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Abstract

Phylogenetic trees are the fundamental mathematical representation of evolutionary processes in biology.
They are also objects of interest in pure mathematics, such as algebraic geometry and combinatorics, due to
their discrete geometry. Although they are important data structures, they face the significant challenge that
sets of trees form a non-Euclidean phylogenetic tree space, which means that standard computational and
statistical methods cannot be directly applied. In this work, we explore the statistical feasibility of a pure
mathematical representation of the set of all phylogenetic trees based on tropical geometry. We show that
the tropical geometric phylogenetic tree space endowed with a generalized Hilbert projective metric exhibits
analytic, geometric, and topological properties that are desirable for theoretical studies in probability and
statistics. Moreover, this approach exhibits increased computational efficiency and statistical performance
over the current state-of-the-art, which we illustrate with a real data example on seasonal influenza. Our
results demonstrate the viability of the tropical geometric setting for parametric statistical and probabilistic
studies of sets of phylogenetic trees.

Keywords: BHV tree space; phylogenetic tree space; tree metric; tropical geometry; tropical metric.

1 Introduction

Evolutionary relationships describing how organisms are related by a common ancestor are represented in
a branching diagram known as a phylogenetic tree. Phylogenetic trees model many important and diverse
biological phenomena, such as speciation, the spread of pathogens, and cancer evolution. Methodology to
analyze phylogenetic datasets has been under active research for several decades for two important reasons.
First, explicit computations directly on collections of phylogenetic trees are challenging due to high dimen-
sionality in terms of a large number of leaves, a long evolutionary history, and an intricate branching pattern.
Second, standard statistical methodologies are not directly applicable due to the non-Euclidean nature of the
trees themselves as well as the set that they make up. Significant previous work addresses various classical
statistical interests, however a fundamental breakthrough for quantitative studies on sets of trees emerged
through studying the geometry of the set of all phylogenetic trees (Billera et al., 2001).

Referred to in the literature as BHV tree space—after the authors Billera, Holmes, and Vogtmann—the
set of all phylogenetic trees is studied in a setting where each tree is represented as an individual point.
The geometry is characterized by a unique geodesic between any two points; its length defines a metric on
the space. Since its introduction in 2001, it has been actively studied in various wide-reaching domains,
including algebraic geometry (e.g., Devadoss and Morava, 2015), category theory (e.g., Baez and Otter,
2017), computational biology (e.g., Weyenberg and Yoshida, 2016), and statistical genetics (e.g., Nye et al.,
2017). Despite its indisputable significance, the BHV geometry nevertheless poses significant data-analytic
complications for both descriptive and inferential statistics.

Considering an alternative approach from pure mathematics based on tropical geometry—a variant of
algebraic geometry—alleviates some of these complications and is a promising alternative approach for
probability-based statistics on sets of phylogenetic trees. The first formal connection between tropical ge-
ometry and mathematical phylogenetics arises in the space of phylogenetic trees in relation to a particular
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tropical algebraic variety (Speyer and Sturmfels, 2004). This coincidence has been further studied in theo-
retical research (e.g., Ardila and Klivans (2006); Manon (2011)), however, its implication and potential in
applied work remain largely understudied and untapped.

In this paper, we explore the tropical geometric perspective of phylogenetic tree space with the aim of
enabling exact distributional theory and parametric statistical inference. Specifically, we study the subspace
of the tropical projective torus corresponding to the space of phylogenetic trees equipped with a generalized
projective Hilbert metric, which we refer to as the tropical metric. We refer to this metric space as palm tree
space (tropical tree space) and show that it satisfies fundamental assumptions to ensure that probabilistic and
parametric statistical questions are valid and well-defined. Moreover, this setting exhibits improvements in
computational efficiency and improved statistical performance over the BHV setting, which we demonstrate
via a real-data application to seasonal influenza data.

The remainder of this paper is organized as follows. In Section 2, we provide background and motivation
for our study. In Section 3, we discuss properties of the tropical metric on the space of phylogenetic trees
and formally define palm tree space. We study its geometry, topology, and analytic properties in relation
to BHV space. We also give some examples of theoretical probability measures used in statistics and that
are important in probability theory. In Section 4, we give an example of a statistical analysis on real data
in both palm tree and BHV space. We close in Section 5 with a discussion, and some directions for future
research.

2 Background and Motivation

Phylogenetic trees are symbolic objects that model evolutionary divergence from a common ancestor. In
computational biology, the reconstruction of a phylogenetic tree from an input of sequence alignment data
(e.g., DNA and RNA) is a challenging problem; reconstruction methods are known to be highly sensitive
to the input sequences (different genes or coding regions will give rise to different trees), measurement
errors (alignment or sequencing errors), and noise typical to this type of biological data (e.g., Leaché and
Rannala, 2010). This sensitivity naturally invites the question of how to compare trees, for example, arising
from different reconstruction methods. Mathematically, comparing objects entails measuring the distance
between them; in the context of phylogenetic trees, this gives rise to a tree space equipped with a metric
between trees. One of the most significant challenges in computational work with phylogenetic trees as data
objects is that their graphical structure gives rise to a non-Euclidean tree space.

In this section, we provide the mathematical background to phylogenetic trees from the pure mathematical
perspective and the statistical motivation for studying this perspective.

2.1 Defining Phylogenetic Trees

In what follows, we consider N ∈ N0 and set n :=
(
N
2

)
. A tree is an acyclic connected graph T = (V,E),

defined by a set of vertices V and a set of edges E. An N -tree is a tree with N labeled terminal nodes called
leaves. Edges connecting to leaves are called external edges, other edges are called internal edges. A binary
N -tree is an N -tree with the following conditions on the degree of a vertex v ∈ V : if deg(v) = 2, then v is
the root of the tree and it is unique; if deg(v) = 1, then v is a leaf; and if deg(v) = 3, then v is an internal
vertex. A tree topology is the “shape” of the tree; it is a branching configuration of edges together with a leaf
labelling scheme. There are (2N − 3)!! binary tree topologies on N leaves (Schröder, 1870). A metric N -tree
is a tree with zero or positive lengths on all edges; metric N -trees are also known as phylogenetic trees. We
denote the space of phylogenetic trees with N leaves by TN .

A phylogenetic tree may be represented by all pairwise distances between leaves. Let wij denote the
distance between leaves i and j, given by the sums of edge lengths along the unique path between i and j.
The N ×N matrix W with entries wij then represents a phylogenetic tree. Since W is symmetric with zeros
along the diagonal, the upper-triangular portion of the matrix contains all of the unique information needed
to specify a phylogenetic tree in terms of its pairwise distances. Define the following map to vectorize this
information:

W : TN → Rn,

W 7→ w = (w12, w13, . . . , w1N , w23, . . . , w2N , . . . , w(N−1)N ).
(1)
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Notice that W is, in essence, a distance matrix or a metric. However, in order for the distance matrix W
to represent a phylogenetic tree, the following additional condition must be satisfied.

Definition 1 (Four-Point Condition (Buneman, 1974; Maclagan and Sturmfels, 2015)). A distance matrix
W represents a phylogenetic tree if it satisfies the conditions to be a metric and the maximum among the
following Plücker relations is attained at least twice for 1 ≤ i < j < k < ` ≤ N :

wij + wk`, wik + wj`, wi` + wjk, (2)

or equivalently, that
wij + wk` ≤ max(wik + wj`, wi` + wjk) (3)

for all distinct i, j, k, ` ∈ {1, 2, . . . , N}.

A distance matrix W satisfying the conditions of Definition 1 is known as a tree metric. Note that tree
metrics represent phylogenetic trees; these differ from metrics between trees.

Example 2. The tree metric w ∈ R6 for the tree in Figure 1 expressed as a vector is (wPQ, wPR, wPS , wQR, wQS , wRS).
As a matrix W , it is 

0 wPQ wPR wPS

0 wQR wQS

0 wRS

0

 =


0 a+ b a+ c+ d a+ c+ e

0 b+ c+ d b+ c+ e
0 d+ e

0

 .

The Plücker relations (2) associated with W are

A := wPQ + wRS = a+ b+ d+ e,

B := wQR + wPS = a+ b+ 2c+ d+ e,

C := wPR + wQS = a+ b+ 2c+ d+ e.

The maximum B = C is achieved exactly twice, and B−A = 2c > 0. Also, (3) holds: A ≤ max{B,C} = B.

P

a

Q
b

c

R
d

S

e

Figure 1: Example of an unrooted phylogenetic tree to illustrate the four-point condition.

2.2 Metrics on Tree Spaces: BHV Space

Various metrics between trees have been derived in biology. A notable class of metrics strives to retain the
inner product property akin to Euclidean distance, which makes them popular due to their integrability into
a wide range of statistical approaches, such as functional and nonparametric modeling. One metric from this
class extensively used in biology is the Robinson–Foulds metric (Robinson and Foulds, 1981). This metric
(and other inner-product distances between trees) is known to suffer from structural and interpretive errors.
For example, many pairs of trees measure the same distance apart; also, large distances between trees,
counterintuitively, do not necessarily indicate a disparity in ancestral heritage (Steel and Penny, 1993).
Other commonly-occurring distances include the nearest neighbor interchange metric (Waterman et al.,
1976), subtree transfer distance (Allen and Steel, 2001), and variational distance (Steel and Székely, 2006).
For a detailed survey and review of metrics between trees, see Weyenberg and Yoshida (2016); St. John
(2016). A pioneering approach that bypasses difficulties and limitations of these metrics focuses on the
geometry of tree space (Billera et al., 2001).
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Specifically, the space of phylogenetic trees is modeled as a moduli space, where each point in the space
represents a phylogenetic tree. Trees are expressed only by the lengths of their internal edges, which are
recorded as entries in a vector of dimension N − 2 since in a binary tree, there are at most N − 2 internal
edges. External edges are not considered, since taking them into account does not affect the geometry of the
space: including external edges simply amounts to taking the product of tree space with an N -dimensional
Euclidean space. A nonnegative Euclidean orthant RN−2

≥0 is associated to each tree topology. BHV space
may also be interpreted combinatorially: For each orthant, the link of the origin

LN :=
{

(x1, . . . , xN−2) |
∑
i

xi = 1
}

(4)

gives rise to a simplicial complex of dimension N − 3. BHV space is then an infinite cone over LN .
The (2N − 3)!! orthants are grafted at right-angles to make up the tree space, which gives rise to a

property of nonpositive curvature known as CAT(0). In CAT(0) spaces, there is a unique shortest path
between any two points; here, this is the BHV geodesic. To compute BHV geodesics, first, the geodesic
distance between two trees is computed, and then the external branch lengths are considered to compute the
overall geodesic distance between two trees, by taking the differences between external branch lengths. Since
each orthant is locally viewed as a Euclidean space, the shortest path between two points within a single
orthant is a straight Euclidean line. The difficulty appears in establishing which sequence of orthants joining
the two topologies contains the geodesic. In the case of four leaves, this can be readily determined using a
systematic grid search, but such a search is intractable with larger trees. Owen and Provan (2011) present a
quartic-time algorithm (in the number of leaves N) for finding the geodesic path between any two points in
this tree space, which is the currently the fastest available method with a time complexity of O(N4). The
length structure of the BHV geodesic induces the BHV metric dBHV on this space. This setup has come to
be known as BHV space T BHV

N and is ubiquitous even in non-biological fields, including computer vision,
combinatorics, and category theory. It has also been proposed as the definitive setting for computational
studies on sets of phylogenetic trees (Gavryushkin and Drummond, 2016).

It turns out that BHV space poses considerable limitations for classical descriptive and inferential statis-
tics. On the descriptive front, the convex hull of finitely many points in tree space with edges given by BHV
geodesics is unbounded in dimension (Lin et al., 2017), so there exists no obvious subspace for projections
and no lower dimensional representations of data. This is restrictive for classical dimensionality reduction
and data visualization methods, such as principal component analysis (PCA). On the inferential front, in
BHV space, Fréchet means are sticky: the mean fails to be injective and “sticks” to lower dimensional
strata (Hotz et al., 2013); see Example 3. Thus, perturbing points in a sample results in no change in the
mean, meaning that exact parametric asymptotic results cannot be derived, which prohibits classical exact
statistical inference.

Example 3. In Figure 2, we position three unit masses on the 3-spider, which is the stratified space of three
R≥0 rays joined at the origin. This is precisely the BHV space of phylogenetic trees with three leaves and
fixed external edge lengths. The position x of the barycenter (Fréchet mean) is calculated by minimizing
2(1 + x)2 + (a− x)2. The solution is x = 0 for a < 2, and x = (a− 2)/3 for a ≥ 2. The Fréchet mean tends
to stick to lower-dimensional strata.

1 1

a
x

Figure 2: 3-spider to illustrate stickiness.

Sophisticated methods have been developed to bypass these difficulties. Nye et al. (2017) construct a
locus of BHV Fréchet means and prove that its dimensionality is well-behaved and serves as a suitable lower
dimensional projective space, while Barden et al. (2018) derive a central limit theorem for BHV Fréchet
means by implementing a generalized delta method. Inferential techniques have also been proposed based
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on this generalized delta method strategy; e.g., Willis (2019); Willis and Bell (2018). These, and other
proposed methods, are largely approximate, rather than exact statistical methods; additionally, they tend
to be nonparametric, rather than parametric. These statistical challenges have spurred recent proposals of
alternative tree spaces (Garba et al., 2021).

2.3 Tropical Geometry and Phylogenetic Tree Space

In this work, we focus on the appearance of phylogenetic tree space in tropical geometry in the groundbreaking
work of Speyer and Sturmfels (2004), who formally connect the space of phylogenetic trees and the tropical
Grassmannian. We now outline the connection between tropical geometry and phylogenetic tree space. To
do this, we return to the map W (1). Specifically, we would like to understand what the image of W is:
if it is a linear space, then theory from linear algebra is applicable; if it is a manifold, then principles of
Riemannian geometry may be applied. It turns out that the image of W is tropical geometric, so new tools
for statistics are needed.

To see this, notice that the embedding (1) of trees into Euclidean space may be refined: if we do not wish
to distinguish between phylogenetic trees differing by a constant on each external edge, we may consider
the quotient space Rn/R1, where 1 is the all-one vector (1, 1, . . . , 1), which gives a reduction in dimension.
The quotient space Rn/R1 is known as the tropical projective torus and it is generated by an equivalence
relation ∼ specifying that for two points x, y ∈ Rn, x ∼ y if and only if all coordinates of their difference
x − y are equal. In the context of trees, the quotient normalizes evolutionary time between trees. The
tropical projective torus is the ambient space of the space of the space of phylogenetic trees; TN is a proper
subset of Rn/R1. The tropical projective torus Rn/R1 may also be generated by a group action: Let
G := {(c, c, . . . , c) ∈ Rn | c ∈ R} with coordinate-wise addition, then G is an additive group. G acts on Rn

as follows: for g ∈ G and x ∈ R,

g ◦ x = (x1 + g1, x2 + g2, . . . , xn + gn).

Each point in Rn/R1 is then exactly one orbit under the group action of G on Rn.
Furthermore, if we disregard differences on external edges, we may consider the quotient space Rn/ im(ϕ)

where the map ϕ : RN → Rn is given by ϕ(x1, . . . , xN ) = (x1 +x2, x1 +x3, . . . , xN−1 +xN ). We thus obtain
the following sequence of maps:

TN−1 → Rn → Rn/R1→ Rn/ im(ϕ). (5)

In algebraic geometry, the solution sets of systems of polynomial equations—referred to as algebraic
varieties—are studied. In tropical geometry, these polynomial equations are defined in the tropical semiring,
(R∪{∞},⊕,�) where a⊕ b := min(a, b) and a� b := a+ b. Tropical mathematics involves studying various
mathematical objects and problems which are defined using these operations. For example, let aN denote the
tropical product of a with itself N times; let A ⊂ NN . Tropical polynomials are piecewise linear functions:

f(x1, . . . , xN ) =
⊕
a∈A

ca � xa1
1 � · · · � x

aN

N = min
a∈A

(ca + a1x1 + · · ·+ aNxN ).

A tropical hypersurface H(f) is the set of all (x1, . . . , xN ) ∈ RN where f is attained at least twice as a runs
over A.

Notice that the Plücker relations (2) given in Definition 1 are tropical polynomials, and thus, the set
of all phylogenetic trees constitutes a tropical hypersurface with min replaced by max. Note also that the
max-plus semiring (R∪{−∞},�,�), where a� b := max(a, b), is isomorphic to the tropical semiring. Thus,
the four-point condition defining phylogenetic trees is tropical.

In algebraic geometry, the real Grassmannian G2,n is the following projective variety in the projective
space Pn−1:

G2,N =
{

(x12, x13, . . . , x(N−1)N ) ∈ Pn−1 | xijxk` − xikxj` + xi`xjk = 0 for 1 ≤ i < j < k < ` ≤ N
}
.

The tropical Grassmannian G2,N is then obtained by replacing the polynomial by its tropicalization and the
vanishing set by intersections of tropical hypersurfaces. In other words, G2,N is given by the intersection of
tropical hypersurfaces H(xij � xk` ⊕ xik � xj` ⊕ xi` � xjk) for 1 ≤ i < j < k < ` ≤ N .
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To visualize G2,N , we have the following behavior of images through the sequence of maps (5): the image
of G2,N in Rn/R1 is a fan G′2,N of dimension (2N − 2); the image of G′2,N in Rn/ im(ϕ) is a fan G′′2,N of
dimension N − 3; and intersecting G′′2,N with the unit sphere yields a polyhedral complex G′′′2,N , where each
facet G′′′2,N is a polytope of dimension N − 4. The insightful result that Speyer and Sturmfels (2004) prove is

that G′′2,N coincides with T BHV
N−1 , G′′′2,N coincides with LN−1 (4), and the image of W is precisely the tropical

Grassmannian G2,N .

Example 4. As an illustrative example, we study the case of N = 4 leaves: G2,4 is the hypersurface H(x12 �
x34 ⊕ x13 � x24 ⊕ x14 � x23), which is the collection of points such that at least one of the following systems
holds: x12+x34 = x13+x24 ≤ x14+x23, x12+x34 = x14+x23 ≤ x13+x24, x14+x23 = x13+x24 ≤ x12+x34.
For each system, equality determines a 5-dimensional hyperplane in R6, while inequality determines a closed

Figure 3: Visualizing the tropical Grassmannian G2,4. From left to right, we have the images of G2,4, G′2,4,

G′′2,4, and G′′′2,4. Notice that G′′2,4 is T BHV
3 and G′′′2,4 is L3.

half-space in R6. Their intersection is isomorphic to R4 × R≥0. Since there are three systems, G2,4 is the
union of three copies of R4 × R≥0 glued along the space x12 + x34 = x13 + x24 = x14 + x23, which is the
image of ϕ : R4 → R6. G′′2,4 then consists of three copies of R≥0 (i.e., T BHV

3 ; see also Example 3) and G′′′2,4
consists of three points (i.e., L3).

Other Applications of Tropical Geometry

Tropical geometry also arises in other applied settings, specifically in computer science, statistics, and eco-
nomics: Maclagan and Sturmfels (2015) and Pachter and Sturmfels (2005) discuss the use of tropical mathe-
matics to reinterpret the dynamic programming approach to the problem of sequence alignment for molecular
data in computational biology. In the context of statistics, tropical geometry arises in the reinterpretation of
various stochastic models. As a field of research, one of the core principles of algebraic statistics is the fact
that algebraic varieties and semi-algebraic sets are statistical models (Améndola et al., 2018; Sullivant, 2018).
For statistical models, such as graphical models, tropicalized statistical models (i.e., tropicalized algebraic
varieties) are fundamental in parametric inference, which was specifically demonstrated on hidden Markov
models and general Markov models on binary trees (Pachter and Sturmfels, 2004). In computational biology,
this algebraic statistical approach was adapted to study invariants of joint probability distributions on leaf
labels of phylogenetic trees (Sturmfels and Sullivant, 2005). In economics and finance, tropical geometry
arises in game theoretic settings and max-linear models for financial data (Einmahl et al., 2018; Lin and
Tran, 2019).

3 Palm Tree Space

A fundamental requirement to comparative and statistical studies on the tropical geometric interpretation of
phylogenetic tree space is a metric. On the tropical projective torus, a generalized Hilbert projective metric
has been used in other settings (e.g., Joswig et al., 2007; Akian et al., 2011; Cohen et al., 2004). We adapt
this metric in our studies and refer to it as the tropical metric.

In this section, we review the tropical metric and study its properties, especially in relation to the BHV
metric. We then present our main contribution, which is a formal and theoretical study of mathematical
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properties of the metric space (TN , dtr) which we refer to as palm tree space (tropical tree space). We show
that palm tree space possesses fundamental characteristics for studies in probability and statistics to be
well-defined; namely, that it is a Polish space.

3.1 The Tropical Metric

Definition 5. For two points [x], [y] ∈ Rn/R1, consider the distance between [x] and [y] given by

dtr([x], [y]) := max
1≤i<j≤n

∣∣(xi − yi)− (xj − yj)
∣∣

= max
1≤i≤n

(xi − yi)− min
1≤i≤n

(xi − yi).

We refer to the function dtr as the tropical metric.

Proposition 6. The function dtr is a well-defined metric function on Rn/R1.

Proof. We verify that the defining properties of metrics are satisfied. By definition, for [u], [v] ∈ Rn/R1,
dtr([u], [v]) = dtr([v], [u]), satisfying symmetry. The tropical metric is nonnegative, since

∣∣(ui − vi) − (uj −
vj)
∣∣ ≥ 0, so is dtr([u], [v]) ≥ 0. If dtr([u], [v]) = 0, then ui − vi are equal for all 1 ≤ i ≤ n, thus [u] = [v], so

indiscernibles are identifiable.
For [u], [v], [w] ∈ Rn/R1, we now show that triangle inequality is satisfied: dtr([u], [w]) ≤ dtr([u], [v]) +

dtr([v], [w]). Suppose 1 ≤ i′ < j′ ≤ n such that∣∣(ui′ − wi′)− (uj′ − wj′)
∣∣ = max

1≤i<j≤n
|ui − wi − uj + wj |,

then dtr([u], [w]) = |ui′ − wi′ − uj′ + wj′ |. Note that

ui′ − wi′ − uj′ + wj′ = (ui′ − vi′ − uj′ + vj′) + (vi′ − wi′ − vj′ + wj′).

Hence

dtr([u], [w]) = |ui′ − wi′ − uj′ + wj′ | ≤ |ui′ − vi′ − uj′ + vj′ |+ |vi′ − wi′ − vj′ + wj′ |
≤ dtr([u], [v]) + dtr([v], [w]).

Thus, dtr is a metric function on Rn/R1.

Notice that the metric space (Rn/R1, dtr) can be identified with the normed linear space Rn−1 via the
linear isomorphism π : Rn/R1→ Rn−1 with [x] 7→ (x2 − x1, . . . , xn − x1). π is in fact an isometry: define a

norm on Rn−1 by ‖x‖tr := max(max |xi − xj |, max |xi|) and denote the induced distance by d̂tr, then

dtr([x], [y]) = max

(
max

2≤i<j≤n
|(xi − yi)− (xj − yj)|, max

2≤i≤n
|xi − yi|

)
= ‖π([x])− π([y])‖tr = d̂tr(π([x]), π([y])).

(6)

Restricting to the subspace of phylogenetic trees equipped with the tropical metric gives the following
construction.

Definition 7. For a positive integer N , let TN be the space of phylogenetic trees with N leaves. The metric
space PN := (TN , dtr) is called the palm tree space.

The spaces T BHV
N and PN are not isometric, meaning that absolute lengths measured by each metric are

not consistent. To understand the variation in length discrepancy, we study the stability of the tropical metric
dtr and find that perturbations of points in BHV space, measured by the BHV metric dBHV, correspond to
bounded perturbations of their images in palm tree space, measured by the tropical metric. This stability
property is desirable, since it allows for interpretable comparisons between the two spaces, and allows for
“translations” in the widely-used BHV framework over to palm tree space.

The following lemma ensures coordinate-wise stability of the tropical metric in PN .
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Lemma 8. Let u ∈ Rn. For 1 ≤ i ≤ n, if we perturb the ith coordinate of u by ε to obtain another point
u′ ∈ Rn, then in Rn/R1 we have

dtr([u], [u′]) = |ε|.

Proof. For 1 ≤ j ≤ n, the difference u′j − uj = 0 if j 6= i, and u′i − ui = ±ε. The set of these differences is
then either {0, ε} or {0,−ε}. By Definition 5, dtr([u], [u′]) = |0−±ε| = |ε|.

Theorem 9 (Stability). Let N be the number of leaves in palm tree space and BHV space. Let u and u′ be
two phylogenetic trees with N leaves. Then the following inequality holds:

dtr(u, u
′) ≤

√
N + 1 · dBHV(u, u′).

Moreover, the smallest possible constant is
√
N + 1.

Proof. We first prove that for any two trees u, u′ in vector representation (1) with N leaves, dtr(u, u
′) ≤√

N + 1 · dBHV(u, u′). First, assume that u, u′ belong to the same orthant in BHV space. Then no matter
what the tree topology is, if we denote the differences of the lengths of the N − 3 internal edges in u and u′

(see (4)) by d1, d2, . . . , dN−3, and the differences of the length of the N external edges by p1, p2, . . . , pN , we
always have

dBHV(u, u′) =

√√√√N−3∑
i=1

d2i +

N∑
i=1

p2i

(e.g., Lin et al. (2017); Owen and Provan (2011)).
For every pair of leaves i, j in both trees, the distance between them is a sum of the length of some

internal edges and two external edges. In other words, all differences wu
ij − wu′

ij are of the form of the sum
between some dk, and pi + pj . Thus, the maximum of these differences is at most the sum of all positive di
values, plus the two greatest pi values (take these to be pi1 and pi2), while the minimum of these differences
is at least the sum of all negative di values, plus two smallest pi values (take these to be pi3 and pi4). By
definition, dtr(u, u

′) is the maximum minus the minimum of these differences, so we have

dtr(u, u
′) ≤

N−3∑
i=1

|di|+ |pi1 |+ |pi2 |+ |pi3 |+ |pi4 |.

By the Cauchy–Schwarz inequality (Cauchy, 1821; Schwarz, 1890),

(N + 1) ·

(
N−3∑
i=1

|di|2 + |pi1 |2 + |pi2 |2 + |pi3 |2 + |pi4 |2
)
≥

(
N−3∑
i=1

|di|+
N∑
i=1

|pi|

)2

.

Hence

dtr(u, u
′) ≤

N−3∑
i=1

|di|+ |pi1 |+ |pi2 |+ |pi3 |+ |pi4 |

≤
√
N + 1 ·

√√√√N−3∑
i=1

|di|2 + |pi1 |2 + |pi2 |2 + |pi3 |2 + |pi4 |2

≤
√
N + 1 ·

(
N−3∑
i=1

|di|2 +

N∑
i=1

p2i

)
=
√
N + 1 · dBHV(u, u′).

Now, for u, u′ with distinct tree topologies, we consider the unique geodesic connecting them: there
exist finitely many points u1, . . . , uk−1 in BHV space such that ui and ui+1 belong to the same orthant
corresponding to a tree topology for 0 ≤ i ≤ k − 1, where u0 = u and uk = u′, and dBHV(u, u′) =∑k−1

i=0 dBHV(ui, ui+1). For 1 ≤ i ≤ k − 1, by the proof above, we have that

dtr(u
i, ui+1) ≤

√
N + 1 · dBHV(ui, ui+1) ∀ 1 ≤ i ≤ k − 1.
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Thus,

dtr(u, u
′) ≤

k−1∑
i=0

dtr(u
i, ui+1) ≤

k−1∑
i=0

√
N + 1 · dBHV(ui, ui+1) =

√
N + 1 · dBHV(u, u′).

Next, we consider the case where the equality holds: consider two trees t and t′ with N leaves and the
same tree topology, given by the following nested sets{

{1, 2}, {1, 2, 3}, . . . , {1, 2, . . . , N − 2}
}
.

Suppose in t, the internal edges have lengths

bt(ei) =

{
2, if 1 ≤ i ≤ N − 4;

1, if i = N − 3.

Similarly, in t′, the internal edges have lengths

bt
′
(ei) =

{
1, if 1 ≤ i ≤ N − 4;

2, if i = N − 3.

The external edge lengths of t and t′ are

pij =

{
1, if (i, j) = (1, 2), (1, N − 2), (2, N − 1), (2, N);

0, otherwise.

Then
dBHV(t, t′) =

√
(N − 4) · (2− 1)2 + (1− 2)2 + 2 · (1− 0)2 + 2 · (0− 1)2 =

√
N + 1.

For 1 ≤ i < j ≤ N , in either tree the distance wij is the sum of the edge lengths of

pi, emax(i−1,1), emax(i−1,1)+1, . . . , emax(j−2,N−3), pj .

Since bt(ei) > bt
′
(ei) for i < N−3 and b1(ei) < b2(ei) for i = N−3, the maximum of all differences wt

ij−wt′

ij

is
wt

2(N−2) − w
t′

2(N−2) = ((N − 4) · 2 + 2 · 1)− (N − 4) · 1 = N − 2;

and the minimum of all differences wt
ij − wt′

ij is

wt
(N−2)(N−1) − w

t′

(N−2)(N−1) = 1− (2 + 1 + 1) = −3.

By definition, dtr(t, t
′) = (N − 2)− (−3) = N + 1 =

√
N + 1 · dBHV(t, t′) in this case. Thus,

√
N + 1 is the

smallest possible stability constant.

In general, and especially data applications, the number of leaves is fixed prior to the study so the stability
constant

√
N + 1 is indeed a constant.

We note that explicit calculations involving geodesics between trees in the original paper by Billera
et al. (2001) do not include external edges, since these do not modify the geometry of the space. Indeed,
their inclusion only amounts to an additional Euclidean factor, since the tree space then becomes the cross
product of BHV space of trees with internal edges only, and RN

≥0. Geodesic distances, which depend directly
on geodesic paths (the former is the length of the latter), considered in Billera et al. (2001) also do not
include external edges. In the proof of Theorem 9, we follow the algorithm of Owen and Provan (2011) to
compute BHV distances which includes external edge lengths, not only because it is the fastest algorithm to
date but also necessary in this comparative setting, since the tropical distance is defined by external edge
lengths.

In terms of interpretation, Theorem 9 provides an important comparative measure and guarantees that
quantitative results from BHV space are bounded in palm tree space. For example, in single-linkage clus-
tering, where clusters are fully determined by distance thresholds, the stability result means that a given
clustering pattern in BHV space will be preserved in palm tree space, thus maintaining interpretability of
clustering behavior.
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3.2 Geometry of Palm Tree Space

The uniqueness property of geodesics in BHV space, used in the proof of Theorem 9, leads naturally to
the study of similar geometric properties that characterize palm tree space as well as important differences
between the two spaces. These characteristics will now be developed in this section.

3.2.1 Geodesics in Palm Tree Space

In palm tree space, geodesics are in general not unique, which is a common occurrence in various metric
spaces. There exists, however, a unique path joining two points in palm tree space, which is also a geodesic—
the tropical line segment.

Definition 10. Given [x], [y] ∈ Rn/R1, the tropical line segment with endpoints [x] and [y] is the set

{a� [x] � b� [y] ∈ Rn/R1 | a, b ∈ R},

where � is tropical multiplication and max-plus addition � for two vectors is performed coordinate-wise.

Proposition 11. For two trees t, t′ ∈ PN , the tropical line segment connecting t and t′ is a geodesic.

Proof. It suffices to show that for any a, b ∈ R, we have that

dtr(z, t) + dtr(z, t
′) = dtr(t, t

′),

where z = a�t�b�t′ is the tropical line segment. We may assume that ti−t′i ≤ ti+1−t′i+1 for 1 ≤ i ≤ n−1.
Under this assumption, dtr(t, t

′) = (tn − t′n) − (t1 − t′1). Now if 0 ≤ j ≤ n is the largest index such that
tj − t′j ≤ b− a, then for some i ≥ j + 1, zi = b+ t′i and, analogously, zi = a+ ti. If j = 0 or j = n, then z is
equal to either t or t′ and the claim is apparent. We may thus assume 1 ≤ j ≤ n− 1.

The set of all differences ti − zi contains −a and the greater values ti − t′i − b > −a for i ≥ j + 1. So,

dtr(z, t) = (tn − t′n − b)− (−a) = (tn − t′n) + (a− b).

Similarly, the set of all differences zi − t′i contains b and the smaller values (ti − t′i) + a < b for i ≤ j. So,

dtr(z, t
′) = b− (t1 − t′1 + a) = (b− a)− (t1 − t′1).

Therefore, dtr(z, t) + dtr(z, t
′) = dtr(t, t

′), and the tropical line segment connecting t and t′ is a geodesic.

In addition, it turns out that tropical line segments are easy and fast to compute. In particular, the time
complexity to compute them is lower than that of Owen and Provan (2011).

Proposition 12. (Maclagan and Sturmfels, 2015, Proposition 5.2.5) The time complexity to compute the
tropical line segment connecting two points in Rn/R1 is O(n log n) = O(N2 logN).

3.2.2 Structure of Palm Tree Space

In the same way that T BHV
N is constructed as the union of orthants, the geometry of PN is also given by

such a union.

Proposition 13. (Maclagan and Sturmfels, 2015, Proposition 4.3.10) The space TN is the union of (2N−5)!!
polyhedra in Rn/R1 with dimension N − 3.

3.3 Topology of Palm Tree Space

The measure of a space is relevant in probabilistic studies; the measure of a topological space, in particular,
results in a desirable compatibility where the topology of a space may be interpreted in terms of measures. For
example, Radon measures may also be interpreted as linear functionals on the space of continuous functions
with compact support, which is locally convex, by e.g., Bourbaki (2004), Chapter 3. This motivates our
study of the topology of palm tree space.

The following two lemmas allow us to characterize the topology of palm tree space. Recall that for
x ∈ Rn, the set B(x, r) = {y ∈ Rn | |y − x| < r} is the open ball centered at x with radius r. By identifying
Rn/R1 with Rn−1 via (6), an equivalent set may be correspondingly defined in palm tree space as follows.
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Definition 14. Under the tropical metric dtr, we define Btr(x, r) = {y ∈ Rn | dtr((0, y), (0, x)) < r} to be
the open tropical ball centered at x ∈ Rn−1 with radius r.

Lemma 15. For x ∈ Rn−1 and r > 0, the open tropical ball Btr(x, r) is the open convex polytope defined by
the following strict inequalities for 1 ≤ i < j ≤ n− 1:

yi > xi − r,
yi < xi + r,

yi − yj > xi − xj − r,
yi − yj < xi − xj + r.

(7)

Proof. For y ∈ Rn−1, y ∈ Btr(x, r) if and only if dtr((0, x̄), (0, ȳ)) < r. Definition 5 admits the strict
inequalities in (7).

Lemma 16. For r > 0 and x ∈ Rn−1, B(x, r) ⊆ Btr(x, 2r) and Btr(x, r) ⊆ B(x,
√
n− 1r).

Proof. By Lemma 15, if a point y lies in Btr(x, r), then for 1 ≤ i ≤ n−1, |yi−xi| < r, thus y ∈ B(x,
√
n− 1r).

Conversely, if a point y lies in B(x, r), then for 1 ≤ i ≤ n− 1, we have that |yi − xi| < r. Therefore,∣∣(yi − yj)− (xi − xj)
∣∣ =

∣∣(yi − xi)− (yj − xj)
∣∣ < 2r.

Hence y ∈ Btr(x, 2r).

Theorem 17. On Rn−1, the family of open balls B(x, r) and the family of open tropical balls Btr(x, r) define
the same topology.

Proof. Suppose for all r > 0 and x ∈ Rn−1 that the open balls B(x, r) form a topological basis. For any
y ∈ Rn−1 and s > 0, we consider the ball Btr(y, s): For any point z ∈ Btr(y, s), we have that dtr(z, y) < s. Let

ε =
s− dtr(z, y)

2
> 0. Then Btr(z, 2ε) ⊆ Btr(y, s). By Lemma 16, we have B(z, ε) ⊆ Btr(z, 2ε) ⊆ Btr(y, s).

Therefore, Btr(y, s) is also an open set. The other direction is proved in the same manner.

Example 18. Figure 4 illustrates the unit balls in Euclidean, BHV, and palm tree space. Here, the number
of leaves is fixed to be 3. There are three 1-dimensional cones in BHV space, and they share the origin. The
palm tree space P3 = {w = (w12, w13, w23) ∈ R3/R1 | max(w) is attained at least twice} may be embedded
in R2.

(0, 0)
(0, 0, 0)

{1, 2}

{1, 3}

{2, 3}

[(0, 0, 0)]

Figure 4: Comparison of unit balls in Euclidean, BHV, and palm tree space for N = 3 leaves. The leftmost
figure is the unit ball B((0, 0), 1) in R2; the center figure is the unit ball centered at the origin with radius
1 in a BHV space with 3 leaves; the rightmost figure is the unit ball Btr([(0, 0, 0)], 1) in P3.

3.4 Palm Tree Space is a Polish Space

We now show that additional analytic properties of palm tree space that are desirable for probabilistic
and statistical analysis are satisfied. Specifically, we prove that palm tree space is a separable, completely
metrizable topological space, and thus a Polish space, by definition.

Polish spaces are important settings for studies in probability due to the fact that classical results maybe
formulated and generalized in a well-behaved manner; some examples are the construction of conditional
expectations, Kolmogorov’s extension theorem (which guarantees the definition of a stochastic process from
a series of finite-dimensional distributions), and Prokhorov’s theorem (which guarantees weak convergence
by relating tightness of measures to compactness in a probability space) (Parthasarathy, 1967).
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Proposition 19. PN is complete.

Proof. For convenience, when considering points in PN , we always choose their unique preimage in Rn whose
first coordinate is 0. Then, we may denote each point in PN by an (n−1)-tuple in Rn−1. Let t1, t2, . . . ∈ Rn−1

be a Cauchy sequence of points in PN . For 1 ≤ i ≤ n−1, we claim that (tik)k≥1 also form a Cauchy sequence
in R: For any ε > 0, there exists M such that for k1, k2 > M , we have dtr(tk1

, tk2
) < ε. By Definition 5,

dtr(tk1
, tk2

) ≥ |0− 0− tik2
+i

k1
| = |tik1

− tik2
|. Thus, for k1, k2 > M , we have∣∣tik1

− tik2

∣∣ < ε.

Suppose now that the Cauchy sequence (tik)k≥1 converges to ti0 ∈ R. It suffices to show that

(i) t0 = (t10, t
2
0, . . . , t

n−1
0 ) represents a point in PN ;

(ii) lim
k→∞

dtr(tk, t0) = 0.

To show (ii), we argue that since (tik)k≥1 converges to ti0 for all 1 ≤ i ≤ n− 1, then for any ε > 0 there exists
M such that for k > M , we have |tik − ti0| < ε

2 for all 1 ≤ i ≤ n− 1. Then by Definition 5,

dtr(tk, t0) = max
1≤i≤n−1

(
0, tik − ti0

)
− min

1≤i≤n−1

(
0, tik − ti0

)
<
ε

2
−
(
− ε

2

)
= ε.

So lim
k→∞

dtr(tk − t0) = 0.

To show (i), note that each coordinate of t0, including the first, is the limit of the corresponding coor-
dinates of (tk)k≥1. Suppose t0 /∈ PN , then there exists 1 ≤ i < j < k < l ≤ N such that one term of t0 in
(2) is strictly greater than the remaining two. Then there exists M2 such that for all k > M2, the one term
of tk in (2) is also strictly greater than the remaining two, thus tk /∈ PN—a contradiction. Hence (i) holds,
and PN is complete.

Proposition 20. PN is separable.

Proof. We claim that the set of all trees with all rational coordinates is dense in PN : Fix any tree t = (wij) ∈
PN . By Proposition 13, t belongs to a polyhedron and there exists a tree topology with (N − 3) internal
edges. Then the distance between any two leaves is the sum of the lengths of the edges along the unique path
connecting them. The number of edges along each path is at most (N − 1). For any ε > 0 and length bk of
each edge of the tree t, since Q is dense in R, we can find a rational number qk such that |qk− bk| < 1

2(N−1)ε.

Now, construct another tree t′ = (w′ij) with the same topology as t, and with corresponding edge lengths qk.
Then for any 1 ≤ i < j ≤ N we have that |w′ij − wij | < ε

2 . Thus

dtr(t
′, t) = max

1≤i<j≤n

(
|w′ij − wij |

)
− min

1≤i<j≤n

(
|w′ij − wij |

)
< ε,

and all coordinates of qk are rational. Thus, PN is separable.

The above results on completeness and separability are proved by definition. An alternative approach
follows the work of Ardila (2005), which has also been used by Bernstein and Long (2017); Bernstein (2020):
Consider a linear mapping from RN to Rn where (x1, . . . , xN ) 7→ (xi − xj) for all pairs i < j. The image of
such a map is isomorphic to the tropical projective torus and the tropical metric is then the `∞ distance on
Rn restricted to the image of this map. Palm tree space forms a closed subset of Rn, since the four-point
condition (Definition 1) defines a closed subset and Rn equipped with the `∞ distance is complete and
separable. This formulation also provides insight into the topology of palm tree space described in Theorem
17.

Finally, we have the following characterization of compact subsets in Rn.

Theorem 21 (Heine–Borel Theorem (Conway, 2014, Theorem 1.4.8)). In the Euclidean space Rn, a subset
is compact if and only if it is closed and bounded.

Thus, for palm tree space, there exist compact subsets in palm tree space.

Corollary 22. In PN , a subset is compact if and only if it is closed and bounded.
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3.5 Probability Measures and Means in Palm Tree Space

We showed in Section 3.4 that palm tree space is a Polish space, and thus exhibits desirable properties for
rigorous probability and statistics. Such properties ensure well-behaved measure-theoretic properties, and
in particular, allow for classical probabilistic and statistical studies, such as convergence in various modes,
as well as ensuring that stochastic processes are well defined. We now study the existence of probabilistic
and statistical quantities for parametric data analysis, such as probability measures and Fréchet means and
variances.

3.5.1 Tropical Measures of Central Tendency

For distributions in general metric spaces, there are various measures of central tendency. These may be
framed in palm tree space as follows (and may be generalized by replacing the tropical metric dtr with any
well-defined metric).

Definition 23. Given a probability space (TN ,B(TN ),PTN ), the quantity

VarPTN
(t) =

∫
TN

dtr(t, t
′)2dν(t′) <∞ (8)

is known as the tropical Fréchet variance. The minimizer of the quantity (8) is the tropical Fréchet population
mean or barycenter µF of a distribution ν:

µF
tr = arg min

t

∫
TN

dtr(t, t
′)2dν(t′) <∞. (9)

Definition 24. The tropical Fermat–Weber point of a distribution is a similarly-defined measure of central
tendency, and can be thought of as a generalized median of a distribution in a general metric space:

µFW
tr = arg min

t

∫
TN

dtr(t, t
′)dν(t′). (10)

For general metric spaces, neither existence nor uniqueness of (9) nor (10) are guaranteed. Ohta (2012)
proves a condition under which barycenters are guaranteed to exist.

Lemma 25. (Ohta, 2012, Lemma 3.2) If (M,d) is a proper metric space, then any distribution ν where∫
M
d(t, t′)2dν(t′) <∞ has a barycenter.

As a consequence of the Heine–Borel theorem (see Corollary 22), palm tree space is a proper metric space.
Thus, (9) evaluated according to the tropical metric is guaranteed to exist. However, since geodesics are not
unique in palm tree space, Fermat–Weber points and Fréchet means will also, in general, not be unique. It is
known that the set of tropical Fermat–Weber points is a classical convex polytope; Lin and Yoshida (2018)
present a formal and complete treatment of the Fermat–Weber point under the tropical metric.

3.5.2 Tropical Probability Measures

Probability measures on combinatorial and phylogenetic trees have been previously discussed, for example
by Aldous (1996) and Billera et al. (2001). This section is dedicated to an analogous discussion on palm tree
space. In PN , the Borel σ-algebra B(TN ) is the σ-algebra generated by the open tropical balls Btr of TN ,
given in Definition 14. We begin by providing the existence of probability measures on PN .

Definition 26. A finite tropical Borel measure on TN is a map µ : B(TN )→ [0,∞) such that µ(∅) = 0, and

for mutually disjoint Borel sets A1, A2, . . . ∈ B(TN ) implies that µ(
⋃∞

i=1B
(i)
tr ) =

∑∞
i=1 µ(B

(i)
tr ). If in addition

µ(TN ) = 1, then µ is a tropical Borel probability measure on TN .

Since TN is a finite union of polyhedra in Rn/R1 (see Proposition 13), tropical Borel probability measures
exist if finite tropical Borel measures µ exist on TN by an appropriate scaling of the value of µ on each
polyhedron.
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Alternatively, the existence of probability measures on TN can be seen by considering an arbitrary
probability space (Ω,F ,P) together with a measurable map X : Ω → TN . Such maps exist, since we
have shown in Section 3 that TN is a Polish space and thus (TN ,B(TN )) is a standard measurable space (e.g.,
Taylor, 2012). The probability space (Ω,F ,P) is a measure space by assumption, thus also measurable. In
this case, the map X is a random variable taking values in TN . Then, X induces a probability measure PTN
on (TN ,B(TN )) by the pushforward measure X∗P of P under X, known as the distribution, for all Borel sets
A ∈ B(TN ):

X∗P(A) := P(X−1(A)) = P({ω ∈ Ω | X(ω) ∈ A}).

Example 27. If Pϑ is a probability measure parameterized by ϑ, then we may obtain parametric probability
distributions on (TN ,B(TN )) induced by Pϑ. In the Bayesian setting, if the measure λ gives the prior
distribution of ϑ, then the joint probability measure P(TN , ϑ) is given by the product measure PTN × λ.
Similarly, the conditional measure P(ϑ | TN ) is also proportional to this same product measure, which can
be seen by Bayes’ rule, where for events B1, B2, . . . that partition the sample space, then for any event A,

P (Bi | A) =
P (A | Bi)P (Bi)

P (A)
.

Additionally, for continuous random variables T and T ′, the conditional density fT ′|T (t′ | t) satisfies

fT ′|T (t′ | t) =
fT |T ′(t | t′)fT ′(t′)

fT (t).

Specific probability measures analogous to classical probability distributions exist on PN , which we now
exemplify. We note that these measures may be generalized to arbitrary compact subspaces of TN by
Corollary 22.

By Proposition 13, since TN is a finite union of polyhedra in Rn/R1, the base measure on palm tree space
can be defined by assigning a probability of 1/(2N − 5)!! to each polyhedron, and a uniform distribution
within each polyhedron. Since each polyhedron is unbounded, the uniform distribution here would be an
improper prior. A proper uniform distribution may be obtained by a rescaling of each polyhedron to be
unitary.

An exponential family-type analog for palm tree space may be defined using the tropical metric as follows:

f(w) = C · exp{dtr(w, µ0
tr)}, (11)

where C is a normalizing constant, and µ0 is taken to be a measure of central tendency, as discussed above
in Section 3.5.1. Measures of the form (11) give rise to families of distributions concentrated on a tropical
central tree, µ0

tr.

4 Application to Data: Seasonal Influenza

We now provide an example of a statistical study in palm tree space following Yoshida et al. (2019). We com-
pare the performance of tropical versus BHV principal component analysis (PCA) of the seasonal influenza
virus by studying its diversity over twenty years of collected longitudinal data and see that the tropical
approach outperforms the BHV approach.

Influenza is an RNA virus affecting up to 10% of adults and 30% of children worldwide and on an annual
basis, resulting in more than half a million deaths (WHO, 2016). Because of the rapid evolution of the virus
genome, the development of an effective vaccine critically relies on being able to effectively visualize, analyze,
and predict the viral evolution patterns in a statistically rigorous setting.

4.1 Influenza Data

We focus on the influenza type A virus, which is an RNA virus that is classified by subtype according
to the two proteins occurring on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA).
Here, we focus on HA, which tends to be the most variable protein in genomic evolution, in terms of
changing the antigenic make-up of surface proteins. Such antigenic variability (known as antigenic drift) is
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an important driving factor behind vaccine failure. We restrict our study to the subtype H3N2, which is
becoming increasingly abundant, and a dominant factor studied in developing flu vaccines due to its recently
increasing resistance to standard antiviral drugs (Altman, 2006). It was also the cause of an epidemic due
to vaccine failure in 2002-2003 (CDC, 2004).

Genomic data for 1089 full length sequences of hemagglutinin (HA) for influenza A H3N2 from 1993
to 2017 in the state of New York were obtained from the GI-SAID EpiFluTM database (www.gisaid.org)
and aligned with muscle (Edgar, 2004) using default settings. HA sequences from each season were related
to those of the preceding season. We then applied tree dimensionality reduction (Zairis et al., 2016) using
temporal windows of 5 consecutive seasons to create 21 datasets. The date of each dataset corresponds to
the first season; for example, the dataset dated 2013 consists of 5-leaved trees where the leaves come from
seasons 2013 through 2017. Each unrooted tree in these datasets was constructed using the neighbor-joining
method (Saitou and Nei, 1987) with Hamming distance. Outliers were then removed from each season using
kdetrees (Schardl et al., 2014). On average, there were approximately 20,000 remaining trees in each
dataset. Finally, PCA was performed under the tropical metric (Yoshida et al., 2019) and under the BHV
metric (Nye et al., 2017).

4.1.1 Tree Dimensionality Reduction

The influenza virus is assumed to emerge and evolve from a common ancestor: although the virus mutates
each season and within each patient, each of these seasonal and patient-specific mutations can be traced
back to a single virus (e.g., Liu et al. (2009)). This evolutionary pattern is depicted in a large phylogenetic
tree. Tree dimensionality reduction is a sampling method that generates a data set of smaller trees via
a structural and systematic sampling of the larger tree (Zairis et al., 2016). In other words, the method
produces a collection of smaller trees that faithfully represents the evolutionary behavior of the single large
tree, and thus allows the evolutionary information to be treated as a dataset with multiple points akin to
bootstrapping, rather than viewing the large tree as a single datum. Specifically, this is done by randomly
sampling one individual from each season over the length of the desired temporal window; each individual
then gives one leaf of the reduced tree.

In the applications presented in Zairis et al. (2016), smaller trees were constructed with three, four, and
five leaves; we follow within this size scale for consistency of the original method, but choose the largest
number of leaves, since the two tree PCA methods were implemented in Nye et al. (2017) and Yoshida et al.
(2019) for trees with a larger number of leaves.

4.2 PCA in Tree Spaces

PCA is a fundamental technique in descriptive and exploratory statistics that visualizes relationships within
the data by reducing their dimensionality. As such, PCA has many important implications—for example, it
projects to the subspace of the solution of k-means clustering (Ding and He, 2004)—and may be interpreted
in several different ways. One interpretation may be seen as searching for a lower-dimensional plane that
minimizes the sum of squared distances from the data points to the plane, and then finding an orthogonal
projection from the data points onto the plane to visualize them. More precisely, given a set X of data
points {x1, x2, . . . , xn} where each xi ∈ Rm, i = 1, . . . , n, we may consider a subset of k + 1 of these points
V = {v0, . . . , vk} ⊂ Rm and define

Π(V ) :=

{ k∑
i=0

pivi | p0, . . . , pk ∈ R such that p0 + · · ·+ pk = 1

}
,

where Π(V ) is the affine subspace of Rm containing V . The orthogonal L2 distance between any point
y ∈ Rm and Π(V ) is denoted by d(y,Π(V )); the squared of projected distances for the data X onto Π(V ) is
then

D2
X(Π(V )) =

n∑
i=1

d(xi,Π(V ))2.

The kth principal component Πk is the choice of V minimizing D2
X . In Euclidean space, Π0 corresponds to

the sample mean, while Π1 is the regression line passing through the mean, and so on, for higher dimensions.
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These principal components are nested: Π0 ⊂ Π1 ⊂ Π2 ⊂ · · · . This interpretation relies heavily on the
setting of a vector space, since Π(V ) is a linear combination of vectors, and visualizing the data on Π(V )
relies on orthogonal projection, both of which are inherently linear algebraic notions, and hence difficult to
directly implement in tree spaces.

It is important to emphasize that PCA is a descriptive and exploratory technique for data, and a form
of unsupervised learning. As such, there is no a priori assumption on the distribution of the data, despite
the coincidence of the above mentioned description of the technique with classical linear regression, which is
an inferential tool (and thus, classically, assumes some distributional properties). PCA can always be used
to reduce the dimensionality of and visualize data, no matter what their distribution (and no matter what
interpretation of PCA is adapted to implement the procedure).

Respective adaptations of the above-mentioned interpretation of PCA to palm tree space and BHV space
are given by Nye et al. (2017) and Yoshida et al. (2019): convex, triangular regions—the tropical triangle
and the locus of weighted Fréchet means computed with respect to the BHV metric, respectively—define
notions of second principal components in the respective spaces. Following Nye (2014), in the setting of
phylogenetic tree space, we seek a convex hull of k + 1 points to represent the kth principal component,
Π(V ) where now each vi in V = {v0, . . . , vk} is a tree. Since any geodesic segment is the convex hull of its
endpoints, a natural extension to the plane, or second principal component, would be to use the convex hull
of three points. This also gives us a representation with projections that are readily visualizable.

In other words, we seek a 2-plane defined by three ultrametric trees and visualize the data by restricting
and projecting onto the convex hull of these three points. In palm tree space, this is straightforward since
tropical triangles are always 2-dimensional (Lin et al., 2017). In BHV space, however, this entails finding
a locus, which is constructed from the set of discrete Fréchet means weighted by values on the probability
simplex. As opposed to BHV triangles, the dimensionality of loci of weighted Fréchet means computed under
the BHV metric is well behaved (Nye et al., 2017).

4.2.1 Tropical PCA

The (tropically-) convex hull we seek in palm tree space by implementing the method of Yoshida et al. (2019)
represents the second principal component is the tropical triangle. Edges are given by tropical line segments
between their three vertices. Projections of data points onto the tropical triangle are exact and unique.

To build the tropical triangles, we seek three points within the dataset; in this sense, the PCA method
is approximate and not exact. For smaller datasets, such a search may be combinatorially tractable. For
larger datasets, we implement a Markov chain Monte Carlo (MCMC) algorithm to find these three points
(Kang and Yoshida, 2018). Briefly, the idea is to first choose three points from the dataset at random and
calculate the sums of the tropical distances of the remaining points to the tropical triangle initially defined
by the three points. One point among these vertices is then randomly chosen to be iteratively replaced by
other points within the dataset to find a smaller sum of tropical distances to the resulting triangles until a
minimal sum of tropical distances is found; the corresponding three vertices of the triangle are then retained
to define the second tropical principal components. Unlike in classical Euclidean PCA where the components
are mutually orthogonal, the vertices of the tropical triangle onto which the data points are projected are in
general not. The projections of the data points onto the tropical triangle are tropically-convex combinations
of the vertices. This procedure was run 5 times on each of the 21 datasets; each iteration was run in
parallel on 18 CPU cores—Intel(R) Xeon(R) W-2155 CPU @ 3.30 GHz—and took approximately two hours
to terminate, for a total of around 210 CPU hours to complete the tropical PCA procedure.

4.2.2 BHV PCA

Since geodesic triangles (and more generally, polytopes) in BHV space are not well-behaved convex hulls (Lin
et al., 2017), they are thus problematic candidates for BHV second principal components. An alternative
method proposed by Nye et al. (2017) searches for the locus of weighted, discrete, Fréchet means computed
with respect to the BHV metric as a BHV kth principal component.

Briefly, for the weighted, discrete, BHV Fréchet mean,

µ(V,w) = arg min
y∈T BHV

N

k∑
i=0

wi · dBHV(y, vi)
2,
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if the weights are given by elements in the k-dimensional simplex of probability vectors,

Sk :=

{
(p0, . . . , pk) | pi ≥ 0, i = 0, . . . , k,

k∑
i=0

pi = 1

}
,

then Π(V ) defined by
Π(V ) := {µ(V, p) | p ∈ Sk}

is the locus of the Fréchet mean of V . Geometric properties of the locus, such as convexity and dimensionality,
are well-behaved, as opposed to BHV convex hulls. In our application, we implement the algorithm by
Bačák to compute the weighted, discrete, BHV Fréchet means and thus construct the locus (Bačák, 2014).
Projections of data points onto the locus are approximate and need not be unique.

Similar to the tropical PCA case described above, the procedure is approximate and uses trees from the
dataset to construct the locus and its boundaries. We follow the algorithm proposed in the original reference,
which is also a stochastic optimization algorithm. As in the tropical PCA case, the procedure was run 5
times on each of the 21 datasets; each iteration was run in parallel on 18 CPU cores—Intel(R) Xeon(R)
W-2155 CPU @ 3.30 GHz—and also took approximately two hours to terminate, for a total of also around
210 CPU hours to complete the BHV PCA procedure.

Software and Data Availability

Software to compute both tropical and BHV PCA is publicly available in R and Java code. Their imple-
mentation to the influenza data described in this paper is located on the FluPCA GitHub repository at
https://github.com/antheamonod/FluPCA.

The data used in this paper were obtained from publicly available sources and preprocessed, as detailed
in Section 4.1. The final version used in the analyses in this paper are also publicly available on the FluPCA
GitHub repository.

The resulting figures from both BHV and tropical PCA projections for all 21 data sets are also available
on the FluPCA GitHub repository.

4.3 Interpretation of Tree PCA

In the tropical case, the second principal component represented by the tropical triangle—whose vertices
are given by three ultrametric trees, and whose edges are given by the tropical line segments between
them—divides into cells, which are determined by the tree topologies that an edge (tropical line segment)
traverses. Trees in the dataset are then projected into the cells corresponding to their topologies in the
PCA visualization. The simplest case in both tropical PCA is where all three vertices of the triangle are
of the same tree topology, then there will only be one cell and all projections will be of the same topology;
if two points are trees of the same tree topology, then every point on the tropical line segment connecting
them will also be of the same tree topology. An example can be seen in the 1993 data set, available at
https://github.com/antheamonod/FluPCA/Figures.

A more interesting example can be seen in the 2008 dataset in Figure 5. The tropical triangle divides
into six cells; a complete discussion on tropical polytopes, their decomposition into cells and their self-
duality can be found in Section 5.2 of Maclagan and Sturmfels (2015), Theorem 5.2.21 in particular gives the
isomorphism from a tropical polytope to its self-dual. As conjectured in Yoshida et al. (2019), one possible
biological interpretation of the cells is that neighboring cells represent similar yet distinct tree structures
differing by tree rearrangements of one move. Tree rearrangements are used in algorithms where the goal
is to search for the optimal tree structure in statistical tree reconstruction methods (see e.g., Bordewich
and Semple (2005); Felsenstein (2004)). The tropical line segment forming the topmost edge of the triangle
traverses five different tree topologies (indicated by the pink, green, black, blue, and red points along the
topmost line segment), indicating that the three vertices of the triangle are quite different from one another
in terms of tree topology.

The BHV locus, which represents the second principal component in BHV space, is also generated by
three vertices (ultrametric trees), and depicted in the BHV PCA plots by a triangle. Here, varying tree
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Figure 5: 2008: The tropical triangle as the second tropical principal component. (a) Tropical triangle and
projected data points; (b) Vertices of the tropical triangle and projected tree topologies.

Figure 6: 2008: The locus of BHV Fréchet means as the second principal component. (a) The simplex
shaded by topology of corresponding points on the affine subspace; (b) Trees 1, 2, and 3 correspond to three
weighted Fréchet means.

topologies are depicted by the multicolored patches within the triangular region, indicating that the locus
straddles several orthants in BHV space. In the 2008 dataset in Figure 6, the locus straddles two BHV
orthants and we see two tree topologies occurring among the projected points.

In the 2008 dataset, palm tree space and the tropical geometric approach to computations in phylogenetic
tree space appears to allow for occurrences of richer and more subtle structures and methods: in these
examples, we see tropical PCA projections of six different topologies, versus two in the BHV case.

4.4 Results: Proportion of Explained Variance R2

In terms of explained variance given in Table 1, we see that in general, tropical PCA is able to explain more
of the variance in the data than does BHV PCA. BHV PCA results also have a higher variability over a
wider range than tropical PCA: BHV PCA explains between ∼0.0% and 95% of the variance, while tropical
PCA explains between 46% and 96%.

5 Discussion

In this paper, we defined palm tree space as the space of phylogenetic trees with N leaves, endowed with
the tropical metric. We gave results on its analytic, topological, geometric, and combinatorial properties
and showed that they are conducive to rigorous treatments and studies in probability. We performed a
descriptive statistical analysis on real data and showed that the tropical approach outperforms the BHV
approach. We showed that in certain respects, palm tree space is more natural and amenable to statistical
analyses than BHV space. An important difference, however, is that geodesics in palm tree space are not
unique. Our work invites the reinterpretation of existing statistical methods in terms of the tropical metric
to make a wider array of exact analyses readily available and interpretable to phylogenetic research with

18



Table 1: Proportion of Explained Variance for Tropical and BHV PCA

1993 1994 1995 1996 1997 1998 1999

Tropical 0.7269 0.8505 0.9577 0.7482 0.8437 0.8790 0.8564
BHV 0.3019 0.4347 0.3151 0.5025 0.0505 0.6408 0.9524

2000 2001 2002 2003 2004 2005 2006

Tropical 0.7942 0.8302 0.9525 0.8622 0.7931 0.8304 0.7300
BHV 0.0014 0.9488 0.8962 0.4927 0.3651 0.3634 0.2383

2007 2008 2009 2010 2011 2012 2013

Tropical 0.6995 0.4637 0.6289 0.6665 0.5920 0.5568 0.5624
BHV 0.2727 0.0460 0.1563 0.1935 0.2771 0.1998 0.1279

potential impact for biological discoveries.

Biological and Statistical Implications

Despite the statistical challenges of arbitrariness of dimension of BHV polytopes and stickiness which affect
descriptive and inferential statistics, the BHV parameterization has been successfully implemented to reveal
important biological findings (e.g., Zairis et al., 2014). In terms of interpretation, the unresolved singularities
of BHV Fréchet means translate to “indecisiveness” of which branching patterns or tree topologies are
“preferred,” which is consistent with what is often seen in some biological settings where the trees arise from
sequence alignment. However, mathematically, trees are used to model other biological phenomena, such as
pulmonary paths as airway trees (e.g., Feragen et al., 2013, 2015)); brain growth and structure (e.g., Yan and
Yan, 2013); and neuronal morphologies (e.g., Kanari et al., 2018). Such a probabilistic assumption may not
be reasonable in these other settings. Given recent research interest in developing methods to bypass these
difficulties support the goal of our work, which is that exploring alternative representations is an important
research direction (e.g., Anaya et al., 2020; Skwerer et al., 2018). An important and interesting direction for
future research is the identification of non-uniform probability distributions in the tropical setting, which is
challenging yet promising: Tran (2018) outlines various ways in which tropical Gaussian distributions may
be constructed.

In the context of shape statistics (Kendall, 1989) and computational anatomy (Grenander and Miller,
1998), the data objects of interest are often modeled as elements of algebraic spaces. In particular, these
algebraic spaces are quotient spaces generated by group actions. Recent work has studied the behavior of
estimators on such spaces, uncovering undesirable properties, such as biasedness and inconsistency when
the group actions are random (that is, when the quotient spaces are generated by elements of the group
are chosen at random to act on the topological space) or continuous (as in the case of Lie groups acting
on Riemannian manifolds) (Devilliers et al., 2017; Miolane and Pennec, 2015). Nonparametric methods
have been developed to bypass the problem of inconsistency by Bhattacharya and Patrangenaru (2014). As
previously mentioned, the tropical projective torus Rn/R1 is a quotient space that may be generated by a
group action, however the biasedness and inconsistency in previous work arise due to the poor behavior of
the transformed metric after it is mapped into the quotient space, which results in a pseudometric. In our
case, the tropical metric is well-behaved and defined directly on the quotient space, therefore differing in
setting to previous work.

It should also be noted that the non-uniqueness property of geodesics in palm tree space poses compu-
tational difficulties, but does not prohibit statistical analysis and can still yield useful descriptive as well as
inferential information, for example, on clustering behavior. Another important setting where geodesics are
not unique is that of positively-curved spaces. Bhattacharya and Bhattacharya (2008) study asymptotic be-
havior and distributions on Riemannian manifolds, including positively curved manifolds. Recent work such
as that by Kobayashi and Wynn (2019) develops techniques for data analysis on curved spaces by tuning the
geodesic metrics accordingly. In particular, a general Fréchet function is defined, and its parameters are cho-
sen accordingly, depending on the goal: for example, one geodesic metric may be transformed into another
to control the curvature of the space for data analysis. There are large bodies of existing work in related
areas on curved spaces, for example, in the case of manifold learning; shape statistics; Wasserstein spaces for
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probability measures; and information geometry. Though these domains each have their own specific goals
and studies, data analysis and computation play a central role in these settings. Moreover, there are known
settings in these related areas where positive curvature, and thus non-uniqueness of geodesics, arises (for
example, the 2-Wasserstein space for Gaussian measures is positively curved (Takatsu, 2011)). Adapting
existing techniques in these settings to statistical analysis in palm tree space is an important direction of
research that merits exploration.
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