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Ergodic Control and Polyhedral Approaches
to PageRank Optimization

Olivier Fercoq, Marianne Akian, Mustapha Bouhtou, and Stephane Gaubert

Abstract—We study a general class of PageRank optimization
problems which involve finding an optimal outlink strategy for
a web site subject to design constraints. We consider both a con-
tinuous problem, in which one can choose the intensity of a link,
and a discrete one, in which in each page, there are obligatory
links, facultative links and forbidden links. We show that the
continuous problem, as well as its discrete variant when there
are no constraints coupling different pages, can both be modeled
by constrained Markov decision processes with ergodic reward,
in which the webmaster determines the transition probabilities
of websurfers. Although the number of actions turns out to be
exponential, we show that an associated polytope of transition
measures has a concise representation, from which we deduce that
the continuous problem is solvable in polynomial time, and that the
same is true for the discrete problem when there are no coupling
constraints. We also provide efficient algorithms, adapted to very
large networks. Then, we investigate the qualitative features of
optimal outlink strategies, and identify in particular assumptions
under which there exists a “master” page to which all controlled
pages should point. We report numerical results on fragments of
the real web graph.

Index Terms—Algorithms, PageRank optimization.

I. INTRODUCTION

T HE PageRank introduced by Brin and Page [1] is defined
as the invariant measure of a walk made by a random

surfer on the web graph. When reading a given page, the surfer
either selects a link from the current page (with a uniform prob-
ability), and moves to the page pointed by that link, or interrupts
his current search, and then moves to an arbitrary page, which is
selected according to given “zapping” probabilities. The rank of
a page is defined as its frequency of visit by the random surfer.
The interest of the PageRank algorithm is to give each page of

the web a measure of its popularity. It is a link-based measure,
meaning that it only takes into account the hyperlinks between
web pages, and not their content. It is combined in practice with
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content-dependent measures, taking into account the relevance
of the text of the page to the query of the user, in order to de-
termine the order in which the answer pages will be shown by
the search engine. This leads to a family of search methods the
details of which may vary (and are often not publicly known).
However, a general feature of these methods is that among the
pages with a comparable relevance to a query, the ones with the
highest PageRank will appear first.
The importance of optimizing the PageRank, specially for

e-business purposes, has led to the development of a number
of companies offering Search Engine Optimization services.
We refer in particular the reader to [2] for a discussion of the
PageRank optimization methods which are used in practice.
Understanding PageRank optimization is also useful to fight
malicious behaviors like link spamming, which intend to
increase artificially the PageRank of a web page [3], [4].
The PageRank has motivated a number of works, dealing in

particular with computational issues. Classically, the PageRank
vector is computed by the power algorithm [1]. There has been a
considerable work on designing new, more efficient approaches
for its computation [5], [6]: Gauss-Seidel method [7], aggre-
gation/disaggregation [6] or distributed randomized algorithms
[8], [9]. Other active fields are the development of new ranking
algorithms [10] or the study of the web graph [11].
The optimization of PageRank has been studied by several

authors. Avrachenkov and Litvak analyzed in [12] the case of
a single controlled page and determined an optimal strategy. In
[13],Mathieu andViennot established several bounds indicating
to what extent the rank of the pages of a (multi-page) website
can be changed, and derived an optimal referencing strategy in
a special unconstrained case: if the webmaster can fix arbitrarily
the hyperlinks in a web site, then, it is optimal to delete every
link pointing outside the web site. To avoid such degenerate
strategies, De Kerchove, Ninove and van Dooren [14] studied
the problem of maximizing the sum of the PageRank coordi-
nates in a web site, provided that from each page, there is at
least one path consisting of hyperlinks and leading to an ex-
ternal page. They gave a necessary structural condition satis-
fied by an optimal outlink strategy. In [15], Ninove developed
a heuristic based on these theoretical results, which was exper-
imentally shown to be efficient. In [16], Ishii and Tempo inves-
tigated the sensitivity of the PageRank to fragile (i.e., erroneous
or imperfectly known) web data, including fragile links (servers
not responding, links to deleted pages, etc.). They gave bounds
on the possible variation of PageRank and introduced an ap-
proximate PageRank optimization problem, which they showed
to be equivalent to a linear program. In [17], (see also [18] for
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more details), Csáji, Jungers and Blondel thought of fragile links
as controlled links and gave an algorithm to optimize in poly-
nomial time the PageRank of a single page.
In the present paper, we study a more general PageRank op-

timization problem, in which a webmaster, controlling a set of
pages (her web site), wishes to maximize a utility function de-
pending on the PageRank or, more generally, on the associated
occupation measure (frequencies of visit of every link, the latter
are more informative). For instance, the webmaster might wish
to maximize the number of clicks per time unit of a certain hy-
perlink bringing an income, or the rank of the most visible page
of her site, or the sum of the ranks of the pages of this site,
etc. We consider specifically two versions of the PageRank op-
timization problem.
We first study a continuous version of the problem in which

the set of actions of the webmaster is the set of admissible
transition probabilities of websurfers. This means that the web-
master, by choosing the importance of the hyperlinks of the
pages she controls (size of font, color, position of the link within
the page), determines a continuum of possible transition proba-
bilities. Although this model has been already proposed by Ne-
mirovsky and Avrachenkov [19], its optimization does not seem
to have been considered previously. This continuous version in-
cludes rather realistic constraints: for instance, the webmaster
may start from a “template” or “skeleton” (given by designers),
and be allowed to modify this skeleton only to a limited ex-
tent. Moreover, we shall allow coupling constraints between
different pages (for instance, the rank of one page may be re-
quired to be greater than the rank of another page, constraints
involving the sum of the pageranks of a subset of pages are also
allowed, etc.).
Following [16], [17], we also study a discrete version of the

problem, in which in each page, there are obligatory links, fac-
ultative links and forbidden links. Then, the decision consists in
selecting the subset of facultative links which are actually in-
cluded in the page.
We show that when there are no coupling constraints between

different pages and when the utility function is linear, the con-
tinuous and discrete problems both can be solved in polyno-
mial time by reduction to a linear program (our first main re-
sult, Theorem 4). When specialized to the discrete problem, this
extends Theorem 1 of [17], which only applies to the case in
which the utility function represents the PageRank of a single
page. The proof of Theorem 4 relies on the observation that the
polytope generated by the transition probability measures that
are uniform on some subsets of pages has a concise represen-
tation with a polynomial number of facets (Theorem 1). This
leads us to prove a general result of independent interest con-
cerning Markov decision processes with implicitly defined ac-
tion sets. We introduce the notion of well-describedMarkov de-
cision processes, in which, although there may be an exponen-
tial number of actions, there is a polynomial time strong separa-
tion oracle for the actions polytope (whereas the classical com-
plexity results assume that the actions are explicitly enumerated
[20]). We prove in Theorem 3, as an application of the theory of
Khachiyan’s ellipsoidmethod (see [21]), that the ergodic control

problem for well-described Markov decision process is polyno-
mial time solvable (even in the multi-chain framework). Then,
Theorem 4 follows as a direct corollary. We note that maxi-
mization or separation oracles have been previously considered
in dynamic programming for different purposes (dealing with
unnkown parameters [22], [23], or approximating large scale
problems [24]).
Proposition 7 yields a fixed point scheme with a contraction

rate independent of the number of pages. Indeed, the contraction
rate depends only on the “damping factor” (probability that the
user interrupts his current search). Therefore, this problem can
be solved efficiently for very large instances by Markov deci-
sion techniques. Our results show that optimizing the PageRank
is not much more difficult than computing it, provided there
are no coupling constraints: indeed, Proposition 9 shows that
by comparison, the execution time is only increased by a
factor, where is the number of pages. Note that theMarkov de-
cision process which we construct here is quite different from
the one of [17], the latter is a stochastic shortest path problem,
whose construction is based on a graph rewriting technique, in
which intermediate (dummy) nodes are added to the graph. Such
nodes are not subject to damping and therefore, the power iter-
ation looses its uniform contraction. In our approach, we use a
more general ergodic control model, which allows us to con-
sider a general linear utility function, and avoids adding such
extra nodes. Experiments also show that the present approach
leads to a faster algorithm (Section VII-B).
We also study the continuous problem with general (linear)

coupling constraints, and show that the latter can also be solved
in polynomial time by reduction to a constrained ergodic
control problem. Proposition 13 yields an algorithm to solve
the PageRank optimization problem with coupling constraints,
which scales well if the number of coupling constraints remains
small. The resolution uses Lagrangian relaxation and convex
programming techniques like the bundle method. There is little
hope to solve efficiently, in general, the discrete problem with
general coupling constraints since Csáji, Jungers and Blondel
have proved in [17] that the discrete PageRank optimization
problem with mutual exclusion constraints is NP-complete.
Nevertheless, we develop a heuristic for the discrete PageRank
optimization problem with linear coupling constraints, based
on the optimal solution of a relaxed continuous problem
(Section VII-C). On test instances, approximate optimality
certificates show that the solution found by the heuristic is at
most at 0.4% of the optimum.
Using the concept of mean reward before teleportation, we

identify in Theorem 5 (our second main result) assumptions
under which there exists a “master” page to which all controlled
pages should point. The theorem gives an ordering of the pages
such that in loose terms, the optimal strategy is at each page to
point to the allowed pages with highest order. The structure of
the obtained optimal website is somehow reminiscent of The-
orem 12 in [14], but in [14], there is only one constraint: the
result is thus different. When the problem has coupling con-
straints, the mean reward before teleportation still gives infor-
mation on optimal strategies (Theorem 6).
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We report numerical results on the web site of one of the
authors (including an aggregation of surrounding pages) as well
as on a fragment of the web ( from the universities
of New Zealand).
We finally note that an early Markov Decision Model

for PageRank optimization was introduced by Bouhtou and
Gaubert in 2007, in the course of the supervision of the student
project of Vlasceanu and Winkler [25].
The paper is organized as follows. In Section II, we introduce

the general PageRank optimization problem. In Section III, we
give a concise description of the polytope of uniform transition
probabilities. In Section IV, we show that every Markov deci-
sion process which admits such a concise description is polyno-
mial time solvable (Theorem 3), and we deduce as a corollary
our first main result, Theorem 4. Section IV-B describes an effi-
cient fixed point scheme for the resolution of the PageRank op-
timization problem with local constraints. In Section V, we give
the “master page” Theorem (Theorem 5).We deal with coupling
constraints in Section VI. We give experimental results on real
data in Section VII.

II. PAGERANK OPTIMIZATION PROBLEMS

A. Google’s Pagerank

We first recall the basic elements of the Google PageRank
computation, see [1] and [6] for more information. We call web
graph the directed graph with a node per web page and an arc
from page to page if page contains a hyperlink to page .
We identify the set of pages to . Let denote
the number of hyperlinks contained in page . Assume first that

for all , meaning that every page has at least
one outlink. Then, we construct the stochastic matrix ,
which is such that

if page is pointed to from page
otherwise

(1)

This is the transition matrix of a Markov chain modeling the be-
havior of a surfer choosing a link at random, uniformly among
the ones included in the current page and moving to the page
pointed by this link. The matrix only depends of the web
graph.
We also fix a row vector , the zapping or teleportation

vector, which must be stochastic (so, ), together
with a damping factor and define the new stochastic
matrix

(2)

where is the (column) vector in with all entries equal to 1.
Consider now aMarkov chain with transition matrix
, so that for all , .

Then, represents the position of a websurfer at time : when
at page , the websurfer continues his current exploration of the
web with probability and moves to the next page by following
the links included in page , as above, or with probability ,
stops his current exploration and then teleports to page with
probability .

Fig. 1. The web site of one of the authors (colored) and the surrounding sites
(white). This 1500-page fragment of the web is aggregated for presentation,
using the technique described in [6]. The sizes of the circles follow the log of
their PageRank.

When some page has no outlink, , and so the entries
of the th row of the matrix cannot be defined according to
(1). Then, we set . In other words, when visiting a
page without any outlink, the websurfer interrupts its current
exploration and teleports to page again with probability . It
is also possible to define another probability vector (different
from ) for the teleportation from these “dangling nodes”.
The PageRank is defined as the invariant measure of the

Markov chain representing the behavior of the web-
surfer. This invariant measure is unique if , or if is
irreducible.
Typically, one takes , meaning that at each step, a

websurfer interrupts his current search with probability
. The advantages of the introduction of the damping factor

and of the teleportation vector are well known. First, it guaran-
tees that the power algorithm converges to the PageRank with
a geometric rate independent of the size (and other charac-
teristics) of the web graph. In addition, the teleportation vector
may be used to “tune” the PageRank if necessary. By default,

is the uniform stochastic vector. We will assume in
the sequel that and for all , so that is
irreducible.
The graph on Fig. 1 represents a fragment of the web graph.

We obtained the graph by performing a crawl of our labora-
tory with 1500 pages. We set the teleportation vector in such
a way that the 5 surrounding institutional pages are dominant.
The teleportation probabilities to these pages were taken to be
proportional to the PageRank (we used the Google Toolbar,
which gives a rough indication of the PageRank, on a loga-
rithmic scale). After running the PageRank algorithm on this
graph, we found that within the controlled site, the main page
of this author has the biggest PageRank (consistently with the
results provided by Google search).
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B. Optimization of Pagerank

The problem we are interested in is the optimization of
PageRank. We study two versions of this problem. In the
continuous PageRank Optimization problem, the webmaster
can choose the importance of the hyperlinks of the pages she
controls and thus she has a continuum of admissible transition
probabilities (determined for instance by selecting the color of
a hyperlink, the size of a font, or the position of a hyperlink in a
page). This continuous model is specially useful in e-business
applications, in which the income depends on the effective
frequency of visit of pages by the users, rather than on its ap-
proximation provided by Google’s pagerank. The Continuous
PageRank Optimization Problem is given by

(3)

Here, is
the simplex of dimension , is a utility function and is a set
representing the set of all admissible transition probability ma-
trices. We denote by the th row of a matrix . We shall dis-
tinguish local constraints, which can be expressed as ,
where , is a given subset, and global constraints, which
couple several vectors . Thus, local constraints only involve
the outlinks from a single page, whereas global constraints in-
volve the outlinks from different pages. Then,
with equality when there are only local constraints. We shall
consider the situation in which each is a polytope (or more
generally an effective convex set) with for all , following (2):

(4)

If we restrict our attention to Google’s PageRank (with uni-
form transition probabilities), we arrive at the following combi-
natorial optimization problem. For each page , as in [16] and
[17], we partition the set of potential links into three sub-
sets, consisting respectively of obligatory links , prohibited
links and the set of facultative links . Then, for each page
, we must select the subset of the set of facultative links
which are effectively included in this page. Once this choice
is made for every page, we get a new webgraph, and define
the transition matrix as in (1). The matrix
after teleportation is also defined as above by

. Then, the Discrete PageRank Op-
timization Problem is given by

(5)

Remark 1: Problem (5) is a combinatorial optimization
problem: if there are facultative links in page , the decision
variable, , takes values, where .
We shall be specially interested in the modeling of an income

proportional to the frequency of clicks on some hyperlinks. Let
be a reward per click for each hyperlink . The latter

utility can be represented by the following linear utility function,
which gives the total income:

(6)

Unless stated otherwise, we will consider the total income linear
utility in the sequel.
Remark 2: The problem of maximizing the total PageRank of

a web site (sum of the PageRanks of its pages) is obtained as a
special case of (6). Indeed, if this web site consists of the subset
of pages , one can set , where
is the characteristic function of (with value 1 if and

0 otherwise). Then .
Remark 3: Note that the general form of the utility func-

tion assumes that we receive the same instantaneous reward
when the surfer follows the hyperlink and when the

surfer stops the current exploration at Page to teleport to Page
. There is no loss of generality in assuming that it is so: as-
sume that the surfer produces a reward of when he fol-
lows the hyperlink and 0 when he teleports to Page .
Using the fact that
and , we show that

We then only need to set .
We shall restrict our attention to situations in which is

uniquely defined for each admissible transition matrix
(recall that this is the case in particular when ). Then the
utility is a function of only.
Alternatively, it will be convenient to think of the utility as a

function of the occupation measure . The latter
is the stationary distribution of the Markov chain .
Thus, gives the frequency of the move from page to page
. The occupation measure is a probability measure and it
satisfies the flow relation, so that

(7)

(8)

The occupation measure may also be thought of as a matrix.
Hence, we shall say that is irreduciblewhen the corresponding
matrix is irreducible.
The occupation measure can be obtained from the invariant

measure and the stochastic matrix can be obtained by
and, conversely, the invariant measure can

be recovered from by .
The map which determines the stochastic matrix from

the occupation measure is given by

(9)

Proposition 1: The function defined by (9) sets up a bira-
tional transformation between the set of irreducible occupation
measures [irreducible matrices satisfying (7), (8)] and the set
of irreducible stochastic matrices. In particular, the Jacobian of
is invertible at any point of the set of irreducible occupation

measures.
Proof: As is uniquely defined, its entries are a rational

function of the entries of (for instance, when is irreducible,
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an explicit rational expression is given by Tutte’s Matrix Tree
Theorem [26]). The invertibility of the Jacobian follows from
the birational character of .
This bijective correspondence will allow us to consider the

occupation measure, rather than the stochastic matrix , as the
decision variable. Note that the utility function can be written as
a linear function in terms of the occupationmeasure:

.

C. Design Constraints of the Webmaster

We now model the possible modifications made by the web-
master, who may be subject to constraints imposed by the de-
signer of the web site (the optimization of the PageRank should
respect the primary goal of the web site, which is in general to
offer some content). We thus describe the set of admissible
transition probabilities of (3).
Proposition 2: Assume that , that for all
, is a closed convex set and that every matrix

is irreducible. Then, the set of occupation measures arising
from the elements of is also a closed convex set. Moreover,
if every is a polytope, then so is .

Proof: For all , is a closed convex set and so it
is the intersection of a possibly infinite family of hyperplanes

. Every element of must satisfy the fol-

lowing inequalities, one for each :

(10)

Formulating these equalities in terms of the occupation mea-
sure thanks to and Proposition 1, and
rewriting Inequalities (10) in the form

(11)

we see that satisfies a family of constraints of the form (11),
together with the inequalities (7), (8). Thus, is defined as the
intersection of half-spaces and so, it is closed and convex.
The same argument shows that if for all , is a

polytope, so is .
We next list some concrete examples of such inequalities.
1) Skeleton Constraints: Imagine that a designer gave

a skeleton or template for page . The latter may include a
collection of mandatory sites to be pointed by page . We shall
abstract the skeleton by representing it by a fixed probability
vector , giving the transition probabilities if no fur-
ther hyperlinks are added. Assume now that the webmaster
is allowed to modify the page for optimization purposes, as
long as the hyperlinks she adds do not overtake the initial
content of the web site. This can be modeled by requiring that
no hyperlink included in the skeleton looses a proportion of
its weight greater than . Such constraints can be written as

.
2) Linear Coupling Constraints: Constraints like the pres-

ence of specific outlinks somewhere on the pages of the web-
site are non-local. Such constraints cannot be written simply in
terms of the stochastic matrix (because adding conditional

probabilities relative to different pages makes little sense) but
they can be written linearly in terms of the occupation measure
, , where the coefficients and are
given.
These constraints include for instance coupling condi-

tional probability constraints, which can be written as:
. This means that the proba-

bility for the random surfer to move to set , given that he is
now in set , should not be smaller than .
3) Combinatorial Constraints: In the discrete problem, one

may wish to set combinatorial constraints like demanding the
existence of a path between two pages or sets of pages [14],
setting mutual exclusion between two hyperlinks [17] or lim-
iting the number of hyperlinks [17]. Such constraints may lead
to harder combinatorial problems, the solution of which is how-
ever made easier by the polynomial-time solvability of a relaxed
continuous problem (Section VII-C).

III. REDUCTION OF THE PAGERANK OPTIMIZATION PROBLEM
WITH LOCAL CONSTRAINTS TO ERGODIC CONTROL

We next show that the continuous and discrete versions of
the PageRank optimization reduce to ergodic control problems
in which the action sets are defined as extreme points of con-
cisely described polyhedra. We shall see in Section IV that such
problems remain tractable even if the size of the action sets may
be exponential.

A. Reduction of the Continuous Pagerank Optimization
Problem to Ergodic Control

A finiteMarkov decision process is a 4-uple
where is a finite set called the state space; for all , is
the finite set of admissible actions in state ;

is the transition law, so that is the proba-
bility to go to state from state when action is selected;
and is the reward function, so that

is the instantaneous reward when action is selected in
state .
Let denote the state of the system at the discrete

time . A deterministic control strategy is a sequence
of actions such that for all , is a function of the
history and . Of
course, .
More generally, wemay consider randomized strategies where
is a probability measure on . A strategy is stationary

(feedback) if there exists a function such that for all ,
.

Given an initial distribution representing the law of ,
the average cost infinite horizon Markov decision problem, also
called ergodic control problem, consists in maximizing

(12)

where the maximum is taken over the set of randomized control
strategies . Indeed, the supremum is the same if it is taken only
over the set of randomized (or even deterministic) stationary
feedback strategies (Theorem 9.1.8 in [27] for instance).
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A Markov decision process is unichain if the transition ma-
trix corresponding to every stationary policy has a single re-
current class. Otherwise it is multichain. When the problem is
unichain, its value does not depend on the initial distribution
whereas when it is not, one may consider a vector where
represents the value of the problem (12) when starting from

state .
For a polytope , we shall denote by the set of ex-

treme points of .
Proposition 3: Assume that there are only local constraints,

i.e., , that for all , is a polytope of the
form (4) and that the utility function is an income proportional
to the frequency of clicks (6). Then the continuous PageRank
Optimization problem (3) is equivalent to the unichain ergodic
control problem with finite state , finite action set in
every state , transition probabilities and rewards

.
Proof: As , implies for all . Thus

the problem defined in the proposition is unichain. Randomized
stationary strategies are of the form for some func-
tion sending to some element of .
To such a strategy is associated a transition matrix of the web-
surfer, obtained by taking and vice versa. Thus, the
admissible transition matrices of the websurfer are admissible
stationary feedback strategies.
Moreover, the ergodic theorem for Markov chains shows that

when such a strategy is applied

and so, the objective function of the ergodic control problem is
precisely the total income.
Proposition 4: Under the hypotheses of Proposition 3, the

dynamic programming equation

(13)

has a solution and . The constant is unique
and is the value of continuous PageRank Optimization problem
(3). An optimal strategy is obtained by selecting for each state
a maximizing in (13). The function is often called
the bias or the potential.

Proof: Theorem 8.4.3 in [27] applied to the unichain er-
godic control problem of Proposition 3 implies the result of the
proposition but with replaced by . But as the expres-
sion which is maximized is affine, using or yields
the same solution.

B. Polytope of Uniform Transition Measures

In this section, we show that the Discrete PageRank Opti-
mization problem (5) is equivalent to a relaxed (continuous)
PageRank Optimization problem (3) (Theorem 2). For this
we show that the polytope of uniform transition measures, the
vertices of which represent the action space of the Discrete

PageRank Optimization problem (5), admits a concise repre-
sentation (Theorem 1).
We consider a given page and we study the set of admissible

transition probabilities from page . With uniform transitions,
this is a discrete set that we denote . For clarity of the ex-
planation, we will write instead of and write the proofs
in the case . To get back to , we use the relation

(see Remark 5 at the end of this sec-
tion).
We partition the set of links from page as the set of obliga-

tory links , the set of prohibited links and the set of facul-
tative links . Then, depending on the presence of obligatory
links

(14)

or if , it is possible to have no link at all and then to
teleport with probability vector

We study the polytope , the convex hull of the discrete
set . Although it is defined as the convex hull of an exponen-
tial number of points, we show that it has a concise representa-
tion.
Theorem 1: If page has at least one obligatory link, then

the convex hull of the admissible discrete transition probabili-
ties from page , , is the projective transformation of a
hypercube of dimension and, for any choice of , it
coincides with the polytope defined by the following set of in-
equalities:

(15a)

(15b)

(15c)

Proof: Let be the polytope defined by Inequalities (15).
: Let a probability vector in : is a uniform

probability measure on its support and
. As for all in , , verifies the

equalities.
: Let us consider an extreme point of

. Inequalities (15b) and (15a) cannot be saturated together at
a given coordinate because, if it were the case, then
we would have and thus , which contradicts

.
We have independent equalities so the poly-

tope is of dimension . To be an extreme point, must thus
saturate inequalities. At every in , Inequalities (15b)
and (15a) cannot be saturated simultaneously (see the previous
paragraph), so the only way to saturate inequalities is to sat-
urate one of (15b) or (15a) at every in . Finally, can only
take two distinct values, which are 0 and : it
is a uniform probability on it support.
We then show that is the projective transformation ([28,

Section 2.6] for more background) of the hypercube defined
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by
. As soon as , is embedded in the affine hyper-

plane . We can then construct the homoge-
nization of , , which is the pointed cone with base
(see [28] for more details). Finally is the cross-section of

with the hyperplane .
The result of the theorem implies in particular that is

combinatorially equivalent to a hypercube, i.e., that their face
lattices are isomorphic [28].
The next result concerns the case in which a page may have

no outlink: it is necessary to consider this special case because
then the websurfer teleports with probability to page .
Proposition 5: If page has no obligatory link and if there

exists such that , then is a simplex of
dimension defined by the following set of inequalities:

(16a)

(16b)

Proof: The proof follows the same sequence of arguments
as the proof of Theorem 1.We just need to adapt it to Inequalities
(16).
Proposition 6: If page has no obligatory link and if for all

, , then is the usual simplex of dimension
with , .

Proof: The extreme points of this simplex are clearly ad-
missible discrete transition probabilities and the polytope con-
tains every admissible discrete transition probabilities.
Remark 4: When there is no obligatory link, most of the ad-

missible discrete transition probabilities are not extreme points
of the polytope.
Remark 5: If we want to work with , the polytope of transi-

tion probabilities with damping factor , we only need to use the
relation to get the actual inequalities. For
instance, remains but becomes .
Theorem 2: The discrete PageRank Optimization problem

(5) is equivalent to a continuous PageRank Optimization
problem (3) in which the action set is one of the polytopes
described in Theorem 1 or Proposition 5 or 6, depending on the
presence of obligatory links, and in Remark 5.

Proof: Arguing as in the proof of Proposition 3, we get
that the discrete PageRank Optimization problem (5) is equiva-
lent to an ergodic control problem with state space , in which
the action set in state is the set , de-
fined in (14), and the rewards and transition probabilities are as
in Proposition 3. The optimal solutions of the discrete PageRank
Optimization problem coincide with the optimal stationary de-
terministic strategies. The analog of (13) is now

(17)

where is the convex hull of the set , i.e the polytope
described in Theorem 1 or Proposition 5 or 6. The polytope

gives the transition laws in state
corresponding to randomized strategies in the former problem.
Hence, the control problems in which the actions sets are or

have the same value. Moreover, an optimal strategy of
the problem with the latter set of actions can be found by solving
(17) and selecting a maximizing action in (17). Such an action
may always be chosen in the set of extreme points of and
these extreme points belong to (beware however that some
points of may be not extreme).

IV. SOLVING THE PAGERANK OPTIMIZATION
PROBLEM WITH LOCAL CONSTRAINTS

A. Polynomial Time Solvability of Well-Described Markov
Decision Problems

We have reduced the discrete and continuous PageRank Op-
timization problems to ergodic control problems in which the
action sets are implicitly defined as the sets of extreme points
of polytopes. Theorem 1 in [20] states that the ergodic control
problem is solvable in polynomial time. However, in this re-
sult, the action sets are defined explicitly, whereas polynomial
means, as usual, polynomial in the input length (number of bits
of the input). Since the input includes the description of the ac-
tions sets, the input length is always larger than the sum of the
cardinalities of the action sets. Hence, this result only leads to
an exponential bound in our case (Remark 1).
However, we next establish a general result, Theorem 3

below, showing that the polynomial time solvability of ergodic
control problems subsists when the action sets are implicitly
defined. This is based on the combinatorial developments of the
theory of Khachiyan’s ellipsoid method, by Groetschel, Lovász
and Schrijver [21]. We refer the reader to the latter monograph
for more background on the notions of strong separation oracles
and well described polyhedra.
Definition 1 (Def. 6.2.2 of [21]): We say that a polyhedron
has facet-complexity at most if there exists a system of in-

equalities with rational coefficients that has solution set and
such that the encoding length of each inequality of the system
(the sum of the number of bits of the rational numbers appearing
as coefficients in this inequality) is at most .
A well-described polyhedron is a triple where
is a polyhedron with facet-complexity at most . The en-

coding length of is by definition .
Definition 2 (Problem (2.1.4) of [21]): A strong separation

oracle for a set is an algorithm that solves the following
problem: given a vector , decide whether or not and
if not, find a hyperplane that separates from ; i.e., find a
vector such that .
Inspired by Definition 1, we introduce the following notion.
Definition 3: A finite Markov decision process

is well-described if for every state , we
have for some , if there exists such
that the convex hull of every action set is a well-described
polyhedron with a polynomial time strong
separation oracle, and if the rewards and transition probabilities
satisfy and ,

, , where and are given rational
numbers, for and .
The encoding length of a well-described Markov decision

process is by definition the sum of the encoding lengths of the
rational numbers and and of the well-described poly-
hedra .
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The situation in which the action spaces are given as usual
in extension (by listing the actions) corresponds to the case in
which is the set of extreme points of a simplex . The
interest of Definition 3 is that it applies to more general situa-
tions in which the actions are not listed, but given implicitly by
a computer program deciding whether a given element of
is an admissible action in state (the separation oracle). An ex-
ample of such a separation oracle stems from Theorem 1: here, a
potential (randomized) action is an element of , and to check
whether it is admissible, it suffices to check whether one of the
inequalities in (15) is not satisfied.
Theorem 3: The average cost infinite horizon problem for

a well-described (multichain) Markov decision process can be
solved in a time polynomial in the input length.

Proof: We shall use the notations of Definition 3. Consider
the polyhedron consisting of the couples of vectors

satisfying the constraints

(18)

Theorem 9.3.8 in [27] implies that the average cost problem
reduces to minimizing the linear form over
. Every optimal solution of this linear program is such
that is the optimal mean payment per time unit starting from
state . We recover optimal strategies of the ergodic problem
through dual optimal solution of the linear program.
By Theorem 6.4.9 in [21], we know that a linear program over

a well-described polyhedron with a polynomial time strong sep-
aration oracle is polynomial time solvable. Moreover, Theorem
6.5.14 in [21] asserts that we can find a dual optimal solution in
polynomial time.
Let us construct such an oracle for . Given a

point , compute for all :
and
.

Those problems are linear problems such that, by hypothesis,
we have a polynomial time strong separation oracle for each of
the well-described polyhedral admissible sets .
Thus they are polynomial time solvable. If the linear
programs return a nonpositive value, then this means that

is an admissible point of (18). Otherwise, the solution
of any of those linear programs that have a negative value

yields a strict inequality or
. In both

cases, the corresponding inequality determines a separating
hyperplane.
To conclude the proof, it remains to check that the facet com-

plexity of the polyhedron is polynomially bounded in the en-
coding lengths of the polyhedra and the rationals and .
Since the ’s appear linearly in the constraints (18), these con-
straints hold for all if and only if they hold for all
or equivalently, for all extreme points of . The result follows
from Lemma 6.2.4 in [21], which states that the encoding length
of any extreme point of a well-described polyhedron is polyno-
mially bounded in the encoding of the polyhedron.

Remark 6: This argument also shows that the discounted
problem is polynomial time solvable.
As a consequence of Theorems 2 and 3, we get
Theorem 4: If there are only local constraints, if the utility

function is a rational total income utility (6) and if the telepor-
tation vector and damping factor are rational, then the discrete
problem (5) can be solved in polynomial time and the contin-
uous problem (3) with well-described action sets (Definition 1)
can also be solved in polynomial time.

Proof: Thanks to Theorem 2, solving the continuous
PageRank Optimization problem also solves the discrete
PageRank Optimization problem. In addition, the coefficients
appearing in the description of the facets of the polytopes of
uniform transition measures are either 1, or and there are
at most two terms by inequality (cf Section III-B). This implies
that these polytopes are well-described with an encoding length
polynomial in the length of the input. Note also that we can
find in polynomial time a vertex optimal solution of a linear
program as soon as its feasible set is a well-descibed polytope
as it is the case here (Lemma 6.5.1 in [21]).
By Proposition 3, the ergodic control problem associ-

ated to a continuous PageRank Optimization problem with
well-described action sets satisfies the conditions of Theorem
3 with , , and for

. Thus it is polynomial time solvable.
Theorem 3 is mostly of theoretical interest, since its proof is

based on the ellipsoid algorithm, which is slow. We however
give in Section IV-B a fast scalable algorithm for the present
problem.
Example 1: Consider again the graph from Fig. 1, and let us

optimize the sum of the PageRank scores of the pages of the site
(colored). Assume that there are only local skeleton constraints
(see Section II-C): each page can change up to 20% of the initial
transition probabilities. The result is represented in Fig. 2.
Example 2: We now consider a discrete Pagerank optimiza-

tion problem starting from the same graph. We set obligatory
links to be the initial links and we represent them on the adja-
cency matrix in Fig. 3 by squares. Facultative links are all other
possible links from controlled pages.

B. Optimizing the Pagerank via Value Iteration

The PageRank optimization is likely not to be applied to the
world wide web, but rather to a fragment of it, consisting of a
web site (or of a collection of web sites of a community) and
of related sites (see Remark 14 in Section V). However, even in
such simplified instances, the number of design variables may
be large, typically between thousands and millions. Hence, it
is desirable to have scalable algorithms. We next describe two
methods, showing that the optimization problem is computa-
tionally easy when there are no coupling constraints: then, op-
timizing the PageRank is essentially not more expensive than
computing the PageRank.
Proposition 7: Let be the dynamic programming operator

defined by

(19)

where is closed. The map is -contracting and its
unique fixed point is such that is solution
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Fig. 2. Web graph of Fig. 1 optimized under local skeleton constraints. The
optimal strategy consists in linking as much as possible to page “c” (actually, the
page of a lecture), up to saturating the skeleton constraint. This page gains then
a PageRank comparable to the one of the main page. The sum of the PageRank
scores has been increased by 22.6%.

Fig. 3. Web graph optimized under discrete uniform transitions constraints. In
this case, the optimized graph has almost all internal links (links from a con-
trolled page to another controlled page), so, for more readability, we display
its adjacency matrix. The hyperlinks correspond to blue dots, obligatory links
correspond to squares. The pages are ordered by decreasing average reward be-
fore teleportation (Section V). The optimal strategy consists in adding a lot of
internal links excluding certain pages, as will be explained by the master Page
theorem below (Theorem 5).

of the ergodic dynamic programming (13), with for all ,
.

Proof: The set is a set of probability measures so
and .

Thus is -contracting. Let be its fixed point. For all

We get (13) with constant .
Remark 7: is the dynamic programming operator of a total

reward discounted problem with discount rate and rewards

for transition from to
(cf. Remark 3).
Remark 8: The fixed point found is just the mean reward be-

fore teleportation at the optimum (see Definition 4, Section V).
We can then solve the dynamic programming (13) and so

the PageRank Optimization Problem (3) or (5) with local con-
straints by value iteration (Algorithm 1). This algorithm consists
in the fixed point iterations for the operator . It converges to
the fixed point of and is solution of the er-
godic dynamic programming (13). The optimal linkage strategy
is recovered by selecting the maximizing at each page. Thanks
to the damping factor , the iteration can be seen to be -con-
tracting. Thus the algorithm converges in a number of steps in-
dependent of the dimension of the web graph.

Algorithm 1 Computing the biais vector by value iteration

1: Start with an initial biais , choose a tolerance parameter
, set and .

2: while do

3: ((19)) and

4: end while

5: return ,

For the evaluation of the dynamic programming operator, one
can use a linear program using to the description of the actions
by facets. It is however usually possible to develop algorithms
much faster than linear programming.We describe here a greedy
algorithm for the discrete PageRank Optimization problem. The
algorithm is straightforward if the set of obligatory links
is empty (Propositions 5 and 6), so we only describe it in the
other case. In Algorithm 2, represents the set of facultative
hyperlinks activated. We initialize it with the empty set and we
augment it with the best hyperlink until it is not valuable any
more to add a hyperlink.

Algorithm 2 Evaluation of the dynamic programming operator
in the discrete problem

1: Initialization: and

2: Sort in decreasing order and let the function
be the sort function such that

.

3:while
and do

4: and

5: end while

6:

Proposition 8: When the constraints of the Discrete
PageRank Optimization problem (5) are defined by oblig-
atory, facultative and forbidden links, the greedy algorithm
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(Algorithm 2) started at page returns as defined in
Proposition 7.

Proof: The local constraints are obviously respected by
construction. At the end of the loop, we have the best choice of
facultative outlinks from page with exactly outlinks. But
as

the sorting implies we have the best choice of outlinks.
Remark 9: In order to handle upper and lower limits and
on the number of links on Page , we just need to replace
in Line 3 of Algorithm 2 by the condition

.
Proposition 9: An -approximation of the Discrete PageRank

Optimization Problem (5) with only local constraints can be
done in time

Proof: The value of the PageRank optimization problem
is where . Thus it is bounded by

. The greedy algorithm
described in the preceding paragraph evaluates the th co-
ordinate of the dynamic programming operator in time

(by performing a matrix-vector
product and a sort). Thus it evaluates the dynamic program-

ming operator in time .
Now, if we normalize the rewards and if we begin the value

iteration with , the initial error is less than 1 in sup-norm.
The fixed point iteration reduces this error by at least , so we
have to find such that . With ,
the result holds.
This result should be compared to PageRank compu-

tation’s complexity by the power method [5], which is
.

V. GENERAL SHAPE OF AN OPTIMIZED WEB SITE

We now use the previous model to identify the features of
optimal link strategies. In particular, we shall identify circum-
stances under which there is always one “master” page, to which
all other pages should link.
As in the work of De Kerchove, Ninove and Van Dooren [14],

we shall use the mean reward before teleportation to study the
optimal outlink strategies.
Definition 4: Given a stochastic matrix , the mean reward

before teleportation is given by , where
.

Recall that is the original matrix (without damping factor).
Proposition 10: Suppose the instantaneous reward only

depends on the current page ( ). Denote be the

mean reward before teleportation (Definition 4). Then is an
optimal link strategy of the continuous PageRank Optimization
problem (3) if and only if

Proof: We have . Thus,
using , the condition of the proposition is equivalent
to . By
Proposition 4, this means that is the bias of (13) and that
is an optimal outlink strategy.
Remark 10: Proposition 10 shows that if is any optimal

outlink strategy, at every page , the transition probability
must maximize the same linear function.
Remark 11: If two pages have the same constraint sets, then

they have the same optimal outlinks, independently of their
PageRank. This is no more the case with coupling constraints.
For the discrete PageRank Optimization problem, we have a

more precise result:
Theorem 5 (Master Page): Consider the Discrete PageRank

Optimization problem (5) with constraints defined by given
sets of obligatory, facultative and forbidden links. Suppose the
instantaneous reward only depends on the current page
( ). Let be a transition matrix,
is the mean reward before teleportation. Then is an optimal
link strategy if and only if for every controlled page all the
facultative links such that are activated
and all the facultative links such that
are desactivated. Any combination of facultative links such that

can be activated.
In particular, every controlled page should point to the page

with the highest mean reward before teleportation, as soon as it
is allowed to. We call it the “master page.”

Proof: Let be an optimal strategy. By Remark 8, we
know that the mean reward before teleportation at the optimum
is a fixed point of the dynamic programming operator. In par-
ticular, it is invariant by the application of the greedy algorithm
(Algorithm 2). Moreover, by Proposition 7, the mean reward be-
fore teleportation at the optimum is unique.
Thus, any optimal strategy must let the mean reward before

teleportation invariant by the greedy algorithm. When there is
no obligatory link from page , either a link is selected and

or no link is selected and
for all facultative link . When there is at least one

obligatory link, from Line 3 of the greedy algorithm, we know
that, denoting the set of activated links, all the links
verifying , must be
activated. This can be rewritten as because

. Finally, activating
any combination of facultative links such that
gives the same mean reward before teleportation.
Conversely, let be an outlink strategy such that the mean

reward before teleportation verifies the hypotheses of the the-
orem. The equality can be rewritten as

for all . Launching
the greedy algorithm on shows that is the best combina-
tion of outlinks with exactly outlinks and that adding or re-
moving a link from it does not improve the value. Thus is a
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Fig. 4. Maximization of the sum of the PageRank values of the colored pages.
Top: obligatory links; self links are forbidden; all other links from controlled
pages are facultative. Bottom: bold arcs represent an optimal linking strategy.
Page 4 points to all other controlled pages and Page 1, themaster page, is pointed
to by all other controlled pages. No facultative link towards an external page is
selected.

fixed point of the dynamic programming operator and is an
optimal strategy.
The theorem is illustrated in Fig. 3 (Section IV) and Fig. 4.
Example 3: The following simple counter examples show re-

spectively that the conditions that instantaneous rewards only
depend on the current page and that there are only local con-
straints are useful in the preceding theorem.
Take a two pages web graph without any design constraint.

Set , and the reward per

click. Then , Page 2 should link to Page 1 but
Page 1 should link to Page 2 because .
Take the same graph as in preceding example. Set the reward

and the coupling constraint that . Then
every optimal strategy leads to . This means that
there is no ”master” page because both pages must be linked to
in order to reach .
Remark 12: If every controlled page is allowed to point to

every page, as in Figs. 2 and 3, there is a master page to which
every page should point. Actually, knowing that the optimal so-
lutions are degenerate might be of interest to detect link spam-
ming (or avoid being classified as a link spammer). The result of
Proposition 10 and Theorem 5 can be related to [3], where the
authors show various optimal strategies for link farms: patterns
with every page linking to one single master page also appear
in their study. We also remark that in [4], the authors show that
making collusions is a good way to improve PageRank. We give
here the page with which one should make a collusion.
Remark 13: If there exists a page with maximal reward in

which all the hyperlinks can be changed, then this page is the
master page. It will have a single hyperlink, pointing to the
second highest page w.r.t. mean reward before teleportation.
Remark 14: Major search engines have spent lots of efforts

on crawling the web to discover web pages and the hyperlinks
between them. They can thus compute accurately the PageRank.
A search engine optimization team may not have such a data-
base available. If one can program a crawler to get a portion
of the web graph or download some datasets of reasonable size
for free ([29] for instance), these are still incomplete crawlings
when compared to the search engine’s.
We denote by and the mean reward before teleportation of

respectively the search engine’s web graph and the trucated web
graph. Let be the set of pages of interest, that is the pages con-
taining or being pointed to by a facultative link. We denote by
the length of a shortest path from a page in to an uncrawled

page. We can easily show that if there are no page without out-
link, then , .

VI. PAGERANK OPTIMIZATION WITH COUPLING CONSTRAINTS

A. Reduction of the Problem With Coupling Constraints to
Constrained Markov Decision Processes

From now on, we have studied discrete or continuous
PageRank Optimization problems but only with local con-
straints. We consider in this section the following PageRank
Optimization problem (3) with ergodic (linear in the occupation
measure) coupling constraints:

(20)

Examples of ergodic coupling constraints are given in Sec-
tion II-C. When coupling constraints are present, the previous
standard ergodic control model is no longer valid, but we can use
instead the theory of constrained Markov decision processes.
We refer the reader to [30] for more background. In addition
to the instantaneous reward , which is used to define the er-
godic functional which is maximized, we now consider a fi-
nite family of cost functions , together with real con-
stants , which will be used to define the ergodic con-
straints. The ergodic constrainedMarkov decision problem con-
sists in finding an admissible control strategy ,

, maximizing

(21)

under the ergodic constraints

where the controlled Markov process is steered by
.

Theorem 4.1 in [30] shows that one can restrict to sta-
tionary Markovian strategies and Theorem 4.3 in the same
book gives an equivalent formulation of the ergodic con-
strained Markov decision problem (21) as a linear pro-
gram. When , ,

and (see Proposition
3), it is easy to see that this linear program is equivalent to

(22)

where is the image of by the correspondence of
Proposition 1. The set is a polyhedron, as soon as every is
a polyhedron (Proposition 2).
Following the correspondence discussed in Proposition 1, we

can see that the linear Problem (22) is just the reformulation of
Problem (20) in terms of occupation measures when we con-
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sider total income utility (6). The last result of this section gives
a generalization to nonlinear utility functions:
Proposition 11: Assume that the utility function can be

written as where is concave, that the local
constraints are convex in and that the coupling constraints
are ergodic. Then, the PageRank Optimization problem (20)
is equivalent to a concave programming problem in the oc-
cupation measure , from which -solutions can be found in
polynomial time.

Proof: From Proposition 2, we know that the set of lo-
cally admissible occupation measures is convex. Adding er-
godic (linear in the occupation measure) constraints preserves
this convexity property. So the whole optimization problem is
concave. Finally, Theorem 5.3.1 in [31] states that -solutions
can be found in polynomial time.
In particular, the (global) optimality of a given occupation

measure can be checked by the first order optimality conditions
which are standard in convex analysis.
Remark 15: Proposition 11 applies in particular if is a

relative entropy utility function, i.e, given parameters
(the reference measure), .
If we choose to minimize the entropy function on the whole

web graph, we recover the TrafficRank algorithm [32]. When
we control only some of the hyperlinks and the weights of the
others are fixed, the solution of the optimization problem gives
the webmaster the weights that she should set to her hyperlinks
in order to have an entropic distribution of websurfers on her
website, interpreted as a fair distribution of websurfers.
In the next section, we extend the first order optimality condi-

tions to the formulation in probability transitions, in order to get
a characterization of the optimal linking strategies in the con-
strained PageRank Optimization problem.

B. Optimality Condition

The following shows that the mean reward before teleporta-
tion (Definition 4) determines the derivative of the utility func-
tion. Recall that the tangent cone of the set at point
is the closure of the set of vectors such that for
small enough.
Proposition 12: The derivative of the utility function (6) is

such that for all

where is the mean reward before teleportation, is
the invariant measure of and is the standard (Frobenius)
scalar product on matrices.

Proof: We have and
. As , we deduce that

[14]. The result
follows from derivation of . We need to derive a product,
to derive an inverse ( ) and
the expression of .
The next theorem, which involves the mean reward before

teleportation, shows that although the continuous constrained
pagerank optimization problem is non-convex, the first-order
necessary optimality condition is also sufficient.

Theorem 6 (Optimality Condition): Suppose that the sets
defining local constraints are all closed convex sets, that the
coupling constraints are given by the ergodic costs functions
, and that the utility function is total income utility.

Denote be the admissible set and the mean reward
before teleportation (Definition 4). We introduce the set

of saturated constraints and
we denote . Then the
tangent cone of at is

and is the optimum of the
continuous PageRank Optimization problem (3) with ergodic
coupling constraints if and only if

Proof: Let us consider the birational change of variables
of Proposition 1. As all the occupation measures considered are
irreducible, its Jacobian is invertible. Thus, we can use the re-
sults of [33, Section 6.C]. Denote , with tangent
cone , and . We have

and

.

implies
which can also be written as .
The second condition is .
As , we have

. Knowing the derivative
of the utility function and of
both given in Proposition 12, we get the expression stated in
the theorem.
By Proposition 11, the PageRank optimization problem is

a concave programming problem in and so, the first order
(Euler) optimality condition guarantees the global optimality
of a given measure. Thus, every stationary point for the con-
tinuous PageRank Optimization problem is a global maximum
when written in transition probabilities also.

C. A Lagrangian Relaxation Scheme to Handle Coupling
Constraints Between Pages

The PageRank Optimization Problem with ”ergodic” cou-
pling constraints (20) may be solved by off the shelve simplex or
interior points solvers. However, such general purpose solvers
may be too slow, or too memory consuming, to solve the largest
web instances.
The following proposition yields an algorithm that decouples

the computation effort due to complexity of the graph and due
to coupling constraints.
Proposition 13: The PageRank Optimization problem with
”ergodic” coupling constraints (20) can be solved by a La-

grangian relaxation scheme, in which the dual function defined
by and one
subgradient are evaluated
by dynamic programming and is a maximizer of the ex-
pression defining .

Proof: This is a simple application of Lagrange multipliers
theory, see [34] Theorem 21 and Remark 33 for instance. Here
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we relax the coupling constraints in the problem written with
occupation measures (22). We solve the dual problem, namely
we minimize the dual function on . The value of this dual
problem is the same as the value of the constrained primal
problem and we can get a solution of the primal problem since
there is no duality gap.
We have implemented a bundle high level algorithm, in which

the dual function is evaluated at each step by running a value it-
eration algorithm, for a problem with modified reward. By com-
parison with the unconstrained case, the execution time is es-
sentially multiplied by the number of iterations of the bundle
algorithm.

VII. EXPERIMENTAL RESULTS

We have tried our algorithms on a 2006 crawl on eight New
Zealand Universities available at [35]. There are 413,639 nodes
and 2,668,244 links in the graph. The controlled set we have
chosen is the set of pages containing ”maori” in their url. There
are 1292 of them. We launched the experiments in a sequential
manner on a personal computer with Intel Xeon CPU at 2.98
Ghz and wrote the code in Scilab language.

A. Continuous Problem With Local Constraints Only

Assume that the webmasters controlling the pages con-
taining ”maori” in their url cooperate and agree to change at
most 20% of the links’ weight to improve the PageRank, being
understood that self-links are forbidden (skeleton constraint,
see Section II-C). The algorithm launched on the optimization
of the sum of the PageRanks of the controlled pages (calculated
with respect to the crawled graph only, not by the world wide
graph considered by Google) ran 27 seconds.
The optimal strategy returned is that every controlled

page except itself should link with 20% weight to maori-
oteha.massey.ac.nz/te_waka.htm. That page should link to
maori-oteha.massey.ac.nz/tewaka/about.htm. The sum of
PageRank values goes from 0.0057 to 0.0085.
Hence, by uniting, this team of webmasters would improve

the sum of their PageRank scores of 49%. Remark that all the
pages point to the same page (except itself because self-links
are forbidden). The two best pages to point to are in fact part
of a ”dead end” of the web graph containing only pages with
maximal reward. A random surfer can only escape from this
area of the graph by teleporting, which makes the mean reward
before teleportation maximal.

B. Discrete Problem

On the same data set, we have considered the discrete opti-
mization problem. The set of obligatory links is the initial set of
links. We have then selected 2,319,174 facultative links on the
set of controlled pages of preceding section.
Execution time took 81 seconds with the polyhedral approach

of Section IV-B (60 iterations).We compared our algorithmwith
an adaptation of the graph augmentation approach of [17] to
total utility: this algorithm took 460 seconds (350 iterations) for
the same precision. The optimal strategy is to add no link that
goes out of the website but get the internal link structure a lot
denser. From 12,288 internal links, the optimal strategy is to add
962,873 internal links. Finally, 98.2% of the links are internal

links and there is a mean number of links per page of 770. The
sum of PageRank values jumps from 0.0057 to 0.0148.
Here, as the weights of the links cannot be changed, the web-

master can hardly force websurfers to go to dead ends. But she
can add so many links that websurfers get lost in the labyrinth
of her site and do not find the outlinks, even if they were oblig-
atory.

C. Coupling Linear Constraints

As we have seen in the preceding experiments, optimizing
the PageRank with too much freedom may lead to an awkward
and unpleasant website. So we would like to solve the discrete
optimization problem of the preceding section with additional
design constraints. We require that each visitor coming on one
of the pages of the team has a probability to leave the set of
pages of the team on next step of 40% (coupling conditional
probability constraint, see Section II-C). This guarantees that
websurfers will not be led to dead ends. We also require that
the sum of PageRank values of the home pages of the 10 uni-
versities considered remains at least equal to their initial value
after the optimization (effective frequency constraint). Finally,
we limit the number of links added by page to 20 (local con-
straint discussed in Remark 9).
In the case of constrainedMarkov decision processes, optimal

strategies are usually randomized strategies. This means that the
theory cannot directly deal with discrete action sets. Instead, we
consider the continuous problem with the polytopes of uniform
transition measures as local admissible sets, i.e., we relax the
discrete pattern. Thus by the Lagrangian scheme of Proposition
13, we get an upper bound on the optimal objective and we have
a lower bound for any admissible discrete transition matrix.
The initial value is 0.0057 and the Lagrangian relaxation

scheme gives an upper bound of 0.00742. Computation took
500 s (8 high level iterations). During the course of the La-
grangian relaxation scheme, all intermediate solutions are
discrete and three of them satisfied the coupling constraints.
The best of them corresponds to a sum of PageRanks of 0.00739
(improvement: 30%). Thus the duality gap is at most 0.4%. In
general, the intermediate discrete solutions need not satisfy the
coupling constraints and getting an admissible discrete solution
may be difficult.
The discrete transition matrix found suggests to add 15,324

internal links but also 2,851 external links. Thanks to the limit
on the number of links added, fewer hyperlinks are added than
in Section VII-B. Moreover, thanks to the coupling constraints,
external links are added too, which improves the quality of the
website.
The bounding technique proposed here can also be adapted

to PageRank optimization problem with mutual exclusion con-
straints. It may also be possible to use it to design a branch
and bound algorithm to solve the problem exactly thanks to the
bounds found.

VIII. CONCLUSION

We have presented in this paper a general framework to
study the optimization of PageRank. Our results apply to
a continuous problem where the webmaster can choose the
weights of the hyperlinks on her pages and to the discrete
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problem in which a binary decision must be taken to decide
whether a link is present. We have shown that the Discrete
PageRank Optimization problem without coupling constraints
can be solved by reduction to a concisely described relaxed
continuous problem. We also showed that the continuous
Pagerank optimization problem is polynomial time solvable,
even with coupling constraints. We gave scalable algorithms
which rely on an ergodic control model and on dynamic pro-
gramming techniques. The first one, which applies to problems
with local design constraints, is a fixed point scheme whose
convergence rate shows that optimizing PageRank is not much
more complicated than computing it. The second algorithm,
which handles coupling constraints, is still efficient when the
number of coupling constraints remains small. We have seen
that the mean reward before teleportation gives a total order
of preference in pointing to a page or another. This implies
that pages high in this order concentrate many inlinks from
controlled pages. This is a rather degenerate strategy when
we keep in mind that a web site should convey information.
Nevertheless, the model allows one to address more complex
problems, for instance with coupling constraints, in order to get
less trivial optimal linking strategies. This work may be useful
to understand link spamming, to price internet advertisements
or, by changing the objective function, to design web sites with
other goals like fairness or usefulness. The latter is the object
of further research.
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