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ABSTRACT. We show that the joint spectral radius of a finite collection of nonneg-
ative matrices can be bounded by the eigenvalue of a non-linear operator. This
eigenvalue coincides with the ergodic constant of a risk-sensitive control prob-
lem, or of an entropy game, in which the state space consists of all switching se-
quences of a given length. We show that, by increasing this length, we arrive at a
convergent approximation scheme to compute the joint spectral radius. The com-
plexity of this method is exponential in the length of the switching sequences, but
it is quite insensitive to the size of the matrices, allowing us to solve very large
scale instances (several matrices in dimensions of order 1000 within a minute). An
idea of this method is to replace a hierarchy of optimization problems, introduced
by Ahmadi, Jungers, Parrilo and Roozbehani, by a hierarchy of nonlinear eigen-
problems. To solve the latter eigenproblems, we introduce a projective version of
Krasnoselskii-Mann iteration. This method is of independent interest as it applies
more generally to the nonlinear eigenproblem for a monotone positively homoge-
neous map. Here, this method allows for scalability by avoiding the recourse to
linear or semidefinite programming techniques.

1. Introduction.

1.1. Motivation. A fundamental issue, in optimal control, is to develop efficient
numerical schemes that provide globally optimal solutions. Dynamic program-
ming does provide a guaranteed global optimum but it is subject to the well known
curse of dimensionality. Indeed, the main numerical methods, including mono-
tone finite difference or semi-Lagrangean schemes [16, 14, 19, 15], and the anti-
diffusive schemes [13], are grid-based. It follows that the time needed to obtain an
approximate solution with a given accuracy is exponential in the dimension of the
state space.
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Recently, some innovative methods have been introduced in optimal control,
which somehow attenuate the curse of dimensionality, for structured classes of
problems.

McEneaney considered in [34] hybrid optimal control problems in which a dis-
crete control allows one to switch between different linear quadratic models. The
max-plus type method that he introduced approximates the value function by a
supremum of quadratic forms. Its complexity, which is exponential in some pa-
rameters, has the remarkable feature of being polynomial in the dimension [35,
42]. To produce approximations of the value function as concise as possible, the
method makes an intensive use of semidefinite programming [22].

A different problem consists in computing the joint spectral radius of a finite set
of matrices [29]. This boils down to computing an ergodic value function, known
as the Barabanov norm. Specific numerical methods have been developed, which
approximate the Barabanov ball by a polytope [26], or are of semi-Lagrangean
type [30]. Ahmadi, Jungers, Parrilo and Roozbehani [8] developed a new method,
based on a path complete automaton. It approximates the Barabanov norm by a
supremum of quadratic norms. Whereas the worst case complexity estimates in [8]
are still subject to a curse of dimensionality, in practice, the efficiency of the method
is determined by the complexity of the optimal switching law rather than by the
dimension itself. This allows one to solve instances of dimension inaccessible by a
grid-based method.

In the max-plus method of McEneaney, and in the method of Ahmadi et al.,
solving large scale semidefinite programs appears to be the bottleneck, limiting
the applicability range.

In our recent work [24, 43], we introduced a new method to approximate the
joint spectral radius. We replaced the solution of large scale SDP problems by
the solution of eigenproblems involving non-linear operators, the “tropical Kraus
maps”. The latter are the analogues of completely positive maps, or of “quantum
channels” acting on the space of positive semidefinite matrices, the operation of
addition being now replaced by a multivalued supremum operation in the Löwner
order. To solve these eigenproblems, we used iterative power type schemes, al-
lowing us to deal with large scale instances (the algorithm of [24, 43] could handle
several matrices of order 500 in a few minutes). The convergence of these itera-
tive schemes, however, is only guaranteed so far under restrictive assumptions,
since the “tropical Kraus maps” are typically nonmonotone and expansive in the
natural metrics.

1.2. Contribution. In this paper, we develop a non-linear fixed point approach
to approximate the joint spectral radius in the special case of nonnegative matrices.
We exploit a result of Guglielmi and Protasov [23], showing that for nonnegative
matrices, it suffices to look for a monotone norm. We show here that such a mono-
tone norm can be approximated by a finite supremum of linear forms, which are
found as the solution of a non-linear eigenproblem. This is in contrast to earlier
polyhedral approximation schemes, relying for instance on linear programming.

More precisely, we introduce a hierarchy of linear eigenproblems, parametrized
by a certain “depth”, inspired by [8, 24], and we show that, as the depth tends
to infinity, the non-linear eigenvalue does converge to the joint spectral radius.
We remark that the initial (“depth 0”) bound in our hierarchy coincides with the
bound of the joint spectral radius introduced by Blondel and Nesterov [11].
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The non-linear operator arising in our construction actually belongs to a known
class: it can be identified to the dynamic programming operator of an ergodic risk
sensitive control problems [1], or of a (one player) “entropy game” [2, 4]. This
operator enjoys remarkable properties, like log-convexity, monotonicity, nonex-
pansiveness with respect to Thompson’s part metric or Hilbert’s projective met-
ric. As a result, computing the non-linear eigenvalue is a tractable problem. It
is shown to be polynomial time in [4]. Moreover, large scale instances can be
solved by power-type schemes. In particular, we introduce a projective version
of the Krasnoselskii-Mann iteration. We present this numerical scheme in a more
general setting, for a monotone positively homogeneous maps on the standard or-
thant. The convergence of this scheme is obtained as a corollary of the convergence
of the original scheme. This projective scheme for nonlinear eigenproblems may
be of wider interest and applicability: it has universal convergence properties and
explicit bounds independent of the dimension, unlike the nonlinear power algo-
rithm considered classically, see e.g. [38, 7, 20]. It also has a geometric convergence
property, under less restrictive assumptions.

We report numerical results on large scale instances, up to dimension 5000, ob-
tained by an OCaml implementation of the present algorithm.

A comparison with our companion work [24] may help to appreciate the present
approach: it appears to be a “dequantization” of the non-linear fixed point ap-
proach of [24]. By “dequantization”, we mean that we use here operators acting
on the standard orthant, in contrast, the operator in [24] acts on the cone of posi-
tive semidefinite matrices. Whereas the approach of [24] is more general, leading
to a convergent approximation scheme for any family of matrices, the present al-
gorithm only applies to families of nonnegative matrices. However, it is experimen-
tally faster, and it has stronger theoretical convergence guarantees. This suggests
that the joint spectral radius problem is easier for nonnegative matrices.

1.3. Organization of the paper. In Section 2, we recall some basic results on Bara-
banov norms of nonnegative matrices. In Section 3, we introduce the family of
non-linear eigenproblems to approximate the joint spectral radius. We show that
these eigenproblems are solvable, under an appropriate irreducibility condition.
In Section 4, we show that the non-linear eigenvalues in this hierarchy do converge
to the joint spectral radius. The projective Krasnoselskii-Mann iterative scheme is
analysed in Section 5. Benchmarks are presented in Section 6.

2. The joint spectral radius of nonnegative matrices. The joint spectral radius
ρ(A) of a finite collection of n × n real matrices A = {A1, . . . , Ap} is defined by

ρ(A) := lim
k→∞

max
16i1,...,ik6p

‖Ai1 · · · Aik
‖1/k .

When the set of matrices A is irreducible (meaning that there is no nontriv-
ial subspace of R

n that is left invariant by all matrices), a fundamental result by
Barabanov [9] shows that there is a norm ν on R

n such that

max
16i6p

ν(Aix) = λν(x) , ∀x ∈ R
n , (1)

for some positive real number λ. The scalar λ is unique and coincides with the
joint spectral radius ρ(A).
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A norm that satisfies Equation (1) is called an invariant norm. A norm that only
satisfies the inequality

max
16i6p

ν(Aix) 6 λν(x) (2)

for all vectors x ∈ R
n is called a λ-extremal norm. In that case, it is readily seen

that λ > ρ(A), so that λ-extremal norms provide safe upper bounds of the joint
spectral radius.

We now assume that the matrices in A are nonnegative, i.e. their entries take
nonnegative values. It is then readily seen that all matrices in A leave the (closed)
cone of nonnegative vectors invariant. The latter cone, denoted by R

n
+, induces an

ordering on R
n: we have x 6 y if and only if y − x is nonnegative. We note that a

vector belongs to the interior of R
n
+ if its entries are positive. Recall that the cone

R
n
+ is self-dual, so that x 6 y if and only if 〈u, y − x〉 > 0 for all u ∈ R

n
+. This cone

also induces a lattice structure on R
n, meaning that the supremum of two vectors

x, y always exists and is given coordinate-wise by
[

sup(x, y)
]

i
= sup(xi, yi). A

norm defined on R
n is called monotone if 0 6 x 6 y implies ν(x) 6 ν(y).

The (extreme) faces of R
n
+ are the sets {x ∈ R

n
+ : xi = 0 if i /∈ I} for I ⊆

{1, . . . , n}. The cases I = ∅ (corresponding to F = {0}) and I = {1, . . . , n} (giving
F = R

n
+) yield the trivial faces. When the matrices in A are nonnegative, the irre-

ducibility assumption on A can be weakened to positive-irreducibility, meaning that
there is no non-trivial face of the cone of nonnegative vectors that is left invariant
by all matrices in A. A theorem by Guglielmi and Protasov [23] shows that, in this
setting, the norm in Equation (1) can be chosen to be monotone.

Theorem 1 (Corollary 1 in [23]). A positively-irreducible family of nonnegative matrices
has a monotone invariant norm.

We shall say that a map ν from R
n
+ to R is a monotone hemi-norm if it is con-

vex and positively homogeneous of degree 1, if 0 6 x 6 y implies ν(x) 6 ν(y),
and if ν(x) = 0 with x > 0 implies x = 0. The term hemi-norm is borrowed
to [25], functions of this kind are also known as weak Minkowski norms in metric
geometry [41]

Note that a monotone hemi-norm ν defined on R
n
+ extends to a monotone norm

on R
n:

ν̂(x) := inf{ν(y) ∨ ν(z) : x = y − z , with y, z > 0} . (3)

We shall say that ν is a monotone λ-extremal hemi-norm on R
n
+ if

max
16i6p

ν(Aix) 6 λν(x) , ∀x ∈ R
n
+ .

This implies that the associated monotone norm ν̂ is a λ-extremal norm. In this
way, it suffices to study monotone λ-extremal hemi-norms defined on R

n
+.

3. A hierarchy of non-linear eigenproblems.

3.1. Definition of the operators. In the sequel, we consider a finite set of n × n
nonnegative matrices A = {A1, . . . , Ap}. We denote by [p] = {1, . . . , p}.

The operator considered at the 0-level of the hierarchy is given by

T0(x) := sup
16a6p

AT
a x .
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Higher levels of the hierarchy are built by introducing a memory process that
keeps track of the past matrix products, up to a given depth. More precisely, given
an integer d, the operator considered in the d-level is a self-map of the product
cone ∏s∈[p]d R

n
+. It maps the vector x = (xs)s∈[p]d, where each xs ∈ R

n
+, to the

vector Td(x), whose s-component is the vector of R
n
+ given by

Td
s (x) := sup

r,a : τd(r,a)=s

AT
a xr . (4)

Here, the map τd : [p]d × [p] → [p]d is the transition map of the De Bruijn automaton

of length d on p symbols: given a word i1 · · · id ∈ [p]d, we have

τd(i1 · · · id, a) = i2 · · · ida .

In other words, the transition forgets the initial symbol of a sequence, and concate-
nates the letter a representing the most recent switch, to this sequence.

The map Td is monotone with respect to the cone ∏s∈[p]d R
n
+, i.e.,

x 6 y =⇒ Td(x) 6 Td(y) ,

for all x, y ∈ ∏s∈[p]d R
n
+, and it is (positively) homogeneous (of degree one), mean-

ing that

Td(λx) = λTd(x)

holds for all positive λ.

3.2. Some results of non-linear Perron-Frobenius theory. Monotone and homo-
geneous maps are studied in non-linear Perron-Frobenius theory. We recall some
basic results here, referring the reader to [38, 32] for background.

The spectral radius of a monotone and homogeneous map f defined on a cone C ,
denoted by r( f ) is defined by:

r( f ) := lim
k→+∞

‖ f k(x)‖1/k

for x ∈ int C . This value is independent of the choice of x and the norm ‖ · ‖ if the
cone C is included in a finite dimensional space, see [36, 6, 32].

We say that a monotone and homogeneous map f : R
n
+ → R

n
+ is positively ir-

reducible if it does not leave invariant a non-trivial face of R
n
+. A basic result of

non-linear Perron-Frobenius theory, which follows as a consequence of Brouwer
theorem, shows that a positively irreducible map has an eigenvector in the interior
of the cone. Then, the associated eigenvalue λ coincides with the spectral radius
r( f ). The same conclusion holds, in fact, under less demanding assumptions [21],
however, for the present class of operators, positive irreducibility will suffice.

Nussbaum proved in [37] that the classical variational characterization of the
Perron root of a nonnegative matrix carries over to the non-linear setting. The
next theorem follows by combining results of [37], [21] and [3].

Theorem 2 (Non-linear Collatz-Wielandt formulæ [37, Theorem 3.1], [21, Prop. 1],
[3, Lemma 2.8]). Given a continuous, monotone and homogeneous map f on the cone
R

n
+, we have

r( f ) = inf
{

ρ > 0 : ∃u ∈ int R
n
+, f (u) 6 ρu

}

= max
{

ρ > 0 : ∃v ∈ R
n
+ \ {0}, f (v) > ρv} .
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We write “inf”, as the infimum is not attained in general, whereas the maximum
is always attained.

In particular, if the map f is not positively-irreducible, it may be the case that
f (u) = λu holds for some nonzero vector u in the boundary of the cone R

n
+.

Then, we can only conclude from the second of the Collatz-Wielandt formulæ that
λ 6 r( f ). However, by the first formula, we do have r( f ) = λ if u belongs to the
interior of R

n
+.

3.3. Construction of the hierarchy. For every integer d > 0, the d-level of the
hierarchy consists in solving the non-linear eigenproblem:

{
Td(u) = λdu

u ∈ ∏s∈[p]d R
n
+ , u 6= 0

(Ed)

The first main result shows that every problem (Ed) has a solution, and that a
solution provides an upper bound on the joint spectral radius ρ(A) and a corre-
sponding monotone λd-extremal hemi-norm.

Theorem 3. Suppose that the set of nonnegative matrices A is positively-irreducible.
Then Problem (Ed) has a solution. Any such solution (λd, u) satisfies

ρ(A) 6 λd 6 r(Td) .

Moreover, the map ‖x‖u := maxs〈us, x〉 is a monotone λd-extremal hemi-norm:

max
a

‖Aax‖u 6 λd‖x‖u , ∀x ∈ R
n
+ .

Proof. First, note that the map Td, which is continuous and positively homoge-

neous on the cone ∏s∈[p]d R
n
+, has an eigenvector u, i.e., Td(u) = λdu for some

λ > 0. This is indeed a standard result, which follows by applying Brouwer fixed

point theorem to the map x 7→ Td(x)/‖Td(x)‖1, where ‖ · ‖ denotes the ℓ1 norm.
This map sends continuously the simplex ∆ := {x ∈ ∏s∈[p]d R

n
+ | ‖x‖1 = 1} to

itself.
Let us write u = (us)s this eigenvector, and for each s, let Fs denote the minimal

face of R
n
+ containing the vector us. We introduce the set F := ∑s∈[p]d Fs. The

latter set is a face of R
n
+ and satisfies Aa · F ⊆ F for all a ∈ [p] by definition of the

map Td, hence F = R
n
+ since the set of matrices A is irreducible. It follows that

the vector ∑s∈[p]d us is positive and that the map x 7→ maxs〈us, x〉 is a monotone

hemi-norm on R
n
+.

We have 〈AT
a x, ur〉 6 〈x, Td

τ(r,a)
(u)〉 6 λd〈x, uτ(r,a)〉 (we write τ instead of τd).

Taking the supremum over r and a, we arrive at maxa ‖Aax‖u 6 λd‖x‖u, hence
ρ(A) 6 λd. We deduce from the second of the Collatz-Wielandt formulæ in Theo-

rem 2, that λd 6 r(Td).

The positive-irreducibility of Td can be decided by checking whether a lifted
version of the set of matrices A is positively irreducible. In the following, the set

{er : r ∈ [p]d} denotes the canonical basis of the space R
pd

and ⊗ is the Kronecker
product.

Proposition 4. The map Td is positively-irreducible if and only if the set of matrices

{(ereT
s )⊗ Aa : τd(r, a) = s, r, s ∈ [p]d , a ∈ [p]} is positively irreducible.
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Proof. First, we consider the case d = 0. Suppose the map T0 is not positively
irreducible, that is, there is a non-trivial face F of the cone R

n
+ that is invariant

by T0. Given any x ∈ F, we have AT
a x 6 T0(x) ∈ F, thus F is also invariant

by all matrices AT
a , which is equivalent to saying that the set A is not positively

irreducible.
In the general case, we can rewrite the map Td, originally defined on the space

∏s∈[p]d R
n, on the space R

pd ⊗R
n. To this end, we ”stack” the (vector) components

of the vector (xr)r∈[p]d as one vector l[x] := ∑r er ⊗ xr .

Moreover, we obtain by ”stacking” the components of Td(x) the vector

l
[

Td(x)
]
= ∑

s

es ⊗
[
Td(x)

]
s
= sup

s
es ⊗

[
sup

r,a : τd(r,a)=s

[
AT

a xr

]]

= sup
r,s,a : τd(r,a)=s

[
es

]
⊗

[
AT

a xr

]
= sup

r,s,a : τd(r,a)=s
∑

t

[
eseT

r et

]
⊗

[
AT

a xt

]

= sup
r,s,a : τd(r,a)=s

[
(ereT

s )
T ⊗ AT

a

][
∑

t

et ⊗ xt

]
= sup

r,s,a
AT

r,s,a l[x] ,

where we have used the fact that the coefficients of es besides position s are zero,

that eT
r et = 0 if r 6= t and we have denoted Ar,s,a = (ereT

s )⊗ Aa when τd(r, a) = s,
and Ar,s,a = 0n,n otherwise.

Hence, the map Td is positively irreducible if and only if the map

y 7→ sup
r,s,a

AT
r,s,ay

is positively irreducible. This reduces to the case d = 0 where the set of matrices
A is replaced by the set {Ar,s,a}.

The term “hierarchy” for the sequence of problems (Ed) is justified by the fol-
lowing proposition.

Proposition 5. Suppose that the set of nonnegative matrices A is positively-irreducible.

Then r(Td+1) 6 r(Td) for all d.

Proof. Let u ∈ int ∏s∈[p]d R
n
+ and λ a positive real number such that Td(u) 6 λu

for some d. Let v denote the vector in ∏s∈[p]d+1 R
n
+ defined for all r ∈ [p]d and

a ∈ [p] by var := ur. We have

AT
b var = AT

b ur 6 λuτd(r,b) = λvτd+1(ar,b) .

Taking the supremum over r and a, we obtain Td+1(v) 6 λv. Each vector var is
positive, so taking the infimum over λ, by the first of the Collatz-Wielandt formulæ

in Theorem 2, we arrive at r(Td+1) 6 r(Td).

4. Convergence of the hierarchy of nonlinear eigenproblems. The next theorem

shows that the spectral radius of the map Td approximates the joint spectral radius

ρ(A) up to a factor n1/(d+1). The proof of this result is inspired by the ones found
in [8, 39] in the case of piecewise quadratic approximations of norms. The latter
proofs rely on the approximation of a symmetric convex body by the Löwner-John
ellipsoid. Here, we use the fact that a monotone hemi-norm ν can be approximated
by a monotone linear map, up to a factor n, as shown by the following observation.
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Proposition 6. Given a monotone hemi-norm ν, there is a vector c with positive entries
such that

ν(x) 6 〈c, x〉 6 nν(x) ,

for all nonnegative vectors x.

Proof. Let c denote the vector defined by ci := ν(ei), with (ei)16i6n the canonical
basis of R

n, and observe that ci is positive since ν is a hemi-norm. Let x denote a
nonnegative vector. By convexity and homogeneity of the map ν, we have ν(x) 6
∑i xiν(ei) = 〈c, x〉. By monotonicity of ν, we have xici = ν(xiei) 6 ν(x), hence
〈c, x〉 6 nν(x).

We now show that the sequence of approximations provided by this hierarchy
do converge when d tends to infinity.

Theorem 7. Suppose that the set of nonnegative matrices A is positively-irreducible.
Then

r(Td) 6 n1/(d+1)ρ(A) .

Proof. We first prove the case d = 0, in which case the map T0 is positively-
irreducible. By Theorem 1, the set A admits a monotone invariant hemi-norm
denoted by ν. As noted earlier, By Proposition 6 there is a positive vector c such
that 〈c, x〉 6 ν(x) 6 n〈c, x〉 holds for all nonnegative vectors x. Since ν is a mono-

tone invariant hemi-norm, we have 〈AT
a c, x〉 = 〈c, Aax〉 6 ν(Aax) 6 ρ(A)ν(x) 6

nρ(A)〈c, x〉 for all nonnegative vectors x, hence 〈nρ(A)c − AT
a c, x〉 > 0 for all such

vectors x, which implies that nρ(A)c − AT
a c > 0, i.e., AT

a c 6 nρ(A). Taking the
supremum over a, we get T0(c) 6 nρ(A)c. Thus r(T0) 6 nρ(A) by Theorem 2.

We now prove the general case. It will be convenient to consider the variant of

the map Td obtained by replacing the set of matrices A by the set Ad+1 of products
in A of length d + 1, yielding the map on R

n given by:

T̂d(x) = sup
M∈Ad+1

MTx

Now, let v denote a positive vector in R
n
+ and µ a positive real number such that

T̂d(v) 6 µv. By Theorem 2, the infimum of such real numbers µ is equal to the

spectral radius r(T̂d). We introduce the collection of vectors u = (us)s∈[p]d defined

by

us = ∑
06k6d

µ−k/(d+1)AT
s(1) · · · AT

s(k)v , (5)

where s(i) denotes the i-th letter of the word s ∈ [p]d, with the convention that
the product in the summation (5) is equal to v when k = 0. It is readily seen that

this collection satisfies the set of inequalities AT
a ur 6 µ1/(d+1)uτ(r,a). Moreover, by

definition of us, us > v, and so us is positive. We deduce that Td(u) 6 µ1/(d+1)u,

hence r(Td) 6 r(T̂d)1/(d+1) by Theorem 2.

It remains to be shown that r(T̂d) 6 nρ(A)d+1. Now, we consider the perturbed

map T̂d
ε defined for ε > 0 by

T̂d
ε (x) := sup

{
MTx : M ∈ Ad+1

ε

}
,
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originating from the family of perturbed matrices Aε := {Aa + εJ}a∈[p], where J is

the square matrix with all entries equal to 1. The matrices in Aε are positive hence
the latter set is positively-irreducible. Thus we fall in the case d = 0 and we obtain

r(T̂d
ε ) 6 ρ(Ad+1

ε ) = ρ(Aε)
d+1 .

Moreover, the inequality T̂d(x) 6 T̂d
ε (x) holds for all nonnegative vectors x, hence

r(T̂d) 6 r(T̂d
ε ) by [32]. Combined with the fact that limε→0 ρ(Aε) = ρ(A) as

proved in [28], we obtain the desired inequality.

We obtain as an immediate corollary of Theorems 3 and 7 that the hierarchy is

convergent, in the sense that any sequence of eigenvalues of the map Td converges
towards the joint spectral radius.

Corollary 8. Suppose that the set of nonnegative matrices A is positively-irreducible. If

λd denotes an eigenvalue of the map Td for all d, then

lim
d→∞

λd = ρ(A) .

In particular, the sequence of spectral radii r(Td) is non-increasing and its limit is equal
to ρ(A).

5. Solving the non-linear eigenproblem. Several numerical methods allow one

to solve the nonlinear eigenproblem (Ed). First, the log-convexity property of Td al-
lows a reduction to convex programming, which entails a polynomial time bound
(see for instance the part of [4] concerning “Despot free” entropy games). There
are also algorithms, more efficient in practice, that do not have polynomial time
bounds. Protasov proposed a “spectral simplex” algorithm [40]. A policy iteration
scheme was proposed in [4]. The spectral simplex, like policy iteration, involves
at each step the computation of the spectral radius of a nonnegative matrix, which
is generally the bottleneck.

For the huge scale instances which are of interest here, it is more convenient
to employ a simpler iterative scheme. We propose to use a projective version of
the Krasnoselskii-Mann iteration [33, 31]. The Krasnoselskii-Mann iteration can
be written as xk+1 = 2−1(xk + F(xk)), it was originally considered when F is a
nonexpansive mapping F acting on a uniformly convex Banach space [31]. The
uniform convexity assumption was relaxed by Ishikawa:

Theorem 9 ([27, Theorem 1]). Let D be a closed convex subset of a Banach space X, let
F be a nonexpansive mapping sending D to a compact subset of D. Then, for any initial

point x0 ∈ D, the sequence defined by xk+1 = 2−1(xk + F(xk)) converges to a fixed point
of F.

The analysis of this iteration, by Edelstein and O’Brien [18], involves the notion

of asymptotic regularity. The latter property means that ‖F(xk)− xk‖ tends to 0 as k

tends to infinity. The estimate ‖F(xk)− xk‖ provides a convenient way to measure
the convergence. Baillon and Bruck obtained in [10] the following quantitative
asymptotic regularity estimate

‖F(xk)− xk‖ 6
2 diam(D)√

πk
, (6)
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see [17] for more information. Observe that the rate 1/
√

k is independent of the
dimension.

Here, we adapt the idea of the Krasnoselskii-Mann iteration to the eigenprob-
lem, by considering it as a fixed point problem in the projective space.

It will be convenient to consider an arbitrary monotone and positively homo-

geneous (of degree one) f : R
N
+ → R

N
+ , having a positive eigenvector u. In

the present application, we will consider the special case f := Td, however, the
scheme does converge in a rather general setting, and it may have other applica-
tions.

Definition 10 (Projective Krasnoselskii-Mann iteration). Starting from any posi-

tive vector v0 ∈ R
N
+ such that ∏i∈[N] v0

i = 1, compute the sequence defined by

vk+1 =

[
f (vk)

G
[

f (vk)
] ◦ vk

]1/2

, (7)

where ◦ denotes the entrywise product of two vectors. and G(x) = (x1 · · · xN)
1/N

denotes the geometric mean of the components of the vector x.

By comparison with the original Krasnoselskii-Mann iteration, the arithmetic
mean is replaced by the geometric mean, and a normalization is introduced to
deal with the projective setting.

To show that this iteration does converge, we need to recall some metric prop-
erties of monotone positively homogeneous maps. We shall use a seminorm called

Hopf’s oscillation [12] or Hilbert’s seminorm [21]. The latter is defined on R
N by

‖x‖H = inf{β − α : α, β > 0, αe 6 x 6 βe} ,

with e = (1 · · · 1)T. This seminorm is invariant by addition with a constant (‖x +
αe‖H = ‖x‖H). Observe that Hopf’s oscillation defines a norm on the vector space

X := {x ∈ R
N : ∑i xi = 0}. The Hilbert’s projective metric [38], defined on the

interior of the cone R
N
+ , is given by

dH(x, y) = ‖ log x − log y‖H ,

where log is understood entrywise, meaning that log x := (log xi)i∈[N]. Observe

that dH(αx, βy) = dH(x, y) for all α, β > 0; so dH defines a metric on the space
of rays included in the interior of the cone. We shall also use Thompson’s metric,

defined on the interior of R
N
+ by

dT(x, y) = ‖ log x − log y‖∞ ,

where ‖ · ‖∞ is the sup-norm. It is known that if f is monotone and positively

homogeneous, and if it preserves the interior of R
N
+ , then it is nonexpansive both

in Hilbert’s projective metric and in Thompson’s metric, see e.g. [7, Lemma 4.1].
We next show that the scheme (7) does converge.

Theorem 11. Suppose that f is a monotone positively homogeneous map R
N
+ → R

N
+

having a positive eigenvector. Then, the iteration in (7) initialized at any positive vector

v0 ∈ R
N
+ such that ∏i∈[N] v0

i = 1, converges towards an eigenvector of f , and G( f (vk))

converges to r( f ).

We next show that this reduces to the convergence of the original scheme, after
a suitable transformation.
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Proof. Let u denote a positive eigenvector of f , so that f (u) = λu for some λ > 0.

For all x in the interior of R
N
+ , we can write αu 6 x for some α > 0, and since f

is order preserving and positively homogeneous, we deduce that f (x) > α f (u) =
αu, so f preserves the interior of R

N
+ . We now define the self-map S of R

N by

S(y) = log f
[

exp(y)
]

, (8)

where, again, the notation log for a vector is understood entrywise, and similarly
for exp.

The map S is monotone and commutes with the addition of a constant. It fol-
lows that the map S and the map

Ŝ : y 7→ S(y)− N−1〈e, S(y)〉e (9)

are also non-expansive with respect to Hopf’s oscillation, see e.g. [7, Lemma 4.1].
We also note that S(log u) = log u + (log λ)e.

Given r > 0, we consider Br := {x ∈ R
N : ‖x − log u‖H 6 r}. The set Br is

invariant by the map S, since, using the nonexpansiveness of this map in Hopf’s
oscillation

‖S(x)− log u‖H = ‖S(x)− log u − (log(λ + 1))e‖H

= ‖S(x)− S(log u)‖H

6 ‖x − log u‖H .

The same holds for the map Ŝ since it only differs from S by addition of a multiple

of the vector e. Moreover, the vector log v0 belongs to Br for r large enough. We fix
such an r in the sequel.

Observe that Ŝ is a nonexpansive self-map of the normed space X equipped
with Hopf’s oscillation, and that this map leaves invariant the set Br ∩ X. The
latter set is closed and bounded in the Euclidean metric, hence it is compact. It is
also convex. By Theorem 9, the iterative process defined by

yk+1 =
1

2
Ŝ(yk) +

1

2
yk , (10)

initialized at any point y0 ∈ Br ∩ X, converges towards some vector y ∈ Br ∩ X.

This limit satisfies Ŝ(y) = y.

By writing v = exp(y) and vk = exp(yk), we rewrite Equation (10) to obtain

the iteration in Equation (7), and observe that the condition ∏i∈[N] v0
i = 1 entails

y0 ∈ X. Hence, the sequence vk converges to v. Recall that f is nonexpansive in

Thompson’s metric and that the latter induces in the interior of the cone R
N
+ the

euclidean topology. It follows that f is continuous, with respect to this topology,
on the interior of the cone. Hence, passing to the limit in (7), we obtain

v =

[
f (v)

G
[

f (v)
] ◦ v

]1/2

,

and so f (v) = µv with µ := G[ f (v)].

The following quantitative version of Theorem 11 shows that f (vk) becomes

approximately proportional to vk as k tends to infinity, i.e., vk is an “approximate
eigenvector”.
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Corollary 12. Suppose that f is a monotone positively homogeneous map R
N
+ → R

N
+

having a positive eigenvector. Then, the sequence v0, v1, . . . constructed by the projective
Krasnoselskii-Mann iteration satisfies

dH( f (vk), vk) 6
4√
πk

dH(v
0, u) . (11)

Proof. Since dH(αx, βy) = dH(x, y) for all α, β > 0, and since f is positively homo-

geneous, we may assume that ∑i v0
i = 1, and so log v0 ∈ X = {x ∈ R

N : ∑i xi =

0}. Let us now choose D := Br ∩ X with r = dH(v
0, u), so that v0 ∈ D. Then, it

follows from the final part of the proof of Theorem 11 that Ŝ leaves invariant D.
Then, the inequality (11) follows from (6).

We also deduce that the projective Krasnoselskii-Mann iteration provides con-

vergent lower and upper approximations of the spectral radius r(Td).

Corollary 13. Suppose that f is a monotone positively homogeneous map R
N
+ → R

N
+

having a positive eigenvector u. Let v0, v1, . . . be the sequence constructed by the projec-
tive Krasnoselskii-Mann iteration, and let

αk := min
i∈[N]

[ f (vk)]i
vk

i

, βk := max
i∈[N]

[ f (vk)]i
vk

i

, .

Then,

αk 6 r( f ) 6 βk (12)

and

log βk − log αk 6
4√
πk

dH(v
0, u) . (13)

Proof. By definition of Hilbert’s projective metric, we have

log(βk/αk) = dH( f (vk), vk) ,

and
αkvk

6 f (vk) 6 βkvk .

Then, (12) follows from the Collatz-Wielandt formula (Theorem 2), whereas (13)
follows from (11).

Corollary 14. Let f := Td and suppose that Td has a positive eigenvector u. Then the
sequence (βk)k defined in Corollary 13 satisfies

log βk − log ρ(A) 6
4√
πk

dH(v
0, u) +

log n

d + 1
. (14)

Proof. We combine the inequalities in Theorem 7 and Corollary 13.

Remark 15. One can give an a priori bound on the vector u, to get an explicit control

of d(v0, u) in (14). See Lemma 16 of [4].

Remark 16. By Proposition 4 and the Perron-Frobenius theorem, the map Td has an
eigenvector with positive entries when the set of matrices given in Proposition 4 is
positively-irreducible. We point out that the same iteration also converges under
the weaker assumption that A is positively-irreducible, but it must be initialized
with a vector belonging to the interior of a non-trivial face of the cone ∏s∈[p]d R

n
+

that is invariant by Td and that has minimal dimension.



A CONVERGENT HIERARCHY TO COMPUTE THE JOINT SPECTRAL RADIUS 13

We now show that the projective Krasnoselskii-Mann iteration converges at a
geometric rate under an additional assumption. Let u denote a positive eigenvec-
tor of f , so that f (u) = λu with λ > 0, and suppose that f is differentiable at point
u. Since f is order preserving, the derivative f ′(u) can be identified to a nonneg-
ative matrix. By homogeneity of f , we have f (su) = λsu, and so, differentiating
s 7→ f (su) at s = 1, we get f ′(u)u = λu. Hence, by the Perron-Frobenius theo-
rem, λ is the spectral radius of f ′(u). So we can list the eigenvalues of f ′(u) as
λ = µ1, µ2, . . . , µN , counting multiplicities, with |µi| 6 λ for all i ∈ [N] \ [1]. We
set

ϑ := max
i∈[N]\[1]

|1 + µiλ
−1|

2
(15)

As soon as λ is a simple eigenvalue of f ′(u), we have µi 6= λ for all i ∈ [N] \ {1},

which, together with |µi| 6 1, entails that |1+µiλ
−1|/2 < 1. Then, the assumption

ϑ < 1 is satisfied under this simplicity condition. The next theorem shows that this
entails the geometric convergence with rate ϑ of the projective Krasnoselskii-Mann
iteration.

Theorem 17. Suppose that f is a monotone positively homogeneous map R
N
+ → R

N
+

having a positive eigenvector u, normalized so that ∏i∈[N] ui = 1, suppose that f is

differentiable at point u, let ϑ be defined by (15) and suppose finally that ϑ < 1. Then,

lim sup
k→∞

(dT(v
k, u))1/k

6 ϑ . (16)

Proof. The proof idea is inspired by the analysis of the power algorithm in [20].
The power algorithm defines the sequence

wk+1 =
f (wk)

G
[

f (wk)
] ,

i.e., the difference with the projective Krasnoselskii-Mann iteration is the damping
in (7). We showed in the the proof of Theorem 11 that the projective Krasnosel-

skii-Mann iteration, after the change of variable vk = exp(yk), is equivalent to the
iteration

yk+1 = H(yk) where H(z) =
1

2
(Ŝ(z) + z) ,

Ŝ(z) = S(z)− N−1〈e, S(z)〉e and S(z) = log ◦ f ◦ exp(z). Let y := log u, and let
δ(u) denote the diagonal matrix with entries u1, . . . , uN . A simple computation
shows that the matrix F := S′(y) satisfies

F = λ−1δ(u)−1 f ′(u)δ(u)

so that M := Ŝ′(y) is given by

M = F − N−1ee⊤F .

From f ′(u)u = λu, we deduce that Fe = e. It follows that Me = 0. Moreover, it is
shown in the proof of Corollary 5.2 of [20] that the eigenvalues of M are precisely

0, λ−1µ2, . . . , λ−1µN . Hence, the sequence yk satisfies yk+1 = H(yk) where H is
a self-map of the space X, with fixed point y, and H′(y) has a spectral radius ϑ.
By a standard argument (end of the proof of Corollary 5.2, ibid.), it follows that

there is a neighborhood Y of y such that lim supk→∞ ‖yk − y‖1/k 6 ϑ if y0 ∈ Y.

However, we already showed in Theorem 11 that yk does converges to y for every
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initial condition y0 ∈ X. Hence, we deduce that lim supk→∞ ‖yk − y‖1/k 6 ϑ for

all y0 ∈ X. Since vk = exp(yk), we deduce that (16) holds.

Remark 18. Theorem 17 is easily applicable in situations in which the map f is
known a priori to be differentiable, for instance when f is a polynomial map asso-
ciated to a nonnegative tensor, as in [20]. It is shown in [20] that the power algo-

rithm converges with a geometric rate ϑ′ = maxi∈[N]\{1} |λ−1µi| as soon as ϑ′ < 1.

The condition that ϑ′ < 1 is more restrictive that ϑ < 1 as it excludes the pres-
ence of a non-trivial peripheral spectrum of f ′(u). Hence, Theorem 17 improves
on results of [20], by showing that the Krasnoselskii-Mann iteration does converge
geometrically under more general circumstances than the power algorithm.

Remark 19. When f is not everywhere differentiable, verifying the assumption

of Theorem 17 can be difficult. In particular, the map f = Td, defined as a fi-
nite supremum of linear maps, is differentiable except at the exceptional points x
where the supremum in (4) is achieved twice. To apply Theorem 17 to the eigen-

problem for Td, we need to know a priori that the eigenvector u is a differentia-

bility point of Td. For certain classes of maps, including max-plus linear maps,
this property can be shown to hold under some genericity assumptions, exploit-

ing methods in [5]. However, the map Td has an explicit structured form which
makes it hard to use such genericity arguments.

Remark 20. When f is not everywhere differentiable, an easier route to get a geo-
metric convergence rate is to use the notion of semidifferential of f , as in [7]. Thus,
we suppose now that f (u + x) = f (u) + f ′u(x) + o(‖x‖), where f ′u is a continuous
positively homogeneous map, not necessarily linear, called the semidifferential of
f at point u. We refer the reader to [7] for more background on semidifferentials.

It follows in particular from Theorem 3.8, ibid., that the map f = Td has a semid-
ifferential at every point. The power iteration for a semidifferentiable monotone
positively homogeneous map is analysed in [7, Theorem 7.8]. It is shown there
to converge with a geometric rate r̃( f ′u) where r̃, defined in the same reference, is
the spectral radius with respect to the local norm attached to Hilbert’s projective
metric. We leave it to the reader to verify that a modification of the proof of Theo-
rem 7.8, ibid., leads to the conclusion that the sequence generated by the projective
Krasnoselskii-Mann iteration satisfies

lim sup
k→∞

dT(v
k, u)1/k

6
1 + r̃( f ′u)

2
. (17)

When f is differentiable, it can be checked that r̃( f ′u) = ϑ′ = maxi∈[N]\{1} |λ−1µi|,
with the same notation than in Theorem 17 and in Remark 18, and so, in this case,
the estimate of the convergence rate provided by (17) can be coarser than the one
provided by Theorem 17. However, in the nondifferentiable case, the assumption
that r̃( f ′u) < 1 is often easily verifiable, e.g., by Doeblin-type contraction argu-
ments, as in the final section of [7].

6. Benchmarks. The present method has been implemented in OCaml and has
been run on one core of an 2.2 GHz Intel Core i7 processor with 8 Gb of RAM. We
report two numerical experiments, showing respectively the convergence of the
scheme and the gain in scalability.
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Level d CPU Time (s) Eigenvalue λd Relative error
1 0.01 2.165 6.8%
2 0.01 2.102 3.7%
3 0.01 2.086 2.9%
4 0.01 2.059 1.6%
5 0.02 2.041 0.7%
6 0.05 2.030 0.1%
7 0.7 2.027 0.0%
8 0.32 2.027 0.0%
9 1.12 2.027 0.0%

TABLE 1. Convergence of the hierarchy on 5 × 5 matrices

6.1. Convergence of the hierarchy. We illustrate the convergent nature of the hi-
erarchy on the pair of matrices

A =




0 1 0 0 0
1 0 2 0 0
0 0 1 0 0
0 1 0 0 1
0 0 0 2 1




B =




1 0 2 0 0
0 0 0 1 2
1 1 0 0 0
0 0 0 1 0
0 1 0 0 0




.

By definition of the joint spectral radius, the spectral radius of a product of N
matrices in A is no larger that the N-th power of the joint spectral radius ρ(A).
When such a product achieves equality, we say that the set A has a spectrum maxi-
mizing product [23] of length N. The pair {A, B} has a spectrum maximizing prod-

uct of length 6 given by A2B4 yielding a joint spectral radius equal to 2.0273.
We report in Table 1 the eigenvalue obtained by solving the hierarchy (Ed) for

1 6 d 6 9 as well as the computation time. We observe that the hierarchy is
stationary at d = 7 and that we recover the exact value of the joint spectral radius.

The last column indicates the relative error
[
λd − ρ(A)

]
/ρ(A). Finally, we also

observe the exponential cost in computation time at the level d of the hierarchy.

6.2. Scalability of the approach. We demonstrate the scalability of our method
on quadruplets of matrices of increasing size, with random entries between 0 and
0.9. We show in Table 2 the computation time associated with each dimension.
The iteration process converges in less than 50 iterations in all examples, with a

10−6 numerical stopping criterion. A monotone extremal hemi-norm has been
computed as the supremum of 16 or 64 linear forms (respectively for d = 2 and
d = 3).

7. Conclusion. We have proposed a new approach for computing a convergent
sequence of upper bounds of the joint spectral radius of nonnegative matrices, by
solving a hierarchy of non-linear eigenproblems. At any level of this hierarchy,
the non-linear eigenvalue λ provides an upper bound for the joint spectral radius,
whereas the eigenvector encodes a monotone λ-extremal norm. The non-linear
eigenproblem is solved efficiently by a projective version of the Krasnoselskii-
Mann iteration. We have implemented this approach and numerical results are
witnesses of the scalability of this approach, compared to other works based on
the solution of optimization problems.
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Dimension n Level d Eigenvalue λd CPU Time
10 2 4.287 0.01 s

3 4.286 0.03 s
20 2 8.582 0.01 s

3 8.576 0.03 s
50 2 22.34 0.04 s

3 22.33 0.16 s
100 2 44.45 0.17 s

3 44.45 0.53 s
200 2 89.77 0.71 s

3 89.76 2.46 s
500 2 224.88 5.45 s

3 224.88 19.7 s
1000 2 449.87 44.0 s

3 449.87 2.7 min
2000 2 889.96 4.6 min

3 889.96 19.2 min
5000 2 2249.69 51.9 min

3 2249.57 3.3 h
TABLE 2. Computation time for large matrices

We finally point out one open problem. Guglielmi and Protasov showed in [23]
that when the joint spectral radius is obtained for a unique periodic product, and
when this product has a unique dominant eigenvalue, then, there is a polyhe-
dral invariant norm. Each level of the present hierarchy generates a dictionary
of linear forms, whose supremum yields a polyhedral extremal norm. This dic-
tionary becomes richer when the level of the hierarchy is increased. Hence, we
may ask whether the hierarchy is exact, i.e., whether there exist a level d such that

r(Td) = ρ(A), under the same assumption.
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18 STÉPHANE GAUBERT AND NIKOLAS STOTT

[33] W. R. Mann. Mean value methods in iteration. Proceedings of the American Mathematical
Society, 4:506–510, 1953.

[34] W. M. McEneaney. A curse-of-dimensionality-free numerical method for solution of cer-
tain HJB PDEs. SIAM journal on Control and Optimization, 46(4):1239–1276, 2007.

[35] W. M. McEneaney and L. J. Kluberg. Convergence rate for a curse-of-dimensionality-free
method for a class of HJB PDEs. SIAM J. Control Optim., 48(5):3052–3079, 2009/10.

[36] J. Mallet-Paret and Roger Nussbaum. Eigenvalues for a class of homogeneous cone maps
arising from max-plus operators. Discrete and Continuous Dynamical Systems, 8(3):519–562,
July 2002.

[37] R. D. Nussbaum. Convexity and log convexity for the spectral radius. Linear Algebra Appl.,
73:59–122, 1986.

[38] R. D. Nussbaum. Hilbert’s projective metric and iterated nonlinear maps. Memoirs of the
AMS, 75(391), 1988.

[39] M. Philippe, R. Essick, G. E. Dullerud, and R. M. Jungers. Stability of discrete-time switch-

ing systems with constrained switching sequences. Automatica, 72:242 – 250, 2016.
[40] V. Yu. Protasov. Spectral simplex method. Mathematical Programming, 156(1-2):485–511,

2016.
[41] A. Papadopoulos and M. Troyanov. Weak Finsler structures and the Funk weak metric.

Math. Proc. Cambridge Philos. Soc., 147(2):419–437, 2009.
[42] Z. Qu. Contraction of Riccati flows applied to the convergence analysis of a max-

plus curse-of-dimensionality–free method. SIAM Journal on Control and Optimization,
52(5):2677–2706, 2014.

[43] N. Stott. Minimal upper bounds in the Lwner order and application to invariant computation for

switched systems. Phd thesis, Université Paris-Saclay, École polytechnique, 2017.
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