graph,can be found in 2O(jEj) or 2O(jV j log jV j) time.Proof: It is easy to see that each player has at most 2O(jEj) positional strategies. The valuesof all the vertices in V when players I and II play according to speci�c positional strategies,�1 : V1 ! V and �2 : V2 ! V , are easily found in O(jEj+ jV j) time. We can therefore construct,in 2O(jEj) time, a 2O(jEj)� 2O(jEj) matrix with all the possible outcomes of the game when bothplayers use positional strategies. Let ��1;�2(a) be the outcome of a game that starts at a 2 Vin which the two players use strategies �1 and �2 respectively. The results of Ehrenfeucht andMycielski and of Gurvich, Karzanov and Khachiyan imply that �(a) = max�1 min�2f��1;�2(a)g,for every a 2 V . The values of all the positions can therefore be found in 2O(jEj) time. Theresults of the above mentioned authors also imply that there exists a positional strategy �1for the �rst player for which min�2f��1;�2(a)g = �(a), for every a 2 V . Each such strategy isa positional optimal strategy for player I. A positional optimal strategy for player II is foundsimilarly. The 2O(jV j log jV j) time algorithm is obtained in the same way since the number ofpositional strategies that each player may have is also bounded by 2O(jV j log jV j). 24 Playing against a known positional strategyIn this section we consider degenerate games in which there is only one edge out of each vertexfor player II, say. This corresponds, for example, to cases in which player I knows in advancethe positional strategy according to which player II is going to play. The simple observationsmade in this section are very similar to observations made by Gurvich, Karzanov and Khachiyan[GKK88] and by Karzanov and Lebedev [KL93].An O(jV j � jEj) algorithm of Karp [Kar78] (see also [CLR90], p. 548) for �nding the maximum(or minimum) mean weight cycle of a weighted graph G = (V;E) supplies, almost immediately,an e�cient purely combinatorial algorithm for such special cases.Theorem 4.1 Let G = (V1; V2; E) be a directed graph with a real weight function w : E ! Ron its edges, and assume that the outdegree of each vertex v2 2 V2 is exactly one. Then, the6



values of all the vertices and a positional optimal strategy �1 : V1 ! V for player I can be foundin O(jV j�jEj) time.Proof: The value of vertex a 2 V is the maximum mean weight of a cycle reachable from a. Webegin therefore by �nding the strongly connected components and the component graph of G.This can be done in O(jEj+ jV j) time (see, e.g., [CLR90]). Next, we use Karp's algorithm to�nd the maximum mean weight cycle in each such strongly connected component. This takesO(jV j�jEj) time. We then �nd, again in O(jV j�jEj) time, the transitive closure of the componentgraph of G. The maximum mean weight cycle reachable from each vertex of G is then easilyfound in O(jV j2) time. 2The maximum (or minimum) mean weight cycle in a graph G = (V;E) with relatively smallweights can be found more e�ciently using the scaling algorithms of Orlin and Ahuja [OA92]and Young and Tarjan and Orlin [YTO91]. If there are only two di�erent edge weights then itcan be found even faster, using an algorithm of Butkovic and Cuninghame-Green [BC92].Could methods used by Karp's algorithm, or by the other maximum mean weight cycle algo-rithms, be used to obtain a more e�cient algorithm for the general case? Could scaling methodsbe used to speed our algorithm?The natural decision problem corresponding to MPG's is the following. Given a MPG G anda number �, is the value of G at least �? As a Corollary to Theorem 4.1 we get the followingresult.Theorem 4.2 The decision problem corresponding to mean payo� games is in NP \ co-NP.Proof: To show that the value of a game is at least �, all we have to do is guess a positionaloptimal strategy for player I. We can then check, using Karp's algorithm, that the value of thegame is at least �. To show that the value of the game is less than �, all we have to do is guessa positional optimal strategy for player II, and use Karp's algorithm to check that the value isless than �. 2An alternative, more `e�cient', proof of Theorem 4.2 makes use of potentials .Theorem 4.3 Let G = (V1; V2; E) be a directed graph, let w : E ! R be a weight function onits edges and let a 2 V = V1 [ V2. Then, the value of the mean payo� game that starts at a isat least � if and only if there exist subsets U1 � V1 and U2 � V2 with a 2 U = U1 [ U2, and apotential function h : U ! R that satisfy the following two conditions:(i) 8u 2 U1 9(u; v) 2 E v 2 U ^ h(u) + w(u; v)� h(v) + � ;(ii) 8u 2 U2 8(u; v) 2 E v 2 U ^ h(u) + w(u; v)� h(v) + � :Proof: For the `if' direction, suppose that such sets and potential function exist. Player I thenalways chooses an edge that satis�es condition (i). This makes sure that the game never leavesthe set U and that the mean of every cycle formed is at least �.For the `only if' direction, suppose that �(a) � �. If we subtract � from each of the edge weights,we obtain a corresponding game where �(a) � 0, so we may assume �(a) � � = 0 without lossof generality. Let �1 : V1 ! V be a positional optimal strategy for player I, and consider the7



subgraph G0 = (U1; U2; E 0) of G whose vertices and edges are just those which are reachablefrom vertex a when player I plays according to the positional strategy �1 and player II playsarbitrarily. We de�ne h(u) 2 R for each u 2 U1 [ U2 as the minimum weight of a path from ato u, i.e., the distance from a to u in the weighted graph formed. Since �1 is an optimal strategyfor player I assuring that �(a) � 0, the weight of any cycle in G0 is nonnegative and thesedistances are well de�ned. Conditions (i) and (ii) follow immediately from the de�nitions of G0and h. 2To show that the value of a game is at least �, all we have to do is guess the subsets U1 and U2and the potential function h. The two conditions can then be veri�ed in linear time. A dualcondition can be used to verify that the value of the game is at most �.5 Discounted payo� gamesIn this section we describe a discounted version of mean payo� games. This (fourth) variant,which is also interesting in its own right, will serve in the next section as a link between meanpayo� games and simple stochastic games.Let 0 < � < 1 be a real number. The weight of the i-th edge, ei, chosen by the players is nowmultiplied by (1� �)�i and the outcome of the game is de�ned to be (1� �)P1i=0 �iw(ei). Thegoal of the �rst player is again to maximise the outcome of the game and the goal of the secondplayer is to minimise this outcome. The number � is called the discounting factor of the game.Let G = (V1; V2; E) be a directed graph and let w : E ! R be a weight function on its edges.As always, we assume that the outdegree of all the vertices is at least one. Let V = V1 [ V2 =f1; 2; : : : ; ng. Let xi = xi(�) be the value of a discounted game started at i. If (i; j) 2 E, we usewij as an abbreviation for w((i; j)).Theorem 5.1 The value vector x = (x1; : : : ; xn) of the discounted games played on the graphG = (V1; V2; E) is the unique solution of the following set of equations:xi = �max (i;j)2E f(1� �)wij + �xjg; if i 2 V1 ;min (i;j)2E f(1� �)wij + �xjg; if i 2 V2 :Proof: Let F be a mapping that receives a vector x and returns the vector y such thatyi = �max (i;j)2E f(1� �)wij + �xjg; if i 2 V1 ;min (i;j)2E f(1� �)wij + �xjg; if i 2 V2 :The given set of equations can be expressed in the form x = F(x). If we let kvk = maxifvig bethe max norm, then 8u;v; kF(u)�F(v)k � �ku� vk :Thus, since 0 < � < 1, F is a contraction mapping with respect to the norm. It follows easilythat the limit x = limn!1 Fn(0) exists and is the unique solution to the equation x = F(x).Let x be the solution of the equation x = F(x). It is easy to verify that if player I playsaccording to a strategy which at each vertex i 2 V1 chooses an edge (i; j) 2 E which maximises(1 � �)wij + �xj , then the outcome of the game that starts from each vertex i is at least xi.Similarly, if player II plays according to a strategy which at each vertex i 2 V2 chooses an edge8



(i; j) 2 E which minimises (1��)wij+�xj , then the outcome of the game that starts from eachvertex i is at most xi. It follows that the value of the game starting from i is exactly xi. 2It follows immediately from this theorem that both players of the discounted game again havepositional optimal strategies. The proof in this case is much simpler than the proofs givenby Ehrenfeucht and Mycielski [EM79] and by Gurvich, Karzanov and Khachiyan [GKK88] fornon-discounted games.Theorem 5.1 suggests a way of �nding the values of the discounted payo� games played on agraph G = (V1; V2; E). We are not aware, however, of any strongly polynomial time algorithmfor �nding a solution to the set of equations that appear in the theorem. A pseudo-polynomialtime algorithm for �nding the values and optimal positional strategies for discounted payo�games, similar to the algorithm presented in the proof of Theorem 2.3, can be easily devised.Let �(�) be the value of the discounted game with discounting factor �. As � tends to 1, weexpect �(�) to tend to �, the value of the non-discounted game. This follows from the nexttheorem.Theorem 5.2 Let G = (V1; V2; E) be a graph on n vertices, let V = V1 [ V2, let w : E !f�W; : : :; 0; : : : ;Wg be a weight function on its edges and let � be a real number satisfying0 < � < 1. If �(�) and � are the values of the discounted and mean payo� games played on thegraph G = (V1; V2; E) starting at a 2 V , then� � 2n(1� �)W � �(�) � � + 2n(1� �)W :Proof: Consider the outcome of a discounted game in which player I uses a positional optimalstrategy for the non-discounted game and player II uses a positional optimal strategy to counterthe strategy of player I. The outcome of such a game clearly supplies a lower bound on the value�(�) of the discounted game. The play in such a case consists of a path of length k, followed bya cycle of length ` which is repeated inde�nitely, where 0 � k � n� 1, 1 � ` � n and k+ ` � n.Assume for the moment that all the edge weights are non-negative. Let w0; : : : ; w`�1 be theweights of the edges in the cycle formed. As player I uses an optimal strategy for the non-discounted game we get that P`�1i=0 wi � `�. The outcome of the discounted game is then atleast (1� �)�k(`�1Xi=0wi�i)( 1Xj=0�j`) = (1� �)�k1� �` � `�1Xi=0wi�i� (1� �)�k+`�11� �` � `�1Xi=0wi � `(1� �)1� �` � �k+`�1 � � :As `(1� �)=(1� �`) > 1 and �k+`�1 > �n > 1� n(1� �), this is at least (1� n(1� �))��.We now return to the general case in which the edge weights are not assumed to be non-negative.By adding W to each weight, we can make all the weights non-negative. The value and outcomeof the game are changed by exactly W . Applying the previous inequality to the resulting non-negative game we get that (�(�) +W ) � (1� n(1� �))(� +W ) ;9



or equivalently that �(�) � � � n(1� �)(� +W ) � � � 2n(1� �)W :The opposite inequality is proved in a similar way. 2In particular, if we choose � = 1 � 1=(4n3W ), then it is easy to verify that j�(�) � �j �1=(2n(n � 1)), and � can be obtained from �(�) by rounding to the nearest rational with adenominator less than n, as was done in Section 2. We thus obtain a reduction from MPG's todiscounted payo� games (DPG's).6 Reduction to simple stochastic gamesIn this section we describe a simple polynomial reduction from discounted payo� games (DPG's)to simple stochastic games (SSG's). This reduction, combined with the reduction from MPG'sto DPG's, shows that SSG's are at least as hard as MPG's. We believe that MPG's are in facteasier than SSG's.A simple stochastic game is a two-person game played on a directed graph G = (V;E) whosevertex set V is the union of three disjoint sets Vmax; Vmin and Vaverage. The graph also containsa special start vertex and two special vertices called the 0-sink and the 1-sink. Each edgeemanating from an `average' vertex has a rational probability attached to it. The probabilitiesattached to all the edges from each average vertex add up to 1.A token is initially placed on the start vertex of the graph. At each step of the game the tokenis moved from a vertex to one of its neighbours, according to the following rules:1. At a max vertex, player I chooses the edge along which the token is moved.2. At a min vertex, player II chooses this edge.3. At an average vertex, the edge along which the token is moved is chosen randomly accordingto the probabilities attached to the outgoing edges.The game ends when the token reaches one of the sink vertices. Player I wins if the tokenreaches the 1-sink and player II wins otherwise, i.e., if the token reaches the 0-sink or if thegame does not end. The value of such a game is the probability that player I wins the gamewhen both players play optimally. As was the case for mean payo� games, the two players of asimple stochastic game have positional optimal strategies.Simple stochastic games were �rst studied by Shapley [Sha53]. Many variants of them have beenstudied since then (see Peters and Vrieze [PV87] for a survey). Condon [Con92] was the �rstto study simple stochastic games from a complexity theory point of view. She showed that thenatural decision problem corresponding to SSG's (i.e., given a game G and a rational number0 < � � 1, is the value of G at least �?) is in NP \ co-NP. No polynomial time algorithm forSSG's is yet known. Some exponential algorithms for the problem are described in [MC90]. Asubexponential randomized algorithm for SSG's was recently obtained by Ludwig [Lud95].Condon [Con92] actually shows containment in NP \ co-NP of the decision problem that cor-responds to SSG's of the following restricted form. The outdegree of each non-sink vertex isexactly two and the probability attached to each edge that emanates from an average vertex is1=2. She then describes a reduction from general SSG's to SSG's of this restricted form. Herreduction, however, is not polynomial. A general SSG on n vertices in which the denominatorsof all the (rational) probabilities are at most m is transformed into a restricted SSG of size10



polynomial in n and m, rather than in n and logm. Her transformation can be easily modi�edhowever, as we show next, to yield a polynomial reduction.It is easy to transform a SSG into an equivalent SSG in which the outdegree of each non-sinkvertex is exactly two. Each vertex of fan-out k is simply replaced by a binary tree with kleaves. This increases the size of the graph (i.e., the number of vertices and edges) by only aconstant factor. The remaining problem is therefore the simulation of binary average verticeswith non-equal probabilities. Suppose we want to implement an average vertex u with twoemanating edges (u; v1) and (u; v2), labelled respectively by the probabilities p=q and (q� p)=q,where p and q are integers and 2t�1 � q < 2t. Let a1a2 : : : at�1at and b1b2 : : : bt�1bt be thebinary representations of p and q � p respectively, where a1 and b1 are the most signi�cantdigits. We use the construct shown in Figure 2. All the vertices used are average vertices withequal probabilities. For every i, 2 � i � t + 1, there are two emanating edges that are reachedfrom u with probability 2�i. If ai = 1 then connect one of the edges with probability 2�(i+1) tov1, and if bi = 1 then connect one of these edges to v2. All the unused edges are connected backto u. Is it easy to check that v1 and v2 are eventually reached with the appropriate probabilities.The number of vertices used in this construction is proportional to the number of bits neededto represent the transition probabilities. The reduction is therefore polynomial.A simple stochastic game is said to halt with probability 1 if, no matter how the players play,the game ends with probability 1. The proof of the following theorem can be found in Condon[Con92]. Note the similarity of this theorem to Theorem 5.1.Theorem 6.1 Let G = (V;E) be a SSG that halts with probability 1, and let p(u; v) denote theprobability attached to an edge (u; v) that emanates from an average vertex u. The values �(v)of the vertices of G form the unique solution to the following set of equations:�(u) = 8><>:max(u;v)2Ef�(v)g if u is a max vertex,min(u;v)2Ef�(v)g if u is a min vertex,P(u;v)2Efp(u; v)��(v)g if u is an average vertex,along with the conditions that �(0-sink) = 0 and �(1-sink) = 1.We are �nally in a position to describe a reduction from discounted payo� games (DPG's) tosimple stochastic games (SSG's). Recall that we have already described a reduction from MPG'sto DPG's.Let G = (V1; V2; E) be a DPG with discounting factor �. If we add a constant c to all theweights of the game, the value of the game is increased by c. If we multiply all the weightsof the game by a constant c > 0, the value of the game is multiplied by c. We can thereforescale the weights so that they will all be rational numbers in the interval [0; 1]. If the originalweights were in the range f�W; : : :; 0; : : : ;Wg, then the new weights will be rational numberswith denominators and numerators in the range f0; 1; : : : ; 2Wg.We construct in the following way a SSG G0 = (V 0; E 0), with the same value as the scaled DPGG = (V1; V2; E) with discounting factor �. Each edge (u; v) with weight w in G is replacedby the construct shown in Figure 3. We let V 0 = Vmax [ Vmin [ Vaverage, where Vmax = V1,Vmin = V2 and Vaverage is the set of intermediate vertices added. The simple stochastic game G0halts with probability 1, as in each transition there is a probability of 1 � � of reaching asink vertex. The values of the vertices of the discounted payo� game G satisfy the set of11



14 14 18 18 12t+1 12t+1u
Figure 2: Implementing an average vertex with arbitrary probabilities.1-sinkvu 0-sinku vw (1� �)w(1� �)(1�w)�Figure 3: Simulating a transition of a discounted payo� game.equations given in Theorem 5.1. The values of the vertices of the simple stochastic game G0satisfy the set of equations given in Theorem 6.1. These two sets of equations become identicalonce the intermediate variables, that correspond to the intermediate vertices introduced by thetransformation described in Figure 3, are eliminated. As this set of equations has a uniquesolution, the values of the two games are equal. The transformation of G to G0 can clearly becarried out in polynomial time. This completes the description of the reduction.7 Some applicationsIn this section we briey mention some applications of mean payo� games.Consider a system with n possible states. At each time unit, the system receives one of k possiblerequests. The system is allowed to change its state and then it has to serve the request. Thetransition from state i to state j costs aij , and serving a request of type t from state i costs bit.What, in the worst-case, is the average cost of serving a request?Borodin, Linial and Saks [BLS92] performed a competitive analysis of such systems, which theycall on-line metrical task systems . If we look at the worst-case instead, we get a bipartite meanpayo� game G = (V1; V2; E) played between the system and an adversary that chooses therequests. The adversary plays from the vertices of V1 = f1; 2; : : : ; ng. The algorithm plays fromthe vertices of V2 = f(i; j) j 1 � i � n ; 1 � j � kg. The edge i ! (i; j) corresponds to therequest of task j while the system is in the state i. The edge (i; j) ! k corresponds to thetransition of the system to state k before serving this request. The weight of all the edges of theform i! (i; j) is 0. The weight of an edge (i; j)! k is aik + bkj .Consider �nite-window on-line string matching algorithms (see [CHPZ95] for a de�nition).12



What, in the worst-case, is the average number of comparisons that an optimal algorithm hasto perform per text character? The problem can be formulated as a bipartite mean payo� gameplayed between the designer of a string matching algorithm and an adversary that answers thequeries made by an algorithm. The reward (the complement of cost) obtained by the algorithmat each stage is the amount by which it can shift its window. For each pattern string and win-dow size we obtain a mean payo� game, the solution of which yields an optimal string matchingalgorithm for that pattern and window size.As a last example, consider the problem of selection with limited storage. Suppose that weare to receive a long stream of numbers. We are supposed to select the k-th largest of thesenumbers. We have however only s storage locations, for some s > k, each one of them capable ofholding a single number. Each input number must be read into one of these s storage locationsbefore it can be compared to any of the numbers held in the other s� 1 locations. The previousvalue of the cell into which the input number is read is lost. What is the average number ofcomparisons needed per input element in the worst case? Selection and sorting problems withlimited storage were considered by Munro and Paterson [MP80]. They allowed several passesover the input stream however.The problem can again be formulated as a bipartite mean payo� game G = (V1; V2; E) playedby the designer of a selection algorithm and an adversary that answers queries made by analgorithm. The vertices of V1 correspond to those partial orders of s elements in which noelement is known to be smaller than k elements. The vertices of V2 corresond to such partialorders together with requests for comparing two speci�c elements in each such partial order.Edges from V1 to V2 correspond to comparison requests made by the algorithm. Edges from V2to V1 correspond to the answers of the adversary. Each vertex of V2 has two edges emanatingfrom it, corresponding to the two possible outcomes of the comparison requested. The weightof all the edges from V1 to V2 is 0. The weight of each edge u! v from V2 to V1 is the numberof elements that are known, as a result of the last comparison, to be smaller than at least kelements. Such elements are discarded and are replaced by new input elements. Twice the valueof the game is the average number of elements that can be discarded as a result of a singlecomparison. The graph that corresponds to the selection of the second largest element usingfour storage locations, i.e., k = 2 and s = 4, is given in Figure 4. It is not di�cult to verify thatthe value of this game is � = 1=3, the starting point is this case does not matter. This meansthat the average number of comparisons needed per input element is 3=2.8 Concluding remarksMean payo� games form a very natural class of full information games and we think that resolvingtheir complexity is an interesting issue. We conjecture that they lie in P but, since none of thestandard methods seems to yield a polynomial time algorithm for them, the study of mean payo�games may require new algorithmic techniques. If such positive approaches are unsuccessful,the example of mean payo� games may help in exploring the structure of NP \ co-NP.AcknowledgmentsWe would like to thank Sergiu Hart, Ehud Lehrer, Nimrod Megiddo, Moni Naor, Noam Nisanand Avi Wigderson for helpful discussions and suggestions, Alexander Karzanov for pointing outa aw in the previous version of Theorem 3.1, and Thomas McCormick for bringing references[GKK88] and [KL93] to our attention. 13
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