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AN APPROACH TO CONSTRAINED POLYNOMIAL OPTIMIZATION
VIA NONNEGATIVE CIRCUIT POLYNOMIALS AND GEOMETRIC

PROGRAMMING

MAREIKE DRESSLER, SADIK ILIMAN, AND TIMO DE WOLFF

Abstract. In this article we combine two recent developments in polynomial optimiza-
tion. On the one hand, we consider nonnegativity certificates based on sums of nonneg-
ative circuit polynomials, which were recently introduced by the second and the third
author. On the other hand, we investigate geometric programming methods for con-
strained polynomial optimization problems, which were recently developed by Ghasemi
and Marshall. We show that the combination of both results yields an efficient new
method to solve constrained polynomial optimization problems with many variables or
with high degree polynomials. The resulting method is significantly faster and for certain
classes of polynomials also better than semidefinite programming as we demonstrate in
various examples.

1. Introduction

Solving polynomial optimization problems is a key challenge in countless applications
like dynamical systems, robotics, control theory, computer vision, signal processing, and
economics; e.g. [BPT13, Las10]. It is well-known that polynomial optimization prob-
lems are NP hard in general both in the constrained and in the unconstrained case
[DG14]. Starting with the seminal work of Lasserre in [Las01], relaxation methods were
developed which are significantly faster and provide lower bounds. These methods were
studied intensively by means of aspects like exactness and quality of the relaxations
[dKL10, Nie13a, Nie13b, Nie14], the speed of the computations [Las10, PS03], and ge-
ometrical aspects of the underlying structures [Ble06, Ble12]. A great majority of these
results are based on the original approach by Lasserre, called Lasserre relaxation, which
relies on semidefinite programming (SDP) methods and sums of squares (SOS) certificates
to provide lower bounds for polynomial optimization problems. SDPs can be solved in
polynomial time (up to an ε-error); e.g. [BPT13, p. 41] and references therein. However,
the size of such programs grows rapidly with the number of variables or the degree of the
polynomials.
In the near past, Ghasemi and Marshall suggested a promising alternative approach

both for constrained and unconstrained optimization problems based on geometric pro-
gramming (GP) [GM12, GM13]. GPs can also be solved in polynomial time (up to an
ε-error) [NN94]; see also [BKVH07, Page 118], but, by experimental results in [GM12,
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GM13], the corresponding geometric programs can be solved much faster than in the
classical semidefinite approach in practice. Initially, the drawback of this GP based ap-
proach was that the lower bounds were by construction worse than bounds obtained
via semidefinite programming and that they could only be applied in very special cases
[GM12, GM13].
Independent of Ghasemi and Marshall, the second and the third author recently devel-

oped a new certificate for nonnegativity of real polynomials called sums of nonnegative
circuit polynomials (SONC) [IdW14a]. SONC certificates are independent of sums of
squares. In [IdW14b] the second and third author showed as a fundamental result that
the GP based approach for unconstrained optimization by Ghasemi and Marshall can
be generalized crucially via SONC certificates. In consequence, the presented geometric
programs are linked to sums of nonnegative circuit polynomials as semidefinite program-
ming relaxations are linked to sums of squares. Particularly, it was shown in [IdW14b]
that there exist rich classes of polynomials for which the GP/SONC based approach is in
practice not only faster than semidefinite programs, but it also yields better bounds than
the SDP/SOS approach. The reason is that the cone of sums of squares and the cone
of nonnegative circuit polynomials are not contained in each other [IdW14a, Proposition
7.2] while all certificates used by Ghasemi and Marshall are always also sums of squares.

The main contribution of this article is an extension of the results in [IdW14b] to con-
strained polynomial optimization problems. As in [IdW14b] we mainly focus on the class
of ST-polynomials , that are polynomials with a simplex Newton polytope satisfying some
further conditions; see Section 2.1. The key idea is to follow an approach which was al-
ready outlined briefly in [IdW14b, Section 5] and to combine it with ideas by Ghasemi and
Marshall in [GM13]. More precisely, we trace back the constrained polynomial optimiza-
tion problems to unconstrained ones by defining a new polynomial, which incorporates
both the objective function and the constrained polynomials. The starting point hereby
is a general optimization problem from [IdW14b, Section 5], see (2.5), which provides
a lower bound for the constrained problem but which is not a geometric program. A
careful relaxation of this problem transforms it into a geometric optimization problem;
see program (3.2) and Theorem 3.1. We show that for certain instances of polynomials
the program (3.2) provides better bounds than via Lasserre relaxations and the ones in
[GM13], see Section 4.
The second goal of this article is to apply polynomial optimization methods based on

SONC and geometric programming beyond the class of ST-polynomials efficiently. We
develop an initial approach based on triangulations of support sets of the involved poly-
nomials. It allows to obtain bounds for nonnegativity based on SONC/GP for arbitrary
polynomials both in the constrained and in the unconstrained case. We provide several
examples and compare the new bounds to the ones obtained by SDP based methods.
Particularly, we demonstrate that our GP based method is significantly faster than SDP
for high degree examples as it had already been observed in [GM12, IdW14b].
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The article is organized as follows. Since our results are build on the foundations
provided in the articles [IdW14a, IdW14b], we present the full notational framework and
key statements from these articles in Section 2. This also allows the reader to avoid reading
the precursor articles if preferred. Note that we adjusted and simplified some notations
from [IdW14a, IdW14b]. In Section 3 we provide a relaxation of the program (2.5) from
[IdW14b] for constrained polynomial optimization problems, which transforms (2.5) into
a geometric optimization problem. Additionally, sufficient conditions on the support of
the constrained polynomials are presented, which guarantee that the obtained bounds
provided by the new geometric programming relaxations (3.2) are as good as in the original
non-geometric program (2.5). In Section 4, we present several examples demonstrating
our results in practice. Particularly, we show that our approach outperforms the geometric
programming relaxations in [GM13] and also the classical Lasserre relaxations for certain
classes of polynomial optimization problems. Moreover, we provide a framework in which
one can always expect to outperform the relaxations mentioned before. Finally, in Section
5 we introduce an approach based on triangulations of support sets which allows to obtain
lower bounds for polynomial optimization problems for arbitrary polynomials both in the
constrained and in the unconstrained case. Again, we provide several examples, which
demonstrate that these methods are applicable in practice outperforming SDP based
methods in several cases.

2. Preliminaries

In this section we recall key results about sums of nonnegative circuit polynomials
(SONCs) and geometric programming (GP), which are used in this article. SONCs were
recently introduced by the second and the third author in [IdW14a]; see also [dW15] for
an overview. Geometric optimization problems are well-known special cases of convex
optimization problems, which were first introduced in [DPZ67]. The second and the third
author showed the relation between SONCs and GPs for global nonnegativity problems in
a recent article [IdW14b] generalizing similar geometric programs developed by Ghasemi
and Marshall [GM12].

2.1. The Cone of Sums of Nonnegative Circuit Polynomials. We denote by Rrxs “
Rrx1, . . . , xns the vector space of real n-variate polynomials. Let δij be the ij-Kronecker
symbol, let ei “ pδi1, . . . , δinq be the i-th standard vector, and let A Ă N

n be a finite set.
We denote by convpAq the convex hull of A and we denote by V pAq the vertices of the
convex hull of A. We consider polynomials f P Rrxs supported on A. That is, f is of the
form f “ ř

αPA fαx
α with fα P R, xα “ xα1

1 ¨ ¨ ¨xαn
n . We call a lattice point even if it is

in p2Nqn. Furthermore, we denote the Newton polytope of f as Newpfq “ convtα P N
n :

fα ‰ 0u.
A polynomial is nonnegative on the entire Rn only if the following necessary conditions

are satisfied; see e.g. [Rez78].

Proposition 2.1. Let A Ă N
n be a finite set and f P Rrxs be supported on A such that

Newpfq “ convpAq. Then f is nonnegative on R
n only if:

(1) All elements of V pAq are even.
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(2) If α P V pAq, then the corresponding coefficient fα is strictly positive.

In other words, if α P V pAq, then the term fαx
α has to be a monomial square.

We remark that the statement remains true for real Laurent polynomials g P Rrx˘1s “
Rrx˘1

1 , . . . , x˘1
n s. Namely, we can then consider g as a polynomial f divided by a monomial

square xα for an even α; this is of relevance in Section 5. For the remainder of the arti-
cle, we assume that these necessary conditions in Proposition 2.1 are satisfied including
Newpfq “ convpAq. For simplicity, we denote this assumption by the symbol p♣q from
now on.

In the following we consider the class of ST-polynomials. For further details about the
following objects see [dW15, IdW14a, IdW14b].

Definition 2.2. Let f P Rrxs be supported on A Ă N
n such that p♣q holds. Then f is

called an ST-polynomial if it is of the form

f “
r
ÿ

j“0

fαpjqx
αpjq `

ÿ

βP∆pAq

fβx
β,(2.1)

with r ď n, exponents αpjq and β, coefficients fαpjq, fβ, and a set ∆pAq for which the
following hold:

(ST1): The points αp0q, αp1q, . . . , αprq are affinely independent and equal V pAq.
(ST2): We define ∆pAq “ pAzV pAqq. Thus, every β P ∆pAq can be written uniquely
as

β “
r
ÿ

j“0

λ
pβq
j αpjq with λ

pβq
j ě 0 and

r
ÿ

j“0

λ
pβq
j “ 1.

The “ST” in “ST-polynomial” is short for “simplex tail”. The tail part is given by the
sum

ř

βP∆pAq fβx
β, while the other terms define the simplex part.

We denote by ∆pfq the elements of ∆pAq which appear as exponents of non-zero terms
in the tail part of f and are moreover no monomial squares. I.e., we have

∆pfq “ tβ P ∆pAq : |fβ| ‰ 0 and fβ ă 0 or β R p2Nqnu.
If an ST-polynomial f has a tail part consisting of at most one term, then we call f a
circuit polynomial . 7

Note that hypothesis (ST1) implies that V pAq “ tαp0q, . . . , αprqu is the vertex set of
an r-dimensional simplex. By the assumption p♣q it consists of even lattice points, and

it coincides with Newpfq “ convpAq. The λ
pβq
j denote the barycentric coordinates of β

relative to the vertices αpjq with j “ 0, . . . , r.
Given a polynomial f, well established algorithms from convex geometry allow to de-

termine whether f is an ST-polynomial and if so to rewrite it in this form.
The class of ST-polynomials was first defined by the second and third author in [IdW14b]

and generalizes a class considered by Fidalgo and Kovacec in [FK11] and by Ghasemi and
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Marshall in [GM12, GM13]. In this article we both simplified and generalized the defini-
tion of an ST-polynomial slightly compared to [IdW14b].

Nonnegativity of ST-polynomials is closely related to an invariant called the circuit
number, which was first defined as follows by the second and third author in [IdW14a].

Definition 2.3. Let f be an ST-polynomial with support set A. For every β P ∆pAq “
AzV pAq we define the corresponding circuit number as

Θfpβq “
ź

jPnzpβq

˜

fαpjq

λ
pβq
j

¸λ
pβq
j

(2.2)

with nzpβq “ tj P t0, . . . , ru : λ
pβq
j ‰ 0u. 7

The terms “circuit polynomial” and “circuit number” are chosen since β and the αpjq
with j P nzpβq form a circuit ; this is a minimally affine dependent set, see e.g. [GKZ94].
A fundamental fact is that nonnegativity of a circuit polynomial f can be decided by

comparing its tail coefficient fβ with its corresponding circuit number Θf pβq alone.

Theorem 2.4 ([IdW14a], Theorem 3.8). Let f be a circuit polynomial with unique tail
term fβx

β and let Θfpβq be the corresponding circuit number, as defined in (2.2). Then
the following are equivalent:

(1) f is nonnegative.
(2) |c| ď Θfpβq and β R p2Nqn or c ě ´Θfpβq and β P p2Nqn.
Note that (2) can be equivalently stated as: |c| ď Θfpβq or f is a sum of monomial

squares. We remark that also the definitions of the circuit polynomials and circuit num-
bers Θfpβq differ slightly from the ones used in [IdW14a] and [IdW14b]. Here β P ∆pfq
is not necessarily an interior point of Newpfq as it is in [IdW14a]. In [IdW14b] the sup-
port of ST-polynomials was not fixed but changed when coefficients were equal to zero.
This was inconvenient, since it required to take care of special cases. Moreover, in both
[IdW14a, IdW14b] it was required that circuit polynomials and ST-polynomials have a
constant term. This assumption was convenient to work with in these articles, but it is
not necessary. Particularly, for some results in Section 5 we need ST-polynomials to be
defined in the more general way as in Definition 2.2.

Writing a polynomial as a sum of nonnegative circuit polynomials is a certificate of
nonnegativity. We denote by SONC the class of polynomials that are sums of nonnegative
circuit polynomials or the property of a polynomial to be in this class. For further details
about SONCs see also [dW15, IdW14a, IdW14b].

2.2. Geometric Programming. Geometric programming was introduced in [DPZ67].
It is a special type of convex optimization problem and has applications for example in
nonlinear network flow problems, optimal control, optimal location problems, chemical
equilibrium problems and particularly in circuit design problems. For an introduction to
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geometric programming, signomial programming, and an overview about applications see
[BKVH07, BV04].

Definition 2.5. A function p : Rn
ą0 Ñ R of the form ppzq “ ppz1, . . . , znq “ czα1

1 ¨ ¨ ¨ zαn
n

with c ą 0 and αi P R is called a monomial (function). A sum
řk

i“0 ciz
α1piq
1 ¨ ¨ ¨ zαnpiq

n of
monomials with ci ą 0 is called a posynomial (function). 7

A geometric program has the following form.
$

’

&

’

%

minimize p0pzq,

subject to:
p1q pipzq ď 1 for all 1 ď i ď m,

p2q qjpzq “ 1 for all 1 ď j ď l,

(2.3)

where p0, . . . , pm are posynomials and q1, . . . , ql are monomial functions.

Geometric programs can be solved with interior point methods. In [NN94], the authors
prove worst-case polynomial time complexity of this method; see also [BKVH07, Page
118]. A signomial program is given like a geometric program except that the coefficients
ci of the involved posynomials can be arbitrary real numbers. For an introduction to
geometric programming see [BKVH07, BV04].

2.3. SONC Certificates via Geometric Programming in the Unconstrained
Case. In this section we recall the main results from [IdW14b] about SONC certificates
obtained via geometric programming for unconstrained polynomial optimization prob-
lems. These results always require that the polynomial in the optimization problem is an
ST-polynomial in the sense of Section 2.1. As a first key result the following statement is
shown, which we adjusted slightly to the new notation in this article.

Theorem 2.6. ([IdW14b, Theorems 3.4 and 3.5]) Assume that f is an ST-polynomial as
in (2.1) and let k P R. Suppose that for every pβ, jq P ∆pfq ˆ t1, . . . , ru there exists an
aβ,j ě 0, such that:

(1) aβ,j ą 0 if and only if λ
pβq
j ą 0,

(2) |fβ | ď ś

jPnzpβq

ˆ

aβ,j

λ
pβq
j

˙λ
pβq
j

for every β P ∆pfq with λ
pβq
0 “ 0,

(3) fαpjq ě ř

βP∆pfq

aβ,j for all 1 ď j ď r,

(4) pfαp0q ´ kqxαp0q ě ř

βP∆pfq

λ
pβq
0

‰0

λ
pβq
0 |fβ|1{λ

pβq
0

ś

jPnzpβq
jě1

ˆ

λ
pβq
j

aβ,j

˙λ
pβq
j {λ

pβq
0

.

Then f ´ kxαp0q is a sum of nonnegative circuit polynomials g1, . . . , gs such that s is the
cardinality of the non-zero and tail terms of f that are non-monomial squares and for
every gi the Newton polytope Newpgiq is a face of Newpfq.
Let fgp be the supremum of all k P R such that for every β P ∆pfq there exist nonnegative

reals aβ,1, . . . , aβ,r such that the conditions (1) to (4) are satisfied. Then fgp coincides
with the supremum of all k P R such that there exist nonnegative circuit polynomials
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g1, g2, . . . , gs whose Newton polytopes are faces of Newpfq and which satisfy f ´ kxαp0q “
řs

i“1 gi.

We remark that for the special case of scaled standard simplices the theorem was shown
earlier by Ghasemi and Marshall [GM12, Theorem 3.1]. In this special case every sum
of nonnegative circuit polynomials is also a sum of binomial squares which is not true in
general; see [IdW14a, IdW14b] for further information.
Theorem 2.6 states

fgp “ suptk P R : f ´ kxαp0q is a SONC u.
The notation fgp indicates that this bound is given by a geometric program. In [IdW14b,

Corollary 4.2] the following is shown.

Corollary 2.7. Let f P Rrxs be an ST-polynomial. Let R be the subset of an r|∆pfq|-
dimensional real space given by

R “ tpaβ,jq : aβ,j P Rą0 for every β P ∆pfq and j P nzpβqu.
Then fgp “ fαp0q ´m˚, where m˚ is given as the output of the following geometric program:
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize
ř

βP∆pfq

λ
pβq
0

‰0

λ
pβq
0 |fβ |1{λ

pβq
0

ś

jPnzpβq
jě1

ˆ

λ
pβq
j

aβ,j

˙λ
pβq
j {λ

pβq
0

over the subset R1 of R

defined by:

p1q ř

βP∆pfq

paβ,j{fαpjqq ď 1 for every 1 ď j ď r,

p2q |fβ| ś

jPnzpβq

ˆ

λ
pβq
j

aβ,j

˙λ
pβq
j

ď 1 for every β P ∆pfq with λ
pβq
0 “ 0.

Hence, the optimal bound to find a SONC decomposition of an ST-polynomial is pro-
vided by geometric programming. Since a polynomial with a SONC decomposition is
nonnegative, geometric programming can be used to find certificates of nonnegativity.

Following the literature, e.g. [BPT13, Lau09], we define a global polynomial optimization
problem for some f P Rrxs as the problem to determine the real number

f˚ “ inftfpxq : x P R
nu “ suptλ P R : f ´ λ ě 0u.

One can find a lower bound for f˚ by relaxing the nonnegativity condition in the above
problem to finding the real number

fsos “ sup

#

λ P R : f ´ λ “
k
ÿ

i“1

q2i for some qi P Rrxs
+

.

The bound fsos for the optimal sum of squares decomposition of f can be determined by
semidefinite programming. By construction, we have fsos ď f˚; see [Las10].
A key observation is that geometric programming is not only faster than semidefinite

programming but the bounds obtained by these approach are also at least as good as the
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ones obtained by SDP for many cases of ST-polynomials as the following result shows;
see [IdW14b, Corollary 3.6].

Corollary 2.8. Let f be an ST-polynomial without monomial squares such that ∆pfq is
contained in the interior of Newpfq. Suppose there exists a v P pR˚qn such that fαv

α ă 0
for all α P ∆pfq. Then

fgp “ f˚ ě fsos.

2.4. SONC Certificates for the Constrained Case. In this subsection we recall
known facts from [IdW14b, Section 5] about SONC certificates applied to constrained
polynomial optimization problems.
Let f, g1, . . . , gs be elements of the polynomial ring Rrxs “ Rrx1, . . . , xns and let

K “ tx P R
n : gipxq ě 0, 1 ď i ď su

be a basic closed semialgebraic set. We consider the constrained polynomial optimization
problem

f˚
K “ inf

xPK
fpxq.

If s “ 0, then we have no gi and therefore K “ R
n, which leads to a global optimization

problem. This case was examined in detail in [IdW14b], and it was shown that finding
lower bounds for the case of ST-polynomials is a geometric program; see also Section 2.3
To obtain a general lower bound for f on K which is computable by geometric pro-

gramming we replace the considered polynomials by a new function. Let

Gpµqpxq “ fpxq ´
s
ÿ

i“1

µigipxq “ ´
s
ÿ

i“0

µigipxq(2.4)

for µ “ pµ1, . . . , µsq P R
s
ě0, g0 “ ´f and µ0 “ 1. For every fixed µ˚ P R

s
ě0 the

function Gpxq “ Gpµ˚qpxq is a polynomial in Rrxs. Following an argument in [GM13] we
can assume that all ´gi do not contain monomial squares; see also [IdW14b, Section 5].
We remark that while we consider a fixed support the Newton polytope of Gpµq is not
invariant in general if certain µi equal 0 or if term cancellation occurs.
In order to apply the results about geometric programming from [IdW14b] we have

to assume that for a given µ P R
s
ě0 the polynomial Gpµq is an ST-polynomial in Rrxs.

Results in [IdW14b, Section 3 and 4] imply that Gpµqgp is a lower bound for Gpµq on
R

n, see Section 2.4. If Gpµq is not an ST-polynomial for some µ P R
s
ě0, then we set

Gpµqgp “ ´8, since the corresponding geometric program is infeasible. In consequence,
if µ is fixed, then Gpµqgp is a lower bound for f on the semialgebraic set K. Thus, we
have

spf, gq “ suptGpµqgp : µ P R
s
ě0u ď f˚

K

where g “ pg1, . . . , gsq and Gpµqgp denotes the optimal value of the geometric program
introduced in [IdW14b], see Section 2.4. Hence, for every fixed µ the bound Gpµqgp is com-
putable by a geometric program. Unfortunately, this does not imply that the supremum
is computable by a geometric program as well. However, following ideas by Ghasemi and
Marshall [GM12] the second and third author presented a general optimization program



AN APPROACH TO CONSTRAINED POLYNOMIAL OPTIMIZATION VIA SONC AND GP 9

for a lower bound of spf, gq in [IdW14b], which is a geometric program under special
conditions. We recall these results in the following.
We introduce some notation first. Let Gpµqpxq be defined as in (2.4). We consider

the set of all µ P r0,8qs such that Gpµq is an ST-polynomial. That are all µ such that
Gpµqgp ‰ ´8.
For 0 ď i ď s let Ai Ă N

n be the support of the polynomial gi and let A “ Ťs

i“0Ai be
the union of all supports of polynomials gi. Assume that we have NewpGpµqq “ convpAq
and V pAq “ tαp0q, . . . , αprqu for all µ with Gpµqgp ‰ ´8. Moreover, since we assume
Gpµq to be an ST-polynomial, we have that convpAq is a simplex with even vertex set
tαp0q, . . . , αprqu Ă p2Nqn.
We define ∆pAq in the sense of Section 2.1 as the set of exponents of the tail terms of

Gpµq and ∆pGpµqq Ď ∆pAq as the set of exponents which have a non-zero coefficient and
are not a monomial square. Moreover, we define ∆pGq “ ∆pfq Y ∆p´g1q Y ¨ ¨ ¨ Y ∆p´gsq.
Note that ∆pGpµqq Ď ∆pGq Ď ∆pAq for all µ. We have by Section 2.1

Gpµqpxq “ ´
s
ÿ

i“0

µigipxq “
r
ÿ

j“0

Gpµqαpjqx
αpjq `

ÿ

βP∆pGq

Gpµqβxβ

with coefficients Gpµqαpjq, Gpµqβ P R depending on µ. We use in the last sum that
∆pGpµqq Ď ∆pGq for all µ P r0,8qs. We set the coefficients Gpµqβ “ 0 for all β P
∆pGqz∆pGpµqq.
As before, we denote by tλpβq

0 , . . . , λ
pβq
r u the barycentric coordinates of the lattice point

β P ∆pAq with respect to the vertices of the simplex NewpGpµqq “ convpAq. Following
[IdW14b] we define for every β P ∆pGq a set

Rβ “ taβ : aβ “ paβ,1, . . . , aβ,rq P R
r
ą0u.

Furthermore, we define the nonnegative real set R as

R “ r0,8qs ˆ
ą

βP∆pGq

pRβ ˆ Rě0q.

Hence, R is the Cartesian product of r0,8qs and |∆pGq| many copies R
r
ą0 ˆ Rě0; each

given by one Rβ with β P ∆pGq and a Rě0. We define the function p from R to Rě0 as

ppµ, tpaβ, bβq : β P ∆pGquq “

s
ÿ

i“1

µigi,αp0q `
ÿ

βP∆pGq

λ
pβq
0

‰0

λ
pβq
0 ¨ b

1

λ
pβq
0

β ¨
ź

jPnzpβq
jě1

˜

λ
pβq
j

aβ,j

¸

λ
pβq
j

λ
pβq
0

where, analogously as before, αp0q is a vertex of NewpGpµqq and gi,αp0q is the coefficient

of the monomial xαp0q in the polynomial gi.
Let Gpµqβ “ ´řs

i“0 µi ¨ gi,β denote the coefficient of the term with exponent β of Gpµq.
In other words Gpµqβ is a linear form in the µi’s given by the coefficients of the polynomials
gi; analogously for Gpµqαpjq. We consider the following optimization problem:
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minimize ppµ, tpaβ , bβq : β P ∆pGquq over the subset of R

defined by:

p1q ř

βP∆pGq

aβ,j ď Gpµqαpjq for all 1 ď j ď r,

p2q ś

jPnzpβq

ˆ

aβ,j

λ
pβq
j

˙λ
pβq
j

ě bβ
for every β P ∆pGq
with λ

pβq
0 “ 0, and

p3q |Gpµqβ| ď bβ
for every β P ∆pGq
with λ

pβq
0 ‰ 0.

(2.5)

In [IdW14b, Theorems 5.1 and 5.2] the second and third author show the following.

Theorem 2.9. Let γ be the optimal value of the optimization problem (2.5). Then we
have fαp0q ´ γ ď spf, gq. The optimization problem (2.5) restricted to µ P p0,8qs is a
signomial program if for every β P ∆pGq it holds that Gpµqβ has the same sign for every
choice of µ.
Assume additionally that every linear form Gpµqαpjq “ ´řs

i“0 µi ¨ gi,αpjq corresponding
to a vertex αpjq of NewpGpµqq has only one summand and is strictly positive. Assume
moreover that for all β P ∆pGq the linear form Gpµqβ “ ´řs

i“0 µi ¨ gi,β has only positive
terms. If furthermore all gi,αp0q for 1 ď i ď s are greater or equal than zero, then (2.5) is
a geometric program.

We remark that a Gpµqβ “ ´řs

i“0 µi ¨ gi,β which has only negative terms can be left
out in the above program and the corresponding bβ can be set equal to zero.

3. Constrained Polynomial Optimization via Signomial and Geometric

Programming

In this section, we provide relaxations of the program (2.5) following ideas of Ghasemi
and Marshall in [GM13]. The goal is to weaken the assumptions which are needed to
obtain a geometric program or at least a signomial program. We provide such relaxations
in the programs (3.2) and (3.3) and provide the desired properties in the Theorems 3.1
and 3.3. Moreover, we show that under certain extra assumptions the bound obtained
by the new program (3.2) will equal the optimal bound spf, gq from the previous section;
see Theorem 3.4. Furthermore, we demonstrate in the following Sections 4 and 5 that the
resulting programs can compete with Lasserre relaxations and even outperform them in
various cases.

Let all notation regarding Gpµq be given as in Section 2.4. Assume that we have for
each 0 ď i ď s

gi “
ÿ

βPAi

gi,β ¨ xβ
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with gi,β P R. We have ∆pAiq Ď ∆pAq and hence write

gi “
r
ÿ

j“0

gi,αpjqx
αpjq `

ÿ

βP∆pAq

gi,βx
β

and set gi,αpjq “ 0 for all αpjq P V pAqzAi and gi,β “ 0 for all β P ∆pAqz∆pAiq. We remark
that three cases can occur for β P ∆pAiq:

(1) ´gi,βx
β is not a monomial square. Then we have β P ∆p´giq Ď ∆pGq.

(2) ´gi,βx
β is a monomial square, but there exists another gl such that ´gl,βx

β is not
a monomial square. Then we have β R ∆p´giq, but β P ∆pGq.

(3) ´gi,βx
β is a monomial square, and there exists no other gl such that ´gl,βx

β is not
a monomial square. Then we have β R ∆pGq.

Sums of monomial squares as described in case (3) are ignored in our program (2.5);
see also the remark at the very end of Section 2.4. Hence, we can also ignore this case
here. We investigate the other two cases in detail now. As already mentioned in Section
2.4 we can interpret the coefficients Gpµqαpjq and Gpµqβ as linear forms in µ since we have
for all j “ 0, . . . , r

Gpµqαpjq “ ´
s
ÿ

i“0

µi ¨ gi,αpjq and Gpµqβ “ ´
s
ÿ

i“0

µi ¨ gi,β.

We decompose every Gpµqβ into a positive and a negative part such that Gpµqβ “
Gpµq`

β ´ Gpµq´
β , where

Gpµq´
β “

ÿ

gi,βą0

µi ¨ gi,β and Gpµq`
β “ ´

ÿ

gi,βă0

µi ¨ gi,β.(3.1)

This decomposition is independent of the choice of µ in the sense that no gi,β can be a
summand of both Gpµq`

β and Gpµq´
β for different choices of µ since µ P R

s
ě0. The key idea

is to redefine the constraint bβ ě |Gpµqβ| by a new constraint bβ ě maxtGpµq`
β , Gpµq´

β u.
Let R be defined as in Section 2.4 and let g`

i,αp0q “ maxtgi,αp0q, 0u, i.e., we only consider

the terms with exponents αp0q which are positive in the gi and thus negative in Gpµq. We
redefine p as

ppµ, tpaβ, bβq : β P ∆pGquq “

s
ÿ

i“1

µig
`
i,αp0q `

ÿ

βP∆pGq

λ
pβq
0

‰0

λ
pβq
0 ¨ b

1

λ
pβq
0

β ¨
ź

jPnzpβq
jě1

˜

λ
pβq
j

aβ,j

¸

λ
pβq
j

λ
pβq
0

.

We consider the following optimization problem in the variables µ1, . . . , µs and
aβ,1, . . . , aβ,n, bβ for every β P ∆pGq.
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minimize ppµ, tpaβ, bβq : β P ∆pGquq over the subset of R

defined by:

p1q ř

βP∆pGq

aβ,j ď Gpµqαpjq for all 1 ď j ď r,

p2q ś

jPnzpβq

ˆ

aβ,j

λ
pβq
j

˙λ
pβq
j

ě bβ, for all β P ∆pGq with λ
pβq
0 “ 0,

p3q Gpµq`
β ď bβ for all β P ∆pGq, and

p4q Gpµq´
β ď bβ for all β P ∆pGq.

(3.2)

Note that this problem is by condition (1) obviously feasible only for choices of µ such
that Gpµqαpjq ą 0 for all αpjq since all aβ,j are strictly positive. We set the output as ´8
in all other cases. Indeed, with very little additional assumptions the program (3.2) is a
geometric program. Moreover, it is a relaxation of the program (2.5).

Theorem 3.1. Assume that for every 1 ď j ď r the form Gpµqαpjq “ ´řs

i“0 µi ¨ gi,αpjq

has exactly one strictly positive term, i.e. there exists exactly one strictly negative gi,αpjq.
Then the optimization problem (3.2) restricted to µ P p0,8qs is a geometric program.
Assume that γgp denotes the optimal value of (3.2) and γ denotes the optimal value of
(2.5). Then we have

fαp0q ´ γgp ď fαp0q ´ γ ď spf, gq.

Proof. If we restrict ourselves to µ P p0,8qs, then all functions involved in (3.2) depend
on variables in Rą0. By assumption every Gpµqαpjq has exactly one strictly positive term.
Thus, we can express constraint (1) as

ř

βP∆pGq

aβ,j ` Gpµq´
αpjq

Gpµq`
αpjq

ď 1,

with Gpµq´
αpjq and Gpµq`

αpjq defined analogously as in (3.1). Since Gpµq`
αpjq is a monomial

the left hand side is a posynomial in µ and x. The constraints (2) – (4) are obviously
posynomial constraints in the sense of Definition 2.5 of a geometric program. The function
p is also a posynomial since all terms are nonnegative by construction and all exponents
are rational. Moreover, every bβ in (3.2) has to be greater or equal than the corresponding
bβ in (2.5) because maxta, bu ě |a´b| for all a, b P Rzt0u. Since furthermore g`

i,αp0q ě gi,αp0q

it follows that γgp ď γ by the definitions of (3.2) and (2.5). The last inequality follows
from Theorem 2.9. �

One expects the programs (2.5) and (3.2) to have a similar optimal value if, for exam-
ple, gi,αp0q ě 0 for most i “ 1, . . . , s and if one Gpµq`

β , Gpµq´
β is identically zero for most

β P ∆pGq. Note that one of Gpµq`
β , Gpµq´

β is zero if and only if maxtGpµq`
β , Gpµq´

β u “
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|Gpµq`
β ´ Gpµq´

β | “ |Gpµqβ| if and only if the gi,β are all ě 0 or all ď 0 for i “ 0, . . . , s.

We give an example to demonstrate how a given constrained polynomial optimization
problem can be translated into the geometric program (3.2). We discuss several further
examples in the following Section 4.

Example 3.2. Let f “ 1`2x2y4 ` 1
2
x3y2 and g1 “ 1

3
´x6y2. From these two polynomials

we obtain a function

Gpµq “
ˆ

1 ´ 1

3
µ

˙

` 2x2y4 ` µx6y2 ` 1

2
x3y2.

For Gpµq to be an ST-polynomial, we have to choose µ P p0, 3q. Here, we have ∆pGq “
tβu “ tp3, 2qu. Thus, we introduce 4 variables paβ,1, aβ,2, bβ , µq. First, we compute the
barycentric coordinates of β and get

λ
pβq
0 “ 3

10
, λ

pβq
1 “ 3

10
, λ

pβq
2 “ 2

5
.

Now we match the coefficients of Gpµq to the vertices αp0q “ p0, 0q, αp1q “ p2, 4q, αp2q “
p6, 2q:

‚ g`
1,αp0q “ maxt1

3
, 0u “ 1

3
,

‚ Gpµqαp1q “ 2, Gpµqαp2q “ µ ,
‚ Gpµq`

β “ 1
2
, Gpµq´

β does not exist.

Hence, program (3.2) is of the form:

inf

#

1

3
µ ` 3

10
¨ b

10

3

β ¨
ˆ

3

10

˙1

¨
ˆ

2

5

˙
4

3

¨ paβ,1q´1 ¨ paβ,2q´ 4

3

+

such that:

(1) aβ,1 ď 2, aβ,2 ď µ.

(2) The second constraint does not appear, because we do not have λ
pβq
0 “ 0.

(3) 1
2

ď bβ.
(4) The fourth constraint does not appear, because we do not have a Gpµq´

β .

7

In the following, we strengthen Theorem 2.9 by reformulating the program (3.2) such
that it is always a signomial program and not only if for every β P ∆pGq it holds thatGpµqβ
has the same sign for every choice of µ. The reformulated program covers the missing
cases of Theorem 3.1 and also yields better bounds than the corresponding geometric
program (3.2) in general. Let

qpµ, tpaβ, cβq : β P ∆pGquq “
s
ÿ

i“1

µigi,αp0q `
ÿ

βP∆pGq

λ
pβq
0

‰0

λ
pβq
0 ¨ c

1

λ
pβq
0

β ¨
ź

jPnzpβq
jě1

˜

λ
pβq
j

aβ,j

¸

λ
pβq
j

λ
pβq
0

.
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We consider the following program.
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minimize qpµ, tpaβ, cβq : β P ∆pGquq over the subset of R

defined by:

p1q ř

βP∆pGq

aβ,j ď Gpµqαpjq for all 1 ď j ď r,

p2q ś

jPnzpβq

ˆ

aβ,j

λ
pβq
j

˙λ
pβq
j

ě cβ for all β P ∆pGq with λ
pβq
0 “ 0,

p3q Gpµq`
β ´ Gpµq´

β ď cβ for all β P ∆pGq, and

p4q Gpµq´
β ´ Gpµq`

β ď cβ for all β P ∆pGq.

(3.3)

The key difference between this program and (3.2) is that

cβ ě maxtGpµq`
β ´ Gpµq´

β , Gpµq´
β ´ Gpµq`

β u “ |Gpµqβ|.
We obtain the following statement.

Theorem 3.3. The optimization problem (3.3) restricted to µ P p0,8qs is a signomial
program. Assume that γsnp denotes the optimal value of (3.3) and γgp, γ denote the optimal
values of (3.2) and (2.5) as before. Then we have

f0 ´ γgp ď f0 ´ γsnp ď f0 ´ γ ď spf, gq.
Particularly, we have γsnp “ γ if the program (2.5) attains its optimal value for µ P p0,8qs.

Proof. The proof is analogue to the proof of Theorem 3.1. The only difference is that
certain terms can have a negative sign now and hence posynomials then become signomials.
The statement follows with the definition of a signomial program; see Section 2.2. �

Finally, we show that if we strengthen the assumptions in Theorem 3.1 moderately,
then, indeed, the output fαp0q ´ γgp of (3.2) equals the output fαp0q ´ γ of (2.5) and
particularly the bound spf, gq.
Theorem 3.4. Assume that for every 1 ď j ď r the form Gpµqαpjq “ ´řs

i“0 µi ¨gi,αpjq has
exactly one strictly positive term. Furthermore, assume that gi,αp0q ě 0 for all i “ 1, . . . , s,
and that ∆pAiq X ∆pAlq “ H for all 0 ď i ă l ď s. Let γ be the optimal value of the
program (2.5). If the optimal value spf, gq “ suptGpµqgp : µ P R

s
ě0u is attained for some

µ P p0,8qs, then fαp0q ´γgp “ fαp0q ´γ “ spf, gq, where, as before, γgp denotes the optimal
value of (3.2).

Note that the condition ∆pAiqX∆pAlq “ H for all 0 ď i ă l ď s is particularly satisfied
if ∆p´giq “ H for all but one i “ 0, . . . , s.

Proof. The assumption ∆pAiq X ∆pAlq “ H for all 0 ď i ă l ď s implies for every
β P ∆pGq that Gpµqβ “ ´řs

i“0 µi ¨ gi,β “ ´µk ¨ gk,β, for some k P r0, ss. Therefore, we
have for every β P ∆pGq that

maxtGpµq`
β , Gpµq´

β u “ |µk ¨ gk,β| “ |Gpµqβ|.
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Furthermore, we have gi,αp0q ě 0 for all i “ 1, . . . , s by assumption and thus we obtain
řs

i“1 µigi,αp0q “ řs

i“1 µig
`
i,αp0q. Hence, the two programs (2.5) and (3.2) coincide.

By assumption, every Gpµqαpjq consists of exactly one positive term. Therefore, (3.2)
is a GP by Theorem 3.1. Considering Theorem 3.1 it suffices to show the inequality
fαp0q ´ γgp ě spf, gq for fαp0q ´ γgp “ fαp0q ´ γ “ spf, gq to hold. Let µ˚ P p0,8qs
be such that Gpµ˚qgp “ spf, gq. By Corollary 2.7 Gpµ˚qgp is given by a feasible point
paβ,1, . . . , aβ,rq of the program
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minimize
ř

βP∆pGq

λ
pβq
0

‰0

λ
pβq
0 ¨ |µ˚

k ¨ gk,β|
1

λ
pβq
0 ¨ ś

jPnzpβq
jě1

ˆ

λ
pβq
j

aβ,j

˙

λ
pβq
j

λ
pβq
0 over the subset R1 of R

defined by:

p1q ř

βP∆pGq

aβ,j ď Gpµ˚qαpjq for all 1 ď j ď r, and

p2q ś

jPnzpβq

ˆ

aβ,j

λ
pβq
j

˙λ
pβq
j

ě |µ˚
k ¨ gk,β| for all β P ∆pGq with λ

pβq
0 “ 0.

Then every paβ,1, . . . , aβ,r, bβ, µ˚q with bβ ě |µ˚
k ¨gk,β| for all β P ∆pGq is a feasible point

of (3.2). Furthermore,

fαp0q ´
s
ÿ

i“1

µ˚
i g

`
i,αp0q ´

ÿ

βP∆pGq

λ
pβq
0

‰0

λ
pβq
0 ¨ b

1

λ
pβq
0

β ¨
ź

jPnzpβq
jě1

˜

λ
pβq
j

aβ,j

¸

λ
pβq
j

λ
pβq
0

“ Gpµ˚qp0q ´
ÿ

βP∆pGq

λ
pβq
0

‰0

λ
pβq
0 ¨ b

1

λ
pβq
0

β ¨
ź

jPnzpβq
jě1

˜

λ
pβq
j

aβ,j

¸

λ
pβq
j

λ
pβq
0

ě Gpµ˚qp0q ´
ÿ

βP∆pGq

λ
pβq
0

‰0

λ
pβq
0 ¨ |µ˚

k ¨ gk,β|
1

λ
pβq
0 ¨

ź

jPnzpβq
jě1

˜

λ
pβq
j

aβ,j

¸

λ
pβq
j

λ
pβq
0

.

Hence, fαp0q ´ γgp ě Gpµ˚qgp “ spf, gq.
�
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4. Examples for Constrained Optimization via Geometric Programming

and a Comparison to Lasserre Relaxations

One of the main results in [IdW14b] is the observation that lower bounds arising from
geometric programming can be better than the bounds obtained by semidefinite pro-
gramming. This is an important observation considering that geometric programs can be
solved more efficiently than semidefinite programs in practice, especially for sparse poly-
nomials with high degree. Here, we show that this observation also holds for constrained
polynomial optimization of the form

f˚
K “ inf

xPK
fpxq.

Let ΣRrxs2 denote the set of n-variate sums of squares . We consider the d-th Lasserre
relaxation [Las10]

f pdq
sos “ sup

#

r : f ´ r “
s
ÿ

i“0

σigi, σi P ΣRrxs2, degpσigiq ď 2d

+

where g0 “ 1 and 2d ě max1ďiďstdegpfq, degpgiqu.

In the following we provide several examples comparing Lasserre relaxation using the
Matlab SDP solver Gloptipoly [HLL09] to our approach given in program (3.2) using
the Matlab GP solver CVX [BG08, BGY06].

Example 4.1. Let f “ 1`x4y2 `x2y4 ´3x2y2 be the Motzkin polynomial and g1 “ x3y2.
Then

K “ tpx, yq P R
2 : x ě 0u.

Since f is globally nonnegative and has two zeros p1, 1q, p1,´1q on K, e.g. [Rez00], we
have f˚

K “ 0. We consider the third Lasserre relaxation and obtain

f p3q
sos “ sup

 

r : f ´ r “ σ0 ` σ1 ¨ g1, σ0, σ1 P ΣRrxs2, degpσjgjq ď 6
(

“ ´8,

since the problem is infeasible. Note that K is unbounded. Hence, it is not necessarily the

case that f
pdq
sos ą ´8 for sufficiently high relaxation order d. Here, using Gloptipoly,

one can find that f
p7q
sos “ 0 “ f˚

K .
Now, we consider spf, g1q “ suptGpµqgp : µ P Rě0u ď f˚

K where Gpµq “ f ´ µ1g1 with
µ1 ě 0. Note that NewpGpµqq is a simplex for every choice of µ. In particular, for µ1 “ 0
we have that Gpµqgp “ fgp “ 0, since the Motzkin polynomial is a SONC polynomial; see
Section 2.1 and also [IdW14a]. It follows that

´8 “ f p3q
sos ă spf, g1q “ 0 “ f˚

K

and hence spf, g1q yields the exact solution compared to the Lasserre relaxation. This
is in sharp contrast to the geometric programming approach proposed in [GM13] where

f
pdq
sos ě spf, gq holds in general. 7

Example 4.2. Let f “ 1 ` x4y2 ` xy and g1 “ 1
2

` x2y4 ´ x2y6. The feasible set K is a

non-compact set depicted in Figure 1. Using Gloptipoly, one can check that ´8 “ f
p4q
sos
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and the optimal solution is given for d “ 8 with f
p8q
sos « 0.4474. In this case one can extract

the minimizers p´0.557, 1.2715q and p0.557,´1.2715q.
We compare the results to our approach via geometric programming instead of Lasserre

relaxations. From f and g1 we get Gpµq “ p1´ 1
2
µq`x4y2`µx2y6 `xy´µx2y4. Note that

NewpGpµqq is a two dimensional simplex if µ R t0, 2u. Then, we have ∆pGq “ tβ, β̃u “
tp1, 1q, p2, 4qu. Hence, we introduce the variables paβ,1, aβ,2, aβ̃,1, aβ̃,2, bβ , bβ̃, µq. Therefore,
the geometric program (3.2) reads as follows:

inf

"

1
2
µ ` 7

10
¨ b

10

7

β ¨
`

1
5

˘
2

7 ¨
`

1
10

˘
1

7 ¨ paβ,1q´ 2

7 ¨ paβ,2q´ 1

7 ` 1
5

¨ b5
β̃

¨
`

1
5

˘1
¨
`

3
5

˘3
¨ paβ̃,1q´1 ¨ paβ̃,2q´3

*

such that the variables satisfy

aβ,1 ` aβ̃,1 ď 1, aβ,2 ` aβ̃,2 ď µ and 1 ď bβ , µ ď bβ̃ .

We use the Matlab solver CVX to solve the program given above. The optimal
solution is given by

paβ,1, aβ,2, aβ̃,1, aβ̃,2, bβ , bβ̃, µq “ p0.9105, 0.0540, 0.0895, 0.0319, 1.0000, 0.0859, 0.0859q .

This leads to

γgp « 0.5526

and hence fαp0q ´ γgp « 0.4474. Thus, we have

f p8q
sos “ fαp0q ´ γgp “ spf, g1q.

The equality fαp0q ´ γgp “ spf, g1q is not surprising, since the assumptions of Theorem 3.4
are satisfied. Thus, we get the optimal solution immediately via geometric programming
whereas one needs 5 relaxation steps via Lasserre relaxation.
In this example both geometric programing and the Lasserre approach have a runtime

below 1 second. However, if we multiply all exponents in f and g1 by 10, then the
approaches differ significantly. By multiplying the exponents by 10 we have made a
severe change to the problem since the term x10y10 is now a monomial square such that
the exponent is a lattice point in the interior of the Newton polytope of the adjusted Gpµq.
Therefore, we have to leave this term out when running the constrained optimization
program (3.2). The adjusted program yields with CVX an output NaN in below one
second. However, the reason is that it computes µ “ 0, which is the correct answer.
Namely, we can see that after multiplying the exponents by 10, the only negative terms
are given by g1. Thus, the optimal choice is µ “ 0, and we can see that the minimal value
is attained at p0, 0q and f˚ “ 1 is given by the constant term of f .
In comparison, we have a runtime of approximately 1110 seconds, i.e. approximately

18.5 minutes with Gloptipoly. After this time Gloptipoly provides an output “Run
into numerical problems.”. It claims, however, to have solved the problem and pro-
vides the correct minimum f˚ “ 1 at a minimizer 10´7 ¨ p´0.1057, 0.1711q, which, of
course, is the origin up to a numerical error. 7
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Figure 1. The feasible set for the constrained optimization problem in
Example 4.2 is the unbounded green area.

Example 4.3. Let f “ 1`x2z2`y2z2`x2y2´8xyz and g1 “ x2yz`xy2z`x2y2´2`xyz.
Using Gloptipoly, we get the following sequence of lower bounds:

f p2q
sos “ f p3q

sos “ f p4q
sos “ ´8 ă f p5q

sos « ´14.999.

However, one cannot certify the optimality via Gloptipoly in this case. Additionally,

the sequence f
pdq
sos is not guaranteed to converge to f˚, since K is unbounded. Symboli-

cally, we were able to prove a global minimum of f˚ “ ´15 with four global minimizers
p2, 2, 2q, p´2,´2, 2q, p´2, 2,´2q, p2,´2,´2q using the quantifier elimination software Syn-
rac, see [AY03]. Now, we consider the approach via geometric programming instead of
Lasserre relaxations. We have

Gpµq “ p1 ` 2µq ` x2z2 ` y2z2 ` p1 ´ µqx2y2 ` p´8 ´ µqxyz ´ µx2yz ´ µxy2z.

Therefore, Gpµq is an ST-polynomial for µ P r0, 1q, and we have ∆pGq “ tβ, β, β̂u “
tp1, 1, 1q, p2, 1, 1q, p1, 2, 1qu. Thus, our geometric program has the following 13 variables

paβ,1, aβ,2, aβ,3, aβ,1, aβ,2, aβ,3, aβ̂,1, aβ̂,2, aβ̂,3, bβ, bβ , bβ̂, µq.
Hence, program (3.2) is of the form

inf

"

0 ` 1

4
¨ b4β ¨

ˆ

1

4

˙

¨
ˆ

1

4

˙

¨
ˆ

1

4

˙

¨ paβ,1q´1 ¨ paβ,2q´1 ¨ paβ,3q´1

*

such that

p1q aβ,1 ` aβ,1 ` aβ̂,1 ď 1, aβ,2 ` aβ,2 ` aβ̂,2 ď 1, aβ,3 ` aβ,3 ` aβ̂,3 ` µ ď 1,

p2q 1
2

¨ bβ ¨
`

aβ,1
˘´ 1

2 ¨
`

aβ,3
˘´ 1

2 ď 1,

1
2

¨ bβ̂ ¨
´

aβ̂,2

¯´ 1

2 ¨
´

aβ̂,3

¯´ 1

2 ď 1,

p3q 8 ¨ b´1
β ď 1, µ ¨ b´1

β ď 1, µ ¨ b´1

β
ď 1, µ ¨ b´1

β̂
ď 1 .

This leads to γgp “ 1
256

¨ 84 “ 16 and so fαp0q ´ γgp “ ´15. The runtime for this
example is below 1 second. Multiplying the exponents of f and g1 by 10 yields the same
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results; the runtime for the geometric program remains below 1 second. In comparison,
Gloptipoly yields

f pdq
sos “ ´8 for d ď 19,

and provides a bound
f p20q
sos « ´14.999

in the 20-th relaxation after 36563 seconds, i.e. approximately 10.16 hours. Moreover,
although this bound is numerically equal to f˚, Gloptipoly was not able to certify that
the correct bound was found. 7

Example 4.4. Let f “ z6 ` x4y2 ` x2y4 ´ 3x2y2z2 and g1 “ x2 ` y2 ` z2 ´ 1. We
obtain Gpµq “ f ´ µg1. This problem is infeasible in the sense of program (3.2). Namely,
condition p♣q is never satisfied since for every µ ą 0 we have a vertex p0, 0q of NewpGpµqq
with a negative coefficient. Therefore, one can immediately conclude that spf, g1q has to
be obtained for µ “ 0. Thus, we have spf, g1q “ fgp. Since f is the homogenized Motzkin
polynomial we obtain immediately fgp “ f˚ “ 0. An analogous argumentation holds for

the variation G̃pµq “ f ` µg1.
It is well-known that SDP solvers have serious issues with optimizing f for g1 ě 0 or

g1 ď 0. For further information see [Nie13b, Examples 5.3 and 5.4]. 7

It is an obvious question for which classes of polynomial optimization problems the
geometric programming bound developed in this paper outperforms the Lasserre relax-
ations in optimality. Even though this seems to be a challenging task, one can answer
this question combinatorially. The second and the third author showed in [IdW14a] that
a nonnegative circuit polynomial f is a sum of squares if and only if Newpfq has a special
lattice point structure. In particular, it was shown that a nonnegative circuit polynomial
f cannot be a sum of squares if Newpfq is what is called an M-simplex in [IdW14a]. How-
ever, f will always be a sum of squares if it is supported on what is called an H-simplex
in [IdW14a]. Hence, our geometric programming bounds will outperform the Lasserre
relaxations in optimality at least if NewpGpµqq is an M-simplex (and in more cases as it
is shown in [IdW14a]). However, whether a simplex is an M-simplex or an H-simplex
or something in between is not easy to decide, see [IdW14a]. Therefore, the quality of
geometric programming bounds compared to semidefinite programming bounds is very
closely related to understanding these combinatorial aspects of the Newton polytopes.

In the last example in this section we show that for special simplices our geometric
programming approach coincides with the one in [GM13].

Example 4.5. Suppose that NewpGpµqq “ convt0, 2d e1, . . . , 2d enu. Hence, the Newton
polytope is a 2d-scaled standard simplex in R

n, which is the case if the pure powers x2d
j

for 1 ď j ď n are present in the polynomial f or in the constrained polynomials gi. The
corresponding polynomial Gpµq is an ST-polynomial; see Section 2.1. Indeed, all examples
in [GM13, Example 4.8] are of that form and thus all of them are ST-polynomials.
In this case the program (2.5) coincides with the program (3) in [GM13]. One drawback

of this setting is that the geometric programming bounds obtained from (2.5) are at most

as good as the bound f
pdq
sos , see [GM13]. However, as we have proven in the previous
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examples, there are also cases where the geometric programming bounds outperform f
pdq
sos ,

since our approach is more general than in [GM13]. The reason is that the cones of sums
of nonnegative circuit polynomials and sums of squares do not contain each other (but
both of them are contained in the cone of nonnegative polynomials). 7

We point out that we make no assumption about the feasible set K. In particular,
it is not assumed to be compact as it is in the classical setting via Lasserre relaxations
in order to guarantee convergence of the relaxations. However, the crucial point in our
setting so far is that NewpGpµqq is an ST-polynomial. In the following Section 5 we lay
the foundation for the usage of our geometric programming approach also for non-ST-
polynomials.
But even if NewpGpµqq is not an ST-polynomial, then we can enforce it to be an ST-

polynomial in the case of a compact K. This can be achieved by adding a redundant
constraint gs`1 “ x2d

1 ` . . . ` x2d
n ` c for c P R to the feasible set K. In consequence

NewpGpµqq is a 2d-scaled standard simplex and by the previous example our approach
coincides with the one in [GM13]. Hence, the Lasserre relaxation cannot be outperformed
in quality anymore. However, it can and will still be outperformed in runtime. It would be
interesting to add other redundant inequalities to K such that the corresponding bounds
are better than the ones obtained via Lasserre relaxations. Unfortunately, no systematic
way is known so far.

5. Optimization for Non-ST-Polynomials

The goal of this section is to provide a first approach to tackle optimization prob-
lems (both constrained and unconstrained) which cannot be expressed as a single ST-
polynomial using the methods developed in [IdW14a, IdW14b] and in Section 3 in this
article. A more careful investigation of these general types of nonnegativity problems will
be content of a follow-up article.

We start with the case of global nonnegativity for arbitrary polynomials via SONC cer-
tificates. We recall the following statement from [IdW14a, Definition 7.1 and Proposition
7.2], which immediately follows from Section 2.1.

Fact 5.1. Let f P Rrxs and assume that there exist SONC polynomials g1, . . . , gk and

positive real numbers µ1, . . . , µk such that f “ řk

i“1 µigi. Then f is nonnegative.

Of course, it is not obvious how to find a SONC decomposition in general. For ST-
polynomials we know that we can find a SONC decomposition via the geometric opti-
mization problem described in Theorem 2.6. Thus, we investigate a general polynomial
f P Rrxs supported on a set A Ă N

n satisfying p♣q. We denote

f “
d
ÿ

j“0

fαpjqx
αpjq `

ÿ

βP∆pfq

fβx
β

such that fαpjqx
αpjq are monomial squares. By p♣q, V pAq are the vertices of Newpfq

and we have V pAq Ď tαp0q, . . . , αpdqu; equality, however, is not required here. Namely,
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tαp0q, . . . , αpdqu can also contain exponents of monomial squares in ∆pAqz∆pfq which are
not vertices of convpAq. For simplicity we assume in the following that the affine span of
A is n-dimensional. We proceed as follows:

(1) Choose a triangulation T1, . . . , Tk of exponents αp0q, . . . , αpdq P A corresponding
to the monomial squares.

(2) Compute the induced covering A1, . . . , Ak of A given by Ai “ AXTi for 1 ď i ď k.
(3) Assume that β P ∆pfq Ă A is contained in more than one of the Ai’s. Let without

loss of generality β P A1, . . . , Al with 1 ă l ď k. Then we choose fβ,1, . . . , fβ,l P R

such that
řl

i“1 fβ,i “ fβ and signpfβ,iq “ signpfβq for all 1 ď i ď l. We proceed
analogously for αp0q, . . . , αpdq.

(4) Define new polynomials g1, . . . , gk such that

gi “
ÿ

βPAi

fβ,ix
β.

Note that by (1) and (2) Ai is a set of integers such that convpAiq is a simplex with even
vertices and Ai contains no even points corresponding to monomial squares except for the
vertices of convpAiq. Thus, by (2)–(4) we see that all gi are ST-polynomials. Namely, the
signs of the fβ,i are identical with the signs of the coefficients of f . Therefore, monomial

squares fαpjqx
αpjq of f get decomposed into a sum of monomial squares

řk

i“1 fαpjq,ix
αpjq

such that each individual monomial square fαpjq,ix
αpjq is a term of exactly one gi. We

proceed analogously for the terms fβx
β . Additionally, it follows by construction that

f “ řk

i“1 gi. We apply the GP proposed in Corollary 2.7 on each of the gi with respect
to a monomial square fαpjq,ix

αpjq, which is a vertex of Newpgiq “ convpAiq; we denote the
minimizer by m˚

i . We make the following observation about these minimizers which was
similarly already pointed out in [IdW14a, Section 3]:

Lemma 5.2. Let f P Rrxs be a nonnegative circuit polynomial. Let bαx
α be a monomial

with bα ą 0 and α P Z
2n. Then bαx

α ¨ f is also a nonnegative circuit polynomial.

Note particularly that if v P pR˚qn satisfies fpvq “ 0, then pbαxα ¨ fqpvq “ 0.

Proof. It is easy to see that all conditions for p♣q as well as the conditions (ST1) and
(ST2) remain valid for bαx

α ¨ f . Thus, bαx
α ¨ f still is a circuit polynomial and since

bαx
α ě 0 it is also nonnegative. �

Proposition 5.3. Let f , g1, . . . , gk, and m˚
i be as before. Assume for i “ 1, . . . , k that

m˚
i corresponds to the monomial square fαpjq,ix

αpjiq with αpjiq P tαp1q, . . . , αpdqu XV pAiq.
Then f ´ řk

i“1m
˚
i x

αpjiq is a SONC and hence nonnegative. Thus, the m˚
i provide bounds

for the coefficients fαpjq,i for f to be nonnegative. Particularly, if for i “ 1, . . . , l with

l ď k the exponents αpjiq are the origin, then fαp0q ´ řl

i“1m
˚
i is a lower bound for f˚.

Proof. By construction we know that gi ´m˚
i x

αpjiq is a SONC. Thus, f ´řk

i“1m
˚
i x

αpjiq “
řk

i“1 gi ´ m˚
i x

αpjiq is a SONC, too. The last part is an immediate consequence with the
definitions of the m˚

i ’s and f˚. �
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Note that the decomposition of f into the gi’s is not unique. First, the triangulation
in (1) is not unique in general. And, second, the decomposition of the terms in (3) is
arbitrary. Note also that there exist several monomial squares which appear in more than
one gi, since membership in Ai is given by the chosen triangulation and every simplex T1

intersects at least one other simplex T2 in an n´1 vertex, which means that A1 XA2 con-
tains at least n even elements. As mentioned in the introduction, the problem to identify
an optimal triangulation and an optimal decomposition of coefficients will be discussed in
a follow-up article.

We provide some examples to show how this generalized approach can be used in prac-
tice.

Example 5.4. Let f “ 6`x2
1x

6
2`2x4

1x
6
2`1x8

1x
2
2´1.2x2

1x
3
2´0.85x3

1x
5
2´0.9x4

1x
3
2´0.73x5

1x
2
2´

1.14x7
1x

2
2. We choose a triangulation

tp0, 0q, p2, 6q, p4, 6q, p2, 3q, p3, 5qu, tp0, 0q, p4, 6q, p8, 2q, p2, 3q, p4, 3q, p5, 2q, p7, 2qu.
Here and in the following the vertices of each simplex are printed in red (bold). For the
corresponding Newton polytope see Figure 2. We split the coefficients equally among the
two triangulations and obtain two ST-polynomials

g1 “ 3 ` x2
1x

6
2 ` x4

1x
6
2 ´ 0.6x2

1x
3
2 ´ 0.85x3

1x
5
2, and

g2 “ 3 ` x4
1x

6
2 ` 1x8

1x
2
2 ´ 0.6x2

1x
3
2 ´ 0.9x4

1x
3
2 ´ 0.73x5

1x
2
2 ´ 1.14x7

1x
2
2.

Using CVX, we apply the GP from Corollary 2.7 and obtain optimal values m˚
1 “ 0.2121,

m˚
2 “ 2.5193, and a SONC decomposition

0.173 ` εx21x
6
2 ` 0.522x41x

6
2 ´ 0.6x21x

3
2 ` 0.04 ` x21x

6
2 ` 0.478x41x

6
2 ´ 0.85x31x

5
2 `

0.427 ` 0.211x41x
6
2 ` εx81x

2
2 ´ 0.6x21x

3
2 ` 0.663 ` 0.436x41x

6
2 ` 0.085x81x

2
2 ´ 0.9x41x

3
2 `

0.753 ` 0.186x41x
6
2 ` 0.177x81x

2
2 ´ 0.73x51x

2
2 ` 0.676 ` 0.167x41x

6
2 ` 0.738x81x

2
2 ´ 1.14x71x

2
2,

with ε ă 10´10, i.e. ε is numerical zero. Namely, p2, 3q is located on the segment given by
p0, 0q and p4, 6q and thus p2, 6q and p8, 2q have coefficients zero in the convex combinations
of the point p2, 3q.
Thus, the optimal value fgp, which provides us a lower bound for f˚, is fgp « 6´2.731 “

3.269. In comparison, via Lasserre relaxation one obtains an only slightly better optimal
value f˚ “ 3.8673.
Moreover, we remark that our GP based bound can be improved significantly via making

small changes in the distribution of the coefficients. For example, if one decides not to
split the coefficient of the term x2

1x
3
2 among g1 and g2 equally, but to put the entire weight

of the coefficient into g1, i.e.,

g̃1 “ 3 ` x2
1x

6
2 ` x4

1x
6
2 ´ 1.2x2

1x
3
2 ´ 0.85x3

1x
5
2, and

g̃2 “ 3 ` x4
1x

6
2 ` 1x8

1x
2
2 ´ 0.9x4

1x
3
2 ´ 0.73x5

1x
2
2 ´ 1.14x7

1x
2
2,

then this yields to an improved bound f̃gp « 3.572. 7

The next example shows that we can use the approach of this section to take into account
monomial squares, which are not a vertex of the Newton polytope of the polynomial which
we intend to minimize.
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Figure 2. The Newton polytopes of the polynomials in the Examples 5.4
and 5.5 and their triangulations.

Example 5.5. Let f “ 1 ` 3x2
1x

6
2 ` 2x6

1x
2
2 ` 6x2

1x
2
2 ´ x1x

2
2 ´ 2x2

1x2 ´ 3x3
1x

3
2. We choose a

triangulation

tp0, 0q, p2, 2q, p2, 6q, p1, 2qu, tp0, 0q, p2, 2q, p6, 2q, p2, 1qu, tp2, 2q, p2, 6q, p6, 2q, p3, 3qu.

For the corresponding Newton polytope see Figure 2. First, we split the coefficients
equally among the three triangulations such that we obtain

g1 “ 0.5 ` 1.5x2
1x

6
2 ` 2x2

1x
2
2 ´ x1x

2
2,

g2 “ 0.5 ` 1x6
1x

2
2 ` 2x2

1x
2
2 ´ 2x2

1x2,

g3 “ 1.5x2
1x

6
2 ` 1x6

1x
2
2 ` 2x2

1x
2
2 ´ 3x3

1x
3
2.

All three gi have a joint monomial x2
1x

2
2. For all i “ 1, 2, 3 we compute the maximal bi ą 0

such that gi ´ bix
2
1x

2
2 is a nonnegative circuit polynomial. This yields a bound for the

coefficient of x2
1x

2
2 certifying that f is a SONC and hence nonnegative. We could apply

the GP from Corollary 2.7, but since all gi are circuit polynomials we can compute the
corresponding circuit numbers symbolically. We obtain with Theorem 2.4:

Θg1
p1, 2q “

ˆ

1{2

1{2

˙
1

2

¨

ˆ

3{2

1{4

˙
1

4

¨

ˆ

2 ´ b1

1{4

˙
1

4

“ 4

a

4 ¨ 4 ¨ 3{2 ¨ p2 ´ b1q “ 2 4

a

3{2 ¨ p2 ´ b1q,

Θg2
p2, 1q “

ˆ

1{4

1{2

˙
1

2

¨

ˆ

1{2

1{4

˙
1

4

¨

ˆ

1 ´ 1{2 ¨ b2
1{4

˙
1

4

“ 4

a

1{4 ¨ 2 ¨ 4p1 ´ 1{2 ¨ b2q “ 4

a

2 ´ b2, and

Θg3
p3, 3q “

ˆ

1{2

1{4

˙
1

4

¨

ˆ

1{3

1{4

˙
1

4

¨

ˆ

1{3p2 ´ b3q

1{2

˙
1

2

“ 4

a

2 ¨ 4{3 ¨
a

2{3 ¨ p2 ´ b3q “ 2 4

a

2{27
a

2 ´ b3.
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This provides solutions:

2 4

a

3{2 ¨ p2 ´ b1q ě 1 ô 3{2 ¨ p2 ´ b1q ě 1{16 ô b1 ď 47{24,
4

a

2 ´ b2 ě 1 ô b2 ď 1,

2 4

a

2{27
a

2 ´ b3 ě 1 ô
a

2{27 ¨ p2 ´ b3q ě 1{4 ô b3 ď 2 ´
?
27{p2

?
2q.

Hence, we obtain the following bound for the coefficient of x2
1x

2
2:

6 ´ p47{24 ` 1 ` 2 ´
?
27{p4

?
2qq « 6 ´ 4.03977468 « 1.96.

A double check with the CVX solver for GPs yields the same value in approximately
0.753 seconds.
We want to compute a bound for f˚. We choose the same triangulation and the same

split of coefficients as before, but now we optimize g1 and g2 with respect to the constant
term; we optimize g3 with respect to x2

1x
6
2. After a runtime of approximately 0.6657

seconds we obtain optimal values 0.0722, 0.3536, and 0.3164. Thus, we found a lower
bound for the constant term given by

m˚
1 ` m˚

2 « 0.0722 ` 0.3536 “ 0.4268.

The corresponding optimal SONC decomposition is given by

0.0722 ` 1.5x2
1x

6
2 ` 2x2

1x
2
2 ´ x1

1x
2
2 ` 0.3536 ` 1x6

1x
2
2 ` 2x2

1x
2
2 ´ 1x2

1x
1
2 `

0.3164x2
1x

6
2 ` 1x6

1x
2
2 ` 2x2

1x
2
2 ´ 3x3

1x
3
2

Thus, we obtain a bound for f˚ given by

fgp “ 1 ´ 0.4268 “ 0.5732

We make a comparison and optimize f with Lasserre relaxation. This yields an optimal
value

fsos “ f˚ « 0.8383.

Therefore, we want to improve our bound. We keep the triangulation, but we use another
distribution of the coefficients among the polynomials g1, g2 and g3 and define instead

g̃1 “ 0.25 ` 2x2
1x

6
2 ` 1.217x2

1x
2
2 ´ 2x1x

2
2,

g̃2 “ 0.75 ` 1x6
1x

2
2 ` 3.652x2

1x
2
2 ´ 1x2

1x2,

g̃3 “ 1x2
1x

6
2 ` 1x6

1x
2
2 ` 1.13x2

1x
2
2 ´ 3x3

1x
3
2.

Again, we optimize g̃1 and g̃2 with respect to the constant term and g̃3 with respect to
x2
1x

6
2. We obtain optimal values 0.0801, 0.2616, and 0.9912. Thus, we are able to improve

our bound for f˚ to

f̃gp « 1 ´ p0.0801 ` 0.2616q “ 0.6583.

The corresponding optimal SONC decomposition is given by

0.0801 ` 2x2
1x

6
2 ` 1.205x2

1x
2
2 ´ 2x1

1x
2
2 ` 0.2616 ` 1x6

1x
2
2 ` 3.615x2

1x
2
2 ´ 1x2

1x
1
2 `

0.991x2
1x

6
2 ` 1x6

1x
2
2 ` 2x2

1x
2
2 ´ 3x3

1x
3
2.

7
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Figure 3. The Newton polytopes of the polynomials in the Examples 5.6
and 5.7 and their triangulations.

We discuss a third example which shows that for the GP/SONC approach it is not
necessary to optimize the constant term to obtain a bound for nonnegativity but that
in some cases it can be informative to focus on other vertices of the convex hull of the
support or monomial squares instead.

Example 5.6. Let f “ 1`x4
1 `x2

2 `x2
1x

4
2 `x4

1x
4
2 ´x1x2 ´x1x

2
2 ´x2

1x
3
2 ´x3

1x
3
2. We choose

a triangulation

tp0, 0q, p0, 2q, p4, 0q, p1, 1qu, tp0, 2q, p2, 4q, p4, 0q, p1, 2q, p2, 3qu, tp2, 4q, p4, 0q, p4, 4q, p3, 3qu.

Again, we choose a decomposition of coefficients such that their values split equally. We
obtain the following ST-polynomials

g1 “ 1 ` 1{3 ¨ x4
1 ` 1{2 ¨ x2

2 ´ x1x2,

g2 “ 1{3 ¨ x4
1 ` 1{2 ¨ x2

1x
4
2 ` 1{2 ¨ x2

2 ´ x1x
2
2 ´ x2

1x
3
2,

g3 “ 1{3 ¨ x4
1 ` 1{2 ¨ x2

1x
4
2 ` x4

1x
4
2 ´ x3

1x
3
2.

g1 and g3 are circuit polynomials while g2 contains two negative terms. For the corre-
sponding Newton polytope see Figure 3. Note that only the exponent p4, 0q is contained
in the support of all three ST-polynomials. Since p4, 0q is a monomial square which is
a vertex of the convex hull of the three support sets , we optimize the corresponding
coefficient in g1, g2 and g3. Applying the GP from Corollary 2.7 yields optimal values

m˚
1 “ 0.0625, m˚

2 “ 4.2867, and m˚
3 “ 0.0625.

Since m˚
2 “ 4.2867 ą 1{3 we found no certificate of nonnegativity for f . However, we find

a SONC decomposition for f if the coefficient bp4,0q of x
4
1 is at least m

˚
1 `m˚

2 `m˚
3 “ 4.412.
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For this minimal choice of bp4,0q a SONC decomposition is given by

0.063x4
1 ` 1 ` 0.5x2

2 ´ 1x1
1x

1
2 ` 2.143x4

1 ` 0.4x2
2 ` 0.1x2

1x
4
2 ´ 1x1

1x
2
2 `

2.143x4
1 ` 0.1x2

2 ` 0.4x2
1x

4
2 ´ 1x2

1x
3
2 ` 0.063x4

1 ` 0.5x2
1x

4
2 ` 1x4

1x
4
2 ´ 1x3

1x
3
2

7

Finally, we apply the new method to a constrained optimization problem using the
methods developed in Section 3.

Example 5.7. Let f “ 1 ` x4 ` x2y4 and g “ 1
2

` x2y ´ x6y4 ´ x3y3. Hence, we obtain

Gpµq “ p1 ´ 1
2
µq ` x4 ` x2y4 ` µx6y4 ´ µx2y ` µx3y3. Choosing the triangulation

tp0, 0q, p4, 0q, p6, 4q, p2, 1qu, tp0, 0q, p6, 4q, p2, 4q, p3, 3qu,
we split the coefficients again, such that their values are equal. For the corresponding
Newton polytope see Figure 3. We obtain the ST-polynomials

G1pµq “
ˆ

1

2
´ 1

4
µ

˙

` x4 ` 1

2
µx6y4 ´ µx2y,

G2pµq “
ˆ

1

2
´ 1

4
µ

˙

` x2y4 ` 1

2
µx6y4 ` µx3y3.

Therefore, we see that the possible µ values to obtain ST-polynomials are µ P r0, 2q. We
optimize both polynomials with respect to the constant term and obtain m˚

1 “ m˚
2 “ 0.

The CVX solver yields NaN as an optimal value, since 0 is not positive. However, it
still solves the problem and computes values 0 or ε ă 10´200 for all variables, such that
m˚

1 “ m˚
2 “ 0 follows. Hence, fαp0q ´ m˚ “ 1 ´ 0 “ 1 and because all of the assumptions

in 3.4 are fulfilled we know spf, gq “ 1.
Checking this optimization problem with Lasserre relaxation, we get fsos “ f˚ “ 1,

which approves the optimal value. Both, for the SDP and the GP we have runtimes
below 1 second.
Now, we tackle the same problem, but we multiply every exponent by 10, and we

compare the runtimes again. For the GP we obtain the same result and the runtime
remains below 1 second. For the SDP we obtain with Gloptipoly fsos “ f˚ “ 1 in
approximately 5034.5 seconds, i.e. approximately 1.4 hours.
In a third approach we tackle the same problem, but we multiply the originally given

exponents by 20. In this case Gloptipoly is not able to handle the given matrices
anymore. In comparison, we still have a runtime below 1 second for our GP providing
the same bound as before. 7
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