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METRIC ESTIMATES AND MEMBERSHIP COMPLEXITY FOR
ARCHIMEDEAN AMOEBAE AND TROPICAL HYPERSURFACES

MARTÍN AVENDAÑO, ROMAN KOGAN, MOUNIR NISSE, AND J. MAURICE ROJAS

Abstract. Given any complex Laurent polynomial f , Amoeba(f) is the image of its
complex zero set under the coordinate-wise log absolute value map. We give an efficiently
constructible polyhedral approximation, ArchTrop(f), of Amoeba(f), and derive explicit
upper and lower bounds, solely as a function of the number of monomial terms of f , for
the Hausdorff distance between these two sets. We thus obtain an Archimedean analogue
of Kapranov’s Non-Archimedean Amoeba Theorem and a higher-dimensional extension of
earlier estimates of Mikhalkin and Ostrowski. We also show that deciding whether a given
point lies in ArchTrop(f) is doable in polynomial-time, for any fixed dimension, unlike the
corresponding problem for Amoeba(f), which is NP-hard already in one variable.

In memory of Mikael Passare.

1. Introduction

One of the happiest coincidences in algebraic geometry is that the norms of roots of polynomials
can be estimated through polyhedral geometry. Perhaps the earliest incarnation of this
fact was Isaac Newton’s use of a polygon to determine series expansions for algebraic func-
tions. This was detailed in a letter, dated October 24, 1676 [New76], that Newton wrote to
Henry Oldenburg. In modern terminology, Newton counted the (s-adic) norms of roots of
univariate polynomials over the Puiseux series field C〈〈s〉〉, i.e., the union of formal Laurent
series fields

⋃

d∈N C
((

s1/d
))

).

Definition 1.1. Let [N ] := {1, . . . , N}. We define the s-adic valuation of any element
ζ =

∑∞
j=k cjs

j/d of C〈〈s〉〉 to be ordsζ := mincj 6=0 j/d. (We set ords0 := ∞ and thus

ords : C〈〈s〉〉 −→ Q ∪ {∞}.) We also let Conv(U) denote the convex hull of (i.e., smallest
convex set containing) a set U⊆Rn. For any f ∈C〈〈s〉〉[x1] written f(x1)=

∑t
i=1 cix

ai
1 , with

t≥2, a1 < · · · < at, and ci 6=0 for all i, we define its s-adic Newton polygon to be Newts(f)
:= Conv({(ai, ordsci) | i∈ [t]}). Finally, we define the (s-adic) tropical variety of f to be
Trops(f) :={v∈R | (v, 1) is an inner normal of an edge of Newts(f)}. ⋄
Example 1.2. The trinomial f(x1) :=s−x161 + x491 has exactly 49 roots in C〈〈s〉〉: 16 of the

form e2π
√
−1j/16s1/16 +

∑∞
i=2 αi,js

i/16 (for j∈ [16]) and 33 of the form e2π
√
−1j/33 +

∑∞
i=1 βi,js

i

(for j ∈ [33]), where αi,j ∈ Q
[

e2π
√
−1/16

]

and βi,j ∈Q
[

e2π
√
−1/33

]

. Newton’s technique from

[New76], in more recent language, gives us the initial exponents 1/16 and 0 exactly as the
points of Trops(f)Trops(f)Trops(f). In particular, Newts(f) here is the convex hull of {(0, 1/16), (16, 0), (49, 0)},
which is the triangle drawn below, along with 3 representative inner normals:

There are just two upward-pointing inner normals, and thus just two inner normals of the
form (v, 1): (1/16, 1) and (0, 1). So Trops(f)={1/16, 0}, and the horizontal lengths (16 and
33) of the two lower edges count the number of roots with corresponding valuation. ⋄
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Newton’s result has since been extended to other fields, such as algebraic extensions of
Qp and Fp((t)) (see, e.g., [Dum06, Wei63]). Tropical geometry (see, e.g., [EKL06, LS09,
IMS09, BR10, ABF13, MS15]) continues to deepen the links between algebraic, arithmetic,
and polyhedral geometry. However, finding an analogous approach for roots in C presents a
metric complication: Unlike C, each field C〈〈s〉〉, Qp, and Fp((t)) is endowed with a (non-
trivial) non-Archimedean norm, i.e., a norm which is bounded on the embedded copy of Z
in the respective underlying field. For instance, one can set |ζ |s :=e−ordsζ for any ζ ∈C〈〈s〉〉
and easily prove that | · |s satisfies the Triangle Inequality, as well as the stronger Ultrametric
Inequality |x + y|s ≤ max{|x|s, |y|s}. In particular, |C|s = {0, 1}, but this unfortunately
renders |ζ |s useless for estimating the usual Archimedean norm |ζ | of a nonzero root ζ∈C.

However, with some care, we can still study Archimedean norms of roots of polynomials in
a polyhedral/tropical way: Jacques Hadamard was possibly the first to define an analogue of
Newts for the usual norm on C [Had93] (see also [Ost40a] and [Val54, Ch. IX, pp. 193–202]).
Here, we formulate a version applicable in arbitrary dimension. (See also [Mik04, PR04,
PRS11, TdW13] for important precursors.)

Definition 1.3. We call any f ∈ C
[

x±1
1 , . . . , x±1

n

]

of the form f(x) =
∑t

i=1 cix
ai
1 , with

ci 6= 0 for all i and {a1, . . . , at} of cardinality t, an n-variate t-nomial. (The notation
x=(x1, . . . , xn) and x

ai =x
a1,i
1 · · ·xan,i

n is understood.) We then define the (ordinary) Newton
polytope of f to be Newt(f) :=Conv

(

{ai}i∈[t]
)

, and the Archimedean Newton polytope of f

to be ArchNewt(f) := Conv
(

{(ai,− log |ci|)}i∈[t]
)

. We also define the Archimedean tropical
variety of f (provided t≥2) to be
ArchTrop(f) := {w∈Rn | (v,−1) is an outer normal of a positive-dimensional face of ArchNewt(f)}. ⋄
Example 1.4. It is easily checked that for any univariate binomial f , ArchTrop(f) is a single
point in R and all the complex roots of f lie on a circle of radius eArchTrop(f) centered at the
origin. More generally, for any n-variate binomial, ArchTrop(f) is an affine hyperplane in
Rn which is exactly the image of the complex roots of f under the coordinate-wise log absolute
value map. ⋄

While the norms of complex roots are not always described exactly by ArchTrop(f),
ArchTrop(f) nevertheless provides an approximation within an explicit tolerance.

Example 1.5. For a root ζ ∈ C of f(x1) := 1
89

− x161 + x491 there are exactly 26
possible values for |ζ |. However, these norms cluster tightly about just 222 values: Exactly
16 roots have norm near 89−1/16 ≈ 0.7553... (to at least 4 decimal places) and exactly 33
roots have norm near 1 (to 3 decimal places). Here, ArchNewt(f) is the convex hull of
{(

0,− log 1
89

)

, (16, 0), (49, 0)
}

, which is the triangle with outer normals as shown below:
There are just two downward-
pointing outer normals, and
thus just two outer normals of
the form (v,−1):

(

1
16
log 1

89
,−1

)

and (0,−1). So ArchTrop(f)=
{

log
(

89−1/16
)

, log 1
}

, and the horizontal lengths (16 and 33)
of the two lower edges count the number of roots with norm in the corresponding cluster. ⋄
Theorem 1.6. For any univariate t-nomial f with root ζ ∈C \ {0} and t≥3, we have that
#ArchTrop(f)≤ t− 1 and log |ζ | lies in the union of open intervals

⋃

v∈ArchTrop(f)

(v − log 3, v + log 3). �

Theorem 1.6 follows from the stronger Theorem 1.7 below. Theorem 1.6 already improves
an earlier bound of Ostrowski [Ost40a, Bound (25, 3), pg. 145] which, letting d denote the
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degree of f , implies that log |ζ | lies in the union
⋃

v∈ArchTrop(f)

(v − log(d + 1), v + log(d + 1)).
(Note that 3≤ t≤d + 1 in Theorem 1.6.)

It is also the case that, for any v ∈ArchTrop(f), there actually exists a root ζ ∈C of f
with log |ζ | close to v. In particular, the clustering of ArchTrop(f) determines certain annuli
guaranteed to contain a positive number of roots of f . In what follows, for any line segment
L⊂R2 with vertices (a, b) and (c, d), we define its horizontal length to be λ(L) := |c− a|.
Theorem 1.7. Given any univariate t-nomial f with t≥3, let Γ be any connected component
of the union of open intervals
Uf :=(minArchTrop(f)− log 2,maxArchTrop(f) + log 2) ∩ ⋃

v∈ArchTrop(f)

(v − log 3, v + log 3)

and let ΛΓ be the sum of λ(L) over all edges L of ArchNewt(f) with outer normal (v,−1)
and v ∈ Γ. Then the number of roots ζ ∈ C of f with log |ζ | ∈ Γ, counting multiplicity, is
exactly ΛΓ. In particular, ΛΓ≥1 and every root ζ∈C of f satisfies log |ζ |∈Uf .

Theorem 1.7 is proved in Section 2.1, where a slight sharpening is also provided for t=3.
We can in fact polyhedrally approximate norms of complex roots in arbitrary dimension.

Definition 1.8. Let us set Log|ζ | := (log |ζ1|, . . . , log |ζn|)
and, for any f ∈ C[x±1

1 , . . . , x±1
n ], define Amoeba(f) to be

{Log|ζ | | f(ζ)=0 , ζ∈(C\{0})n}. ⋄
Example 1.9. Taking f(x) = 1 + x31 + x22 − 10x1x2, it is
easily checked that Newt(f) is a triangle, while ArchNewt(f)
is a pyramid. In particular, ArchTrop(f) is a polyhedral
complex consisting of 3 vertices and 6 edges (3 of which are
unbounded rays). An illustration of Amoeba(f) ∩ [−7, 7]2

and ArchTrop(f)∩ [−7, 7]2 appears to the right. Amoeba(f)
is lightly shaded and contains ArchTrop(f) (drawn darker). ⋄

Our main result is that every point of Amoeba(f) is within an explicit distance of some
point of ArchTrop(f), and vice-versa, independent of the degree or number of variables of
f . We use | · | for the standard ℓ2-norm on Cn.

Definition 1.10. For any ε>0 and X⊆Rn we define the open ε-neighborhood of X to be
Xε :={x∈Rn | |x− x′|<ε for some x′∈X}, and let Xε denote its Euclidean closure. ⋄
Theorem 1.11. For any f ∈C

[

x±1
1 , . . . , x±1

n

]

with exactly t≥2 monomial terms and Newt(f)
of dimension k, we have 1≤k≤min{n, t− 1} and:

(0) For k=1 we have that ArchTrop(f) is a non-empty disjoint union of at most t − 1
parallel affine hyperplanes in Rn, while for k≥2 we have that ArchTrop(f) is a path-
connected (n − 1)-dimensional polyhedral complex with at most t(t − 1)/2 faces of
dimension n− 1.

(1) For t=k+1 we have ArchTrop(f)⊆Amoeba(f) and both Amoeba(f) and ArchTrop(f)
are contractible. In particular, t=2 =⇒ Amoeba(f)=ArchTrop(f).

(2) For all t≥k+1 we have (a) Amoeba(f) ⊂ ArchTrop(f)log(t−1) and (b) ArchTrop(f) ⊂
Amoeba(f)εk,t, where ε1,t :=(log 9)t− log 81

2
<2.2t− 3.7, ε2,t :=

√
2(t− 2)

(

(log 9)t− log 81
2

)

<(t− 2)(3.11t− 5.23), and εk,t :=
√
k
⌈

1
4
t(t− 1)

⌉ (

(log 9)t− log 81
2

)

for k≥3.

(3) Let ϕ(x) :=1 + x1 + · · ·+ xt−1 and ψ(x) :=(x1 + 1)t−k + x2 + · · ·+ xk. Then
(a) Amoeba(ϕ) contains a point at distance log(t− 1) from ArchTrop(ϕ) and
(b) ArchTrop(ψ) contains points approaching distance log(t− k) from Amoeba(ψ).
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We prove Theorem 1.11 in Section 3. Our main contribution is Assertion (2): For multivariate
polynomials, our bounds appear to be the first allowing dependence on just the number of
terms t. In particular, Assertion (2a) sharpens, and extends to arbitrary dimension, an earlier
bound of Mikhalkin for the case n=2: Letting L denote the number of lattice points in the
Newton polygon of f , [Mik05, Lemma 8.5, pg. 360] asserts that Amoeba(f) is contained in

the possibly larger neighborhood ArchTrop(f)log(L−1). Assertion (3a) of Theorem 1.11 shows
that the size of the neighborhood from Assertion (2a) is in fact optimal. (Note also that
when t≥4, Theorem 1.6 refines the special case n=1 of Assertion (2a) above: When n=1,
ArchTrop(f)ε is simply a finite union of open intervals of width 2ε.)

We have included Assertions (0) and (1) for completeness, since they are implicit in earlier
topological results on amoebae (see, e.g., [For98, Prop. 3.1.8] or [Rul03, Thms. 8 & 12]). For
the convenience of the reader, we provide elementary proofs for Assertions (0) and (1) in
Sections 3.1 and 3.2.

Finding the tightest neighborhood of Amoeba(f) containing ArchTrop(f) appears to be
an open problem: We are unaware of any earlier multivariate version of Assertion (2b). The
only other earlier distance bound between an amoeba and a polyhedral approximation we
know of is a result of Viro [Vir01, Sec. 1.5] on the distance between the graph of a univariate
polynomial (drawn on log paper) and a piece-wise linear curve that is ultimately a piece of
the n=2 case of ArchTrop(f) here.

Example 1.12. Setting ψ(x)=(x1 + 1)4 + x2 we see Amoeba(ψ) ∩ ([−7, 7]× [−12, 12])
and ArchTrop(ψ) ∩ ([−7, 7]× [−12, 12]) on the right. ArchTrop(ψ) contains the ray
(log 4, 4 log 4) + R+(0,−1) and this rightmost downward-pointing ray contains points
with distance from Amoeba(ψ) approaching log 4. We also observe that Viro’s earlier
polygonal approximation of graphs of univariate polynomials on log paper, applied
here, would result in the polygonal curve that is the subcomplex of ArchTrop(ψ)
obtained by deleting all 4 downward-pointing rays. ⋄

It is worth comparing Theorem 1.11 to two other methods for approximating
complex amoebae: Purbhoo, in [Pur08], describes a uniformly convergent sequence
of outer polyhedral approximations to any amoeba, using cyclic resultants. While
ArchTrop(f) lacks this refinability, the computation of ArchTrop(f) is considerably
simpler: see Section 1.2 below and [AGGR15]. ArchTrop(f) is actually closer in
spirit to the spine of Amoeba(f). The latter construction, based on a multivariate
version of Jensen’s Formula from complex analysis, is due to Passare and Rullg̊ard [PR04,
Sec. 3] and results in a polyhedral complex that is always contained in, and is homotopy
equivalent to, Amoeba(f). Unfortunately, the computational complexity of the spine is
not as straightforward as that of ArchTrop(f). Further background on the computational
complexity of amoebae can be found in [The02, SdW13, TdW15].

Our final main results concern the complexity of deciding whether a given point lies in a
given amoeba or Archimedean tropical variety. However, let first us observe a consequence
of our metric estimates for systems of polynomials.

1.1. Coarse, but Fast, Isolation of Roots of Polynomial Systems. An immediate
consequence of Assertion (2a) of Theorem 1.11 is an estimate for isolating the possible norm
vectors of complex roots of arbitrary systems of multivariate polynomial equations.

Corollary 1.13. Suppose f1, . . . , fm ∈ C
[

x±1
1 , . . . , x±1

n

]

where fi has exactly ti monomial
terms for all i. Then any root ζ∈(C∗)n of F =(f1, . . . , fm) satisfies
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Log|ζ |∈ArchTrop(f1)ε1 ∩ · · · ∩ ArchTrop(fm)εm,
where εi :=log(ti − 1) for all i. �

Example 1.14. We can isolate the log-norm vectors of the complex roots of the 3×3 system
F :=(f1, f2, f3) :=(x1x2 − x21 − 1/166, x2x3 − 1− x21/16

6, x3 − 1− x21/16
18)

via Corollary 1.13 as follows: Find the points of X :=ArchTrop(f1) ∩ArchTrop(f2) ∩ArchTrop(f3)
by searching through suitable triplets of edges of the ArchNewt(fi), and then create isolating
parallelepipeds about the points of X. More precisely, observe that
Conv({(1, 1, 0, 0), (2, 0, 0, 0)}), Conv({(0, 1, 1, 0), (0, 0, 0, 0)}), Conv({(0, 0, 1, 0), (0, 0, 0, 0)})
are respective edges of ArchNewt(f1), ArchNewt(f2), and ArchNewt(f3), and the vector
(0, 0, 0,−1) is an outer normal to each of these edges. So (0, 0, 0) is a point of X. Running
through the remaining triplets we then obtain that X in fact consists of exactly 4 points:

Log
∣

∣

(

1
166
, 1, 1

)
∣

∣ , Log|(1, 1, 1)| , Log |(166, 166, 1)| , and Log |(1612, 1612, 166)|.
So Corollary 1.13 tells us that the points of Y :=Amoeba(f1)∩Amoeba(f2)∩Amoeba(f3) lie
in the union of the 4 parallelepipeds drawn below to the right: Truncations of ArchTrop(f1),
ArchTrop(f2), and ArchTrop(f3) are drawn below on the left, and the middle illustration
uses transperancy to further detail the intersection.

Suitably ordered, each point of X is actually within distance 0.11× 10−6 (<0.693...=log 2)
of some point of Y (and vice-versa), well in accordance with Corollary 1.13. ⋄
See [PR13] for the relevance of the preceding system to fewnomial theory over general local
fields.

1.2. On the Computational Complexity of ArchTrop(f)ArchTrop(f)ArchTrop(f) and Amoeba(f)Amoeba(f)Amoeba(f). The com-
plexity classes P, NP, PSPACE, and EXPTIME — from the classical Turing model of
computation — can be identified with families of decision problems, i.e., problems with a yes
or no answer. Larger complexity classes correspond to problems with larger worst-case com-
plexity. We refer the reader to [Sip92, Pap95, AB09, Sip12] for further background. Aside
from the basic definitions of input size and NP-hardness, it will suffice here to simply recall
that P⊆NP⊆PSPACE⊆EXPTIME, and that the properness of each inclusion (aside
from P $ EXPTIME, which is well-known) is a famous open problem. All algorithmic
complexity results below count bit operations, and do so as a function of some underlying
notion of input size.

Deciding membership in an amoeba can easily be rephrased as a problem within the
Existential Theory of the Reals. The latter setting has been studied extensively in the 20th

century (see, e.g., [Tar51, BKR86]) and the current state of the art implies that amoeba
membership can be solved efficiently by a parallel algorithm. More precisely, we define the
input size of a polynomial f ∈ Z[x1, . . . , xn], written f(x) =

∑t
i=1 cix

ai , to be size(f) :=
∑t

i=1 log2

(

(2 + |ci|)
∏n

j=1(2 + |ai,j|)
)

, where ai=(ai,1, . . . , ai,n) for all i. (Put another way,
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up to a constant additive error, size(f) is just the sum of the bit-sizes of all the coefficients
and exponents.) Similarly, we define size(v), for any v = (v1, . . . , vn) ∈Qn, to be the sum
of the sizes of the numerators and denominators of the vi (written in lowest terms). We
similarly extend the notion of input size to polynomials in Q[x1, . . . , xn]. Considering real
and imaginary parts, we can extend further still to polynomials in Q

[√
−1

]

[x1, . . . , xn].

Theorem 1.15. There is a PSPACE algorithm to decide, for any input pair (z, f) ∈
⋃

n∈N
(

Qn ×Q
[√

−1
]

[x1, . . . , xn]
)

, whether Log|z| ∈ Amoeba(f). Furthermore, the special
case where z=1 and f ∈Z[x1] in the preceding membership problem is already NP-hard.

Theorem 1.15 is implicit in earlier work of Ben-Or, Kozen, and Reif [BKR86] and Plaisted
[Pla84], so for the convenience of the reader, we provide a short proof in Section 2.2.

Remark 1.16. For our notion of input size, polynomial-time for sufficiently sparse polynomials
implies polynomiality in the logarithm of the degree of the polynomial. This is in con-
trast to a looser notion of input size implicit in [The02, Cor. 2.7] where “polynomial-time”
point membership detection for amoebae in fixed dimension is stated: The methods there
yield complexity polynomial in the degree when n is fixed, thus yielding exponential worst-
case complexity relative to the input size we use here. The NP-hardness lower bound from
Theorem 1.15 tells us that speeding up point membership for amoebae to polynomial-time
(relative to our notion of input size here) would imply P=NP. ⋄

Since we now know that ArchTrop(f) is provably close to Amoeba(f), ArchTrop(f) would
be of great practical value if ArchTrop(f) were easier to work with than Amoeba(f). This
indeed appears to be the case. For example, when the dimension n is fixed and all the
coefficient absolute values of f have rational logarithms, standard high-dimensional convex
hull algorithms (see, e.g., [Ede87]) enable us to describe every face of ArchTrop(f), as an
explicit intersection of half-spaces, in polynomial-time (see, e.g., [AGGR15]).

The case of rational coefficients presents some subtleties because the underlying computations,
done naively, involve arithmetic on rational numbers with exponentially large bit-size. Nevertheless,
point membership for ArchTrop(f) can be decided in polynomial-time when n is fixed.

Theorem 1.17. Suppose z=(z1, . . . , zn)∈Qn, and f ∈Q
[√

−1
]

[x1, . . . , xn] (written f(x)=
∑t

i=1 cix
ai) has exactly t monomial terms, degree at most d with respect to any variable, and

the bit-sizes of the zi and ci are at most σ. Then there is an nt(log d)1+o(1)(25.2σ)2n+2+o(1)

algorithm to decide, for any such input pair (z, f), whether Log|z|∈ArchTrop(f).
Furthermore, if we instead assume that both log |zi|, log |ci|∈ Q have bit size ≤σ for all i,

then there is an O
(

nt(σ + log d) log2(σd)
)

algorithm to decide whether Log|z|∈ArchTrop(f).

We prove Theorem 1.17 in Section 4. The complexity of finding the distance to ArchTrop(f)
from a given query point v, and the relevance of such distance computations to polynomial
system solving, is explored further in [AGGR15].

1.3. Ideas Behind the Proofs and Simplified Maslov Dequantization. A key idea
behind our metric results is the following fact: Knowing where a polynomial f has at least
two monomials of largest norm is enough to recover useful information about the complex
roots of f . In particular, it is easy to show that ArchTrop(f) admits the following alternative
characterization.

Proposition 1.18. For any n-variate t-nomial f(x)=
∑t

i=1 cix
ai we have

ArchTrop(f)=
{

v∈Rn
∣

∣

∣
max

i
|cieai·v| is attained for at least two distinct values of i

}

. �
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Remark 1.19. We adopt the natural conventions Trops(0)=ArchTrop(0)=Rn and
Trops(cx

a)=ArchTrop(cxa)=∅ for any c 6=0 and a∈Zn. ⋄
It is also conceptually important to recall a non-Archimedean precursor to our main result:

Letting ordsζ :=(ordsζ1, . . . , ordsζn) for any ζ=(ζ1, . . . , ζn)∈C〈〈s〉〉n, and making the natural
extension Trops(f) :={v∈Rn | (v, 1) is an inner normal of a face of Newts(f) of positive dimension},
the statement is as follows:

Kapranov’s Non-Archimedean Amoeba Theorem. (Special case) [EKL06] For any f ∈
C〈〈s〉〉

[

x±1
1 , . . . , x±1

n

]

, we have {ordsζ | f(ζ) = 0 and ζ∈(C〈〈s〉〉\{0})n} = Trops(f) ∩Qn. �

Kapranov’s result above (derived no later than 2000) is to our Theorem 1.11 as Newton’s
Puisueux series characterization [New76] is to our Theorem 1.7.

In Kapranov’s Theorem, the containment of s-adic root valuation vectors in Trops(f)∩Qn

follows easily from the Ultrametric Inequality. Here, proving that Amoeba(f) is contained in
a suitable neighborhood of ArchTrop(f) requires a more delicate application of the Triangle
Inequality. Proving that ArchTrop(f) is contained in a suitable neighborhood of Amoeba(f)
involves specializing to a curve (similar to a trick in the non-Archimedean setting) to reduce
to the univariate case, and then applying Rouché’s Theorem. An estimate on lattice points
visible from the origin (Theorem 3.3 in Section 3.4 below) helps improve one of our bounds
in the bivariate case.

We close with some topological observations. First observe that ArchTrop(f) need not be
contained in Amoeba(f), nor even have the same homotopy type as Amoeba(f),
already for n = 1: The example f(x1) = (x1 + 1)2 yields ArchTrop(f) = {± log 2} but
Amoeba(f) = {0}. However, one can in fact always recover ArchTrop(f) as the limit
of a sequence of suitably scaled amoebae. To clarify this, first recall that the Hausdorff
distance between any two subsets X, Y ⊆Rn is

∆(X, Y ) :=max

{

sup
x∈X

inf
y∈Y

|x− y|, sup
y∈Y

inf
x∈X

|x− y|
}

.

Also, the support of a Laurent polynomial f(x)=
∑t

i=1 cix
ai is Supp(f) :={ai | ci 6=0}.

Corollary 1.20. Let f ∈ C
[

x±1
1 , . . . , x±1

n

]

be a t-nomial with t≥ 2 and k := dimNewt(f).
Then:

(1) ∆(ArchTrop(f),Amoeba(f))≤
√
k
⌈

1
4
t(t− 1)

⌉ (

(log 9)t− log 81
2

)

=O
(

t7/2
)

.
(2) There exists a family of Laurent polynomials (fµ)µ≥1 with Supp(fµ)=Supp(f) for all

µ≥1 and ∆
(

1
µ
Amoeba(fµ),ArchTrop(f)

)

−→ 0 as µ −→ ∞.

One of the consequences of Maslov dequantization (see, e.g., [LMS01, Vir01] and [Mik04,
Cor. 6.4]) is a way to obtain a non-Archimedean tropical variety as a limit of a family
of scaled Archimedean amoebae. Assertion (2) thus shows how ArchTrop(f) provides a
fully Archimedean version of this limit. Another precursor to Assertion (2), involving the
piece-wise linear structure approached by the intersection of Amoeba(f) with a large sphere,
appears in [Ber71] and [GKZ94, Prop. 1.9, pg. 197]. Thanks to Assertion (1), we can prove
Assertion (2) in just three lines.

Proof of Corollary 1.20: Assertion (1) of Corollary 1.20 follows immediately from
Assertion (2) of Theorem 1.11, and the fact that k≤ t − 1. Let us write f(x)=

∑t
i=1 cix

ai ,

define fµ(x) :=
∑t

i=1 c
µ
i x

ai , and observe that f1=f .
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Since |cieai·v|≥|cjeaj ·v| ⇐⇒ |cieai·v|µ≥|cjeaj ·v|µ, we immediately obtain that ArchTrop(fµ)

= µArchTrop(f). So then ∆(Amoeba(fµ),Trop(fµ)) = µ∆
(

1
µ
Amoeba(fµ),Trop(f)

)

and

Assertion (1) thus implies ∆
(

1
µ
Amoeba(fµ),Trop(f)

)

= O(t7/2)
µ

for all µ≥1. �

2. Background on Univariate Bounds and the Complexity of Amoeba

Membership

To prepare for the proofs of our main metric results we will first review some classical
root norm bounds in the univariate case, in order to recast them in terms of ArchTrop(f).
We then prove a refinement of Theorem 1.6 (Corollary 2.3), Theorem 1.7 (along with a
refinement for t=3), and conclude this section with a sketch of the proof of Theorem 1.15
(on the hardness of deciding point membership for amoebae).

We begin with a pair of bounds dating back to 1923, if not earlier.

Theorem 2.1.
(1) Suppose f(x1)=

∑d
i=0 cix

i
1∈C[x1] has a root ζ∈C and c0cd 6=0. Then

1
2

min
i∈{1,...,d}

∣

∣

∣

c0
ci

∣

∣

∣

1/i

< |ζ | < 2 max
i∈{0,...,d−1}

∣

∣

∣

ci
cd

∣

∣

∣

1/(d−i)

.

(2) Suppose f(x1) :=c0+· · ·+cpxp1+γ1xn1

1 +· · ·+γqxnq

1 ∈C[x1], cp 6=0, and 1≤p<n1< · · · <nq.

Then f has a root with absolute value ≤
∣

∣

∣

c0
cp

∣

∣

∣

1/p
(

p+q
q

)1/p
. �

Bound (1) dates back to early 20th-century work of Fujiwara [Fuj16] (see also [RS02, pp. 243–
249], particularly Bound 8.1.11 on pg. 247). Bound (2) was proved by Montel [Mon23] (see
also [RS02, Thm. 9.5.1, pg. 304]). If one makes an elementary observation on the definition
of ArchTrop(f) then one immediately obtains a refinement of Theorem 1.6 for the roots of
f of largest and smallest (nonzero) norm. In what follows, a lower edge of a polygon in R2

is simply an edge possessing an outer normal of the form (v,−1).

Proposition 2.2. For any univariate t-nomial with t≥ 1 we have that ArchTrop(f) is the
set of slopes of the lower edges of ArchNewt(f). �

Corollary 2.3. Suppose f ∈C[x1] is a univariate t-nomial with t≥2, degree d, and nonzero
roots ζ1, . . . , ζd (counting multiplicity) ordered so that |ζ1|≤ · · · ≤|ζd|. Then

(a) − log 2 < log |ζ1| −minArchTrop(f) ≤ log(t− 1),
(b) − log(t− 1) ≤ log |ζd| −maxArchTrop(f) < log 2,
(c) The log 2 (resp. log(t− 1)) terms above can not be replaced by any smaller

constant (resp. function of t solely).

Proof: The lower bound from Part (a) and the upper bound from Part (b) follow immedi-
ately from Proposition 2.2, upon taking the log absolute value of both sides of Bound (1)
from Theorem 2.1. In particular, we see that the lower and upper bounds from Bound (1)
are exactly 1

2
eminArchTrop(f) and 2emaxArchTrop(f).

The upper bound from Part (a) follows similarly, but employing Bound (2) from Theorem
2.1 instead of Bound (1). In particular, one must apply Bound (2) in the following way:
Take p so that the (p,− log |cp|) is the right-hand vertex of the left-most lower edge of

ArchNewt(f). By construction, this edge has slope log |c0|−log |cp|
p

. Observing that
(

p+q
q

)1/p
=
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(

(q+p)···(q+1)
p!

)1/p

=
((

q
p
+ 1

)

· · ·
(

q
1
+ 1

)

)1/p

≤ ((q + 1)p)1/p = q + 1, and that the number of

terms is t=p+ q + 1 with p≥1, we are done.
The lower bound from Part (b) follows by applying the preceding paragraph to the polyno-

mial xd1f(1/x
d
1): This has the effect of reflecting ArchNewt(f) across the vertical line d

2
×R,

and thus ArchTrop(f) is replaced −ArchTrop(f). So we ultimately prove an upper bound
of log(t− 1) on − log |ζd| − (−maxArchTrop(f)) and we are done.

The optimality of the log 2 terms is evinced by the polynomials f1(x1) :=x
t−1
1 −xt−2

1 −· · ·−1
and f2(x1) := −1 + x1 + · · · + xt−1

1 : One need only show that f1 (resp. f2) has a unique
positive root increasing toward a limit of 2 (resp. decreasing toward a limit of 1

2
) as t −→ ∞.

Uniqueness follows from Descartes’ Rule, while the limiting behavior of the positive root is
easily obtained by Rolle’s Theorem and geometric series.

The optimality of the log(t − 1) terms is easily seen via the polynomial
g(x1) := (x1 + 1)t−1: The left-most (resp. right-most) lower edge of ArchNewt(g) has slope
− log(t − 1) (resp. log(t − 1)), by the log-concavity of the binomial coefficients. So by
Proposition 2.2, minArchTrop(g) =− log(t − 1) and maxArchTrop(g) = log(t − 1). Since
Amoeba(g)={0}, we are done. �

We now recall a seminal collection of bounds due to Ostrowski:

Theorem 2.4. [Ost40a, Cor. IX, pg. 143]1 Following the notation of Corollary 2.3, let
d be the degree of f , and let vi denote the slope of the unique lower edge of the polygon
ArchNewt(f) ∩ ([i− 1, i]× R). Then

(1) − log 2 < log |ζ1| − v1 ≤ log d,
(2) − log d ≤ log |ζd| − vd < log 2,

(3) log

(

1− 1

21/i

)

< log |ζi| − vi < − log

(

1− 1

21/(d−i+1)

)

for all i∈{2, . . . , d−1}.

In particular, −0.5348 ≤ log

(

1− 1

21/i

)

− (− log i) < −0.3665 and

0.3665 < − log

(

1− 1

21/(d−i+1)

)

− log(d− i+ 1) ≤ 0.5348. �

Remark 2.5. Thanks to Proposition 2.2 we have ArchTrop(f)={v1, . . . , vd}. In particular,
note that our Theorem 1.6 implies that any given log |ζi| lies within distance log 3 of some vj,
possibly with j 6= i. In this sense, the final assertion of Theorem 2.4 tells us that Theorem
1.6 isolates each log |ζi| strictly better than Ostrowski’s bounds, except possibly in the cases
i∈{2, d− 1} or t=d+1=3. Corollary 2.9 in Section 2.1 below matches Ostrowski’s bounds
when t=d+ 1=3. ⋄
We have so far concentrated on showing that each log |ζi| is close to some vj, with near-
optimal distance bounds. Showing that each vj is close to some log |ζi| requires more prepa-
ration, which we now detail.

2.1. Proving Theorem 1.7. We will need three technical results, on bounding the norms
of summands of sparse polynomials, and counting roots of polynomials in annuli, before
proving Theorem 1.7.

1There was a typo in Ostrowski’s original statement of the upper bound from Assertion (3), later corrected
in an addendum by Ostrowski [Ost40b].
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Proposition 2.6. Suppose f(x1) :=
∑t

j=1 cjx
aj
1 ∈ C[x±1

1 ] satisfies t≥ 3, a1 < · · · < at, and

cj 6= 0 for all j. Suppose further that v ∈ArchTrop(f) and ℓ is the unique index such that
(aℓ,− log |cℓ|) is the right-hand vertex of the lower edge of ArchNewt(f) of slope v (so 2≤ℓ).

Then for any N ∈N and x1 with |x1|≥(N + 1)ev we have

∣

∣

∣

∣

∣

ℓ−1
∑

j=1

cjx
aj
1

∣

∣

∣

∣

∣

< 1
N
|cℓxaℓ1 |.

Proof: First note that 2 ≤ ℓ ≤ t by construction. Letting r := log |x1| and βj := log |cj|
we obtain

∣

∣

∣

∑ℓ−1
j=1 cjx

aj
1

∣

∣

∣
≤ ∑ℓ−1

j=1

∣

∣cjx
aj
1

∣

∣ =
∑ℓ−1

j=1 e
ajr+βj =

∑ℓ−1
j=1 e

aj(r−v)+ajv+βj . Clearly,

aj≤aℓ − (ℓ− j), so for r≥v we have
∣

∣

∣

∣

∣

ℓ−1
∑

j=1

cje
ajr

∣

∣

∣

∣

∣

≤
ℓ−1
∑

j=1

e(aℓ−(ℓ−j))(r−v)+ajv+βj ≤
ℓ−1
∑

j=1

e(aℓ−(ℓ−j))(r−v)+aℓv+βℓ ,

where the last inequality follows from Proposition 2.2 and the definition of ArchTrop(f). So

then
∣

∣

∣

∑ℓ−1
j=1 cjx

aj
1

∣

∣

∣
≤ e(aℓ−(ℓ−1))(r−v)+aℓv+βℓ

∑ℓ−1
j=1 e

(j−1)(r−v)

= e(aℓ−(ℓ−1))(r−v)+aℓv+βℓ

(

e(ℓ−1)(r−v) − 1

e(r−v) − 1

)

< e(aℓ−(ℓ−1))(r−v)+aℓv+βℓ

(

e(ℓ−1)(r−v)

er−v − 1

)

=
eaℓr+βℓ

er−v − 1

So to prove our desired inequality it clearly suffices to enforce er−v − 1 ≥ N . The last
inequality clearly holds for all r≥v + log(N + 1), so we are done. �

A simple consequence of our preceding term domination trick is that we can give explicit
annuli in C free of roots of f .

Corollary 2.7. Suppose f(x1) :=
∑t

j=1 cjx
aj
1 ∈C

[

x±1
1

]

satisfies a1< · · · <at, cj 6=0 for all

j, and that v1 and v2 are consecutive points of ArchTrop(f) satisfying v2 ≥ v1 + log 9. Let
ℓ be the unique index such that (aℓ,− log |cℓ|) is the unique vertex of ArchNewt(f) incident
to lower edges of slopes v1 and v2 (so 2≤ ℓ≤ t − 1). Then f has no root ζ ∈C satisfying
3ev1 ≤ |ζ | ≤ 1

3
ev2 .

Proof: Let A denote the stated annulus. By Proposition 2.6, we have
∣

∣

∣

∑ℓ−1
j=1 cjζ

aj

∣

∣

∣
< 1

2
|cℓζaℓ|

when |ζ | ≥ 3ev1 . Employing the substitution x1 7→ 1
x1

(which has the effect of replacing

ArchTrop(f) by −ArchTrop(f)) we also obtain
∣

∣

∣

∑t
j=ℓ+1 cjζ

aj

∣

∣

∣
< 1

2
|cℓζaℓ| when 1

ζ
≥3e−v2 . So

we obtain
∣

∣

∣

∑

j 6=ℓ cjζ
aj

∣

∣

∣
< |cℓζaℓ| in A, and this inequality clearly contradicts the existence of

a root of f in A. �
Our next key step will be to relate clusters of points in ArchTrop(f) to certain sub-

summands of f . To relate the roots of high (or low) order summands of f to an explicit
portion of the roots of f , let us first recall the following classical result.

Rouché’s Theorem. (See, e.g., [Con78, pp. 125–126].) Suppose U⊂C is a simply connected
open set with compact closure Ū . Let g1, g2 : Ū −→ C be meromorphic, with only finitely
many zeroes and poles in Ū , no removable singularities in Ū , and no zeroes or poles on the
boundary ∂U . Assume also that |g1|< |g2| on ∂U . Then g1 + g2 and g2 have the same number of
roots, counting multiplicities, in U . (We count poles as zeroes with negative multiplicity.) �
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Lemma 2.8. Let f(x1) :=
∑t

j=1 cjx
aj
1 with a1 < · · · < at and cj 6= 0 for all j, and set

vmin := minArchTrop(f) and vmax := maxArchTrop(f). Also let v1 and v2 be consecutive
points of ArchTrop(f) satisfying v2 ≥ v1 + log 9, and let ℓ be the unique index such that
(aℓ,− log |cℓ|) is the unique vertex of ArchNewt(f) incident to lower edges of slopes v1 and
v2 (so 2≤ℓ≤ t− 1). Then, counting multiplicities, f has exactly aℓ − a1 (resp. at − aℓ) roots
ζ∈C satisfying 1

2
evmin < |ζ | < 3ev1 (resp. 1

3
ev2 < |ζ | < 2evmax).

In what follows, we let D(r) (resp. D̄(r)) denote the open (resp. closed) disk of radius r,
centered at the origin, in C.

Proof of Lemma 2.8: By symmetry (with respect to replacing x1 by 1
x1
) it clearly suffices

to prove the first root count. Proposition 2.6 then tells us that 1
2
|cℓζaℓ|>

∣

∣

∣

∣

∣

ℓ−1
∑

j=1

cjζ
aj

∣

∣

∣

∣

∣

and, by

another application of Proposition 2.6 to f(1/x1) (remembering that v2 − v1 ≥ log 9), we

also obtain 1
2
|cℓζaℓ| >

∣

∣

∣

∣

∣

t
∑

j=ℓ+1

cjζ
aj

∣

∣

∣

∣

∣

when |ζ | = 3ev1 . So |cℓζaℓ| >
∣

∣

∣

∣

∣

t
∑

j 6=ℓ

cjζ
aj

∣

∣

∣

∣

∣

when |ζ | = 3ev1 .

By Rouché’s Theorem we must then have that the monomial cℓx
aℓ
1 and f have the same total

number of roots and poles, counting multiplicities (poles counted with negative multiplicity),
in the open disk D(3ev1). Since f has no roots in the closed disk D̄

(

1
2
evmin

)

, other than a
root/pole of multiplicity a1 at the origin, we obtain that f has exactly aℓ − a1 roots ζ ∈C
(and no poles), counting multiplicity, satisfying 1

2
evmin< |ζ |<3ev1. �

We use #S to denote the cardinality of a set S.

Proof of Theorem 1.7: First note that #ArchTrop(f)≤ t− 1, thanks to Proposition 2.2:
#ArchTrop(f) is the number of lower edges of ArchNewt(f) and ArchNewt(f) has at most
t vertices. Note also that, by definition, Γ must contain at least 1 point of ArchTrop(f) and
thus ΛΓ is a positive integer.

Suppose ArchTrop(f)log 3 is connected. Then ΛΓ = at − a1, Corollary 2.3 tells us that
Amoeba(f)⊂Γ, and we are done.

So assume ArchTrop(f)log 3 has at least two distinct connected components. Lemma 2.8
then immediately yields the conclusion of Theorem 1.7 when Γ is either the left-most or
right-most connected component of ArchTrop(f)log 3: We simply take w1 to be the right-
most point of Γ ∩ArchTrop(f) and w2 the left-most point of ArchTrop(f) in the connected
component of ArchTrop(f)log 3 immediately to the right of Γ, or we take w2 to be the left-
most point of Γ∩ArchTrop(f) and w1 the right-most point of ArchTrop(f) in the connected
component of ArchTrop(f)log 3 immediately to the left of Γ.

Noting that
∑

Γ a connected component
of ArchTrop(f)log 3

ΛΓ = at − a1,(1)

we can now proceed by induction on the number of connected components of ArchTrop(f)log 3:
We simply ignore the left-most and right-most connected components of ArchTrop(f)log 3,
and treat the new left-most and right-most connected components via Lemma 2.8 as in the
last paragraph.

To conclude, Corollary 2.3 tells us that we can also attain ΛΓ many log norms (counting
multiplicities) within the potentially tighter interval
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Γ ∩ (minArchTrop(f)− log 2,maxArchTrop(f) + log 2).
Also, Equality (1) implies that every root of f must have log norm within some Γ. So we
are done. �

We can tighten the union of intervals Uf further when t=3: Combining Theorem 1.7 with
Assertion (2a) of Theorem 1.11 (proved independently in Section 3.3) immediately yields the
following refinement.

Corollary 2.9. Suppose f(x1) =
∑3

i=1 cix
ai
1 is a trinomial with a1 < a2 < a3. Also let

vmin := minArchTrop(f), vmax := maxArchTrop(f), and assume that vmax − vmin > log 4.
Then there are exactly a2 − a1 (resp. a3 − a2) roots ζ∈C of f with

vmin − log 2< log |ζ |≤vmin + log 2
(resp. vmax − log 2≤ log |ζ |<vmax + log 2). �

2.2. Classical Computational Algebra and Amoeba Membership. Let us first recall
the following results of Plaisted and Ben-Or, Kozen, and Reif.

Theorem 2.10. [Pla84] The following problem:

Decide whether an arbitrary input f ∈Z[x1] has a complex root of norm 1.

is NP-hard. �

Theorem 2.11. [BKR86] There is an algorithm that, given any collection of polynomials
f1, . . . , fp, g1, . . . , gq, h1, . . . , hr∈Q[x1, . . . , xn], decides whether there is a ζ=(ζ1, . . . , ζn)∈Rn

with f1(ζ)= · · · =fp(ζ)=0, g1(ζ), . . . , gq(ζ)>0, and h1(ζ), . . . , hr(ζ)≥0, in time

[
∑p

i=1 size(fi)) + (
∑q

i=1 size(gi)) + (
∑r

i=1 size(hi))]
O(1)

,

using [
∑p

i=1 size(fi)) + (
∑q

i=1 size(gi)) + (
∑r

i=1 size(hi))]
O(1)

processors. �

Theorem 1.15 will then follow easily from two elementary propositions. The first is a well-
known trick from computational algebra for re-expressing polynomial systems in a simpler form.

Proposition 2.12. Given any f1, . . . , fm∈Q
[√

−1
][

x±1
1 , . . . , x±1

n

]

, we can find g1, . . . , gM ∈
Q
[√

−1
][

x±1
1 , . . . , x±1

n , y±1
1 , . . . , y±1

N

]

satisfying the following properties:

1. f1= · · · =fm=0 has a root in Cn ⇐⇒ g1= · · · =gM =0 has a root in CN .
2. Each gi is either a quadratic binomial or a linear trinomial.
3.

∑M
i=1 size(gi)=O(

∑m
i=1 size(fi)).

Moreover, g1, . . . , gM can be found in time O(
∑m

i=1 size(fi)). �

Proposition 2.13. Given any f1, . . . , fm ∈ Q
[√

−1
][

x±1
1 , . . . , x±1

n

]

with each fi of degree

at most 2, we can find g1, . . . , gM ∈ Q
[

x±1
1 , . . . , x±1

n , y±1
1 , . . . , y±1

N

]

satisfying the following
properties:

1. f1= · · · =fm=0 has a root in Cn ⇐⇒ g1= · · · =gM =0 has a root in RN .
2.

∑M
i=1 size(gi)=O(

∑m
i=1 size(fi)).

Moreover, g1, . . . , gM can be found in time O(mn). �

A simple example of Proposition 2.12 is the replacement of f(x1) := 1 − 2x1 + x51 by the
system G := (y1 − x21, y2 − y21, y3 − y2x1, y4 − 1 + 2x1, y5 − y4 − y3): It is easy to see that at
a root of G, we must have y5=1− 2x1 + x51=0. The proof of Proposition 2.12 is not much
harder: One simply substitutes new variables to break down sums with more than 2 terms
and (employing the binary expansions of the underlying exponents) monomials of degree
more than 2. Proposition 2.13 follows easily upon expanding every complex multiplication
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(resp. complex addition) into 4 real multiplications (resp. 2 real additions), by introducing
new variables for the real and imaginary parts of the xi.

Proof of Theorem 1.15: First observe that Log|z| ∈ Amoeba(f) ⇐⇒ f has a complex
root ζ with |ζ |= |z|. Letting A and B denote the real and imaginary parts of f , and letting
αi and βi denote the real and imaginary parts of ζi, we thus obtain that Log|z|∈Amoeba(f)
if and only if the polynomial system

A(α1, β1, . . . , αn, βn) = 0
B(α1, β1, . . . , αn, βn) = 0

α2
1 + β2

1 = |z1|2
...

α2
n + β2

n = |zn|2
has a root (α, β)= (α1, . . . , αn, β1, . . . , βn)∈R2n. Now, while the preceding system of equa-
tions has size significantly larger than size(z) + size(f) (due to the underlying expansions of
powers of ζi=αi +

√
−1βi), we can introduce new variables and equations (via Propositions

2.12 and 2.13) to obtain another polynomial system, also with a real solution if and only if
Log|z| ∈Amoeba(f), with size linear in size(z) + size(f) instead. Applying Theorem 2.11,
we obtain our PSPACE upper bound.

Our NP-hardness complexity lower bound follows immediately from Theorem 2.10, since
|ζ |=1 ⇐⇒ Log|ζ |=0. �

Remark 2.14. A reduction of amoeba membership to the Existential Theory of the Reals,
with an EXPTIME complexity upper bound instead, was observed in [The02, Sec. 2.2]. ⋄

3. The Proof of Theorem 1.11

The assertion that k≤min{n, t−1} follows immediately since any k-dimensional polytope
always has at least k + 1 vertices, and Newt(f) ⊂ Rn has at most t vertices. Further
background on polytopes, fans, and triangulations (which we use below) can be found in
[dLRS10].

3.1. Proof of Assertion (0). Note that, by definition, ArchTrop(f) is a linear section of
the outer normal fan F ⊂Rn+1 of ArchNewt(f). Each (n−1)-cell of ArchTrop(f) is a linear
section of a unique n-cell of F , dual to a unique edge of ArchNewt(f). Since ArchNewt(f)
has at most t vertices, ArchNewt(f) has at most

(

t
2

)

edges and we obtain our upper bound.
Let us call any face of ArchNewt(f) possessing an outer normal of the form (v,−1) a

lower face. Note that any path between points in ArchTrop(f) induces a sequence of relative
interiors of cells of ArchTrop(f) (each of dimension <n) having a connected union. So by
duality again, ArchTrop(f) is connected if and only if L \ L0 is path-connected, where L
(resp. L0) is the union of all lower faces (resp. lower vertices) of ArchNewt(f). The set L\L0

is topologically a k-ball minus a finite collection of points, and is thus path-connected for
k≥2. In particular, k=1 implies that ArchNewt(f) lies in a 2-plane (perpendicular to the
affine hyperplane {xn+1=−1} in Rn+1) and has at most t− 1 lower edges. So we are done. �

3.2. Proving Assertion (1). The follow elementary fact will be quite useful.

Proposition 3.1. The set Pn :={(|ζ1|, . . . , |ζn|) | 1+ζ1+· · ·+ζn=0 , ζi∈C\{0} for all i} is

exactly the convex polytope Qn defined by all those (r1, . . . , rn)∈Rn
+ with rn ≤ 1 +

∑n−1
i=1 ri

and rn≥max
{

1−∑n−1
i=1 ri, 2r1 − 1−∑n−1

i=1 ri, . . . , 2rn−1 −
∑n−1

i=1 ri
}

. (We set Q1 :={1}.)
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Proof: The case n=1 clearly holds, so we assume n≥2. Note that Qn is indeed a convex
polytope since Qn is an intersection of finitely many (open and closed) half-spaces.

Since Pn lies in the positive orthant by definition, the containment Pn⊆Qn follows easily
from the Triangle Inequality: ζ ∈Pn =⇒ |ζn|=

∣

∣1 +
∑n−1

i=1 ζi
∣

∣ and thus |ζn| ≤ 1 +
∑n−1

i=1 |ζi|.
The lower bound |ζn| ≥ max

{

1−∑n−1
i=1 |ζi|, 2|ζ1| − 1−∑n−1

i=1 |ζi|, . . . , 2|ζn−1| −
∑n−1

i=1 |ζi|
}

follows similarly, from a simple induction argument starting from |1 + ζ1|≥max{1− |ζ1|, |ζ1| − 1}.
For the containment Qn ⊆ Pn, we will need two constructions to extract a root of

1+x1+· · ·+xn, with correct norm vector, given a point of Qn. First, let r :=(r1, . . . , rn)∈Qn

and set ζ(θ) :=
(

r1e
√
−1(π−θ), . . . , rn−1e

√
−1(π−θ),−1−

(
∑n−1

i=1 ri
)

e
√
−1(π−θ)

)

for any θ∈ [0, π].

Clearly, (|ζ1(θ)|, . . . , |ζn(θ)|)∈Pn and |ζi(θ)|= ri for all i∈ [n− 1]. So r will indeed lie in Pn

provided we can find a θ∈ [0, π] with |ζn(θ)|=rn.
We can accomplish this, at least in certain cases, by observing that

|ζn(θ)|=
√

1 +
(
∑n−1

i=1 ri
)2 − 2

(
∑n−1

i=1 ri
)

cos θ

is a continuous increasing function of θ on [0, π], with minimum
∣

∣1−∑n−1
i=1 ri

∣

∣ and maximum

1 +
∑n−1

i=1 ri: If n= 2, then all necessary values of |ζn(θ)| (satisfying the constraints on rn
from the definition of Qn) can indeed be attained for a suitable choice of θ.

So let us now assume n≥3. We need 1−∑n−1
i=1 ri>0 in order to attain all necessary values

of |ζn(θ)|, but the condition 1−∑n−1
i=1 ri>0 may not always hold. So we consider one more

construction: For any j ∈ [n − 1] and any θ ∈ [0, π] set ρi(θ, j) := ri for all i∈ [n − 1] \ {j},
ρj(θ, j) := rje

√
−1(π−θ), ρn(θ, j) := −1 − ∑n−1

i=1 ρi(θ, j), and ρ(θ, j) := (ρ1(θ, j), . . . , ρn(θ, j)).
Clearly, (|ρ1(θ, j)|, . . . , |ρn(θ, j)|)∈Pn and |ρi(θ, j)|=ri for all i∈ [n− 1]. Similar to ζ(θ), we
can find a θ∈ [0, π] with |ρn(θ, j)|=rn: A simple calculation yields

|ρn(θ, j)|=
√

2(1 + cos θ)r2j − 2(1 + cos θ)rj
(

1 +
∑n−1

i=1 ri
)

+
(

1 +
∑n−1

i=1 ri
)2
,

which is a continuous increasing function of θ on [0, π], with minimum
∣

∣2rj − 1−∑n−1
i=1 ri

∣

∣

and maximum 1 +
∑n−1

i=1 ri. So all necessary values of |ρn(θ)| (satisfying the constraints
from the definition of Qn) can indeed be attained for a suitable choice of θ, provided

2rj − 1−∑n−1
i=1 ri>0.

Assuming at least one of the quantities 1−∑n−1
i=1 ri, 2r1−1−∑n−1

i=1 ri, . . . , 2rn−1−
∑n−1

i=1 ri
is positive, we can thus use ζ(θ) or ρ(θ, j), for suitable θ and j, to certify that r ∈ Pn.
Should none of the preceding quantities be positive, we conclude as follows: By assumption,
1<

∑n−1
i=1 ri. We then obtain that 1,

∑n−2
i=1 ri, and rn−1 can form the side-lengths of a non-

degenerate triangle, i.e., we can find φ1, φ2∈(0, π) with 1+
(
∑n−2

i=1 ri
)

e
√
−1φ1+rn−1e

√
−1φ2 =0.

Picking any α1 : (0, π] −→ (0, φ1] and α2 : (0, π] −→ (0, φ2] with both functions decreasing,

continuous, and surjective, we can then show that r∈Pn as follows: Let µi(θ) :=rie
√
−1α1(θ) for

all i∈ [n−2], µn−1(θ) :=rie
√
−1α2(θ), µn(θ) :=−1−∑n−1

i=1 µi(θ), and µ(θ) :=(µ1(θ), . . . , µn(θ)).
Then |µn(θ)| attains every value in (0, 1 + r1 + · · ·+ rn−1], and |µ(θ)|∈Pn.

So any r∈Qn indeed lies in Pn and we are done. �

Proof of Assertion (1) of Theorem 1.11: First note that the case t = 2 was already
observed in Example 1.4. So let us assume t≥3 (and thus k≥2 since t=k + 1 here).

Note that the definitions of Amoeba(f) and ArchTrop(f) are invariant under transla-
tion of {a1, . . . , ak+1}. So we may assume without loss of generality that a1 is the origin
O. Furthermore, since k=dimConv({a1, . . . , ak+1}), we have that a2, . . . , ak+1 are linearly
independent in Qn.
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Defining the vector of monomials xB :=
(

x
b1,1
1 · · ·xbn,1

n , . . . , x
b1,n
1 · · ·xbn,n

n

)

for any n × n

matrix B with (i, j)-entry bi,j∈Q, it is easily checked that the map m(x) =xB is an analytic
automorphism of (C \ {0})n when B is invertible. In particular, such a map induces the lin-
ear map x 7→ B−1x on both Amoeba(f) and ArchTrop(f). Since invertible real linear maps
are homeomorphisms, they preserve containment and contractability for Amoeba(f) and
ArchTrop(f). Letting B be the matrix whose inverse has columns a2, . . . , ak+1, b1, . . . , bn−k

(for any b1, . . . , bn−k ∈Qn with {a2, . . . , ak+1, b1, . . . , bn−k} forming a basis for Qn), we may
thus restrict our study of Amoeba(f) and ArchTrop(f) to the special case k = n and
f(x)=c0+c1x1+· · ·+cnxn. Note also that, for any γ∈C\{0}, the scaling x 7→ (γx1, . . . , γxn)
merely affects both Amoeba(f) and ArchTrop(f) by a common translation, and the scaling
f 7→ γf leaves both Amoeba(f) and ArchTrop(f) unchanged. So we may further restrict to
the special case f(x)=1 + x1 + · · ·+ xn.

The contractability of ArchTrop(f) follows easily: ArchTrop(f) is simply the outer normal
fan of the standard n-simplex ∆n :=Conv({O, e1, . . . , en}) in Rn and is thus contractible.

The contractability of Amoeba(f) follows immediately from Proposition 3.1, since
convex polytopes are contractible, and the function Log(x) :=(log(x1), . . . , log(xn)) induces
a homeomorphism between Rn

+ and Rn.
To prove containment, first note that the complement Rn \ArchTrop(f) consists of n+ 1

open cones, each with boundary combinatorially equivalent to the boundary of the positive
orthant Rn

+. Note also that we can map any vertex of ∆n to any other vertex of ∆n via an
invertible affine map, and this affine map also preserves any containment between Amoeba(f)
and ArchTrop(f). So it suffices to work locally and prove that Amoeba(1 + x1 + · · · + xn)
contains the boundary of the negative orthant. Furthermore, by symmetry in the variables,
it in fact suffices to simply prove that Amoeba(1+x1+ · · ·+xn) contains the cone generated
by the negatives of the first n−1 standard basis vectors. (Note that we’ve assumed k=n≥2
earlier.) Taking exponentials, this means proving that the set Pn from Proposition 3.1
contains (0, 1]n−1 × {1}. Thanks to the equality Pn=Qn from Proposition 3.1, we see that
Pn ∩ (Rn−1

+ × {1}) is in fact
{

(r1, . . . , rn)∈Rn | rn=1 and
∑n−1

i=1 ri≥2(rj − 1) for all j∈ [n− 1]
}

.
So we are done. �

3.3. Proof of Part (a) of Assertion (2). Let w := (log |ζ1|, . . . , log |ζn|) ∈ Amoeba(f)
and assume without loss of generality that |c1ζa1 | ≥ |c2ζa2| ≥ · · · ≥ |ctζat |. Since f(ζ) = 0
implies that |c1ζa1| = |c2ζa2 + · · ·+ ctζ

at|, the Triangle Inequality immediately implies that
|c1ζa1|≤(t− 1)|c2ζa2 |. Taking logarithms, we then obtain

a1 · w + log |c1| ≥ · · · ≥ at · w + log |ct| and(2)

a1 · w + log |c1| ≤ log(t− 1) + a2 · w + log |c2|(3)

For each i∈{2, . . . , t} let us then define δi to be the shortest vector such that
a1 · (w + δi) + log |c1| = ai · (w + δi) + log |ci|.

Note that δi=λi(ai−a1) for some nonnegative λi since we are trying to affect the dot-product

δi · (a1 − ai). In particular, λi =
(a1−ai)·w+log |c1/ci|

|a1−ai|2 so that |δi|= (a1−ai)·w+log |c1/ci|
|a1−ai| . (Indeed,

Inequality (2) implies that (a1 − ai) · w + log |c1/ci|≥0.)
Inequality (3) implies that (a1 − a2) · w + log |c1/c2| ≤ log(t − 1). We thus obtain

|δ2| ≤ log(t−1)
|a1−a2| ≤ log(t − 1). So let i0 ∈ {2, . . . , t} be any i minimizing |δi|. We of course
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have |δi0 |≤ log(t− 1), and by the definition of δi0 we have
a1 · (w + δi0) + log |c1|=ai0 · (w + δi0) + log |ci0 |.

Moreover, the fact that δi0 is the shortest among the δi implies that
a1 · (w + δi0) + log |c1|≥ai · (w + δi0) + log |ci|

for all i. Otherwise, we would have a1 · (w + δi0) + log |c1| < ai · (w + δi0) + log |ci| and
a1 · w + log |c1|≥ai · w + log |ci| (the latter following from Inequality (2)). Taking a convex
linear combination of the last two inequalities, it is then clear that there must be a µ∈ [0, 1)
such that a1 · (w+ µδi0) + log |c1|=ai · (w+ µδi0) + log |ci|. Thus, by the definition of δi, we
would obtain |δi|≤µ|δi0 |< |δi0| — a contradiction.

We thus have the following:
a1 · (w + δi0)− (− log |c1|)=ai0 · (w + δi0)− (− log |ci0|),
a1 · (w + δi0)− (− log |c1|)≥ai · (w + δi0)− (− log |ci|)

for all i, and |δi0 |≤ log(t−1). This implies that w+ δi0∈ArchTrop(f). In other words, we’ve
found a point in ArchTrop(f) sufficiently near Log|ζ | to prove our desired upper bound. �

3.4. Proving Part (b) of Assertion (2). We begin with a refinement of the special case
n=1.

Theorem 3.2. Suppose f is any univariate t-nomial with t≥3 and s :=#ArchTrop(f). (So
1≤s≤ t−1.) Then for any v∈ArchTrop(f) there is a root ζ∈C of f with |v− log |ζ ||< log 2,
|v − log |ζ ||≤ logmin{18, t− 1}, or |v − log |ζ ||<(log 9)s− log 9

2
<2.2s− 1.5, according as s

is 1, 2, or ≥2. In particular, |v − log |ζ ||<(log 9)t− log 81
2
<2.2t− 3.7 for all t≥3.

Proof: Following the notation of Theorem 1.7, let Γ be the connected component of Uf

containing v ∈ArchTrop(f) and m := #(Γ ∩ ArchTrop(f)). (So 1≤m≤ s.) The quantity
|v − log |ζ || is thus clearly maximized, for instance, when v is as far to the left as possible
and log |ζ | is as far to the right as possible. In other words,

|v − log |ζ ||< log(3) + (log 9)(m− 2) + log(3) + δ,
where δ is log 3 or log 2, according as m<s or m= s. We thus obtain the largest possible
upper bound of (log 9)s− log 9

2
when m=s. Note also that s≤ t−1. So now we merely need

to refine the cases with s∈{1, 2}.
The case s=1 follows from Corollary 2.3 since minArchTrop(f)=maxArchTrop(f) here.
The case s=2 proceeds as follows: If m=1 then Γ is an open interval of width 2 log 3 with

v at its median, so we must have |v − log |ζ ||< log 3. If m=2 then Γ is an open interval of
width at most 4 log 3, but we still have

minArchTrop(f)− log 2< log |ζ |<maxArchTrop(f) + log 2.
So |v−log |ζ || can again be maximized by having v as far left as possible and log |ζ | as far right
as possible. In particular, s=2 implies that ArchTrop(f)={minArchTrop(f),maxArchTrop(f)}.
So we obtain |v− log |ζ ||< log(3)+ log(3)+ log(2)=log 18. In addition, we can apply Corol-
lary 2.3 to observe that there is always a root ζ∈C of f with |minArchTrop(f)− log |ζ ||≤
log(t−1), and the same bound can be attained for |maxArchTrop(f)−log |ζ ||, possibly with a
different root ζ . So we obtain |v − log |ζ ||≤ logmin{18, t− 1}. �

We will handle the case n≥2 by showing that any point v∈ArchTrop(f) lies close to the
intersection of Amoeba(f) with a specially chosen line also containing v. With some care,
this enables us to reduce to the case n=1. In particular, intersecting a line with Amoeba(f)
is the same as evaluating f along a monomial curve, and we’ll need a technical lemma to
pick exponents that permit an easy reduction to n=1.
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Theorem 3.3. Given any subset {a1, . . . , at}⊂Zn of cardinality t≥ n + 1, there exists an
α=(α1, . . . , αn)∈Zn\{O} such that the dot-products α · a1, . . . , α · at are pair-wise distinct
and, for all i∈ [n], |αi|≤

⌈

1
4
t(t− 1)

⌉

or |αi|≤ t− 2, according as n≥3 or n=2.

Proof: Observe that for the α·ai to remain distinct we must have α avoid a set of ≤ t(t−1)/2
hyperplanes, depending on {a1, . . . , at}. This is equivalent to α avoiding the zero set of an
n-variate polynomial of degree t(t−1)/2. Schwartz’s Lemma (see, e.g., [Sch80]) then tells us
that for any S⊂Z with #S>t(t − 1)/2 there is an α∈Sn avoiding our aforementioned set
of hyperplanes. Picking S=

{

−
⌈

1
4
t(t− 1)

⌉

, . . . ,
⌈

1
4
t(t− 1)

⌉}

then gives us the case n≥3.
For the case n=2, it is enough to prove that the set of lattice points

X :={−(t− 2), . . . , t− 2} × {1, . . . , t− 2}
contains at least 1 + t(t − 1)/2 distinct directions (and thus we can always find a suitable
α ∈X). In other words, we need to prove that X has at least 1 + t(t − 1)/2 points with
relatively prime coordinates. Throwing out the directions (1, 0) and (0, 1), it is then enough

to show that Y := {1, . . . , t − 2}2 contains at least t(t−1)
4

− 1
2
points with relatively prime

coordinates. The number of such points, for arbitrary t, forms the sequence A018805 in
Sloane’s Online Encyclopedia of Integer Sequences [Slo10]. A routine, but tedious calculation
then yields the t∈{3, . . . , 45} portion of the n=2 case.

The remaining cases can be settled as follows: By a standard Möbius inversion argument,

the number of points with relatively prime coordinates in Y is exactly
t−2
∑

d=1

µ(d)⌊(t − 2)/d⌋2

where µ is the classical Möbius function (see, e.g., [HWW08]). A simple expansion then
yields our desired number of points to be bounded from below by

A(t) := (t−2)2

ζ(2)
− 4(t− 2)− 2(t− 2) log(t− 2)− 2ζ(2)(t− 1).

A simple derivative calculation then yields that A(t)− t(t−1)
4

+ 1
2
is increasing for all t≥25.

So it’s enough to prove that A(46)> 517. One can check via Maple that A(46)> 519.9, so
we are done. �

Proof of Part (b) of Assertion (2): Let v=(v1, . . . , vn) be any point of ArchTrop(f). If
v∈Amoeba(f) then there is nothing to prove. So let us assume v 6∈Amoeba(f). Since the
case n=1 is immediate from Theorem 3.2 and Example 1.4, we will assume henceforth that
n≥2.

So we can reduce to the case k= n, let us temporarily assume that k <n. Without loss
of generality, we can order the variables x1, . . . , xn so that the image of Newt(f) under the
coordinate projection sending Rn onto Rk ×{0}n−k has dimension k. Define g(x1, . . . , xk) :=
f(x1, . . . , xk, e

vk+1 , . . . , evn). By the definition of ArchTrop(f), maxi∈[t] |cieai·v| is attained for
at least two distinct values of i. By our construction of g, this monomial norm condition
implies that (v1, . . . , vk)∈ArchTrop(g). Clearly then, if we can find a root (ζ1, . . . , ζk) of g
with |(v1, . . . , vk)− Log|(ζ1, . . . , ζk)||<εk,t, then ζ :=(ζ1, . . . , ζk, e

vk+1, . . . , evn) will be a root
of f with |v − Log|ζ ||< εk,t. But finding such a (ζ1, . . . , ζk) for g is nothing more than an
instance of the case where the dimension of the underlying Newton polytope is the same as
the underlying number of variables.

So we may assume k=n≥2 henceforth. Consider a monomial curve C(t) :=(γ1t
α1 , . . . , γnt

αn)
with α=(α1, . . . , αn) 6=O. (Note that {Log|C(t)|}t∈C is always a line in Rn.) Setting γi=e

vi

for all i we obtain v=Log|C(1)|, independent of α. So let us pick α via Theorem 3.3 and
set h(t) := f(C(t)). Thanks to Theorem 3.3, h is a (univariate) t-nomial, and we can write
h(t) =

∑t
i=1 cie

ai·vtβi for some {β1, . . . , βt} ⊂ Z of cardinality t. Now, by the definition of



18 MARTÍN AVENDAÑO, ROMAN KOGAN, MOUNIR NISSE, AND J. MAURICE ROJAS

ArchTrop(f), maxi∈[t] |cieai·v| is attained for at least two distinct values of i. By our con-
struction of h, this monomial norm condition implies that 0∈ArchTrop(h). So to find a root
ζ∈Cn with Log|ζ | close to v, it’s enough to prove that h has a root ρ close to 1. Thanks to
Theorem 3.2, we can do the latter, so now we simply have to account for metric distortion
from specializing f along C(t).

Taking logarithms, Amoeba(h) containing a point at distance ε from 0 implies that
Amoeba(f) contains a point at distance ≤ |α|ε from v. So by the coordinate bounds of
Theorem 3.3, we are done. �

3.5. Proof of Assertion (3). To prove Part (a), note that
( −1
t−1
, . . . , −1

t−1

)

is a root of ϕ

and thus p :=
(

log
∣

∣

1
t−1

∣

∣ , . . . , log
∣

∣

1
t−1

∣

∣

)

∈Amoeba(ϕ). Also, from our proof of Assertion (1),

we know that ArchTrop(ϕ) ∩ Rt−1
− is the boundary of the negative orthant. So the distance

from p to ArchTrop(ϕ) is log(t− 1).
To prove Part (b), note that (x1 + 1)t−k has a unique root of multiplicity t − k at

x1=−1. Recall that the roots of a monic univariate polynomial are continuous functions of
the coefficients, e.g., [RS02, Thm. 1.3.1, pg. 10].2 So then, for any ε>0, we can find a δε>0 so
that for all δ∈C with |δ|∈ [0, δε), all the roots ζ1 of (x1+1)t−k−δ satisfy |ζ1+1|<ε. Clearly
then, for any ε′> 0, taking |ρ2|, . . . , |ρn| sufficiently small (or u2 := log |ρ2|, . . . , un := log |ρn|
sufficiently negative) implies that the distance from any point u ∈Amoeba(f) of the form
(u1, u2, . . . , un) to the hyperplane {0}×Rn−1 is at most ε′: Simply take ε so that ε′=log(1+ε)
and |x2|+ · · ·+ |xn|<δε.

On the other hand, by the log-concavity of the binomial coefficients, ArchNewt
(

(x1 + 1)t−k
)

must have an edge of slope t − k. This will enable us to prove that ArchTrop(ψ) contains
a ray of the form {(log(t− k), N, . . . , N)}N→+∞. and thus conclude: The points along this
ray have distance to Amoeba(ψ) approaching log(t− k), by the preceding paragraph.

To see why such a ray lies in ArchTrop
(

(x1 + 1)t−k
)

simply note that as N −→ −∞, the
linear form log(t− k)u1 +Nu2 + · · ·+Nun − un+1 is maximized exactly at the vertices

(t− k − 1, 0, . . . , 0,− log(t− k)) and (t− k, 0, . . . , 0, 0)
of ArchNewt

(

(x1 + 1)t−k
)

. (Indeed, the only other possible vertices of ArchNewt
(

(x1 + 1)t−k
)

are the basis vectors e2, . . . , ek of Rn+1.) So, by Proposition 1.18, we are done. �

4. Proving Theorem 1.17

Let us first recall the following result on comparing monomials in rational numbers.

Theorem 4.1. [BRS09, Sec. 2.4] Suppose α1, . . . , αN ∈Q are positive and β1, . . . , βN ∈ Z.
Also let A be the maximum of the numerators and denominators of the αi (when written in
lowest terms) and B :=maxi{|βi|}. Then, within

O
(

N30N log(B)(log logB)2 log log log(B)(log(A)(log logA)2 log log logA)N
)

bit operations, we can determine the sign of αβ1

1 · · ·αβN

N − 1. �

While the underlying algorithm is a simple application of Arithmetic-Geometric
Mean Iteration (see, e.g., [Ber03]), its complexity bound hinges on a deep estimate of
Nesterenko [Nes03], which in turn refines seminal work of Matveev [Mat00] and Alan Baker
[Bak77] on linear forms in logarithms.

2The statement there excludes roots of multiplicity equal to the degree of the polynomial, but the proof
in fact works in this case as well.
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Proof of Theorem 1.17: From Proposition 1.18, it is clear that we merely need an efficient
method to compare quantities of the form |cizai |, and there are exactly t−1 such comparisons
to be done. So our first complexity bound follows immediately from the case of Theorem 4.1
where A=2σ, B=d, and N=2n+2. In particular, 302 log 2<623.8325 and

√
623.8325<25.2.

The second assertion follows almost trivially: Thanks to the exponential form of the
coefficients and the query point, one can take logarithms to reduce to comparing integer
linear combinations of rational numbers of bit size linear in max{σ, log d}. So the under-
lying monomial norm comparisons can be reduced to standard techniques for fast integer
multiplication (see, e.g., [BS96, pg. 43]). �
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