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TROPICAL KRAUS MAPS FOR OPTIMAL CONTROL OF

SWITCHED SYSTEMS

STÉPHANE GAUBERT AND NIKOLAS STOTT

Abstract. Kraus maps (completely positive trace preserving maps) arise
classically in quantum information, as they describe the evolution of non-

commutative probability measures. We introduce tropical analogues of Kraus
maps, obtained by replacing the addition of positive semidefinite matrices by
a multivalued supremum with respect to the Löwner order. We show that
non-linear eigenvectors of tropical Kraus maps determine piece-wise quadratic
approximations of the value functions of switched optimal control problems.
This leads to a new approximation method, which we illustrate by two ap-
plications: 1) approximating the joint spectral radius, 2) computing approxi-
mate solutions of Hamilton-Jacobi PDE arising from a class of switched linear
quadratic problems studied previously by McEneaney. We report numerical
experiments, indicating a major improvement in terms of scalability by com-
parison with earlier numerical schemes, owing to the ”LMI-free” nature of our
method.

1. INTRODUCTION

1.1. Curse of dimensionality attenuation methods. Dynamic programming
is one of the main methods to solve optimal control problems. It characterizes the
value function as the solution of a functional equation or of a Hamilton-Jacobi par-
tial differential equation. It provides a feedback law that is guaranteed to be glob-
ally optimal. However, it is subject to the “curse of dimensionality”. Indeed, the
main numerical methods, including monotone finite difference or semi-Lagrangean
schemes [10, 8, 11, 9], and the anti-diffusive schemes [6], are grid-based. It follows
that the time needed to obtain an approximate solution with a given accuracy is
exponential in the dimension of the state space.

Recently, two numerical methods have been shown, theoretically or practically, to
attenuate the curse of dimensionality, for specific classes of optimal control problems
with switches.

McEneaney considered hybrid optimal control problems in which a discrete con-
trol allows one to switch between different linear quadratic models. The method
he developed [24] approximates the value function by a supremum of elementary
functions like quadratic forms, hence it belongs to the family of “max-plus ba-
sis methods” [13, 2]. The method of [24] has a remarkable feature: it attenuates
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2 STÉPHANE GAUBERT AND NIKOLAS STOTT

the curse of dimensionality, as shown by the complexity estimates of Kluberg and
McEneaney [27] and of Qu [28]. McEaneney’s method [24] has been studied and
extended in a series of works [31, 14, 19, 26].

A different problem consists in computing the joint spectral radius of a finite
set of matrices [17]. This can be formulated as an ergodic optimal control problem
for a switched system. In this context, the ergodic value function is known as
the Barabanov norm. Specific numerical methods have been developed, which
approximate the Barabanov ball by a polytope [16], or are of semi-Lagrangean
type [20]. Ahmadi et al. [1] developed a new method, based on a path complete
automaton. It approximates the Barabanov norm by a supremum of quadratic
norms. Whereas the worst case complexity estimates in [1] are still subject to a
curse of dimensionality, in practice, the efficiency of the method is determined by
the complexity of the optimal switching law rather than by the dimension itself. It
allows one to solve instances of dimension inaccessible by grid-based method.

The method of McEneaney [24], like the one of Ahmadi et al. [1], provide max-
plus basis expansions of approximate value functions. In both methods, semidefinite
programming (solution of LMI, linear matrix inequalities) is the bottleneck. Indeed,
LMI arise in the “pruning step”, i.e., the elimination of redundant quadratic forms,
an essential ingredient of McEaneney’s method. It was observed in [14] that 99%
of the CPU time was spent in the solution of semidefinite programs. The method
of Ahmadi et al. involves a truncation method, considering switching sequences of
a fixed length, and it requires the solution of a semidefinite program whose size is
exponential in this length.

1.2. Contribution. In this paper, we introduce a new approximation method for
optimal control of switched systems. This method still relies on the approxima-
tion of the value function by a supremum of quadratic forms. However, it avoids
the recourse to LMI. We exploit the geometric properties of the space of positive
semidefinite matrices equipped with the Löwner order. A key ingredient is the
introduction of the tropical analogues of the Kraus maps arising in quantum in-
formation and control [30]. The latter are quantum Markov operators, describing
the evolution of density matrices (the quantum analogues of probability measures).
They act on the space of positive semidefinite matrices, and can be written as

T (X) =
∑

iAiXA†
i , where (·)† denotes the adjoint of a matrix. Tropical Kraus

maps are defined by replacing the sum in the definition of T (X) by a multivalued
operator, providing the set of minimal upper bounds with respect to the Löwner
order. Tropical Kraus maps may be thought of as “1-player” non-commutative
dynamic programming operators (classical Kraus maps correspond to the 0-player
case). We show that every non-linear eigenvector of the tropical Kraus map yields
an approximation of the value function. Moreover, the non-linear eigenvalue yields
an upper bound for the joint spectral radius. We show that a non-linear eigenvec-
tor does exist. We compute non-linear eigenvectors through an iterative scheme,
in which at each stage, a specific minimal upper bound of a collection of matrices
is selected. The latter operation is implemented in an algebraic way, leading to
a fast algorithm (not relying on semidefinite programming). We report numerical
experiments, showing a major speedup, allowing us to treat instances of dimension
inaccessible by earlier dynamic programming methods.

The paper is organized as follows. In Section 2, we recall the definitions of the
joint spectral radius and switched linear quadratic control problems, which will
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serve as benchmarks. In Section 3, we recall some basic properties of the Löwner
order on the space of positive semidefinite matrices. In Section 4, we introduce
tropical Kraus maps, establish the existence of non-linear eigenvectors, and present
the iterative scheme. In Section 5, we present numerical experiments.

2. CLASSES OF SWITCHED SYSTEMS

In this section, we describe the two optimal control problems to which we will
apply our method.

2.1. Joint spectral radius. We consider here the stability under arbitrary switch-
ing of discrete-time linear switched systems as studied in e.g. [23, 33, 7].

Let A = {A1, . . . , Am} be a set of real n× n matrices. A discrete-time switched
linear system is described by:

xk+1 = Aσ(k)xk, σ(k) ∈ {1, . . . ,m}
where xk ∈ R

n denotes the trajectory of the system, and σ is the switching mech-
anism, which selects one of the matrices in A at each instant.

We are interested in the approximation of the joint spectral radius [17] associated
to this set. The latter is defined by

ρ(A) := lim
k→+∞

max
16i1,...,ik6m

‖Ai1 . . . Aik‖1/k .

A fundamental result of Barabanov [4] shows that if A is irreducible, meaning
that there is no nontrivial subspace of Rn that is left invariant by every matrix in
A, then there is a norm v on R

n such that

λv(x) = max
16i6m

v(Aix), ∀x ∈ R
n ,

for some λ > 0. The scalar λ is unique and it coincides with the joint spectral
radius ρ(A). This shows that, when A is irreducible, all the trajectories of the
switched linear system converge to zero if and only if ρ < 1.

The norm v is known as a Barabanov norm. A norm which satisfies the inequality
maxi v(Aix) 6 ρ(A)v(x) for all x ∈ R

n is called an extremal norm.
Extremal norms and Barabanov norms are generally non unique and cannot be

computed exactly, except in special examples. Hence, we shall be content with an
approximate extremal norm v, i.e., a solution of

max
16i6m

v(Aix) 6 µv(x), ∀x ∈ R
n ,

where µ > 0. Then, it is readily seen that µ > ρ(A), so that an approximate
extremal norm yields a guaranteed approximation of the joint spectral radius.

For instance, an approximate extremal norm can be obtained via an ellipsoidal
norm, as described in [3], meaning that there is some positive definite matrix Q
and a real µ such that

A⊤
i QAi 4 µ2Q ∀i ,

where 4 denotes the Löwner order (see Section 3) and (·)⊤ denotes the transpose.
The approximation is usually coarse, since 1 6 µ/ρ(A) 6

√
n is a tight estimate.

This approach can be refined by lifting the set of matrices A into another set A′

which has the same joint spectral radius, but where the quadratic form Q gives a
better approximation of an extremal norm [1]. We adopt such an approach in this
paper, see Remark 2 in Section 4.1.
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2.2. Linear Quadratic Optimal Control Problems with Switches. We also
consider the following problem of optimal switching between linear quadratic mod-
els, studied by McEneaney [24], namely approximating the value function V of an
optimal control problem having both a control u taking values in R

p and a discrete
control (switches between different modes) µ taking values in Σ := {1, . . . ,m}:

V (x) = sup
u∈U

sup
µ∈D

sup
t>0

∫ t

0

1

2
ξ(s)⊤Dµ(s)ξ(s)− γ2

2
|u(s)|2 ds .

Here, D denotes the set of measurable functions from [0,+∞) to Σ (i.e. switching
functions), U := L2([0,+∞),Rp) is the space of Rp-valued control functions, and
the state ξ is subject to

ξ̇(s) = Aσξ(s) +Bσu(s) , ξ(0) = x ,

where σ = µ(s) denotes the mode that is selected at time s.
It is known [24] that, under some assumptions on the parameters, the value

function V takes finite values and is the unique viscosity solution of the stationary
Hamilton-Jacobi-Bellman PDE:

H(x,∇V ) = 0 , x ∈ R
n .

The Hamiltonian H(x, p) in the latter equation is the point-wise maximum of sim-
pler Hamiltonians Hσ(x, p) given for σ ∈ Σ by

Hσ(x, p) = (Aσx)⊤p+
1

2
x⊤Dσx+

1

2
p⊤Qσp ,

and Qσ = γ−2Bσ(Bσ)⊤.
We associate with this problem the Lax-Oleinik semi-group {St}t>0 defined by

St[V
0](x) = sup

u∈U

sup
µ∈D

∫ t

0

1

2
ξ(s)⊤Dµ(s)ξ(s)

− γ2

2
|u(s)|2 ds+ V 0

(
ξ(t)

)
.

McEneaney showed in [24] that V (x) coincides with limt→+∞ St[V
0](x) and that

the latter limit is uniform on compact sets if V 0 satisfies a quadratic growth condi-
tion (one requires that ǫ|x|2 6 V 0(x) 6 λ|x|2 for some positive constants ǫ, λ that
are determined from the parameters).

We also associate to every value σ ∈ Σ the semi-group {Sσ
t }t>0 corresponding

to the unswitched control problem obtained by setting µ(s) ≡ σ, i.e.,

Sσ
t [V

0](x) = sup
u∈U

∫ t

0

1

2
ξ(s)⊤Dσξ(s)

− γ2

2
|u(s)|2 ds+ V 0

(
ξ(t)

)
.

Computing Sσ
τ [V

0] when V 0(x) = x⊤P0x, reduces to solving the following indef-
inite Riccati differential equation,

Ṗ = (Aσ)⊤P + PAσ + PQσP +Dσ , P (0) = P0 ,

with P (s) ∈ Sn. Indeed, we have Sσ
τ [V

0](x) = x⊤P (τ)x. We denote by riccτ,σ the
flow of this equation, so that riccτ,σ[P0] := P (τ).
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3. Minimal upper bounds in the Loewner order

We begin by recalling some standard notation and definitions. We denote by
℘(X) the powerset of a set X . We denote by Sn the space of symmetric matrices,
which is equipped with the Frobenius scalar product defined by 〈P,Q〉 = trace(PQ).
The product space (Sn)

p is equipped with the scalar product 〈(Pk)k, (Qk)k〉 =∑〈Pk, Qk〉. The n× n identity matrix is denoted by In and we use the shorthand
Ipn to mean the p-tuple (In, . . . , In).

A symmetric matrix P is positive semidefinite when the quadratic form x⊤Px =∑
i,j Pi,jxixj takes non-negative values for all vectors x ∈ R

n, or equivalently when
all the eigenvalues of P are non-negative. Then, we write P < 0. The set of
positive semidefinite matrices is denoted by S+

n . When x⊤Px is positive for all
nonzero vectors x ∈ R

n, we say that the matrix P is positive definite. The set
of positive semidefinite matrices constitutes a convex cone in Sn, meaning that
λP + µQ ∈ S+

n for all P,Q ∈ S+
n and non-negative λ, µ. It is also closed and

pointed (S+
n ∩ −S+

n = {0}), thus it defines an order relation on Sn by

P 4 Q ⇐⇒ Q− P ∈ S+
n ⇐⇒ Q− P < 0 .

The partial order 4 is called the Löwner order.
A classical result by Kadison [18] shows that the set Sn equipped with this order

constitutes an antilattice, meaning that two matrices P,Q ∈ Sn have a supremum
(least upper bound) if and only if they are comparable, meaning that P < Q or
Q < P . If the matrices P,Q are not comparable, then they possess a continuum
of minimal upper bounds, i.e. upper bounds S such that P,Q 4 X 4 S implies
X = S, see [32] for more information.

Given a finite set of symmetric matrices Q, we denote by Q↑ := {X ∈ Sn : X <

Qi , Qi ∈ Q} the set of upper bounds of the matrices in Q. This set is convex as
an intersection of convex sets. We also denote by

∨
Q ∈ ℘(Sn) the subset of Q↑

consisting of all minimal upper bounds of Q. We use the symbol
∨

to denote a
“supremum” operation which is multivalued owing to the antilattice character of
Sn. The set

∨Q coincides with the set of positively exposed points Q↑:

Theorem 1. The matrix X is a minimal upper bound of a finite set of matrices Q
if and only if there is a positive definite matrix C such that X minimizes the map

Z 7→ 〈C,Z〉

over the set Q↑. The minimizer, denoted by XC, is unique, and, when the set Q
consists of two matrices P,Q,

XC =
P +Q

2
+

1

2
C−1/2

∣∣C1/2(P −Q)C1/2
∣∣C−1/2 .(1)

Here, C1/2 denotes the unique positive definite solution to the equation X2 = C
and |X | = (XX⊤)1/2.

Sketch of proof: This is deduced from the optimality condition of the asso-
ciated semidefinite program and from a generalization of the characterization of
minimal upper bounds in [32, Theorem 3.1]. When C = In, it can be checked that
the matrix XC = P + |Q − P | satisfies the optimality conditions. The formula
in the general case is obtained by a change of variable X 7→ C1/2XC1/2 and a
symetrization in P,Q. �
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We say that the minimal upper bound XC is selected by the matrix C. Note that
the expression of XC is similar to that of the maximum of two scalars: max(a, b) =
(a + b + |a − b|)/2. When more than two matrices are involved, minimal upper
bounds can be computed by solving a semidefinite program. By choosing C = In
in Theorem 1, we obtain a special minimal upper bound of Q, denoted by ⊔trQ.

Finally, we point out a remarkable selection of a minimal upper bound of two
positive semidefinite matrices. If all matrices in Qi ∈ Q are positive definite, a
minimal upper bound is given by (X∗)−1, where X∗ denotes the unique matrix
that maximizes log detX over all positive definite matrices X such that X 4 Q−1

i

for all i. We denote this selection by ⊔detQ. This minimal upper bound corresponds
to the minimum volume ellipsoid enclosing the ellipsoids {x ∈ R

n : x⊤Q−1
i x 6 1}

and has thus received much attention across several fields, see [3] and references
therein. In particular, when the set Q consists of two matrices P,Q, it has been
shown in [3] that ⊔detQ can be obtained by selecting C = P−1 (or C = Q−1) in (1).

4. Tropical Kraus Maps

4.1. Definitions. In the sequel, we assume that we are given an index set Σ =
{1, . . . ,m}, m matrices A = {Aσ}σ∈Σ. We also assume that we are given a finite
set W with p elements and a map sending W × Σ to W , denoted by (i, σ) 7→ i · σ,
for i ∈ W and σ ∈ Σ. We say that (i, σ, j) ∈ W×Σ×W is an admissible transition
when i · σ = j.

We now introduce the tropical Kraus map T , from (S+
n )p to (℘(S+

n ))p, whose
j-th coordinate maps X = (X1, . . . , Xp) ∈ (S+

n )p to the subset of S+
n :

Tj(X) :=
∨{

A⊤
σXiAσ : (i, σ) ∈ W × Σ , i · σ = j

}
.

Remark 1. In the setting of quantum information [21], a Kraus map is given

by X 7→ ∑
iAiXA†

i and acts on the set of density matrices (positive semidefinite
matrices of trace 1). We say that the map T is a tropical Kraus map since it
ressembles the latter, except the sum has been replaced with the “supremum” opera-
tion

∨
, and the matrices have been transposed. The transposition is not surprising:

classical Kraus maps provide a forward propagation of density matrices, whereas we
are interested in Lyapunov functions, whose propagation follows a backward scheme.
I.e., the present tropical Kraus maps are analogues to the adjoints of classical Kraus
maps. Finally, as we work with real quadratic forms, instead of hermitian forms,
the hermitian conjugate † is replaced by transposition ⊤.

We also consider a variant of the tropical Kraus map, adapted to the optimal
control problem in Section 2.2, defining the map Mτ from (S+

n )p to (℘(S+
n ))p by:

(Mτ )j(X) :=
∨{

riccτ,σ Xi : (i, a) ∈ W × Σ , i · σ = j
}
.

Remark 2. A tropical Kraus map from (S+
n )p to (℘(S+

n ))p can be represented by
a new tropical Kraus map from S+

np to ℘(S+
np), preserving the set of block-diagonal

matrices. Indeed, for X = diag(X1, . . . , Xm), these maps can be written as
∨{

fα(X) : α = (i, σ, j) , i · σ = j
}

with fα(X) = A⊤
αXAα .

where Aα = Eij ⊗ Aσ denotes the lifted set of matrices. Here, Eij denotes the
matrix with 1 in the (i, j)-th entry and 0 everywhere else and ⊗ is the Kronecker
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product. Indeed, whenever the selection matrix C in Theorem 1 is block-diagonal
C = (C1, . . . , Cm), the associated minimal upper bound is also block diagonal and
the value of the j-th block is exactly the minimal upper bound in Tj(X) that is
selected by Cj. The case where the matrix C is not block-diagonal does not appear
in our analysis. The same remark applies to the variant Mτ of the tropical Kraus
map.

4.2. Non linear eigenvalue and fixed points problems associated to Trop-

ical Kraus Maps. The tropical Kraus map T is positively homogeneous, meaning
that T (αX) = αT (X) for all X ∈ S+

n and α > 0. This suggests to consider a multi-
valued eigenproblem. A (non-linear) eigenvector of T , associated to the eigenvalue
λ is a nonzero matrix X ∈ S+

n such that λXj ∈ Tj(X) holds for all j ∈ W . We
write λX ∈ T (X) for brevity. This notation is licit since we can identify T (X)
which is an element of (℘(Sn))

p to an element of ℘
(
(Sn)

p
)
.

The following result shows that a non-linear eigenvalue of the tropical Kraus
map provides an upper bound for the joint spectral radius.

Theorem 2. If the multivalued eigenvector problem λX ∈ T (X) has a solution
such that the matrix

∑
j∈W Xj is positive definite, then, the map

v(z) := sup
j∈W

(z⊤Xjz)
1/2

is a norm, and v(Aσz) 6
√
λv(z) holds for all z ∈ R

n and σ ∈ Σ. In particular,

the joint spectral radius of A does not exceed
√
λ.

Proof. The proof of this result is similar to the proof Theorem 2.4 by Ahmadi et
al. [1]. Indeed, a non-linear eigenvector X of the tropical Kraus map T provides a
feasible point of the semidefinite program considered in [1, Theorem 2.4]. �

We have the following analogous result for the switched linear quadratic control
problem.

Theorem 3. If the multivalued fixed point problem X ∈ Mτ (X) has a solution,
then the map V := z 7→ supi z

⊤Xiz determines a sub-invariant function of the
Lax-Oleinik semi-group St, meaning that:

max
σ

Sσ
t [V ](z) 6 V (z) for all z .

4.3. Existence of non-linear eigenvectors of tropical Kraus maps and com-

putation by a Krasnoselskii-Mann iteration. For a completely positive map,
X 7→ ∑

i AiXA⊤
i , the existence of a positive semidefinite eigenvector follows from

the Perron-Frobenius theorem [22]. Moreover, such an eigenvector is necessarily
positive definite as soon as the map is irreducible in the Perron-Frobenius sense,
meaning that the map does not leave invariant a non-trivial face of the closed cone
S+
n . As shown in [12], the latter condition holds if and only if the set of matri-

ces {Ai} is irreducible in the algebraic sense, meaning that there is no non-trivial
subspace invariant by each matrix in this set.

In order to show that tropical Kraus maps have eigenvectors, we specialize the
multivalued map T defined in Section 4.1 by fixing a selection of minimal upper
bound ⊔. We obtain the map T sel defined on (S+

n )p by

T sel
j (X) :=

⊔{
A⊤

σXiAσ : i · σ = j
}
.
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We will prove that the map T sel has a non-linear eigenvector if the selection ⊔ is the
”minimum volume” selection ⊔det. We introduce the “non-commutative simplex”

∆p := {X ∈ (S+
n )p : 〈Ipn, X〉 = 1} and the map T̂ sel sending ∆p to itself:

T̂ sel(X) :=
1

2

[ 1

〈Ipn, T sel(X)〉T
sel(X) +X

]
.

Observe that, independently of the selection ⊔, a fixed pointX ∈ ∆p of the map T̂ sel

yields an eigenvector for the map T sel associated with the eigenvalue 〈Ipn, T sel(X)〉.
We can now state the theorem.

Theorem 4. If the set of matrices {Eij ⊗ Aσ : i · σ = j} is irreducible, then the

map T̂ sel has a positive definite fixed point.

Sketch of proof: The proof relies on the inequality p−1
∑

16k6p Qk 4 ⊔detQk 4∑
16k6p Qk which can be deduced from [3, Theorem 4.1] when the set A is reduced

to two matrices. The irreducibility of A implies that there is an integer q such that

the map T̂ sel iterated q times sends ∆p into its interior. We then show the existence

of a convex compact set K included in the interior of ∆ which is invariant by T̂ sel.
The operator (Q1, . . . , Qp) 7→ ⊔det{Q1, . . . , Qp} is continuous on the interior of ∆,

hence, T̂ sel is continuous on K. We conclude by applying Brouwer’s fixed-point

theorem to T̂ sel. �

We obtain as an immediate corollary:

Corollary 1. If the set of matrices {Eij ⊗ Aσ : i · σ = j} is irreducible, then, the
tropical Kraus map T has a positive definite eigenvector.

Remark 3. Several basic methods allow one to prove non-linear extensions of
the Perron-Frobenius theorem. These involve contraction properties with respect to
Hilbert’s projective metric, Brouwer fixed point theorem, or monotonicity properties,
see [22]. A direct application of all these methods fails in the case of the tropical
Kraus maps T sel, which are not contracting, not monotone, and which do not have
continuous extensions to the closure of the cone on which they act. This is why the

proof of Corollary 1 relies on the detour through T̂ sel in Theorem 4.

In order to compute a fixed point of the map T̂ sel, we compute successive iterates
starting from a positive definite matrixX(0). This yields a Krasnoselskii-Mann-type
scheme:

X(k+1) =
1

2

[ 1

〈Ipn, T sel(X(k))〉T
sel(X(k)) +X(k)

]
.

This is a power-type iteration, involving a renormalization and a “damping term”
(addition of X(k)) to avoid oscillations. This should be compared with the classical
Krasnoselskii-Mann iteration, which applies to non-expansive mappings T , and
takes the form X(k+1) = (T (X(k)) +X(k))/2, see [29].

Remark 4. There is a multiplicative variant of the iteration, defined by

X(k+1) =
[ T sel(X(k))

〈Ipn, T sel(X(k))〉
]
#X(k) ,

where P#Q := P 1/2
(
P−1/2QP−1/2

)1/2
P 1/2 denotes the Riemannian barycenter of

the positive definite matrices P,Q, see [5, Chapter 2] for more information. We can
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show that this multiplicative version does converge in the “commutative case”, i.e.,

when n = 1. Then, the map X 7→ 〈Ipn, T sel(X)〉−1
T sel(X) is nonexpansive in the

Hilbert metric [22], and then, the general result of [29] can be applied. The additive
version can also be shown to be converging when n = 1, by a reduction to the same
result, but the proof is more involved.

We use a different iteration scheme to compute fixed points of the variant Mτ .
First, we specialize again the multivalued map Mτ with a minimal upper bound
selection ⊔ to obtain the map M sel

τ . Then, we compute iteratively

X(k+1) = M sel
τ (X(k)) .(2)

We can show that this iteration converges on some ”good” instances of the problem,
when we choose ⊔ := ⊔det. Indeed, the (indefinite) Riccati flow is a contraction in
the Thompson metric, with contraction rate α > 0 determined by the parameters
of the flow [15, Corollary 4.7]. Moreover, as stated by Allamigeon et al. [3], the
selection ⊔det has a Lipschitz constant in the Thompson metric which is not larger
than 1 + (4/π) logn (this bound is conservative). Combining these results, the
iteration in Equation (2) is guaranteed to converge locally when exp(ατ) > 1 +
(4/π) logn. The contraction rate α depends on an interval {X ∈ Sn : λ1In 4

X 4 λ2In} and this interval is not preserved by ⊔det, hence we do not have global
convergence. Determining whether there is a minimal upper bound selection that
preserves this interval and that has a finite Lipschitz constant in Thompson’s metric,
to be used instead of ⊔det remains an open problem.

4.4. Implementation issues. We describe in this section the resolution to several
issues that arise in the implementation of the iterative scheme.

First, in the iterative scheme to approximate the joint spectral radius, we intro-
duce a small positive perturbation ε in the computation:

T sel
j (X) :=

⊔{
A⊤

σXiAσ + εIn : i · σ = j
}
.

In practice, we use values for ε in the range 10−4−10−2. This additional parameter
allows us to obtain, in a finite number of iterations, a solution (X, ρ) that satisfies
ρ2Xj < A⊤

σ XiAσ for all admissible (i, σ, j). Moreover, this parameter absorbs nu-
merical imprecisions that may appear during the computation and ensures that the
matrices Xj are positive definite, so the assumptions of Theorem 2 and Theorem 3
are satisfied.

We choose the selection ⊔ := ⊔tr. Then, when the set Σ contains only two
elements, T sel

j (X) can be computed analytically thanks to Theorem 1. When Σ has
more than two elements, instead of computing the true minimal upper bound ⊔trQ,
we compute an approximation by sequential evaluation: Q1⊔tr (Q2⊔tr (· · ·⊔trQp)).

Finally, as pointed out in [14], the propagation of the Riccati operator riccτ,σ on
a single quadratic form P0 is computed analytically by riccτ,σ = Y (τ)X(τ)−1, with

Mσ =
(
−Aσ −Qσ

Dσ Aσ

)
and

(
X(τ) ; Y (τ)

)⊤
= exp

(
Mστ)

(
In ; P0

)⊤
.

5. Experimental results

5.1. Path-complete graph Lyapunov functions. In [1], Ahmadi and al. devel-
oped a method to compute an overapproximation of the joint spectral radius of a
finite set of matrices, to which we shall compare our method.
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Given a set of states W and an alphabet Σ, an edge of a labeled graph is a triple
(i, σ, j) ∈ W ×Σ×W . The set of edges is denoted E. Such a graph is called path-
complete if for every state i and letter σ, there is some state j such that (i, σ, j) is
an edge.

Let A = {Aσ}σ∈Σ denote a finite set of n × n matrices and ρ a non-negative
real number. In [1], the authors examine graphs, denoted G(X, ρ), whose states are
positive definite matrices {Xi}i and whose edges are determined by

(i, σ, j) ∈ E ⇐⇒ A⊤
σ XiAσ 4 ρ2Xj .

The main theorem in [1] shows that the construction of a path-complete graph
G(X, ρ) gives an upper bound of the joint spectral radius:

Theorem 5 (Theorem 2.4 [1]). If the graph G(X, ρ) is path-complete for some set
of positive definite matrices {Xi}i, then ρ(A) 6 ρ. Moreover, the map V : z 7→
maxi z

⊤Xiz is a Lyapunov-type function: it satisfies V (Aσx) 6 ρ2V (x) for all
σ ∈ Σ and x ∈ R

n.

In practice, for a fixed value of ρ and a given path-complete graph G, checking the
existence of a path-complete graph G(X, ρ) whose edges coincide with G amounts
to checking the feasibility of an LMI. A bisection scheme is then implemented to
refine ρ. For brevity, we shall refer to this method as the LMI method.

A class of graphs which provides good theoretical and experimental approxima-
tions is the class of De Bruijn graphs. The set of states of the De Bruijn graph of
order d is the set Σd of words built on Σ which have length d. There is an edge
(i, σ, j) between states i and j if and only if i = σ1 . . . σd and j = σ2 . . . σdσ. This
graph, denoted by Dd, is path-complete by construction.

5.2. McEneaney’s curse of dimensionality attenuation scheme. We assume
that V 0 is a quadratic function V 0(x) = x⊤P 0x. The method of [24] that solves
the linear quadratic optimal control problem described in Section 2.2 approximates
the value function V by a finite supremum of quadratic forms

V ≈ sup
σ1,...,σN∈Σ

Sσ1

τ · · ·SσN

τ [V 0] ,(3)

where τ is a (small) time discretization step andN is a maximal number of switches.
The latter supremum represents the value of a modified optimal control problem,
in horizon τN , in which switches occur only at times multiple of τ . We have
Sσ1

τ · · ·SσN

τ [V 0](x) = x⊤Qx, where Q = riccτ,σ1
◦ · · · ◦ riccτ,σN

(P0), can be com-
puted by integrating successive Riccati equations, which allows us to evaluate the
expression in Equation (3).

The propagation of a quadratic form by the Lax-Oleinik semi-group has only a
cubic cost in terms of the dimension n, contrary to classical grid-based methods
whose cost is exponential in the dimension. In this sense, the curse of dimensionality
has been reduced. However, the memory footprint of this method is exponential in
the number of switches, since mN quadratic forms are computed after N iterations.
Several pruning schemes have been proposed in [14] to limit this growth. This is a
costly operation, indeed, 99% of the computation time is spent solving LMIs inside
the pruning procedure [14].
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5.3. Application to the joint spectral radius. Given that the approximation of
the joint spectral radius ρ(A) depends on the graph G that underlies the analysis, we
denote by ρ̂(A,G) the approximation obtained as (the square root of) an eigenvalue
of a tropical Kraus map and by ρ(A,G) the one obtained by solving LMIs.

The map · sending W × Σ to W defined in Section 4.1 can be interpreted as
a path-complete graph. For this reason, our method, when applied to the joint
spectral radius, is a relaxation of the path-complete Lyapunov function framework,
and thus we always have

ρ(A) 6 ρ(A,G) 6 ρ̂(A,G) .

However, we shall see that the tropical method is much more tractable, so we
may use a bigger graph and sometimes get a better approximation than by solving
LMIs.

We compare the performance of our algorithm with the path-complete graph
Lyapunov method, in terms of computation time and accuracy of the approximation
of the joint spectral radius, measured by

δ := (ρ̂(A,G′)− ρ(A,G)/ρ(A,G) .

All the experiments were implemented in Matlab, running on one core of a 2.2
GHz Intel Core i7 with 8 GB RAM. The semidefinite programs were solved using
YALMIP (R20160930), calling SeDuMi 1.3.

5.3.1. Accuracy of the approximation. We generate 600 pairs A = {A1, A2} of ran-
dom 6× 6 matrices. For each of these pairs, we compare the approximation of the
joint spectral radius obtained by the LMI method on the graph D3 (involving 8
positive semidefinite matrices) and by the tropical Kraus method on the graph D6

(involving 64 positive semidefinite matrices). On these examples, we report that
the tropical method obtains a similar approximation of the joint spectral radius,
within a margin of 2.5%, and outperforms the LMI-method on 25% of these exam-
ples. Moreover, whereas the LMI-method requires between 3s and 5s to obtain this
approximation, the tropical method consistently returns an approximation in 1s.

5.3.2. Scalability - dimension. We generate random pairs of n × n matrices, for n
ranging from 5 to 500. We use again the De Bruijn graph D3 in the LMI-method
and the graph D6 in the tropical Kraus method. We show in Table 1 the mean
computation time required to obtain an overapproximation and the mean relative
accuracy of the tropical method with respect to the LMI-method, when it applies.
First, one can observe the major speedup provided by the tropical method, from 4
times faster when n = 5 to 80 times faster for n = 40.

Also note that the tropical method is using 8 times more quadratic forms in its
analysis and remains much faster than the LMI-method. Thus, given a fixed time
budget, the tropical method enjoys more flexibility regarding the size of the graph
that is used in the analysis.

Moreover, observe that the LMI-method cannot provide estimates on the joint
spectral radius for values of n greater than 45, whereas the tropical method easily
reaches values of n greater than 100.

Finally, the accuracy of the tropical approximation remains within a 3% margin
of the one obtained by the LMI-method.
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Table 1. Comparison of the methods with respect to the size of
the dimension of the matrices.

Dimension
n

CPU time
(tropical)

CPU time
(LMI)

Upper bound
on ρ(A)
(tropical)

Upper bound
on ρ(A)
(LMI)

5 0.9 s 3.1 s 2.767 2.7627
10 1.5 s 4.2 s 3.797 3.7426
20 3.5 s 31 s 5.4093 5.3891
30 7.9 s 3min 6.2038 6.1942
40 13.7 s 18min 7.3402 7.3363
45 18.1 s − 7.687 −
50 25.2 s − 8.1591 −
100 1min − 11.487 −
500 8min − 25.44 −

Table 2. Comparison of the methods w.r.t. the size of the graph Dd.

Order d 2 4 6 8 10
Size of W 8 32 128 512 2048
CPU time
(tropical)

0.03s 0.07s 0.4s 2.0s 9.0s

CPU time
(LMI)

1.9s 4.0s 24s 1min 10min

Upper bound on
ρ(A) (tropical)

1.842 1.821 1.804 1.800 1.801

Upper bound on
ρ(A) (LMI)

1.8216 1.7974 1.7957 1.7922 1.7905

5.3.3. Scalability - graphs. We now analyze the influence of the order of the De
Bruijn graph Dd used in the analysis on the computation of the upper bound on
the joint spectral radius obtained by both methods. We use the matrices A1 =(

−1 1 −1
−1 −1 1
0 1 1

)
and A2 =

(
−1 1 −1
−1 −1 0
1 1 1

)
, introduced in [16]. Their joint spectral radius

is ρ(A) = 1.78893.
We show in Table 2 the upper bound on the joint spectral radius and the com-

putation time with respect to the length order d of the De Bruijn graphs.

5.4. A faster curse of dimensionality attenuation scheme. We now ap-
ply the iteration scheme described in Section 4.3 to the approximation of the
value function V . In all examples, we measure the quality of the approxima-
tion of the value function as in [25, 14] with the H-infinity back-substitution error
maxx⊤x61 |H(x,∇V (x))| on the subspace spanned by the canonical vectors e1 and
e2.

The first example is Example 1 in [24] and we use the instance of [14] in the
second example. Examples 3 and 4 are randomly generated examples that satisfy
the technical assumptions in [24].
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Table 3. Numerical benchmarks of the tropical Kraus method
applied to McEneaney’s switched linear quadratic problem

Example 1 2 2 3 4
Dimension 2 6 6 20 20
Size of Σ 3 6 6 2 4

τ 0.05 s 0.2 0.1 0.1 0.1
Size of W 81 216 1296 128 256
Initial error 0.78 1.12 1.12 4.2 4.79
Final error 0.047 0.071 0.090 0.0006 0.17
Iterations 194 115 200 55 288
CPU time 8 s 41 s 5 min 5 s 2.5 min

Table 3 depicts the results of the computations. In particular, we give the
backsubstitution error at the beginning of the computation, when the value function
is approximated by a single quadratic form (Q(x) = 0.1|x|2 in all cases) and the
final backsubstitution error when the scheme has converged.

6. CONCLUDING REMARKS

We introduced a new method to approximate the value function of optimal con-
trol problems for switched systems. This method applies to situations in which the
evolution semi-group of the unswitched problem preserves the space of quadratic
forms. This includes the computation of the joint spectral radius and a class of
linear quadratic control problems with switches considered by McEneaney. Our
scheme belongs to the family of max-plus methods as it approximates the value
function by a supremum of quadratic forms. It avoids the recourse to semidefinite
programming (which was the bottleneck of earlier max-plus methods) by a reduc-
tion to a non-linear eigenproblem, exploiting the geometry of the Löwner order.
This leads to a major speedup, allowing us to obtain approximate solutions of in-
stances in dimension up to 100 in the case of the joint spectral radius, and 20 for
McEneaney’s problem, hardly accessible by other methods.

Let us now point out the limitations of the present approach, together with
possible ways to overcome them.

A key ingredient in our method is the replacement of LMI formulations by a
selection of minimal upper bounds in the Löwner order. This induces a “relaxation
gap”, which is difficult to estimate as it depends on the specific selection which is
used. Another difficulty is that these selections may be expansive, resulting in a
potential instability or lack of convergence of the iterative scheme. In the case of the
joint spectral radius, experiments indicate that the scheme does converge (although
a proof of convergence in the general case is missing). In the case of switched linear
quadratic control problems, we do have a proof of convergence in the discrete time
case. This proof requires the contraction rates of the Riccati flows arising in our
problem to be sufficiently small to absorb the expansiveness of the selection of a
joint. In practice, the scheme converges in more general circumstances. However, in
the continuous time case, the precision of the scheme becomes limited as it can be
unstable for small values of the time discretization step. In other words, the scheme
currently allows one to compute quickly a coarse approximation of the solution of
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a Hamilton-Jacobi PDE. The most promising improvement of the scheme may be
to adapt dynamically the selection of a minimal upper bound, which will reduce
the relaxation gap, and might also improve the convergence. This is left for further
work.
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