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1. Results

We introduce the max-atom problem (MAP): solving
(in Z) systems of inequations of the form max(x, y)+k � z,
where x, y, z are variables and k ∈ Z. Our initial motiva-
tion for MAP was reasoning on delays in circuits using SAT
Modulo Theories [10], viewing MAP as a natural extension
of Difference Logic, i.e., inequations of the form x + k � y.

Here we show that MAP is PTIME-equivalent to sev-
eral rather different well-known problems for which no
PTIME algorithm has been found so far, in spite of decades
of independent efforts. One is on solving two-sided linear
max-plus systems (Section 3 of this paper) that arise in Con-
trol Theory when modeling Discrete Event Systems, and
another one on shortest paths in directed weighted hyper-
graphs (Section 4).
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Interestingly (see Section 2), there is also a simple
PTIME equivalence between MAP and a scheduling prob-
lem considered in [9], namely computing earliest job
start times for systems of AND/OR precedence constraints,
which is proved in [9] to be in turn PTIME-equivalent to
Mean Payoff Games (MPG), a well-known hard problem in
NP ∩ Co-NP.

Therefore, it is not so surprising any more that no
PTIME algorithms had been found for the aforementioned
problems on hypergraphs and Discrete Event Systems.

Note that solving MAP in PTIME would imply the same
for Parity Games (via MPG [5]) and hence for model check-
ing in the propositional μ-calculus [6], which is very im-
portant in verification. As an example of interesting new
insights from MAP,1 in Section 5 we show that a PTIME
algorithm for MAP over Z also gives a PTIME algorithm
over Q, but that a weakly polynomial algorithm we give
for Z does not carry over to Q, so, unlike what happens

1 Note: a preliminary version of this paper is [3], in which we were not
aware yet of [9] and the PTIME-equivalences with MPGs. In [3] we also
gave independent simple proofs of membership in NP ∩ Co-NP.
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in Linear Programming, in this sense MAP might be harder
over Q than over Z.

2. Simple equivalences with MAP

MAP is quite expressive. Difference logic literals x + k �
y can of course be expressed as max(x, x) + k � y. Equal-
ities max(x, y) + k = z can be written as max(x, y) + k �
z∧ z−k � x∧ z−k � y. Strict inequalities max(x, y)+k > z
can be expressed as max(x, y)+k − 1 � z. One can express
max on both sides, as in max(x, y)+k = max(x′, y′)+k′ by
introducing a fresh variable z and writing max(x, y) + k =
z ∧ max(x′, y′) + k′ = z. One can also express different off-
sets on different arguments of max; for instance max(x+5,
y −3) � z can be written as max(x, y′)+5 � z∧ y′ +8 = y,
where y′ is fresh. Furthermore, since max(e1, e2, e3) is
equivalent to max(e1,max(e2, e3)), one can express nested
or larger-arity max-atoms such as max(e1, e2, e3) � z by
writing max(e1, x) � z ∧ max(e2, e3) = x, where x is fresh.

Another less trivial equivalence of MAP is with the
problem of deciding the existence of super fixpoints of
min–max functions [8]. A min–max function is a function
f : Zn → Zn whose coordinates are min–max expressions,
i.e., terms in the grammar Y → min(Y , Y ),max(Y , Y ), Y +
k, x1, . . . , xn , where Y is a non-terminal symbol, k ∈ Z and
x1, . . . , xn are variables. A super fixpoint of a min–max
function f is v ∈ Zn such that f (v) � v . An instance of
MAP can be easily rewritten into the form f (v) � v: one
just needs to take for the i-th coordinate of f the mini-
mum of the left-hand sides of the max-atoms in which the
variable xi appears on the right-hand side. Conversely, the
problem of determining if a min–max function f admits a
super fixpoint can be reduced linearly to MAP, by rewriting
min(X, Y ) � z into X � z, Y � z, where X , Y are min–max
expressions and z is a variable; and max(X, Y ) � z into
max(x, y) � z, X � x, Y � y, where x and y are fresh vari-
ables.

A more significant relationship is with the problem
of computing earliest job start times for the systems of
AND/OR precedence constraints of [9]. To show PTIME-
equivalence with MAP, simple syntactic transformations
suffice, like interchanging min with max and � with �.
As a consequence, these problems are both in NP ∩ Co-NP
(see [9] for details).

3. Equivalence with two-sided linear max-plus systems

Definition 1. Two-sided linear max-plus systems are sets of
equations of the form max(x1 +k1, . . . , xn +kn) = max(x1 +
k′

1, . . . , xn + k′
n) where all n variables of the system occur

on both sides of every equation.

Finding a polynomial algorithm for solving such sys-
tems over Z has been open for more than 30 years in the
area of max-plus algebras [4]. An elegant algorithm was
given and claimed to be polynomial in [4], but unfortu-
nately in [2] we gave a family of examples on which it
behaves exponentially.

Definition 2. Given a set of variables V , the size of an as-
signment α : V → Z is the difference between the largest
Please cite this article in press as: M. Bezem et al., Hard problems in max-algeb
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and the smallest value assigned to the variables, i.e.,
size(α) = maxx,y∈V (α(x) − α(y)).

Lemma 1 (Small Model Property). If a set of max-atoms S is
satisfiable, then it has a model of size at most the sum of the
absolute values of the offsets, i.e., at most

K S =
∑

max(x,y)+k�z∈S

|k|.

Proof. We may assume that all constraints are equations:
replace each max(x, y) + k � z by max(x, y) + k = z′ and
max(z, z′) = z′ . The class of models does not change es-
sentially, and the sum of the absolute values of the offsets
is the same. So we assume that S is a set of equations
max(x, y) + k = z.

Let α be a model of S . Based on α we define a
weighted graph whose vertices are the variables. For every
constraint max(x, y) + k = z, if α(x) � α(y) then we add a
red edge (x, z) with weight k and a green edge (y, x) with-
out a weight; and otherwise, if α(y) > α(x) then we add
a red edge (y, z) with weight k and a green edge (x, y)

without a weight. While changing the model, the graph
will remain all the time the same.

A red (weakly) connected component is a subgraph
such that there are red paths between any two variables
in the subgraph, where the red edges may be used in any
direction. The segment of a red connected component is
the range of integers from the lowest value to the highest
one assigned to the variables in the component. The size of
such a segment is at most the sum of the absolute values
of the weights of the edges in the component.

Red connected components partition variables. If their
segments overlap, then size(α) � K S . If there is a gap, say
of size p, then it is closed by a suitable translation, e.g.,
by decreasing by p all values assigned to variables above
the gap. This respects all red edges and their weights since
the gap is between segments of red connected components
and components are translated as a whole. Green edges are
also respected since we only close gaps and never a vari-
able x with initially a higher value than another variable y
ends up with a value strictly lower than y. Since all edges
are respected we keep a model, all the time closing gaps
until there are no gaps left. We end up with a model α′
without gaps and hence size(α′) � K S . �

Notice that the previous lemma gives a proof of mem-
bership of MAP in NP: it suffices to guess a “small” assign-
ment; checking that it is indeed a model is trivially in P.

Theorem 1. MAP and the problem of satisfiability of a two-
sided linear max-plus system are polynomially reducible to each
other.

Proof. Reducing this kind of max-equations to max-atoms
can be done as explained in the introduction. For the re-
verse reduction, by the Small Model Property (Lemma 1),
if S is satisfiable then it has a model α such that size(α) �
K S (notice that K S can be computed in polynomial time).
Let V = {x1, . . . , xn} be the set of variables over which S is
ra, control theory, hypergraphs and other areas, Information Processing



ARTICLE IN PRESS IPL:4215

JID:IPL AID:4215 /SCO [m3G; v 1.23; Prn:26/11/2009; 15:19] P.3 (1-6)

M. Bezem et al. / Information Processing Letters ••• (••••) •••–••• 3
defined. Now, for each variable xi , we consider the equa-
tion

max(x1 − 1, . . . , xi−1 − 1, xi + K S , xi+1 − 1, . . . , xn − 1)

= max(x1, . . . , xi−1, xi + K S , xi+1, . . . , xn),

which is equivalent to xi + K S � x j , i.e., K S � x j − xi for all
j in 1 . . .n, j �= i. Let S ′

0 be the two-sided linear max-plus
system consisting of these n equations. Now we add new
equations to S ′

0 to obtain a system S ′ which is equisatis-
fiable to S . This is achieved by replacing every max-atom
max(xi1 , xi2 ) + k � xi3 in S by the equation

max
(
xi1 + k, xi2 + k, xi3 , x j − K S − |k| − 1, . . .

)

= max
(
xi1 + k, xi2 + k, xi3 − 1, x j − K S − |k| − 1, . . .

)
,

where j ranges over all variable indices different from
i1, i2, i3 (if any of the indices i1, i2 or i3 coincide, an ob-
vious simplification must be applied). The offset −K S −
|k|−1 has been chosen so that variables with this offset do
not play a role in the maxima. If we leave them out, it is
clear that the resulting constraint max(xi1 +k, xi2 +k, xi3 ) =
max(xi1 + k, xi2 + k, xi3 − 1) is equivalent to the max-atom
max(xi1 , xi2 ) + k � xi3 . �
4. Equivalence with shortest hyperpaths

In hypergraphs, an edge goes from a set of vertices
to another vertex. Hence a natural notion of a hyperpath
(from a set of vertices to a vertex) is a tree, and a natural
notion of length of the hyperpath is the maximal length
(the sum of the weights) of a path from a leaf to the root
of this tree (see [1,7]). This is formalized as follows.

A (directed, weighted) hypergraph is a tuple H =
(V , E, W ) where V is the set of vertices (here we consider
V is finite), E is the set of hyperedges and W : E → Z is
the weight function. Each hyperedge is a pair (S, t) from a
non-empty finite subset of vertices S ⊆ V called the source
set to a vertex t ∈ V called the target vertex.

Given a hypergraph H = (V , E, W ), a subset of vertices
X ⊆ V , X �= ∅ and y ∈ V , a hyperpath from X to y is a tree
defined recursively as follows: (i) if y ∈ X , then the empty
tree ∅ is a hyperpath from X to y; (ii) if there is a hyper-
edge (Z , y) ∈ E and hyperpaths t X,zi from X to zi for each
zi ∈ Z , then the tree t X,y with root (Z , y) and children the
trees t X,zi for each vertex zi ∈ Z , is a hyperpath from X
to y.

The weight ω(p) of a hyperpath p is defined as: (i) if
p is ∅, then ω(p) = 0; (ii) if p is a tree with root the hy-
peredge e and children p1, . . . , pm , then ω(p) = W (e) +
max(ω(p1), . . . ,ω(pm)).

Given a non-empty subset of vertices X ⊆ V , X �= ∅, the
distance function δX : V → Z ∪ {±∞} is defined as δX (y) =
inf{ω(p X,y) | p X,y is a hyperpath from X to y}. The dis-
tance function δX is said to be well-defined if δX (y) > −∞
for all vertices y ∈ V .

Intuitively, here +∞ means “no hyperpath” and −∞ is
related to negative cycles, for instance in the presence of
a hyperedge such as W ({x}, x) = −1. We now show that
MAP is PTIME-equivalent to the problem of, given a hyper-
graph H = (V , E, W ), deciding whether δX is well-defined
for all non-empty X ⊆ V .
Please cite this article in press as: M. Bezem et al., Hard problems in max-algeb
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Fig. 1. Example of hypergraph.

Example 1. Fig. 1(a) shows an example of a hypergraph.
E.g., the hyperedge ({u}, x) has weight −10, while the
weight of the hyperedge ({u, x}, z) is 25. The empty tree is
a hyperpath from {u, y} to y with rank 0; Fig. 1(b) shows
another hyperpath from {u, y} to y, with rank 24.

Lemma 2. Let H = (V , E, W ) be a hypergraph and X ⊆ V ,
X �= ∅ be a set of vertices such that −∞ < δX (y) < +∞ for all
y ∈ V . If (Z , y) ∈ E, then δX (y) � W (Z , y) + maxz∈Z (δX (z)).

Proof. By hypothesis for all y ∈ V we have −∞ < δX (y) <

+∞. Thus, in particular, for all z ∈ Z there exists a hy-
perpath tz from X to z such that ω(tz) = δX (z). Now the
tree t with root (Z , y) and children the trees tz for each
z ∈ Z is a hyperpath from X to y. So δX (y) � ω(t) =
W (Z , y) + maxz∈Z (ω(tz)) = W (Z , y) + maxz∈Z (δX (z)). �
Lemma 3. Let H = (V , E, W ) be a hypergraph and α : V → Z

be such that α(y) � maxz∈Z (α(z)) + W (Z , y) for all hyper-
edges (Z , y) ∈ E. If t is a hyperpath from a non-empty X ⊆ V
to y ∈ V , then α(y) � maxx∈X (α(x)) + ω(t).

Proof. Let us prove it by induction over the depth of t .
In the base case t = ∅, and therefore y ∈ X . Since ω(∅) =
0, trivially α(y) � maxx∈X (α(x)) = maxx∈X (α(x)) + ω(∅).
Now, if t has positive depth, its root is a hyperedge (Z , y) ∈
E , and its children are trees t1, . . . , tm connecting X to
z1, . . . , zm respectively, where Z = {z1, . . . , zm}. By induc-
tion hypothesis, for each i in 1 . . .m we have α(zi) �
maxx∈X (α(x)) + ω(ti). Now:

α(y) � max
1�i�n

(
α(zi)

) + W (Z , y)

� max
1�i�n

(
max
x∈X

(
α(x)

) + ω(ti)
)

+ W (Z , y)

= max
x∈X

(
α(x)

) + max
1�i�n

(
ω(ti)

) + W (Z , y)

= max
x∈X

(
α(x)

) + ω(t). �
Finally we are in condition to prove the equivalence

of the two problems. For convenience, in what remains
of this section we assume max-atoms to be of the form
max1�i�n(xi) + k � z.

Theorem 2. MAP and the problem of well-definedness of the
distance functions of all subsets of vertices of a hypergraph are
polynomially reducible to each other.
ra, control theory, hypergraphs and other areas, Information Processing
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Proof. First we prove that, given a set S of max-atoms,
one can compute in polynomial time a hypergraph H(S)

whose distance functions are well-defined if and only if S
is satisfiable.

Let S be a set of max-atoms over the variables V .
We can assume w.l.o.g. that there exists a variable x ∈
V such that there are max-atoms x � y ∈ S for every
y ∈ V (adding a fresh variable with these properties pre-
serves satisfiability). The hypergraph H(S) is defined as
follows: its set of vertices is V ; and for each max-atom
maxz∈Z (z) + k � y, we define a hyperedge e = (Z , y)

with weight W (e) = k. For example, the hypergraph cor-
responding to the set of max-atoms S = {u − 10 � x, z �
y,max(x, y) − 1 � z,max(x, u) + 25 � z} is that shown in
Fig. 1(a).

Let us see that the distance function δx in H(S) is well-
defined if and only if S is satisfiable (we write δx instead
of δ{x} for the sake of clarity). Let us prove that if δx is
well-defined then S is satisfiable. By construction, for each
max-atom maxz∈Z (z) + k � y ∈ S there exists a hyperedge
e = (Z , y) in H(S) with weight W (e) = k. Now, since δx is
well-defined and all vertices are hyperconnected to {x}, by
Lemma 2 we have maxz∈Z (δx(z)) + W (Z , y) � δx(y), and
so δx | S . Let us prove the converse, i.e., that if S is sat-
isfiable then δx is well-defined, by contradiction. Let us
assume that δx is not well-defined and let α be a model
of S . Then there is y ∈ V such that δx(y) = −∞. This im-
plies that for all w ∈ Z there exists a hyperpath tw from
{x} to y such that ω(tw) < w; in particular, this holds
for w = α(y) − α(x). As α | S , by Lemma 3 we have
α(x) + ω(tw) � α(y), i.e., ω(tw) � α(y) − α(x), which is
a contradiction.

Finally, as in H(S) all vertices are hyperconnected to
{x} by a hyperedge, it is clear that δx is well-defined if and
only if so is δX for all X ⊆ V , X �= ∅.

Secondly, let us prove that given a hypergraph H , one
can compute in polynomial time a set S(H) of max-atoms
such that H has a well-defined distance function δX for
all X ⊆ V , X �= ∅ if and only if S(H) is satisfiable. Given
H = (V , E, W ), the variables of S(H) are V , the vertices
of H ; and for each hyperedge (Z , y) ∈ E , we consider the
max-atom maxz∈Z (z) + W (Z , y) � y. The proof concludes
by observing that H has a well-defined distance function
δX for all X ⊆ V , X �= ∅ if and only if the same property
holds for H(S(H)), if and only if S(H) is satisfiable. �
5. From Z to Q

If the domain of variables and offsets is Q, one can
naturally transform the original problem into an equiva-
lent one in Z as follows. Given a conjunction of n atoms
with rational offsets max(xi, yi)+ pi/qi � zi , for i in 1 . . .n,
if lcm is the least common multiple of the q′

i s, one can
express each atom as max(xi, yi) + ri/lcm � zi for cer-
tain ri ’s and solve the equisatisfiable conjunction of atoms
max(xi, yi) + ri � zi over Z.

This shows that any PTIME algorithm for MAP over Z

would also give us a PTIME algorithm over Q. But this is
not the case for the following weakly polynomial algorithm
for MAP over Z. W.l.o.g. in what follows max-atoms are of
the form max(x, y) + k � z with x �= z, y �= z. This can be
Please cite this article in press as: M. Bezem et al., Hard problems in max-algeb
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assumed by removing trivial contradictions max(x, x)+k �
x (k < 0), trivial tautologies max(x, y) + k � x (k � 0), and
by replacing max(x, y)+k � x by max(y, y)+k � x if k < 0
and x �= y.

Definition 3. Given a set of max-atoms S defined over the
variables V and two assignments α, α′ , we write α →S α′
(or simply α → α′ , if S is understood from the context) if
there is a max-atom max(x, y) + k � z ∈ S such that:

1. α′(z) = max(α(x),α(y)) + k;
2. α′(z) < α(z) (hence we say that z decreases in this

step);
3. α′(u) = α(u) for all u ∈ V , u �= z.

Any sequence of steps α0 → α1 → ·· · is called a max-
derivation for S .

Lemma 4. Let S be a set of max-atoms defined over the vari-
ables V . An assignment α : V → Z is a model for S if and only
if α is final, i.e., there is no α′ such that α → α′ .

The following lemma expresses that max-derivations,
while decreasing variables, never “break through” any
model:

Lemma 5. Let S be a set of max-atoms and let α be a model
of S. If α0 → ·· · → αm and α0 � α, then αm � α.

Proof. By induction over m, the length of the derivation.
For m = 0 there is nothing to prove. Now, if m > 0 the step
α0 → α1 is by an atom max(x, y)+k � z. Let us prove that
α1 � α. We only need to show that the inequality holds for
the variable that changes, which is z; and indeed α1(z) =
max(α0(x),α0(y)) + k � max(α(x),α(y)) + k � α(z). Now,
by induction hypothesis αm � α. �

The next lemma ensures that models of a set of max-
atoms are invariant under “uniform” translations:

Lemma 6. Given a set of max-atoms S defined over the variables
V and an assignment α : V → Z which is a model of S, for any
d ∈ Z the assignment α′ defined by α′(x) = α(x)+d is a model
of S.

The previous lemmas, together with the Small Model
Property, provide us with a weakly polynomial algorithm
(i.e., runtime is polynomial if numbers are encoded in
unary). This weakly polynomial algorithm can be seen as
an extension of the Bellman–Ford algorithm for shortest
paths (this also applies to the one of [9]):

Theorem 3. MAP over Z is weakly polynomial.

Proof. Let S be a conjunction of max-atoms, with vari-
ables V , where |V | = n. For deciding the satisfiability of
S one can construct an arbitrary max-derivation, starting,
e.g., from the assignment α0 with α0(x) = 0 for all x in V .
At each step, one variable decreases by at least one. If S is
ra, control theory, hypergraphs and other areas, Information Processing
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satisfiable, by the Small Model Property and by Lemma 6,
there is a model α such that −K S � α(x) � 0 for all x
in V . Moreover, by the previous lemma, no variable x will
ever get lower than α(x) in the derivation. Altogether this
means that, if no model is found after n · K S steps, then S
is unsatisfiable. �

As a corollary of the proof of the previous theorem,
we obtain a PTIME decision procedure for sets of atoms
of the forms max(x, y) � z or max(x, y) > z. More gener-
ally, this also applies to K -bounded sets, where in S the
absolute values of all offsets are bounded by a given con-
stant K .

Example 2. Let S be the set of max-atoms {u − 10 � x, z �
y,max(x, y)− 1 � z,max(x, u)+ 25 � z}, and let α0 be the
assignment with α0(x) = α0(y) = α0(z) = α0(u) = 0. This
initial assignment α0 violates u − 10 � x, which allows
us to decrease x and assign it the value −10: in terms
of max-derivations α0 → α1, where α1 is the assignment
with α1(x) = −10, α1(y) = α1(z) = α1(u) = 0.

Now the assignment α1 only violates max(x, y)− 1 � z,
which forces z to take the value −1: in terms of max-
derivations, α1 → α2, where α2 is the assignment with
α2(x) = −10, α2(y) = 0, α2(z) = −1, α2(u) = 0. Then α2
only violates z � y, which forces y to take the value −1
too: α2 → α3, where α3 is the assignment with α3(x) =
−10, α3(y) = α3(z) = −1, α3(u) = 0.

It is easy to see that 11 iterations of each of the
last two steps will be needed to find a model: finally
we will have a derivation α0 →∗ α with α(x) = −10,
α(y) = α(z) = −11, α(u) = 0; since there is no α′ such
that α → α′ , α is a model of S , hence S is satisfiable.

Notice that, if we replace 10 in S by larger powers of
10, we get a family of inputs whose sizes increase linearly,
but for which the number of steps of the max-derivations
reaching to a model grows exponentially. Since the number
of steps is polynomial in the value of the offsets, and not
in the sizes of the offsets, the algorithm based is weakly
polynomial (but not polynomial).

Now, if we consider the set of max-atoms S ′ = S ∪
{max(x, y) + 9 � u}, we note that α above does not sat-
isfy the new constraint. So we can decrease u and assign
it the value −1, which makes u − 10 � x false and forces x
to take the value −11. Then max(x, y) − 1 � z is violated,
and z is decreased to −12. Finally z � y becomes false,
so y is assigned −12. The loop of these four steps can be
repeated over and over, making all variables decrease in-
definitely. Thus, S ′ is unsatisfiable as no model is found
within the bound of n · K S steps given in the previous the-
orem.

The above transformation for MAP over Z into MAP
over Q may produce an exponential blow-up in the value
of the offsets. Thus, one cannot directly conclude that MAP
over Q is weakly polynomial given that MAP over Z is so.
Indeed, we have the following.

Theorem 4. The algorithm given in the proof of Theorem 3 is
not weakly polynomial for MAP over Q.
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Proof. Let us fix n � 1 and k � 0. Then we define c j =( k
2 j

) 1
n+2 j for 0 � j � �k/2�; and c�k/2�+ j = ( k

2 j−1

) −1
n+2 j−1

for 0 < j � �k/2�. Note that, by a simple induction on k,

we have
∑k

j=0 c j = ∑k
i=0

( k
i

)
(−1)i

n+i = k!(n−1)!
(n+k)! .

Now let us assume that the algorithm is weakly poly-
nomial over Q and we will get a contradiction. Let d be
such that, given S a satisfiable instance of MAP over Q,
any max-derivation for S has length at most O (size(S)d),
where numbers are represented in unary. Let us fix k such
that k > d. Consider the following family of instances, pa-
rameterized by n:

Sn = {
max(y − 1 − c0, x0 − c0) � x1

x1 − c1 � x2
. . .

xi − ci � xi+1
. . .

xk−1 − ck−1 � xk

xk − ck � x0
}
.

Each Sn is satisfiable, as e.g. the assignment α(y) =
1 + ∑k

j=0 c j , α(x0) = 0, α(xi) = ∑k
j=i c j for 1 � i � k is

a model.
Let us apply the algorithm starting from the assignment

that maps all variables to 0. As max(y−1−c0, x0 −c0) � x1

is not satisfied, one can apply a derivation step and up-
date the value of x1 to −c0. Next, as c0 + c1 > 0, the atom
x1 − c1 � x2 is not satisfied, and one can update the value
of x2 to −(c0 + c1). In general, as positive c j come first,∑i

j=0 c j > 0 for 0 � i � k; hence all variables x3, . . . , xk ,
x0 can be updated, in this order. The new value of x0 is
−∑k

j=0 c j = − k!(n−1)!
(n+k)! .

Now the loop of updating variables x1, . . . , xk , x0 can be
repeated until x0 gets the value −1 (after one more round
the model is found). As x0 is decreased by − k!(n−1)!

(n+k)! af-

ter each loop, this will happen after (n+k)!
k!(n−1)! loops. But as

n increases, this number grows as a polynomial of degree
k > d, while size(Sn) grows linearly. This yields a contra-
diction.

Note that, in fact, the DL-atoms with positive offsets
can only be used in the order in which they are enumer-
ated in Sn . Since the absolute value of every c j is larger

than k!(n−1)!
(n+k)! (for big enough n), one has to use all DL-

atoms with negative offsets to achieve a decrease of x0.
Hence any other max-derivation takes at least as many
steps as the one described above. �
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