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CHAPTER 1
Introduction

This thesis develops methods to compute invariant sets of dynamical systems, motivated by
problems in program verification and in control. These methods rely on the geometry of the
cone of positive semidefinite matrices and more generally on the geometry of cones. We first
review the main applied motivations of this work. We summarize our results in Section 1.2.

1.1 Context and motivation

A switched system refers to a collection of systems sharing the same parameter pool, each
defining a dynamical evolution process, and a global discrete mechanism that orchestrates
which system is “active”, by switching between them.

Switched systems are a subclass of hybrid systems. Instances of the latter class also trans-
form the system’s parameters during the (instantaneous) switching, by resetting or reversing
values for instance, see [ACH+95, TD09]. This includes the class of on-board controllers,
which constitute switched systems as soon as they must adapt their behavior, due to en-
vironment changes or user input for instance. A classical hybrid system is the thermostat
regulating the temperature of a room subjected to outside-temperature variations, activating
the heater if the temperature is below 21◦C and deactivating it if the temperature exceeds
24◦C. If switching the state of the heater is determined by a same temperature threshold, we
obtain a switched system with two modes.

Hybrid systems arise naturally from real-world systems that have several operating modes.
They belong to the class of cyber physical systems, that describes devices that are controlled
by embedded software and interact with their environment, using sensors and actuators, and
that communicate within a network, in a Internet of Things. We refer to [SWYS11, HLLL17]
as well as [AIM10, AFGM+15] for more background and references therein.

Critical embedded systems constitute a common subclass of cyber physical and hybrid
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Figure 1.1: Certifying absence of bad behavior: invariants (plain), their image by one trans-
formation step (dashed) and bad region (blue)

systems and refer to systems for which failure to meet the specification is not acceptable,
due to possible harmfulness or high material cost in case of an unexpected deviation. They
cover for instance transportation means (car, aircraft, rail, space-vehicles, etc.) or medical
devices (pacemaker, scanners, etc.). The inclusion of switched or hybrid modelizations on
critical systems has had many benefits like reduced energy expenses [NW05] or on-the-fly
sensor error detection and prevention [Die11]. The trade-off is an increased complexity of the
software and a reduced capacity to control and predict the behavior of these systems.

Switched systems have been studied in two fields to answer these concerns: in program
verification and in control.

In program verification, the goal is to compute certificates of good behavior, such as
invariants within the state-space. Invariants are subsets of the set of values taken by the
system’s parameters that contain all possible future evolutions of the system starting from
any point in this subset, see Figure 1.1. It is sufficient to show that the invariant and the
forbidden region determined by the specification do not overlap to obtain the safety of the
system. This method may produce false negatives if the invariant is not tight. Indeed,
the quality of an invariant is highly dependent on the type of system and the method that
produced it.

The computation of invariants is equally important in control theory, with mainly two
considerations: finding safe approximations of the reachable set of a hybrid system [KV97,
FLGD+11] and guaranteeing the asymptotic stability of a dynamical system. Fundamental
objects in the analysis of the latter case are Lyapunov functions, sub-level sets of which con-
stitute invariant sets. Switched systems are challenging with respect to the second problem,
for there is the possibility of unstable couplings: it is not sufficient for each mode to have an
invariant for the whole switched system to have an invariant.
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1.1.1 Switched systems in program verification

Switched programs are usually presented as a while loop in which several if-then-else state-
ments dictate how the internal state variables are assigned new values, and appear classically
in control-command software. We restrict our attention to affine assignments, like in Pro-
gram 1. The switching process can be state-dependent, i.e., it is governed by an affine guard,
or non-deterministic, in which case any system can be activated at any time.

Program 1: Switched affine program with guards

x← I;
while true do

u← U ;
if
(
x1 > 0

)
then

x := A1 × x+B1 × u+ c1;
end
if
(
x1 < 0

)
then

x := A2 × x+B2 × u+ c2;
end

end

Program verification of switched (or unswitched) affine programs has long relied on poly-
hedral methods in order to compute invariants, i.e. subsets of the state space that remain
invariant by every branch of the program. Analyzers based on abstract interpretation [CC77a]
have mostly been using polyhedral or sub-polyhedral domains (boxes, octagons, zonotopes)
as in e.g. [Mat07, Gou13].

Ellipsoidal (or quadratic) invariants have led to more accurate analyses for some classes
of programs. They are known to be the optimal tool for studying the stability of linear
(unswitched) systems as the sub-level sets of quadratic Lyapunov functions. They have been
used in linear control applications by Kurzhanski and Vályi in [KV97] and in program ver-
ification of linear recursive filters by Feret [Fer04], they are also used locally in the static
analyzer Astrée [CCF+05]. More general applications of ellipsoids in program validation can
be found in [Cou05, AGG12]. The latter reference develops a template approach, based on
the linear template original idea of Sankaranarayanan et al. [SSM05]. In template based
methods, the shape of the ellipsoid has to be decided in advance by the user. Still, this is
an approach which is adapted to control codes: we may use as (quadratic) templates the
(quadratic) Lyapunov functions that the control theorist would have introduced to prove the
stability of the underlying algorithms, as put forward by Feron and Alegre in [FA08a, FA08b].
Recently, some methods have been proposed in program validation for synthesizing invariant
ellipsoids for linear (unswitched) systems e.g. [RJGF12, Rou13, RMF13], using semidefinite
programming.

Two main drawbacks emerge from these techniques. First, the numerical domains dealt
with here do not constitute lattices, hence there is no immediate way to abstract the union
of two ellipsoids and to limit the complexity of the representation due to memory limita-
tions. Moreover, approaches that rely on the solution of optimization problems can reach
a prohibitive computational cost on instances that have high dimension or that are badly
conditioned.
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1.1.2 Stability of switched linear systems

Deciding the stability of a switched program is a difficult problem, even in the linear case,
where only the matrices Ai are non-zero and the switching process is non-deterministic. It
reduces to the problem of computing the joint spectral radius of the matrices Ai, defined as
the largest growth rate of products of the latter matrices by

ρ(A) := lim
k→+∞

max
16i1,...,ik6p

‖Ai1 . . . Aik‖
1/k .

When ρ < 1, all variables of the program decay towards zero at a geometric rate. How-
ever, ρ > 1 means that there is a sequence of branch choices at each iteration that makes
the program variables diverge. The latter indicates the presence of an undesired instability
in the design or the implementation of the program. Unfortunately it is not possible to com-
pute exactly the joint spectral radius, or even decide easily if it is less than 1, as Blondel
and Tsitsiklis have shown in [BT00] that these problems are undecidable. In return, many
approximation schemes have been proposed that provide either lower or upper bounds on ρ,
in order to try to infirm or confirm stability properties. Accurate lower bounds have histor-
ically been obtained by computing products of matrices of increasing length, combined with
a pruning of bad candidates [CB11]. The standard approach to over-approximate ρ is to use
the theory of Barabanov norms: a norm v such that maxi v(Aix) = ρv(x) for all i and x.
Implementations of this approach compute approximate norms such that v(Aix) 6 ρ′v(x),
where ρ′ provides an upper bound on the joint spectral radius. Hence, if ρ′ < 1, the norm of
the state variables decreases geometrically and guarantees the stability of the system. Several
ways to construct such a norm have been studied: Kozyakin [Koz10] has proposed a grid-
based, semi-Lagrangian approach, Guglielmi et al. have proposed in [GZ14] algorithms to
produce polyhedral norms, i.e. whose unit ball is a polyhedron. Parrilo et al. have proposed
a sums-of-square approach in [PJ08]. Finally, Ahmadi et al. build a norm in [AJPR14] that
is the supremum of (the square root of) quadratic functions. These methods rely on linear
programming or semidefinite programming and are highly computationally demanding tasks.

If the switching is governed by a linear guard of the form
∑

i aixi > 0, these approaches
are no longer valid. However, the difficulty persists, as Blondel and Tsitsiklis have shown
that adding a guard does not ease the decidability of the stability [BT99, BT00]. An efficient
relaxation of such systems has been studied by Adjé et al. and relies on the combination
of semidefinite programming and policy iteration to compute concise invariants as piecewise
quadratic sets, see [AG15].

1.1.3 Switched systems in optimal control

McEneaney considered hybrid optimal control problems in which a discrete control µ allows
one to switch between different linear quadratic models:

V (x) := sup
u∈U

sup
µ∈D

sup
t>0

∫ t

0

1

2
ξ(s)TDµ(s)ξ(s)− γ2

2
|u(s)|2 ds

subject to ξ̇(s) = Aσξ(s) +Bσu(s) , ξ(0) = x .

The value function V , also called storage function, takes finite values under some technical
assumptions, including a condition that the penalizing parameter γ is large enough. This is
a feature of interest in H-infinity control.
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It is known [McE07] that the value function V is the solution of a Hamilton-Jacobi partial
differential equation (PDE) H(x,∇V ) = 0 where H is a supremum of quadratic Hamiltonians

H(x, p) = max
σ

[
(Aσx)T p+

1

2
xTDσx+

1

2
pTΣσp

]
,

and thus relates to the field of dynamic programming.

Dynamic programming is one of the main methods to solve optimal control problems. It
characterizes the value function as the solution of a functional equation or of a Hamilton-
Jacobi partial differential equation. It provides a feedback law that is guaranteed to be
globally optimal. However, it is subject to the “curse of dimensionality”. Indeed, the main
numerical methods, including monotone finite difference or semi-Lagrangian schemes [CD83,
CL84, FF94, CFF04], and the anti-diffusive schemes [BZ07], are grid-based. It follows that
the time needed to obtain an approximate solution with a given accuracy is exponential in
the dimension of the state space.

The method he developed [McE07] approximates the value function by a supremum of
elementary functions like quadratic forms, hence it belongs to the family of “max-plus basis
methods” [FM00, AGL08]. The method of [McE07] has a remarkable feature: it attenuates the
curse of dimensionality to a cubic cost in the dimension, as shown by the complexity estimates
of Kluberg and McEneaney [MK10] and of Qu [Qu14]. McEaneney’s method [McE07] has been
studied and extended in a series of works [SGJM10, GMQ11, MD15, KM16]. This reduction
in dimensionality is traded for a “curse of complexity”. It represents the value function as
a supremum of quadratic forms that are accumulated at great rate along the computation.
It is thus necessary to control the number of quadratic forms. Several pruning schemes to
remove inefficient quadratic forms have been successful in dealing with this growth, making
use of semidefinite programs [Qu13]. This approach is costly: examples of PDE in dimension
6 have been solved in 2 hours, but the pruning procedure takes more than 98% of the total
computation time.

1.1.4 Löwner order and upper bound selections

Semidefinite programming is a powerful tool [BEFB94, BTN01] and consists in solving op-
timization problems in the cone of positive semidefinite matrices. However, it has several
weaknesses: the complexity of semidefinite programs is not yet well understood [Ram97] and
resolution methods based on interior points approaches are not well suited for problems whose
dimension exceeds thousands of variables (excessive computation time or lack of memory is-
sues). Moreover, these methods only return approximate solutions and they are prone to
numerical instabilities [RVS16].

A core motivation of this work is to obtain alternative methods to compute invariants of
switched systems that are not based on semidefinite programming in order to greatly reduce
the computation time, maybe at the expense of a small loss of precision. The intensive use of
semidefinite programming in the works mentioned earlier also motivates the need for a clearer
understanding of the cone of positive semidefinite matrices and the underlying geometric
properties in these problems.

The ordering induced by this cone is called the Löwner order and it corresponds to the
point-wise ordering of the quadratic forms associated with symmetric matrices. A famous
theorem by Kadison [Kad51] states that the space of symmetric matrices equipped with the
Löwner order is an anti-lattice:
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Theorem. Two symmetric matrices have a unique minimal upper bound in the Löwner order
if and only if they are comparable.

In other words, there is no maximum operation, and it must be substituted by the selection
of a minimal upper bound, which is never unique in non-trivial cases.

Finding effective selections of these minimal upper bounds is a key ingredient in many
applications and appears in a number of applied fields. It is used in control [LL06] and
quantum information [And99, MG99, DDL06], and it is more generally related to the problem
of enclosing a convex set by an ellipsoid, which has applications in reachability analysis
of dynamical systems [KV00, KV06] and program verification [Fer04]. Specific selections
have been used in information geometry and mathematical morphology [Ang13, BBP+07],
in particular in the setting of colored images [BK13]. For instance, selections arising from
minimum volume considerations (Löwner’s ellipsoid [Bal97]) are frequently used, as well as
selections based on minimum-(or maximum-)trace of the associated matrix. These selections
are usually computed by semidefinite programming, although some explicit formulas exist as
generalizations of the scalar case [BK13].

1.2 Contributions

The contributions of this thesis are two-fold. From an applied perspective, we develop
in Part II several algorithms that compute quadratic invariants, either as the reunion or
the intersection of ellipsoids. More precisely, we develop three iterative schemes, each one
adapted to the three classes of switched systems presented earlier: switched affine programs
with guards, switched linear programs with non-deterministic switching and hybrid linear-
quadratic optimal control problems with switches. The novelty is that we avoid the recourse
to large-scale semidefinite programs, by computing either solutions to several small-size prob-
lems (when dealing with affine programs) or without solving any semidefinite programs (in
the other cases). Instead, invariants are obtained in a scalable way as post-fixed points of
non-monotone maps via a variation on Kleene iteration, or as eigenvectors of non-linear maps
by a power-like algorithm. In this way, we can obtain approximate solutions for instances
of large dimension (for instance dimensions up to 500 for the joint spectral radius problem),
probably inaccessible by dynamic programming-type approaches. These analyzes fall beside
the classical framework of invariant computation and thus require different proofs, exploiting
metric arguments instead of monotonicity.

In order to obtain the convergence of our algorithms, we establish in Part I fundamental
properties of minimal upper bound selections in the Löwner order and in more general cones.
We give several characterizations and parametrizations, which lead to explicit algebraic for-
mulas to compute such selections. We then focus our attention on the Löwner ellipsoid. We
generalize this notion to a larger class of cones and deduce a new matrix inequality. We also
obtain metric properties on the map sending several ellipsoids to their Löwner ellipsoid. These
results are applied in Part II to fine-tune perturbation parameter that ensure the convergence
of our algorithms.

Part I is comprised of Chapters 2 to 5 and deals with the geometric properties of the cone
of positive semidefinite matrices: selections of minimal upper bounds and geometric/metric
properties of the Löwner ellipsoid. Part II contains Chapters 6 to 9 and develops an ellipsoidal
framework and its implementation to compute invariants of switched systems in a tractable
manner. We next describe the content of each chapter.
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In Chapter 2, we give two geometric characterizations of minimal upper bounds in a cone.
This result shows that they arise as “extreme elements”. On the one hand, they correspond
to the set of “positively exposed” points of the set of upper bounds. On the other hand, it
relates to “tangency spaces”, that must span the whole space. We illustrate this theorem on
three classical cones, including the cone of positive semidefinite matrices.

In Chapter 3, we study in more detail minimal upper bounds of two symmetric matrices in
the Löwner order. This entails a quantitative version of Kadison’s theorem, showing that the
set of minimal upper bounds of two matrices A,B has dimension pq, where (p, q) is the inertia
of the matrix A− B, and a complete parametrization of this set. These results are partially
extended to the case of p > 2 matrices. We also show that the set of positive semidefinite
maximal lower bounds of two positive semidefinite matrices has a similar structure and we
provide a parametrization of this set. This solves a question raised by Moreland, Gudder and
Ando in the setting of quantum observables [MG99, And99]. The proof involves the kernels
of the differences C −A and C −B where C is a minimal upper bound. We reverse the point
of view by determining whether, given two subspaces of Rn, there are minimal upper bounds
of A,B for which the former kernels contain these respective subspaces. We provide simple
geometric conditions that guarantee the existence of such minimal upper bound and provide
a parametrization of all minimal upper that arise in this way.

In Chapter 4, we generalize the Löwner ellipsoid to other cones than the cone of positive
semidefinite matrices. Instead of minimizing the volume of an ellipsoid, we minimize the
characteristic function of the cone over the upper bounds of a finite set A. The function is
nothing but the Laplace transform of the indicator function of the dual cone (in the case of
positive definite matrices, it coincides the determinant, up to renormalization). In this way,
the Löwner ellipsoid is recovered as a special case. We also show that this selection has a
remarkable property: it is the unique minimal upper bound of A that selects itself via the
selection process from Chapter 2. Moreover, this selection is the only one that enjoys a useful
invariance property, hence it is christened the “invariant selection”. We use this new approach
to show a new matrix inequality and study properties of this selection.

In Chapter 5, we show that the invariant selection is non-expansive in the Riemann metric,
which is one of the main metric on the interior of the cone [Bha03]. Other important metric
are the Thompson and Hilbert metrics [Nus88]. We also show that the Lipschitz constant of
the invariant selection in these metrics grows asymptotically like log n. The proofs rely on
the Finsler nature of the aforementioned metrics and the computation of accurate bounds on
Schur multiplier norms, building on a result by Mathias [Mat93].

In Chapter 7, we develop a numerical abstract domain based on ellipsoids and present
two scalable algorithms to compute invariants of switched affine and switched linear pro-
grams as unions of ellipsoids. A common feature in these algorithms is a “trace partitioning”
step [MR05] with an automaton, that identifies traces that share a common suffix. We then
reduce to the solution of a fixed-point problem (affine case) or a non-linear eigenvalue problem
(linear case). A perturbation parameter is introduced to ensure convergence of the scheme,
either in an additive or a multiplicative way. We compare our method with existing meth-
ods [RG13, AJPR14] based on ellipsoidal invariants. The disjunctive nature of the invariant
allows one to refine the precision while the fixed-point approach preserves scalability.

In Chapter 8, we introduce set-valued tropical Kraus maps which are analogous of ordinary
Kraus maps, trace-preserving completely positive linear maps arising in quantum information.
We show that non-linear eigenvectors of these maps provide invariants of switched systems
as intersection of ellipsoids. We present a scalable Krasnoselkii-Mann-like iteration to com-
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pute non-linear eigenvectors and compare the performance of our method with alternative
approaches. We prove that these eigenvectors exist (under some assumptions) and discuss
the convergence of the iteration towards these eigenvectors. We also show that the additive
and multiplicative iterations defined in Chapter 7 do converge by exploiting metric geometry
techniques.

Chapter 9 presents the implementation of the algorithms developed in earlier chapters in
our tool “MEGA” (for Minimal Ellipsoids Geometric Analyzer). We describe the class of
programs that the analyzer can handle and illustrate the tool on two benchmarks.

On top of the chapters already presented, Chapter 6 is an introductory chapter for Part II
and the reader will find in Appendix A a short introduction to semidefinite programming
provided for the sake of completeness.

Chapter 3 is an adapted version of the article [Sto16] published in the Proceedings of the
AMS. Chapter 7 is a combination of the conference articles [AGG+15, AGG+17] for EM-
SOFT’15 (an extended version [AGS+16] has been published in ACM TECS) and for EM-
SOFT’17. The ideas in Chapter 8 have been announced without proofs in the preprint [GS17],
to be published in the CDC conference proceedings.



Part I

Minimal upper bounds in cones
The case of the Löwner order





CHAPTER 2
Characterization of minimal upper

bounds in cones

We prove in this chapter several characterizations of minimal upper bounds with respect to
the order relation induced by a cone in a finite dimensional real vector space. Our main result
(Theorem 2.10) states that minimal upper bounds coincide with positively exposed elements
of the set of upper bounds, i.e. they are the minimizers of a strictly monotone linear function
on this space. It also states that minimal upper bounds must satisfy a sufficient number
tangency conditions, related to a decomposition of the dual cone as the sum of tangency
sub-faces. These results are illustrated on three classical cones: the class of polyhedral cones,
the Lorentz cone associated with a strictly convex norm (in particular the Euclidean Lorentz
cone) and the cone of positive semidefinite matrices.

2.1 Cones, duality, order relations and faces

2.1.1 Cones and dual cones

Let E denote a n-dimensional vector space equipped with the scalar product 〈·, ·〉. A set
C ⊂ E is called a cone if x ∈ C and λ > 0 imply λx ∈ C. A set X ⊂ E is convex if x, y ∈ X
and 0 6 λ 6 1 imply λx + (1 − λ)y ∈ X . A convex cone is then a set C such that x, y ∈ C
and λ, µ > 0 imply λx + µy ∈ C. We say that the convex cone C is pointed if it does not
contain any linear subspace, i.e. that C ∩ −C ⊆ {0}. In the sequel, unless stated specifically
otherwise, a cone will refer to a closed convex pointed cone. In particular, 0 ∈ C.

The set span C := C − C = {x− y : x, y ∈ C} is the smallest subspace of E that contains C.
It is immediately seen that the cone C has non-empty interior if and only if C − C = E .
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The dual cone of any subset X of E is denoted by X ? and is defined by

X ? := {y ∈ E : 〈y, x〉 > 0 for all x ∈ X} .

The dual cone of the cone C is pointed if and only if the cone C has non-empty interior, and
we have (C?)? = C. A vector c belongs to the interior of the dual cone C? if 〈c, x〉 > 0 for all
non-zero x ∈ C.

2.1.2 Classical cones

We describe in the following five types of cones, which will serve as running examples in this
chapter: polyhedral cones, the non-negative orthant (R+)n as a special case of a polyhedral
cone, the (generalized) Lorentz cones Ln, the classical Euclidean Lorentz cone Λn and the
cone of positive semidefinite matrices S+

n .

Polyhedral cone A polyhedral cone is a set of the form

CP := {x ∈ E : (Px)i > 0 , ∀i ∈ I},

where P is a m×n matrix and I = {1, . . . ,m}. It is readily checked that such a set is indeed a

closed convex cone. In the sequel, we denote by pi the rows of the matrix P : P =
(
pT1 · · · pTm

)T
,

so that (Px)i > 0 ⇐⇒ 〈pi, x〉 > 0.
The dual cone of the polyhedral cone CP is the conic hull of the vectors {pi}i:

y ∈ C?P ⇐⇒ ∃{λi}16i6m ⊂ R+ : y =
∑
i

λipi .

Indeed, recall that x ∈ CP if and only if the vector Px has non-negative coordinates, i.e.
〈λ, Px〉 is non-negative for all vectors λ with non-negative coordinates. It follows that y ∈ C?P
if and only if y = P Tλ =

∑
i λipi with λi > 0.

A cone is finitely generated if it can be written as the conic hull of finitely many vectors.
Finitely generated cones are polyhedral cones, as asserted by the Minkowski-Weyl theorem,
so the dual cone of a polyhedral cone is again a polyhedral cone.

Theorem 2.1 (Minkowski-Weyl, see [Min97, Wey35, Zie95]). A cone is finitely generated if
and only if it is polyhedral.

The polyhedral cone generated by the vectors {qi}i is pointed if and only if the vectors qi
belong to a same open half-space, i.e. there is some vector d ∈ Rn such that 〈d, qi〉 > 0 for
all i. It has non-empty interior as soon as the matrix whose columns are the vectors qi has
full rank.

Finally, given a vector b ∈ Rm, the set {x ∈ E : (Px)i > bi , ∀i ∈ I} is called a polyhedron,
see [Wil93] for more background.

We show in Figure 2.1 an instance of a polyhedral cone in R3 with the intersection of the
cone with an affine hyperplane of the form {x ∈ R3 : x3 = cst}.

Non-negative orthant (R+)n The non-negative orthant is the polyhedral cone that is gen-
erated with the canonical base (ei)i of Rn:

(R+)n = {x ∈ Rn : xi > 0 , ∀i} .

A vector x ∈ Rn belongs to the interior of this cone interior if and only if every coordinate is
positive. This cone is self-dual:

(
(R+)n

)?
= (R+)n.
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x1

x2

x3

x2

x1

Figure 2.1: A polyhedral cone in R3 and its section orthogonal to x3 = cst

Lorentz cone Ln Given any norm ‖ · ‖ on Rn, the associated (generalized) Lorentz cone is
the subset of Rn+1 defined by

Ln := {(t, x) ∈ Rn+1 : t > ‖x‖} .

This set is a cone since it is closed under multiplication by a positive scalar, and under
addition by the triangular inequality: if (s, x), (t, y) ∈ Ln, then t+ s > ‖x‖+ ‖y‖ > ‖x+ y‖,
thus (s + t, x + y) ∈ Ln. This cone is pointed since (t, x) ∈ Ln ∩ −Ln if and only if t = 0,
which in turn implies that x = 0. The vector (t, x) belongs to the interior of the Lorentz cone
if and only if t > ‖x‖. The boundary of the cone ∂Ln is hence constituted by vectors (t, x)
such that t = ‖x‖.

We are especially interested in Lorentz cones arising from strictly convex norms, meaning
that the associated unit ball is strictly convex:

‖x‖ 6 1 and ‖y‖ 6 1 =⇒ ‖λx+ (1− λ)y‖ < 1, ∀λ : 0 < λ < 1 .

We show such a Lorentz cone associated with a strictly convex norm in Figure 2.2.
The dual cone of the Lorentz cone associated with the norm ‖ · ‖ is the Lorentz cone

associated with the dual norm ‖ · ‖? defined by

‖y‖? = sup
‖x‖61

〈x, y〉 .

In particular, the Lorentz cones associated with the p-norm and the q-norm are duals of one
another if p−1 + q−1 = 1 (1 6 p, q 6∞).

The Euclidean Lorentz cone A classical example of a Lorentz cone associated with a strictly
convex norm is the Euclidean Lorentz cone, or light cone, denoted by Λn, corresponding to
the Euclidean norm ‖ · ‖2. Then, we can also write

Λn = {z ∈ Rn+1 : 〈e1, z〉 > 0 and zTJ1,nz > 0} with J1,n :=

(
1
−In

)
.

This cone is also self-dual. We point out that the Euclidean Lorentz cone corresponds to the
set of vectors z ∈ Rn+1 such that (

∑
z2
i )1/2 6 〈

√
2e1, z〉.

We show the Euclidean Lorentz cone in R3 in Figure 2.3.
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Figure 2.2: A generalized Lorentz cone associated with a strictly convex norm and its section
in an x1 − x2 plane
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Figure 2.3: The Euclidean Lorentz cone in R3.

The cone of positive semidefinite matrices S+
n A real n × n matrix A is symmetric if

Aij = Aji for all 1 6 i, j 6 n. The set of symmetric matrices is denoted by Sn. A symmetric
matrix A is positive semidefinite if xTAx > 0 for all vector x ∈ Rn (we identify the set of
vectors in Rn with the set of n × 1 real matrices). When xTAx > 0 for all non-zero vector
x ∈ Rn, we say that A is positive definite. The set of positive semidefinite matrices is denoted
by S+

n and the subset of positive definite matrices by S++
n .

It is known that the matrix A is positive semidefinite (resp. definite) if its (real) eigenvalues
are non-negative (resp. positive). Moreover, the matrix A is positive semidefinite (resp.
definite) if there is a matrix (resp. invertible matrix) M such that A = MMT . In particular,
a rank one positive semidefinite matrix is written xxT for some x ∈ Rn.

It can be readily checked that the set S+
n is a closed convex pointed cone. Moreover, it

is self-dual: if A is an element of the dual cone (S+
n )?, the inequality 〈A,X〉 > 0 must hold

in particular for all rank one matrices X, hence xTAx > 0 for all x ∈ Rn and A is positive
semidefinite. The set S++

n is also a cone and constitutes the interior of the cone S+
n in the

Euclidean topology.

We point out that the Euclidean Lorentz cone Λ2 in R3 is isomorphic to the cone S+
2 by
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mapping the matrix

(
t− x y
y t+ x

)
to the vector (t, x, y). Indeed, the former 2× 2 matrix is

positive semidefinite if and only if its trace and determinant are non-negative. In this case,
these conditions amount to t > 0 and t2 > x2 + y2, i.e. (t, x, y) ∈ Λ2.

2.1.3 Order relation induced by a cone

We recall several definitions and results on order relations induced by closed convex pointed
cones.

Given any (closed convex pointed) cone C ⊂ E , we can equip the space E with an order
relation, defined by

x 4 y ⇐⇒ y − x ∈ C .

This relation is reflexive since 0 ∈ C. It is transitive because the cone is convex and thus
closed under addition. Finally, the fact that C is pointed implies that the y − x ∈ C and
x− y ∈ C if and only if x = y, thus it is antisymmetric.

In this order, an upper bound of a set A ⊂ E is any element x ∈ E such that a 4 x, for all
a ∈ A. We write A 4 x. A minimal upper bound is an element y ∈ E such that A 4 x 4 y
implies x = y. Similarly, a lower bound of A is any element y ∈ E such that y 4 a for all
a ∈ A, and a maximal lower bound y satisfies y 4 x 4 A implies x = y for all x. We denote
by
∨
A the set of minimal upper bounds of the set A and by

∧
A the set of maximal lower

bounds of A.

We point out that, given a vector c ∈ int C?, the map x 7→ 〈c, x〉 is strictly monotone,
meaning that x 4 y and x 6= y implies 〈c, x〉 < 〈c, y〉.

We say that the space (E , C) is a lattice if every pair {a, b} ⊂ E has a unique maximal
lower bound and a unique minimal upper bound. In that case, the sets

∨
{a, b} and

∧
{a, b}

are reduced to a single point, respectively called the supremum and infimum of a and b. Not
every cone C endows the space E with a lattice structure. In fact, up to an invertible linear
transformation, the non-negative orthant (R+)n is the only one with this property, as shown
by a theorem by Krein and Rutman:

Theorem 2.2 (Krein and Rutman (1948), see [KR48]). The space (E , C) is a lattice if and
only if the cone C is simplicial, i.e. there is a basis (qi)16i6n of E such that

x ∈ C ⇐⇒ ∃λi > 0: x =
∑
i

λiqi .

On the other side of the spectrum, some spaces (E , C) are ”as far away from a lattice” as
possible, in the sense that two elements a, b only have a unique minimal upper bound and a
unique maximal lower bound when a 4 b or b 4 a (we also say that a and b are comparable).
In this case, we say that (E , C) is an anti-lattice.

We recall a famous theorem by Kadison [Kad51] that shows that the cone of positive
semidefinite matrices S+

n is an anti-lattice:

Theorem 2.3 (Kadison (1951), see [Kad51]). Two symmetric matrices A,B have a unique
minimal upper bound in the Löwner order if and only if A 4 B or B 4 A.

In the case C = S+
n , the order relation 4 is called the Löwner order.
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2.1.4 The faces and extreme rays of a cone

Given a convex set X , an element x ∈ X is called an extreme point if for all x1, x2 ∈ X , the
equality x = 1

2(x1 + x2) implies x1 = x2 = x. More generally, given two convex sets X ,Y
such that Y ⊆ X , the set Y is called an extreme face of X if for all y ∈ Y and x1, x2 ∈ X , the
equality y = 1

2(x1 + x2) implies x1, x2 ∈ Y. It is readily seen that an extreme face of a cone
is a cone itself. The cones {0} and C are called the trivial extreme faces of C.

Definition 2.1 (see [Bar81]). Given a subset X ⊆ C, we denote by F(X ) the smallest extreme
face of the cone C that contains the set ∪x∈X {y ∈ C : 0 6 y 6 x}. When the set X is reduced
to a single element x, we simply write F(x).

We give in the subsequent lemma two basic properties of the map F and a computational
description of the value F(X ).

Lemma 2.4. The map F is monotone and idempotent: A ⊆ B ⊆ C implies F(A) ⊆ F(B)
and F

(
F(A)

)
= F(A). Moreover, we have

F(x) = {λy : 0 6 y 6 x, λ > 0} and F(X ) = F
(∑
x∈X
F(x)

)
.

Finally, the elements of the extreme face F(A) are exactly the non-negative elements of
spanF(A): F(A) = C ∩ spanF(A).

Proof. By definition, the set F(B) contains the set B, and thus also contains the set A. It
follows that F(B) is an extreme face that contains A, thus F(A) ⊆ F(B).

The set F(A) is an extreme face, thus, by Definition 2.1, the smallest face of C containing
F(A) is itself, i.e. F

(
F(A)

)
= F(A).

We denote by G(x) := {λy : 0 6 y 6 x, λ > 0}. This set is included in C. It is also cone
since it is closed under multiplication by a positive scalar and addition since λy1 + µy2 =
(λ+ µ)

[
λ

λ+µy1 + µ
λ+µy2

]
. Moreover, it trivially contains the set {y ∈ C : 0 6 y 6 x}, thus we

have F(x) ⊆ G(x). Conversely, let y ∈ F(x). Since F(x) is a cone, it must contain λy for all
positive λ, hence G(x) ⊆ F(x).

We denote by H(X ) := F
(∑

x∈X F(x)
)
. We have X ⊆

∑
x∈X F(x) since x ∈ F(x), thus

F(X ) ⊆ H(X ) by monotony. Conversely, following Lemma 2.4, we can write H(X ) as F(Y),
with Y :=

{∑
i λiyi : λi > 0, 0 6 yi 6 xi, xi ∈ X

}
, where all sums are taken on a finite

number of elements. Since F(X ) is a cone, every element
∑

i λiyi ∈ Y must also belong
to F(X ). By monotony and idempotence of the map F , we deduce that H(X ) = F(Y) ⊆
F
(
F(X )

)
= F(X ).

The inclusion F(A) ⊆ C ∩ spanF(A) holds trivially. Conversely, let x, y ∈ F(A) such
that x − y ∈ C. We have 0 4 x − y 4 x and x ∈ F(A), so by definition of an extreme face,
we must have x− y ∈ F(A).

Let us point out the extreme faces of the cones introduced in Section 2.1.2.

Example 2.1.

1. We have F(0) = {0} and F(x) = C when x belongs to the interior of C.

2. In the case of the non-negative orthant (R+)n, we have y ∈ F(x) if and only if yi = 0
whenever xi = 0.
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3. More generally, in the case of the polyhedral cone CP , we have y ∈ F(x) if and only if
(Py)i = 0 whenever (Px)i = 0.

4. Let ‖ · ‖ denote a strictly convex norm, and Ln the associated Lorentz cone. Then, for
x ∈ ∂Ln, we have F(x) = R+x.

5. In the cone of positive semidefinite matrices, we have y ∈ F(x) if and only if ran y ⊆
ranx.

The smallest non-trivial extreme faces are called extreme rays, and consist of vectors u ∈ C
such that 0 4 y 4 u implies that y = λu for some non-negative λ. We denote by Extr(C)
the set of extreme rays of the cone C. Let us also point out that extreme rays are exactly the
extreme points of compact sections of C:

Lemma 2.5. Let c in the interior of C?. Then u ∈ C is an extreme ray of C if and only if u
is an extreme point of the compact set {y ∈ C : 〈c, u− y〉 = 0}.

We recall that a vector can be decomposed into “complementary” positive and negative
parts.

Lemma 2.6. Any vector x ∈ E can be written as x = x+ − x− with x+, x− < 0 and
F(x+) ∩ F(x−) = {0}.

Proof. Let x ∈ E . The cone C has non-empty interior, hence E = C − C, hence the existence
of x+, x− ∈ C such that x = x+ − x−. Among all such decompositions, we choose one than
minimizes the sum of the dimensions of the subspaces spanned by the faces F(x+) and F(x−)
(it exists since the cone C is closed and finite-dimensional).

Assume that the set F := F(x+) ∩ F(x−) is not reduced to 0, and let u in the relative
interior of this set. We also define λ by

λ := sup{µ > 0: µu 4 x+, x−} ,

and denote by y± := x± − λu < 0, so that x = y+ − y−. By symmetry, we assume that
λ saturates the inequality λu 4 x+. The inequality x+ 4 αy+ for α > 1 is equivalent to
x+ − α

α−1λu < 0. Since α
α−1 > 1, this inequality cannot be satisfied, otherwise it contradicts

the definition of λ. Hence the face F(y+) is a proper sub-face of F(x+) and F(y−) ⊂ F(x−),
which contradicts the definition of x±.

Extreme rays of a cone contain a lot of information, as shown by the following lemmas.
First, an element a ∈ C is the supremum of all extreme rays that it dominates. Moreover,
in order to compare two elements in C, it is sufficient to compare the extreme rays that they
dominate.

Lemma 2.7. Let a ∈ C. Then a is the supremum of all u ∈ Extr(C) that it dominates:

{a} =
∨
{u ∈ Extr(C) : u 4 a} .

Proof. For simplicity, we denote byM :=
∨
{u ∈ Extr(C) : u 4 a}. By definition of a minimal

upper bound, there must be b ∈M such that b 4 a.
Assume that there is m ∈ M that does not dominate a, i.e. m − a /∈ C. Then,

by Lemma 2.6, we can write m − a = x+ − x−, with x− 6= 0 and F(x+) ∩ F(x−) = {0}.
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The vector x− can be written as the sum of non-zero distinct extreme rays x− =
∑

i ui. Let
simply u := u1 and v :=

∑
i>1 ui, so that F(u)∩F(v) = {0}. Hence m+ u+ v = x+ + a. We

define the map φ by

φu : x 7→ sup{λ > 0: λu 4 x} .

First, note that φu(a) > 0. Then, since F(x+)∩F(u) = {0}, we must have φu(x+a) = φu(a)
and similarly φu(m+ u+ v) = φu(m) + 1 since F(v) ∩ F(u) = {0}.

We deduce that the extreme ray u0 := φu(a)u satisfies u0 4 a holds but u0 4 m does not.
This contradicts the fact that m ∈ M, hence we must have a 4 m. In particular, b ∈ M,
hence b = a. We deduce that a ∈M, so M < a and M = {a} by minimality.

Lemma 2.8. Let a, b ∈ C. If u 4 a implies u 4 b for all u ∈ Extr(C), then a 4 b.

Proof. By Lemma 2.7, we have

{u ∈ Extr(C) : u 4 a} 4
∨
{u ∈ Extr(C) : u 4 b} = {b}

Hence there must be a minimal upper bound of {u ∈ Extr(C) : u 4 a} that is less than b.
By Lemma 2.7, the vector a is the unique minimal upper bound of this set, hence a 4 b.

2.1.5 Faces of the dual cone

We point out a canonical way to map extreme faces of a cone C to extreme faces of its dual
cone C?.

Definition 2.2. Given an extreme face F of the cone C, we denote by F ] the set defined by

F ] := C? ∩ F⊥ .

In other words, we have

y ∈ F ] ⇐⇒
(
y ∈ C? and 〈x, y〉 = 0, ∀x ∈ F

)
.

Lemma 2.9.

1. If F is an extreme face of the cone C, then F ] is an extreme face of the dual cone C?.

2. We have (∩kFk)] =
∑

k F
]
k.

Proof. Indeed, let y1, y2 ∈ C?, y ∈ F ] such that 2y = y1 + y2, and x ∈ F . By definition
of the dual cone, we have 〈yi, x〉 > 0 for i ∈ {1, 2}. Moreover, by definition of y, we have
〈y1 + y2, x〉 = 0, hence 〈yi, x〉 = 0 for i ∈ {1, 2}. This holds for all x ∈ F , thus y1, y2 ∈ F ].

By Lemma 2.4, any extreme face F must satisfy F = C ∩ spanF . We can then deduce
from the definition the sequence of equalities:

(∩kFk)] = C? ∩ (∩kFk)⊥ = C? ∩
(∑

k

F⊥k
)

=
∑
k

F ]k .

Let us again illustrate the map ·] on the extreme faces of the classical cones.

Example 2.2.
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1. We have {0}] = C? and F(x)] = {0} when x belongs to the interior of C.

2. In the case of the non-negative orthant (R+)n, we have y ∈ F(x)] if and only if yi = 0
whenever xi 6= 0.

3. More generally, in the case of the polyhedral cone CP , a vector y ∈ C? belongs to the
face F(x)] if and only if yi = 0 whenever (Px)i > 0.

4. Let ‖ · ‖ denote a strictly convex norm, and Ln the associated Lorentz cone. Then, for
x ∈ ∂Ln, we have F(x)] = R+

(
J1,nx

)
.

5. In the cone of positive semidefinite matrices, we have y ∈ F(x)] if and only if ranx ⊥
ran y, i.e. xy = 0

2.2 Characterization of minimal upper bounds

2.2.1 The main result

We now establish several equivalent characterizations of minimal upper bounds in orderings
induced by cones.

Theorem 2.10. Let E be a finite dimensional vector space, C ⊂ E be a cone and 4 denote
the ordering induced by C on E. Given a compact subset A ⊆ E and x < A, the following
assertions are equivalent:

(i) x is a minimal upper bound of A in E,

(ii) ∩a∈AF(x− a) = {0},

(iii)
∑

a∈AF(x− a)] = C?,

(iv) there is c ∈ int C? such that 〈c, x〉 6 〈c, y〉 for all y < A.

Moreover, when A ⊆ C, x < A is a minimal upper bound of A if and only if

(v) x ∈ F(A) and there is c ∈ int(C? ∩ V ) such that 〈c, x〉 6 〈c, y〉 for all y ∈ V such that
y < A, with V = spanF(A).

The proof is given in Section 2.2.2. We first give a remark and describe the geometric
interpretation of each assertion.

Remark 2.3. A similar result holds for maximal lower bounds of the set A since the map
x 7→ −x is monotone. In this case, assertions (ii) and (iii) are unchanged, while assertions (iv)
and (v) require instead that 〈c, x〉 > 〈c, y〉 for all y 4 A.

The assertions (ii) and (iii) above are dual versions of one another and mean that, in some
sense, the vector x ”sticks” to the set A in a sufficient number of directions, and that these
directions span the whole space E .

Moreover, the set {y ∈ E : y < A} is convex and bounded below by A. The map y 7→ 〈c, y〉
is also strictly increasing when c ∈ int C?. Thus there must be x < A which minimizes the
value of this map. Assertion (iv) in Theorem 2.10 means that the minimal upper bounds of
A are precisely the minimizers of the maps y 7→ 〈c, y〉 for c ∈ int C?.
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Assertion (v) in Theorem 2.10 can be seen as a refinement on assertion (iv) in the sense
that the characterization no longer depends on the ambient space. Let us illustrate this fact.
Let C1, C2 denote two cones in E . Then C := C1 × C2 is a cone in E × E , and the interior of
C is (int C1) × int(C2). Now let A1 ⊂ int C1, so that F(A1) = C1. We also introduce the set
A := A1×{0} = {(a, 0) : a ∈ A1}, so that F(A) = C1×{0} and V = E × {0}. The interior of
the cone C2 does not appear in the data provided by the set A. Thus, we would expect the
interior of C2 not to appear in the characterization of minimal upper bounds of A.

However, the latter cone does appear in assertion (iv). Indeed, it requires that a minimal
upper bound x = (x1, x2) ∈ C minimizes the scalar product 〈(c1, c2), (x1, x2))〉 for some
c1 ∈ int C1 and c2 ∈ int C2.

Assertion (v) ”corrects” this discrepancy: it is sufficient to consider candidates to be
minimal upper bounds of A in F(A), and the vector c that selects these minimal upper
bounds may be taken in the interior of the dual cone of F(A) in the vector space V . In the
previous example, it is thus sufficient to consider upper bounds of A of the form (x1, 0) and
variables c of the form (c1, 0).

2.2.2 Proof of Theorem 2.10

(i) ⇐⇒ (ii) Let x < A and u ∈ ∩a∈AF(x − a). By definition, we have u < 0. Since A is
compact and E is finite-dimensional, there must be ε > 0 such that εu 4 x− a for all a ∈ A.
Thus a 4 x− εu 4 x for all a ∈ A. It follows that x is a minimal upper bound A if and only
if u = 0.

(ii) ⇐⇒ (iii) This is a trivial consequence of Lemma 2.9 and the fact that {0}] = C?.

(iii) =⇒ (iv) The cone C? has non-empty interior, thus there must, by assertion (iii), be
some vectors ak ∈ A and λk ∈ F(x − ak)] such that c :=

∑
k λk ∈ int C?. We compute the

value of 〈c, y〉 for some y < A:

〈c, y〉 =
∑
k

〈λk, y − ak〉+
∑
k

〈λk, ak〉 > 〈
∑
k

λk, x〉 = 〈c, x〉 ,

since, by definition of F(x− ak)], we have 〈λk, y − ak〉 > 0 and 〈λk, x− ak〉 = 0.

(iv) =⇒ (i) Assume that x < A is not a minimal upper bound of A, so there is a vector
z 6= x such that A 4 z 4 x. By assertion (iv), there is a vector c in the interior of C? such
that 〈c, x〉 6 〈c, y〉 for all y < A. This holds in particular for y = z, so we have 〈c, x〉 6 〈c, z〉.
Moreover, since the vector c belongs to the interior of the dual cone, the map y 7→ 〈c, y〉 is
strictly monotone, thus 〈c, z〉 < 〈c, x〉, which contradicts the previous inequality. Hence x
must be a minimal upper bound.

(iv) =⇒ (v) First we show that x ∈ F(A). For all a ∈ A, we can write x = (x − a) + a,
with a, x − a < 0, thus we have x ∈ F(A) + F(x − a). This inclusion holds for all a. We
deduce that

x ∈ ∩a∈A
[
F(A) + F(x− a)

]
⊆
[
∩a∈A F(x− a)

]
+ F(A) .
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By assertion (ii), we have ∩a∈AF(x− a) = {0}, hence x ∈ F(A). Next, since F(A) = C ∩ V ,
we have F(A)? = C? + V ? = C? + V ⊥. We deduce that C? ∩ V = F(A)? ∩ V . The cone F(A)
has non-empty interior in the vector space V , thus assertion (v) is a direct consequence of
applying assertion (iv) in the space V .

(v) =⇒ (iv) Since a minimal upper bound of A in spanF(A) is a minimal upper bound of
A in E , this proof is the same as (iv) =⇒ (i), except the vector space E has been replaced
by the vector space V .

2.3 Application to classical cones

We now specialize Theorem 2.10 to each of the 3 types of cones that have been introduced
in Section 2.1.2. We illustrate in each case the meaning of each condition, and provide some
additional description of the set of minimal upper bounds in each case.

2.3.1 Polyhedral cones

In this section, let CP denote the polyhedral cone associated with the full-rank matrix P =(
pT1 . . . p

T
m

)T
and 4 the induced ordering.

Corollary 2.11 (Minimal upper upper bounds in polyhedral cones). Given a compact subset
A ⊂ Rn and x < A, the following assertions are equivalent:

1. x is a minimal upper bound of A in (E ,4),

2. There are linearly independent rows {pi}i∈I of the matrix P and vectors ai ∈ A such
that 〈pi, x− ai〉 = 0 for all i ∈ I and

∑
i∈I pi ∈ int C?P .

3. There is a subset I ⊂ {1, · · · ,m} such that 〈
∑

i∈I pi, y − x〉 is non-negative for all y < A
and

∑
i∈I pi ∈ int C?P .

Proof. This proof is a translation of Theorem 2.10 to the special case of polyhedral cones. Let
I ⊂ {1, · · · ,m} such that i ∈ I if and only if there is some a ∈ A such that 〈pi, x− a〉 = 0.
Let y ∈ ∩a∈AF(x − a). Then, for all i ∈ I, we must have 〈pi, y〉 = 0. The fact that such a
vector y is equal to 0 if and only if the vector

∑
i∈I pi is in the interior of C?P .

In the case of polyhedral cones, we can provide some additional structural properties of
the set of minimal upper bounds of a finite set A. In particular, the set of minimal upper
bounds is a polyhedral complex, (see [DLRS10] for more background).

Proposition 2.12. The set of minimal upper bounds of a finite set A ⊂ E with respect to
4 is a compact polyhedral complex: it is given as the union of finitely many closed polyhedral
cells CI in E and CI ∩ CJ is also a cell for all I, J .

Each cell CI corresponds to a subset I ⊂ {1, · · · ,m} for which the rows {pi}i∈I satisfy∑
i∈I pi ∈ C?P . It consists of the vectors x such that

x < A and 〈pi, x− ai〉 = 0 , ∀i ∈ I .

Moreover, the dimension of the cell C (i.e. the dimension of its affine hull) is equal to the
co-dimension of span{pi}i∈I .

Finally, the number of such cells in bounded by
∑n

k=2

(
m
k

)
.
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Proof. The set of minimal upper bounds is closed because the cone CP is closed.

By Corollary 2.11, an upper bound x of the set A is a minimal upper bound if and only
if there is a subset I ⊂ {1, · · · ,m} such that for all i ∈ I there is a vector ai ∈ A such that
〈pi, x− ai〉 = 0, and such that

∑
i∈I pi ∈ C?P .

We consider the set S(I) of all minimal upper bounds y such that 〈pi, x− ai〉 = 0 for
all i ∈ I. The fact that y is an upper bound is written 〈pi, y − a〉 > 0 for all pi and a. In
combination with the previous equalities, we deduce that S(I) is a polyhedron. Moreover, the
vector y belongs to the intersection of the translated cone a1+C and the affine subspace defined
by 〈

∑
i∈I pi, y〉 =

∑
i∈I〈pi, ai〉 with

∑
i∈I pi ∈ C?P . Hence, by Lemma 2.5, the polyhedron

S(I) is bounded. Since the cone CP is pointed, no combination of inequalities of the form
〈pi, x− a〉 > 0 implies that x belongs to a lower dimensional subspace. Hence only equations
of the form 〈pi, x− ai〉 = 0 impact the dimension of the polyhedron, from which we deduce
that its dimension equals the co-dimension of span{pi}i∈I . This characterization also shows
that the intersection of two cells is again a (possibly empty) cell.

The set of minimal upper bounds S(I) is the result of choosing a subset I ⊂ {1, · · · ,m}
such that

∑
i∈I pi ∈ C?P . By Theorem 2.10, it is sufficient that card I 6 n. There are only

finitely such subsets, hence the whole set of minimal upper bounds is bounded. We deduce
at once the estimate on the number of cells by counting the number of such subsets.

We illustrate this results on the polyhedral cone from Figure 2.1. Given two vectors in
Rn, we plot in Figure 2.4 the section of the cones emanating from these elements as well as
sections from the ones emanating from minimal upper bounds. In this case, the set of minimal
upper bounds is constituted of the reunion of 5 segments.

2.3.2 The (generalized) Lorentz cone

In this section, let ‖ · ‖ denote a strictly convex norm on Rn+1, Ln denote the associated
Lorentz cone and 4 the order induced by this cone. For convenience, we write elements of
Ln as x̂ = (t x), so that x̂ ∈ Ln ⇐⇒ ‖x‖ 6 t.

Corollary 2.13 (Minimal upper bounds in Ln). Given a compact subset A ⊂ Rn+1 and
x̂ < A, the following assertions are equivalent:

1. x̂ is a minimal upper bound of A,

2. there are â, b̂ ∈ A such that (x̂ − â) and (x̂ − b̂) are not colinear and belong to the
boundary of the Lorentz cone ∂Ln,

3. there is ĉ = (r c)T ∈ E such that ‖c‖ < r and 〈ĉ, ŷ − x̂〉 > 0 for all ŷ < A.

Proof. Non-trivial extreme faces of the Lorentz cone associated with a strictly convex norm
are 1-dimensional cones of the form F(x̂) = R+x̂ for some x̂ ∈ ∂Ln. Thus, in order for the
intersection of F(x̂− â) over all â ∈ A to be zero, it is both necessary and sufficient to have
two elements â, b̂ ∈ Ln such that R+(x̂ − â) ∩ R+(x̂ − b̂) is zero. Finally, the vector (r c)T

belongs to the interior of the Lorentz cone Ln if and only if ‖c‖ < r.

1If the animation does not run due to reader compatibility issues, an online version is available at http:

//www.cmap.polytechnique.fr/~stott/assets/thesis/animations/Ex_mub_poly_anim.mp4

http://www.cmap.polytechnique.fr/~stott/assets/thesis/animations/Ex_mub_poly_anim.mp4
http://www.cmap.polytechnique.fr/~stott/assets/thesis/animations/Ex_mub_poly_anim.mp4
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Figure 2.4: Representation of the minimal upper bounds of two elements with respect to a
polyhedral cone 1

It will be convenient to represent elements A ⊂ Rn+1 and upper bounds x̂ of A by the
intersections of the sets x̂−Ln (resp. a−Ln) with an affine hyperplane H := {z : 〈c, z〉 = α}
with c ∈ intLn and α < mina∈A〈c, a〉. We use the notation P(x̂) = (x̂− Ln) ∩H.

The sets P(x̂) (resp. P(â)), also called penumbras, can be interpreted as the subset of H
lit by a light source placed at x̂ (resp. â) whose light cone is −Ln. This interpretation is a
generalization of the physical case when the norm is the Euclidean norm.

In the special case where x̂ = (t x)T ∈ Ln, the penumbra P(x̂) is the ‖ · ‖-ball centered at
x with radius t:

P(x̂) := B(x, t) = {y ∈ E : ‖x− y‖ 6 t} .

The fact that x̂ ∈ Ln is equivalent to 0 ∈ P(x̂). Moreover, x̂ 4 ŷ if and only if P(x̂) ⊆ P(ŷ),
because ‖y − x‖ 6 t − s is equivalent to s + ‖y − x‖ 6 t. Moreover, recall that the vector
ŷ−x̂ = (t−s y−x)T belongs is an extreme face of the Lorentz cone if and only if t−s = ‖y−x‖,
i.e. if and only if the balls P(x̂) and P(ŷ) are tangent to one another. Thus x̂ ∈ Rn+1 is a
minimal upper bound of A if and only if P(x̂) is a minimal upper bound of ∪â∈AP(â) in the
inclusion order on the space of penumbras.

By Corollary 2.13, a necessary and sufficient condition for and upper bound x̂ of A to be
a minimal upper bound is the existence of vectors â and b̂ such that either

1. â = b̂ = x̂ or
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2. (x̂− â), (x̂− b̂) belong to distinct extreme faces.

In the first case, the vector â ∈ A is an upper bound of A, thus it is the only minimal
upper bound of A. In the second case, we show that there are infinitely many minimal upper
bound that constitute a non-compact set. This aspect separates strictly convex Lorentz cones
from polyhedral cones which are not strictly convex, since we have shown in Section 2.3.1 that
the set of minimal upper bounds of a finite set with respect to a polyhedral cone is compact.
This is summarized in the following proposition.

Proposition 2.14. Let Ln denote the Lorentz cone associated with a strictly convex norm.
The space (E ,Ln) is an anti-lattice, i.e. two elements â, b̂ have a unique minimal upper bound
if and only if they are comparable. When â and b̂ are not comparable, the set of their minimal
upper bounds is closed, unbounded and it can be identified to Rn−1.

Proof. Let us first consider the case n = 2. Assume that â, b̂ are not comparable. Then the
sets (â+Ln) and (b̂+Ln) are not comparable in the inclusion order either. By Corollary 2.13,
the set of minimal upper bounds of â, b̂ is exactly given by the intersection of the boundaries
of the latter sets, i.e. ∨

{â, b̂} = (â+ ∂Ln) ∩ (b̂+ ∂Ln) .

This intersection is a (continuous) curve in R3 that is unbounded in two directions, i.e. it can
be identified to R.

Now, let n > 2. Let V denote any 2-dimensional affine subspace that contains the centers
of the ‖ · ‖-ball P(â),P(b̂). We denote by D(x̂) the disk obtained as the intersection of the
‖ · ‖-ball P(x̂) and the subspace V for any x̂ = (t x)T such that x ∈ V. We then have the
equivalence: D(x̂) ⊆ D(ŷ) if and only if P(x̂) 4 P(ŷ). Indeed, if there were an element z ∈ Rn
such that z ∈ P(s, x) and z /∈ P(t, y), we would have

‖x‖+ s 6 t < ‖z‖ 6 ‖x‖+ ‖z − x‖ 6 ‖x‖+ s .

By the first part of the proof, the set of minimal upper bounds whose penumbra’s center
belongs to V is unbounded and can be identified to R.

The set of 2-dimensional affine subspaces in Rn that contains the centers of the balls
P(â),P(b̂) is homeomorphic to

O(n− 1)
/(
O(1)×O(n− 2)

) ∼= Rn−2

hence the whole space of minimal upper bounds can be identified to R× Rn−2.

Given two vectors in R3, we plot in Figure 2.5 the penumbras of these elements as well as
the penumbras of some of their minimal upper bounds. In this case, the set of minimal upper
bounds is parametrized by a single real variable.

2Again, if the animation does not run due to reader compatibility issues, an online version is available
at http://www.cmap.polytechnique.fr/~stott/assets/thesis/animations/Ex_mub_lor_anim.mp4

http://www.cmap.polytechnique.fr/~stott/assets/thesis/animations/Ex_mub_lor_anim.mp4


2.3. APPLICATION TO CLASSICAL CONES 31

Figure 2.5: Partial representation of the minimal upper bounds of two elements with respect
to the Euclidean Lorentz cone 2

2.3.3 The cone of positive semidefinite matrices

In this section, we consider the space of symmetric matrices Sn endowed with the Löwner order
4 arising from the cone of positive semidefinite matrices S+

n . We specialize Theorem 2.10 to
this case:

Theorem 2.15 (Minimal upper bounds in Sn). Let A be a compact subset of Sn and X ∈ Sn
such that X < A, where < denotes the Löwner order. The following assertions are equivalent:

1. X is a minimal upper bound of A,

2. ∩A∈A ran(X −A) = {0},

3.
∑

A∈A ker(X −A) = Rn,

4. there is a positive definite matrix C such that 〈C,X〉 6 〈C, Y 〉 for all Y < A.

Moreover, if A is a compact subset of S+
n , the matrix X < A is a minimal upper bound of A

if and only if

5. ranX =
∑

A∈A ranA and there is a positive semidefinite matrix C such that 〈C,X〉 6
〈C, Y 〉 for all Y < A and ranC ⊇

∑
A∈A ranA.

Proof. We have previously shown that y ∈ F(x) if and only if ran y ⊆ ranx, thus y ∈
∩a∈AF(x−a) if and only ran y ⊆ ∩a∈A ran(x−a). Thus we must have ∩a∈A ran(x−a) = {0}.
Taking the orthogonal complement on each side of the last equation yields

∑
a∈A ker(x−a) =

Rn. Moreover, since the cone S+
n is self-dual, the interior of its dual cone is exactly the set of

positive definite matrices.
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We study the structure of the set of minimal upper bounds in more detail in Chap-
ter 3, Section 3.6.



CHAPTER 3
Minimal upper bounds of two

symmetric matrices

This chapter is based on the article ”Maximal lower bounds in the Löwner order” [Sto16].

3.1 Introduction

A classical result by Kadison shows that the space of symmetric matrices equipped with
the Löwner order is an antilattice, meaning that two elements have a unique maximal lower
(called the greatest lower bound) or a unique minimal upper bound (called the smallest upper
bound) only in trivial cases:

Theorem 3.1 (Kadison, see [Kad51]). Two symmetric matrices cannot have a greatest lower
bound in the Löwner order unless they are comparable in this order.

Equivalently, two symmetric matrices cannot have a smallest upper bound in the Löwner
order unless they are comparable in this order.

We refer to the work of Kalauch, Lemmens, and van Gaans [KLvG14] for a recent ap-
proach to Kadison’s theorem and generalizations in the setting of Riesz spaces. Lower bounds
of symmetric matrices have also been extensively studied in the setting of quantum observ-
ables [And99, MG99, DDL06], where the main motivation is the uniqueness of a positive
semidefinite maximal lower bound. Moreland and Gudder have solved this problem in [MG99].
Their result has been generalized to any pair of positive semidefinite bounded self-adjoint op-
erators by Ando [And99]. His proof involved the notion of generalized short, which in the
finite dimensional case is defined for positive semidefinite matrices X,Y by

[Y ]X := max{Z : 0 4 Z 4 X, ranZ ⊆ ranY } .
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Their results show that the uniqueness of a positive semidefinite maximal lower bound is
decided by the comparability of such generalized shorts:

Theorem 3.2 (Moreland and Gudder, Ando, see [MG99, And99]). Two positive semidefinite
matrices A and B cannot have a unique positive semidefinite maximal lower bound unless the
generalized shorts [A]B and [B]A are comparable.

The aforementioned theorems raise the issue of characterizing the whole set of minimal
upper bounds (or maximal lower bounds) of two symmetric matrices A and B. Our first main
result (Theorem 3.3) shows that this set can be identified to the quotient space

O(p, q)/(O(p)×O(q))

where (p, q) denote the inertia of the matrix B −A, O(p) denotes the p-th orthogonal group,
and O(p, q) is the indefinite orthogonal group arising from a quadratic form with inertia (p, q),
see Definition 3.1. It follows that the set of minimal upper bounds is of dimension pq.

This result has a geometric consequence that will be dealt with in Section 3.5. In some
cases (described in detail in Section 3.5), the Löwner order corresponds to the inclusion order
of quadrics, up to a reversal. We deduce from Theorem 3.3 that given a quadric QX minimally
enclosing two bounded quadrics QA,QB, the set of tangency points of QX with QA (resp.
QB) spans the kernel of X −A (resp. X −B).

We have already shown in Section 2.3 that the matrix X is a minimal upper bound of A
and B if and only if ker(X − A) + ker(X − B) = Rn. It is desirable to find a parametriza-
tion of the minimal upper bounds X so as to obtain specific kernels, satisfying for instance
inclusion conditions U ⊆ ker(X − A) and V ⊆ ker(X − B). Such conditions on the kernels
arise from choosing tangency conditions on the associated quadrics. Our second main result
(Theorem 3.10) leads to such a parametrization.

Finally, we explore in Section 3.6 the case of p > 3 matrices and point out the challenges
related to the parametrization of their minimal upper bounds.

Although the present results are stated for real quadratic forms, they carry over to her-
mitian forms, up to immediate changes.

3.2 Notation

The inertia of the symmetric matrix A is the triple (p, q, r), where p (resp. q, r) is the number
of positive (resp. negative, zero) eigenvalues of A, counted with multiplicities. We denote by
Jp,q,r the canonical bilinear form of inertia (p, q, r) on Rp+q+r. It is defined by

Jp,q,r(x, y) =

p∑
i=1

xiyi −
p+q∑
i=p+1

xiyi ,

and the corresponding matrix in the canonical basis of Rn is Ip ⊕ (−Iq)⊕ 0r, where In (resp.
0n) denote the identity matrix (resp. zero matrix) of size n × n. When r = 0, we use the
notation Jp,q.

Definition 3.1 (Indefinite orthogonal group O(p, q)). We denote by O(p, q) the indefinite
orthogonal group of square matrices S such that SJp,qS

T = Jp,q. When q = r = 0, O(p, q)
becomes the standard orthogonal group O(p).
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We recall that, given a positive semidefinite matrix M , the square root of the matrix M
is the unique positive semidefinite matrix, denoted M1/2, such that M1/2M1/2 = M . Finally,
the absolute value of a symmetric matrix M is given by |M | = (MMT )1/2.

3.3 Parametrization of the set of minimal upper bounds of two
symmetric matrices

3.3.1 Statement of the main theorem

Our first main result parametrizes the set of minimal upper bounds of two symmetric matrices
with respect to the Löwner order. It implies that this set is of dimension pq and that it can
be identified with O(p, q)/

(
O(p)×O(q)

)
, the quotient set of the indefinite orthogonal group

O(p, q) by the maximal compact subgroup O(p)×O(q).

Theorem 3.3. Let A,B,X ∈ Sn be such that X < A,B, and let (p, q, r) denote the inertia
of B −A. The following statements are equivalent:

(i) X is a minimal upper bound of A and B

(ii) ker(X −A) + ker(X −B) = Rn

(iii) there is a positive definite matrix C such that

X =
A+B

2
+ C1/2 |C−1/2(B −A)C−1/2|

2
C1/2 .

(iv) For all P ∈ GLn revealing the inertia of B−A, i.e. such that B−A = PJp,q,rP
T , there

exists a unique M ∈Mp,q such that:

X = A+ PS(Ip ⊕ 0q ⊕ 0r)SP
T with

S =

(
(Ip +MMT )1/2 M

MT (Iq +MTM)1/2

)
⊕ 0r .

Each assertion brings a different perspective on the nature of minimal upper bounds and
their characterization.

Assertion (ii) states that the matrix X ”sticks tightly” to the matrices A,B, in the sense
that the space Rn can be decomposed as a sum of two subspaces, such that the linear map
associated with X coincides with the linear map associated with either A or B on each of
these subspaces. This is developed in detail in Section 3.4.

Assertion (iii) is an explicit formulation of the characterization given by Theorem 2.15,
exhibiting the minimal upper bound as a positively exposed point on the boundary of the set
of upper bounds of A,B.

Assertion (iv) give an exact parametrization of the set of minimal upper bounds in terms
of its p× q degrees of freedom, and shows in the process that it is a non-compact set.

Remark 3.1. Assertion (iv) can also be rewritten in terms of the matrix B:

X = B + PS(0p ⊕ Iq ⊕ 0r)SP
T
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Remark 3.2. A similar theorem holds for maximal lower bounds, in which case (ii) is un-
changed, while (iii) and (iv) read :

(iii) there is a positive definite matrix C such that

X =
A+B

2
− C1/2 |C−1/2(B −A)C−1/2|

2
C1/2 .

(iv) X = A− PS(0p ⊕ Iq ⊕ 0r)SP
T = B + PS(Ip ⊕ 0q ⊕ 0r)SP

T

Before proving Theorem 3.3, we draw two corollaries. Theorem 3.3, Corollary 3.4
and Corollary 3.5 are proved in Section 3.3.3.

Corollary 3.4. Let A,B ∈ Sn, and let (p, q, r) denote the inertia of B − A. Then, the sets
of minimal upper bounds and maximal lower bounds of A and B are homeomorphic to the
quotient set ∨{

A,B
} ∼= ∧{

A,B
} ∼= O(p, q)

/(
O(p)×O(q)

) ∼= Rpq .

Corollary 3.5. Let A,B ∈ S+
n , and let (p′, q′, r′) denote the inertia of B[A]−A[B]. The rank

of a positive semidefinite maximal lower bound of A,B cannot exceed p′+q′+dim ker(B−A).
Moreover, the set of positive semidefinite maximal lower bounds of A and B which have this
rank is homeomorphic to the quotient set

S+
n ∩

∧{
A,B

} ∼= O(p′, q′)
/(
O(p′)×O(q′)

) ∼= Rp
′q′ .

We note that Kadison’s result can be recovered as a special case of Corollary 3.4. Indeed,
the existence of greatest lower bound of two matrices A,B is equivalent to the existence of
a unique maximal lower bound of these matrices, which, by Corollary 3.4, cannot happen
unless pq = 0, meaning that A 4 B or B 4 A.

The result from Moreland and Gudder can be recovered from Corollary 3.5 in the same
way. If two positive semidefinite matrices A,B have a unique positive semidefinite maximal
lower bound X, then the uniqueness implies that p′q′ = 0, which means that [B]A 4 [A]B or
[A]B 4 [B]A.

3.3.2 Preliminary lemmas

We present two results which will be useful in the proof of Theorem 3.3.

Lemma 3.6. Let P,Q ∈ Sn. We have

kerP + kerQ = Rn =⇒ kerP ∩ kerQ = ker(P −Q)

Proof. The inclusion kerP ∩ kerQ ⊆ ker(P − Q) is trivial. Let x ∈ ker(P − Q) and assume
x /∈ kerP . Then Px = Qx 6= 0, and so ranP ∩ ranQ 6= {0}. Taking the orthogonal
complement contradicts kerP + kerQ = Rn.

Lemma 3.7 (Polar decomposition of O(p, q), see [Dra12, Section 6.2] and [Gal12, Proposition
4.11]). For every S ∈ O(p, q), there exists a unique triple (M,U, V ) ∈ Mp,q × O(p) × O(q)
such that:

S =

((
Ip +MMT

)1/2
M

MT
(
Iq +MTM

)1/2
)(

U
V

)
.
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3.3.3 Proof of Theorem 3.3, Corollary 3.4 and Corollary 3.5

We now prove Theorem 3.3. The equivalence of (i) and (ii) has already been shown in Theo-
rem 2.15. We shall prove

(ii) ⇐⇒ (iv) and (i) ⇐⇒ (iii) .

(ii) =⇒ (iv)
Without loss of generality, we may assume that P = In, so that B − A = Jp,q,r. We build a
basis of Rn respecting the decomposition

Rn = KA ⊕KB ⊕ ker(A−B),

ker(X −A) = KA ⊕ ker(B −A) , ker(X −B) = KB ⊕ ker(B −A) .

We take a basis BA of KA, a basis BB of KB and BB−A of ker(B − A), and our basis of Rn
is
[
BB ; BA ; BB−A

]
. In this basis, the matrices of the quadratic forms X −A and X −B are

block-diagonal matrices:

X −A = (0p ⊕Mq ⊕ 0r) and X −B = (Mp ⊕ 0q ⊕ 0r) ,

where the off-diagonal blocks are zero, because the matrices Mp and Mq (respectively of size

p × p and q × q) are positive definite. The matrix Σ = M
1/2
p ⊕ M

1/2
q is in the indefinite

orthogonal group O(p, q), since ΣJp,qΣ
T = Jp,q. By Lemma 3.7, there is a unique tuple

(M,U, V ) ∈Mp,q ×O(p)×O(q) such that :

Σ =

(
(Ip +MMT )1/2 M

MT (Iq +MTM)1/2

)(
U

V

)
.

The matrix M does not depend on the choice of the matrix Σ: it is easily shown that all
matrices Ξ such that Ξ(ΞT ) = Mp ⊕Mq only differ from Σ by a block-diagonal orthogonal-
block matrix :

Ξ = Σ(U ′ ⊕ V ′) , U ′ ∈ O(p), V ′ ∈ O(q) .

Conversely, any block-diagonal orthogonal-block matrix of this form multiplied on the right
vanishes when computing X. Indeed, if we denote

S =

(
(Ip +MMT )1/2 M

MT (Iq +MTM)1/2

)
⊕ 0r and W = U ⊕ V ⊕ 0r ,

we have X = A+ (SW )(0p ⊕ Iq ⊕ 0r)(SW )T = A+ S(0p ⊕ Iq ⊕ 0r)S .

(iv) =⇒ (ii)
Without loss of generality, we may again assume that P = In. After change of basis with the
invertible matrix Q :=

(
S + (0p ⊕ 0q ⊕ Ir)

)−1
, we have Q(X − A)QT = (Ip ⊕ 0q ⊕ 0r) and

Q(X − B)QT = (0p ⊕ Iq ⊕ 0r). The sum of the kernels of those matrices is Rn, thus this is
also the case for X −A and X −B.
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(i) ⇐⇒ (iii)
By Remark 2.3 and Theorem 2.15, X is a minimal upper bound of A,B if and only if there is
a positive definite matrix C such that 〈C,X〉 6 〈C, Y 〉 for all matrices Y < A,B. First, note
that 〈C, Y 〉 = 〈I, C−1/2Y C−1/2〉 and Y < A is equivalent to C−1/2Y C−1/2 < C−1/2AC−1/2,
thus we may assume that C = In. Moreover, we may assume that the matrix B − A is
a diagonal matrix, also denoted by D := B − A, and whose diagonal entries are sorted in
decreasing order. Thus, we shall show that the unique matrix X which minimizes the map
Y 7→ 〈In, Y 〉 = trace(Y ) over all upper bounds Y of A,B is given by

X =
A+B

2
+
|B −A|

2
. (3.1)

Such a matrix X is the primal solution to the primal-dual pair of problems

minimize
X

trace(X) maximize
λ,µ

〈λ,A〉+ 〈µ,B〉

subject to X < A,B subject to λ, µ < 0

λ+ µ = In

and is thus the unique matrix X such that

λ(X −A) = 0 µ(X −B) = 0 λ+ µ = In

λ, µ < 0 X < A,B ,

for some symmetric matrices λ, µ. One can then easily check that the matrix X given in Equa-
tion (3.1) satisfies these equations with λ = 0p ⊕ Iq+r and µ = Ip ⊕ 0q+r. This concludes the
proof of Theorem 3.3.

Proof of Corollary 3.4. We have shown in the proof (ii) =⇒ (iv) of Theorem 3.3 that, given
a matrix P revealing the inertia of the matrix B − A, we can associate with every matrix
Σ ∈ O(p, q) a minimal upper bound X of A and B, via the continuous map Φ from O(p, q)
to Sn defined by:

Φ : Σ 7→ A+ P

(
Σ

0r

)(
Ip ⊕ 0q

0r

)(
Σ

0r

)T
P T .

Moreover, we have previously shown that two matrices Σ1,Σ2 ∈ O(p, q) produce the same
minimal upper bound X if and only if Σ1 = Σ2(U⊕V ) for some matrices U ∈ O(p), V ∈ O(q).
By Theorem 3.3, the image of the map Φ is precisely the set of minimal upper bounds of
A and B. This proves that the map Φ is a bijection from O(p, q)/

(
O(p) × O(q)

)
to the

set of minimal upper bounds of A,B. By Lemma 3.7, the quotient set can be identified to
Mp,q

∼= Rpq by means of the continuous bijection S defined by:

S : M 7→
(

(Ip +MMT )1/2 M

MT (Iq +MTM)1/2

)
.

It remains to show that the map Φ ◦ S has a continuous inverse. We write

Φ ◦ S(M) = A+ P

[(
A(M) B(M)
B(M)T MTM

)
⊕ 0r

]
P T ,

with A(M) := Ip +MMT and B(M) := (Ip +MMT )1/2M . The matrix M can be recovered
continuously with M = A(M)−1/2B(M), since A(M) < Ip cannot vanish.
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Proof of Corollary 3.5. Before treating the general case, we shall prove the corollary when
A,B are positive definite. Note that, in this case, we have [A]B = B and [B]A = A.

First, the inertias of the matrices B − A and B−1 − A−1 are the same: the matrices
A,B can be reduced simultaneously by an invertible congruence X 7→ PXP T to diagonal
matrices with positive diagonal elements ai and bi. The fact that ai − bi > 0 is equivalent to
b−1
i −a

−1
i > 0 shows that the inertias are identical. Also, note that p′+q′+dim ker(B−A) = n,

so matrices that have this rank are invertible.

The map X 7→ X−1 is monotonically decreasing on the set of positive definite matri-
ces [Bha07, Exercise 1.2.12]. Thus, it is a (continuous) bijection between the set of min-
imal upper bounds of A−1, B−1 (which are positive definite) and the set of positive defi-
nite minimal upper bounds of A,B. By Corollary 3.4, the former set is homeomorphic to
O(p′, q′)/

(
O(p′)×O(q′)

) ∼= Rp′q′ , so the same is true for the latter set.

Now let A,B denote positive semidefinite matrices. We may assume that ker(B − A) =
{0}, since it does not influence the structure of the set of minimal upper bounds of A,B
by Theorem 3.3, so that kerA ∩ kerB = {0}.

Let RA,B denote the set ranA∩ ranB. We claim that there are direct summands RA and
RB of RA,B in ranA and ranB respectively so that the matrices of the quadratic forms A,B
are block-diagonal in Rn = RA ⊕RA,B ⊕RB.

Indeed, we have Rn = kerB⊕RA,B⊕kerA. In such a decomposition, the quadratic forms
A,B have matrices of the form

A =

(
A11 A12

AT12 A22

)
⊕ 0b and B = 0a ⊕

(
B22 B23

BT
23 B33

)
.

We define the matrix U mapping w = (x, y, z) ∈ kerB ⊕ RA,B ⊕ kerA to Uw = (x −
A−1

11 A12y, y, z − B−1
33 B

T
23y). One can easily check that the subspaces RA and RB defined as

the image of kerB and kerA respectively by U satisfy the desired condition. Moreover, up to a
transformation X 7→ V TXV with V block-diagonal, we may assume that A = Ia⊕SA⊕0b and
B = 0a ⊕ SB ⊕ Ib, where SA, SB denote positive definite matrices such that SA − SB = Jp′,q′ .
Note that the short [B]A (resp. [A]B) is given by 0a ⊕ SA ⊕ 0b (resp. 0a ⊕ SB ⊕ 0b).

Let X denote a positive semidefinite minimal upper bound of A,B. Using the character-
ization in Theorem 3.3, X is given in block form by

X =

−ααT − ββT ∗ ∗
∗ ∗ ∗
∗ ∗ −βTβ − δT δ

with M =

(
α β
γ δ

)
∈Ma+p′,b+q′ .

The fact that X is positive semidefinite implies that the matrices α, β, δ are zero matrices,
so that X = 0a ⊕ SX ⊕ 0b, where the matrix SX is given by

SX = SA −
(

Ip′ + γγT (Ip′ + γγT )1/2γ

γT (Ip′ + γγT )1/2 γTγ

)
.

By Theorem 3.3, SX is a (positive semidefinite) minimal upper bound of the matrices SA and
SB. This concludes the proof since SA, SB are positive definite.
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3.4 Minimal upper bounds selection under tangency constraints

3.4.1 Notation and preliminary lemma

We first give some notation that will be useful in the sequel. We define the linear operators
πp, πq and πr, mapping respectively Rn to Rp, Rq and Rr, that select the first p coordinates,
the following q and the last r coordinates. Their matrices in the canonical basis of Rn are

πp =
(
Ip 0pq 0pr

)
, πq =

(
0qp Iq 0qr

)
, πr =

(
0rp 0rq Ir

)
.

We denote by ‖ · ‖ the spectral norm (largest singular value) of a matrix. We define Bp,q
to be the open unit ball of Mp,q with respect to this norm:

Bp,q :=
{
M ∈Mp,q : ‖M‖ < 1

}
.

Lemma 3.8. The map φp,q from Mp,q to Bp,q defined by :

φp,q(M) =
(
Ip +MMT

)−1/2
M

is a bijection, with inverse

ψp,q(N) =
(
Ip −NNT

)−1/2
N .

Moreover,

φp,q(M) = M
(
Iq +MTM

)−1/2
and

(
φp,q(M)

)T
= φq,p(M

T ) .

Proof. Let M = UDV T denote the singular value decomposition of M , so that U, V are
orthogonal matrices, and D is a matrix consisting of a diagonal block and a zero block. Then,
φp,q(M) = Uφp,q(D)V T , and a similar property holds for the map ψp,q. Therefore, it suffices
to check that ψp,q ◦ φp,q(M) = M when M = D, which is straightforward. By symmetry, we
obtain that φp,q ◦ψp,q(N) = N holds for all N . The other properties are proved similarly.

3.4.2 Statement of the problem and the theorem

As stated in Theorem 3.3, the kernels ker(X−A) and ker(X−B) are central to the character-
ization of minimal upper bounds. In the following, we investigate the problem of the selection
of a minimal upper bound of two symmetric matrices where subspaces of those kernels have
been predetermined. When uTXu > 0, the line Ru meets the surface {z ∈ Rn : zTXz = 1}
at two opposite points ±αu, with α > 0. Moreover, if u ∈ ker(X − A), the surfaces
{z ∈ Rn : zTXz = 1} and {z ∈ Rn : zTAz = 1} are tangent at those points. Indeed, the
equation A(αu) = X(αu) means that the gradient of the quadratic forms z 7→ zTXz and
z 7→ zTAz at the point αu are colinear. Both isosurfaces contain the point αu, thus they are
tangent at this point. When uTXu 6 0, it may be interpreted as a tangency at ∞. For this
reason, constraints on the kernels are called tangency constraints.

Finally, following Theorem 3.3, the dimension of the kernel of B−A does not influence the
structure of the set of minimal upper bound of A and B. Thus, we assume that a reduction
has been done and state Problem 3.9 and Theorem 3.10 accordingly.
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Problem 3.9 (minimal upper bounds with tangency constraints). Let A,B ∈ Sn and let
(p, q, 0) denote the inertia of B−A. Let U ,V be subspaces of Rn. We wish to find in X ∈ Sn
such that: 

X is a minimal upper bound of A,B

∀u ∈ U , Xu = Bu

∀v ∈ V, Xv = Av

Our second main result gives conditions for Problem 3.9 to have a solution and, if these
conditions are met, a parametrization of the set of solutions. It shows that the set of solutions
can be identified with an affine subspace ofMp,q of dimension (p−dimU)(q−dimV), so that
the problem has a unique solution if and only if one of the subspaces has maximal dimension.

Theorem 3.10. Problem 3.9 has a solution if and only if

(i) B −A is positive definite over U

(ii) B −A is negative definite over V

(iii) U and V are orthogonal with respect to the indefinite scalar product B −A

If these conditions are met, then the set of solutions can be parametrized as in Theorem 3.3,
assertion (iv), with

M ∈ φ−1
p,q(Bp,q ∩W)

where W is the affine subspace of Mp,q defined by

R ∈ W ⇐⇒

{
∀u ∈ U , RTπp(u) + πq(u) = 0

∀v ∈ V, Rπq(v) + πp(v) = 0
. (3.2)

The intersection Bp,q ∩W is nonempty when the conditions (i, ii, iii) are met.

Corollary 3.11. The set of solutions of Problem 3.9 is parametrized by a subspace of Mp,q

of dimension (p− dimU)(q − dimV), so that the solution is unique if and only if

dimU = p or dimV = q .

Remark 3.3. When U and V have maximal dimension, V is the orthogonal complement of U
with respect the indefinite form B−A. Thus Theorem 3.10 establishes a bijective correspon-
dence between minimal upper bounds of A,B and p-dimensional subspaces over which the
matrix B−A is positive definite. In this way, the set of minimal upper bounds is parametrized
by an open semi-algebraic subset of the Grassmannian Gr(n, p).

3.4.3 Preliminary lemmas

Before proving Theorem 3.10, we prove two useful results. First, Lemma 3.12 shows that when
the matrix Jp,q is negative definite over a subspace V, then there is a contractive mapping
from the last q coordinates of any vector of V to its first p coordinates.

Lemma 3.12. Let V be a subspace of Rn over which Jp,q is negative definite, with p+ q = n.
There is a matrix R ∈Mp,q with ‖R‖ < 1 such that :

∀v ∈ V, πp(v) = Rπq(v)
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Proof. First, we show that the map πq is a bijection from V to πq(V). Indeed, let v, w ∈ V
such that πq(v) = πq(w). We have v−w ∈ V, thus (v−w)TJp,q(v−w) 6 0. This is rewritten
as ‖πp(v)−πp(w)‖2 6 ‖πq(v)−πq(w)‖2 = 0, hence πp(v) = πp(w), which implies v = w. Thus
the map πq is injective. It is also surjective by definition of πq(V). We denote its inverse by
π−1
q .

Let π denote the orthogonal projection from Rq onto πq(V). Then, we define the linear
map R from Rq to Rp by R := πp ◦ π−1

q ◦ π. By definition, we have Rπq(v) = πp(v) for all

v ∈ V. Since the map R is zero on πq(V)⊥, it is sufficient to show that it is a contraction
on πq(V). The matrix Jp,q is negative definite over V, meaning that ‖πp(v)‖2 < ‖πq(v)‖2
when v ∈ V is nonzero, which implies that ‖Rπq(v)‖2 = ‖πp(v)‖2 < ‖πq(v)‖2 holds for all
v ∈ V.

Then, we solve Problem 3.9 in the easiest case, when the subspaces are U = {0} and
V = Rx, for x ∈ Rn. Since the proposition does not change if r 6= 0, we give its statement in
the most general case.

Proposition 3.13. Let A,B ∈ Sn and v ∈ Rn. Then, there exists a minimal upper bound X
of A and B such that Av = Xv if and only if vTAv > vTBv or Av = Bv.

Proof. Without loss of generality, we may assume that B −A = Jp,q,r.
( =⇒ ).
Assume that X is a minimal upper bound of A and B such that Av = Xv. The constraint
Av = Xv implies that vTAv = vTXv 6 vTBv holds. We shall thus show that if vTAv =
vTBv, then Av = Bv. Using Theorem 3.3, there is M ∈Mp,q such that

X = A+

(
Ip +MMT (Ip +MMT )1/2M

MT (Ip +MMT )1/2 MTM

)
⊕ 0r .

The condition Av = Xv is rewritten as

φp,q(M)πq(v) = −πp(v) .

The function φp,q maps the matrix M to an element in the open ball Bp,q, so ‖φp,q(M)‖ < 1. It
follows that ‖πp(v)‖2 = ‖φp,q(M)πq(v)‖2 < ‖πq(v)‖2 if πq(v) 6= 0q,1. However, the assumption
vT (B−A)v = 0 implies ‖πp(v)‖2 = ‖πq(v)‖2, thus πq(v) = 0q,1 and πp(v) = 0p,1. We conclude
with (B −A)v = 0n,1.
(⇐= ).
If Av = Bv, then, by a calculation similar to the above, every minimal upper bound satisfies
Av = Xv. If vT (B −A)v < 0, then ‖πp(v)‖2 < ‖πq(v)‖2. It is easily seen that using

M = φ−1
p,q

(
−πp(v)πq(v)T

‖πq(v)‖22

)

in the characterization in Theorem 3.3 provides a solution satisfying Av = Xv.

3.4.4 Proof of Theorem 3.10

First, we show that a solution to Problem 3.9 satisfies all three conditions. Given a solution
X to Problem 3.9, we have for u ∈ U , uT (B − A)u = uT (X − A)u − uT (X − B)u, where
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the first term is non-negative and the second is zero. Hence B − A is non-negative over
U . For v ∈ V, the reverse holds and B − A is non-positive over V. Moreover, if we have
xT (B − A)x = 0 for some x ∈ U ∪ V, then by Proposition 3.13, we have (B − A)x = 0 and
x = 0 as B − A ∈ GLn. This shows that B − A is positive definite over U and negative
definite over V. Finally, for u ∈ U and v ∈ V, as U ⊆ ker(B −X) and V ⊆ ker(A −X), we
have uT (B −A)v = uT (X −A)v − uT (X −B)v = 0, so U and V are orthogonal with respect
to B −A.

Conversely, we show that a matrix satisfying all three conditions provides a solution
to Problem 3.9. We will use the characterization (iv) in Theorem 3.3 to build a solution
to Problem 3.9. Without loss of generality, we may assume that we work in a basis of Rn
revealing the inertia of B − A = Jp,q. Furthermore, we may assume that dimU = p and

dimV = q. If this is not the case, let U0 denote a subspace of
[
(B − A) · U

]⊥
over which

B − A is positive definite that has maximal dimension. Then let V0 denote a subspace of[
(B−A) · V

]⊥∩ [(B−A) · (U ⊕U0)
]⊥

over which B−A is negative definite that has maximal
dimension. The subspaces U ⊕ U0 and V ⊕ V0 then satisfy the assumptions. We will prove
that there is a matrix R of size p× q satisfying:

u ∈ U ⇐⇒ πq(u) = −RTπp(u) , v ∈ V ⇐⇒ πp(v) = −Rπq(v) , ‖R‖ < 1

The proof is done in two steps. First, we build a matrix R satisfying the second and third
conditions using Lemma 3.12. Now, since the matrix Jp,q is negative definite over V, we have
πq(V) = Rq. Also, for all nonzero v ∈ V, we have ‖πq(v)‖22 > ‖πp(v)‖22 > 0, so πq(v) 6= 0q,1.
Next, we use the orthogonality condition (iii) to show that the first equivalence holds. For
u ∈ U and v ∈ V, we have

πq(v)T
(
−RTπp(u)− πq(u)

)
= πp(u)Tπp(v)− πq(u)Tπq(v)

= uTJp,qv

= 0 .

Hence RTπp(u)−πq(u) ∈ Rq is orthogonal to πq(V) = Rq, and is thus zero. It now suffices to
take M = φ−1

p,q(R) to build a solution to Problem 3.9 using (iv) in Theorem 3.3.
We now show that the solutions of Problem 3.9 are parametrized by matrices in the affine

subspaceW. Let X be a solution of Problem 3.9. According to Theorem 3.3, we can associate
with X a unique M ∈ Mp,q. Given vectors u ∈ U and v ∈ V, the constraints Av = Xv and
Bu = Xu can be rewritten as

φp,q(M)Tπp(u) = −πq(u) and φp,q(M)πq(v) = −πp(v) .

Moreover, we have ‖φp,q(M)‖ < 1, so that φp,q(M) ∈ W ∩ Bp,q.
Conversely, one checks easily that any solution R of (3.2) provides a solution, as long as

R ∈ Bp,q. We have shown previously that as soon as the problem is feasible, the set W ∩Bp,q
is nonempty.

3.4.5 Proof of Corollary 3.11

Let R ∈ W ∩ Bp,q. If dimU 6= p and dimV 6= q, since dimπp(U) = dimU and dimπq(V) =

dimV, we can choose nonzero vectors up ∈ πp(U)⊥ and vq ∈ πq(V)⊥. The ball Bp,q is an open
set, thus for small enough positive ε, the matrix R′ := R+ εupvq

T is also in Bp,q and satisfies
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the equations (3.2). The matrix R′ produces a different solution than R since R 6= R′ and
φp,q is a bijection, so that dimW > dimπp(U)⊥ × dimπp(V)⊥ = (p− dimU)(q − dimV).

If R,R′ ∈ W are solutions of (3.2), then we have

∀u ∈ U , (R−R′)πq(u) = 0 ∀v ∈ V, πp(v)T (R−R′) = 0

which yields the reverse inequality dimW 6 dimπp(U)⊥ × dimπp(V)⊥.

3.5 Examples

We recall the definition of quadrics, the equivalence between the inclusion of quadrics and
the Löwner order and the algebraic counterpart of tangency between quadrics.

Definition 3.2. We denote by QA the quadric associated with the symmetric matrix A,
defined by:

QA = {x ∈ Rn : xTAx 6 1} .

The set QA is convex if and only if the matrix A is positive semidefinite. The set QA is
bounded if and only if the matrix A is positive definite. Moreover, it always has a nonempty
interior. If the matrix A is positive semidefinite, the inclusion of the quadric QA in the quadric
QB is equivalent to the positivity of the matrix A−B, meaning that the inclusion of quadrics
and the ordering of the corresponding matrices is equivalent, up to reversal:

if A < 0 , then QA ⊆ QB ⇐⇒ B 4 A .

This also means that, given positive definite matrices A,B, the quadric QX associated
with a maximal lower bound X of A and B in the Löwner order is a minimal upper bound
for the bounded quadrics QA and QB, in the inclusion order.

Remark 3.4. In the general case,

QA ⊆ QB 6=⇒ B 4 A ,

as shown with A = 2⊕ (−2) and B = 1⊕ (−1). For (x, y) ∈ QA, one clearly has 2x2 − 2y2 6
1 6 2, which implies (x, y) ∈ QB. However, we have A−B = 1⊕ (−1) 6< 0.

3.5.1 In dimension 2: O(1, 1)/
(
O(1)×O(1)

)
This case arises whenever two symmetric matrices A and B of order 2 are not comparable.
The maps (X 7→ X+λIn)λ∈R and (X 7→ UTXU)U∈GLn are all order-preserving isomorphisms.
This implies that, given such an isomorphism φ, the set of maximal lower bounds of φ(A)
and φ(B) is exactly the image of the set of maximal lower bounds of A and B by the map φ.
Thus one can easily show that we may assume without loss of generality that

A =

(
2 0
0 1

)
B =

(
1 0
0 2

)
.
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(a) θ = 0 (b) θ = −0.25

(c) θ ≈ −0.549 (d) θ = −1

Figure 3.1: Minimal quadrics Qθ (in red) associated with QA and QB (in blue) for various
values of θ.

We have an explicit description of the set of hyperbolic isometries O(1, 1) [Gal12, Proposition
9.19]:

O(1, 1) =

{(
ε1 cosh θ ε2 sinh θ
ε1 sinh θ ε2 cosh θ

)
: θ ∈ R, ε1, ε2 ∈ {−1, 1}

}
.

The quotient set O(1, 1)/
(
O(1)×O(1)

)
is in this case equal to the classical set of hyperbolic

rotations:

O(1, 1)/
(
O(1)×O(1)

)
=

{(
cosh θ sinh θ
sinh θ cosh θ

)
: θ ∈ R

}
.

Note that in this special case, the quotient set has a group structure. This gives us the
parametrization of the maximal lower bounds Xθ of A and B:

Xθ =

(
2− cosh2 θ cosh θ sinh θ
cosh θ sinh θ 2− cosh2 θ

)
.

The tangency subspace between QA and QXθ is R
(
sinh θ − cosh θ

)T
and the tangency sub-

space between QB and QXθ is R
(
cosh θ − sinh θ

)T
. This is depicted in Figure 3.1.
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3.5.2 The quotient Lorentz set: O(n, 1)/
(
O(n)×O(1)

)
, n > 2

Following Lemma 3.7, the set O(n, 1)/
(
O(n)×O(1)

)
can be identified to Rn via the bijection

φ := φn,1 defined by

φ : w 7→
(

(In + wwT )1/2 w

wT
√

1 + wTw

)
.

In this case, when pq = n > 1, the quotient set does not have a group structure. Let
(ei)16i6n denote the canonical base of Rn. The product M := φ(e1)φ(e2) can be computed
explicitly and it is not even symmetric: we have M2,1 = 0 whereas M1,2 = 1.

We shall illustrate the results of Theorem 3.10 on an example with p = 2 and q = 1, with
the matrices A = 2 ⊕ 2 ⊕ 1 and B = 1 ⊕ 1 ⊕ 2, so that B − A = J2,1. Theorem 3.3 states
that the set of maximal lower bounds of A and B, denoted

∧
A,B, has dimension 2 and its

elements Xw are given, for w ∈ R2 by

Xw = A−
(

I2 + wwT (I2 + wwT )1/2w

wT (I2 + wwT )1/2 wTw

)
.

For all w ∈ R2, we also have dim ker(A−Xw) = 1 and dim ker(B −Xw) = 2.
Let v = (x 0 z)T denote some non-zero vector. We shall solve Problem 3.9 in the cases

where (U ,V) = (Rv, {0}) and (U ,V) = ({0},Rv).

Case 1: U = Rv and V = {0}.
In this case, we have p 6= dimU and q 6= dimV, so by Theorem 3.10 the set of solutions is not
reduced to a point. The problem has a solution if and only if x2 > z2, and the solutions are
parametrized by the contractive elements of the affine subspaceW ofM2,1 defined by R ∈ W
if and only if RT (x 0)T + z = 0. Denoting r = −z/x, so that |r| < 1, we have

W =
{
Rt := (r t)T : t ∈ R

}
.

Moreover, we have ‖Rt‖2 = r2 + t2 so that, since r2 < 1, the setW∩Bp,q is non-empty. Then,
for |t| <

√
1− r2, we recover the matrix

w = φ−1
p,q(Rt) = (1− r2 − t2)−1/2

(
r
t

)
.

Finally, we get the parametrization of the kernels:

ker(A−Xw) = span
{(
z −tx x

)T }
,

ker(B −Xw) = span
{(
x 0 z

)T
,
(
txz x2 + y2 −x2t

)T }
.

The set of solutions is parametrized by a single real parameter t as expected from Theo-
rem 3.10.

Case 2: U = {0} and V = Rv.
In this case, we have q = dimV, so the solution is unique. Indeed, the problem has a solution if
and only if x2 < z2 and the affine subspaceW ofM2,1 is reduced to the point R := (−x/z , 0),
which satisfies ‖R‖ < 1. Figure 3.2 depicts several minimal quadrics associated with the
quadrics QA and QB.



3.5. EXAMPLES 47

(a) w = (0 , 0) (b) w = (0 , 0.25)

(c) w = (0 , 0.549) (d) w = (0 , 1)

Figure 3.2: Minimal quadrics QXw (in green) associated with QA and QB (in blue and red)
for various values of w. The black line shows the tangency points between the quadrics QB
and QXw .

3.5.3 Outer approximation of the union of quadrics

Corollary 3.14. Let A,B be positive semidefinite matrices. Then⋂
C∈

∧
{A,B}

QC = QA ∪QB . (3.3)

Proof. The inclusion QA ∪ QB ⊂ QC holds for all maximal lower bounds C of A and B,
hence QA ∪ QB is included in the intersection of all the quadrics QC for C ∈

∧
{A,B}. It

remains to show that, given some vector x ∈ Rn, if the inequalities xTCx 6 1 hold for all
C ∈

∧
{A,B}, then x ∈ QA ∪QB.

Let x ∈ Rn such that xTCx 6 1 holds for all C ∈
∧
{A,B}. We shall distinguish several

cases.
Case 1: xTAx 6= xTBx
By symmetry, assume that xTAx < xTBx. Then, as a consequence of Proposition 3.13,

there is a maximal lower bound of A and B, denoted C, satisfying Ax = Cx. By assumption,
we have xTCx 6 1, which combined with the previous equality yields xTAx 6 1, meaning
that x ∈ QA.

Case 2.1: xTAx = xTBx and Ax = Bx
Under these assumptions, every maximal lower bound C satisfies Ax = Cx by Theo-

rem 3.3. Given C ∈
∧
{A,B}, it follows immediately that x ∈ QC implies x ∈ QA.

Case 2.2: xTAx = xTBx and Ax 6= Bx
Proposition 3.13 implies that, under these assumptions, there is no maximal lower bound

C such that xTAx = xTCx. However, we shall show that for any positive ε, there is a maximal
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lower bound Cε such that

xTAx 6 xTCεx+ ε . (3.4)

Equation (3.3) is invariant under linear transformation, so that we may assume that B−A =
Jp,q,r. Using the notation of Theorem 3.3 and Section 3.4, it is readily shown that a matrix
M ∈ Mp,q produces a maximal lower bound Cε satisfying Equation (3.4) if and only if
‖(I +MMT )1/2πp(x) +Mπq(x)‖22 6 ε .

Let s denote some real number such that 0 6 s < 1. The assumption xTAx = xTBx
implies that ‖πp(x)‖2 = ‖πq(x)‖2. Thus, the matrix Rs given by

Rs = −(1− s)πp(x)πq(x)T /‖πq(x)‖22
is in the open ball Bp,q. Let Ms denote the matrix Ms = φ−1

p,q(Rs). It is then easily shown
that

(I +MsM
T
s )1/2πp(x) +Msπq(x) = η(s)πp(x)

with η(s) = s−1/2
[
(1 + 2s− s2)1/2 − 1 + s

]
,

where η satisfies η(s) = 2
√
s + o(

√
s) for s small enough. As a consequence, for s small

enough, using the characterization (iv) in Theorem 3.3, the matrix Ms provides a maximal
lower bound Cε satisfying (3.4).

Remark 3.5. If the approximating quadrics {QC : C ∈
∧{

A,B
}
} are required to be convex,

meaning that the matrices C are required to be positive semidefinite, then the resulting outer
approximation is a convex set, and instead approximates the convex hull of QA ∪QB. In this
case again, it can be shown that the outer approximation is exact.

Proposition 3.15. Let A,B be positive semidefinite matrices. Then⋂
C∈S+n ∩

∧
{A,B}

QC = conv
(
QA ∪QB

)
.

where conv(K) denotes the convex hull of the set K.

Let K denote the set QA ∪ QB. The convex hull conv(K) of the set K is given by the
intersection of all half-spaces Hc,T = {x ∈ Rn : cTx 6 T} that contain K. Let Hc,T denote
such a half-space. The set K is centrally symmetric, meaning that for all x ∈ K, we have
−x ∈ K. This implies that the half-space H−c,−T also contains K:

∀x ∈ K, −T 6 cTx 6 T . (3.5)

The quantity T is positive given that the set K has nonempty interior. Equation (3.5)
describes a quadric QR, where R = T−2 ccT , that contains QA and QB. Finally, by definition,
there is a maximal lower bound C of A and B such that QA∪QB ⊆ QS ⊆ QR. To summarize,
we have shown that we can associate with each half-space containing the set K a quadric QC
where C is a maximal lower bound of A and B. Hence, the convex hull of K contains the
intersection of convex quadrics associated to maximal lower bounds of A and B:

conv(K) =
⋂

{c,T : K⊂Hc,T }

Hc,T ⊇
⋂

C∈S+n ∩
∧
{A,B}

QC .

The latter set is an intersection of convex sets, thus it is convex. Moreover, it contains K,
since K ⊂ QC for all C ∈ S+

n ∩
∧
{A,B}. As a consequence, it contains the convex hull of K.



3.6. MINIMAL UPPER BOUNDS OF P MATRICES 49

3.6 Partial extension to minimal upper bounds of p matrices

We provide in this section a description of the set of minimal upper bounds of finitely many
symmetric matrices in the Löwner order. This result builds on the characterization proved
in Theorem 2.15 and the second parametrization given in Section 3.4.

3.6.1 Generalizing the parametrization

Contrary to the case of 2 matrices, the set of minimal upper bounds is not given by a quotient
of groups in the general case. However, the description using tangency subspaces remains
valid, thus it provides a good entry point for understanding the underlying geometry.

In the 2 matrix case, we have shown that the set of minimal upper bounds can be identified
to an open semi-algebraic subset of the Grassmannian manifold. In the more general case,
this identification remains in spirit, since the set of minimal upper bounds is given by the
reunion of finitely many “parts” Csdp

q which are indexed by the vector of tangency-subspace
dimensions q = (q1, . . . , qp). Contrary to the former case, these subspaces may not be in
direct sum, even if we assume that the difference of any two matrices is not singular. This
phenomenon is best represented by “the atom” in Figure 3.3.

The sets Csdp
q have a canonical hierarchy. Some correspond to tangency subspaces which

are in direct sum. These sets can be identified to open semi-algebraic subsets of a flag on
the Grassmannian manifold, and constitute the base of the hierarchy. The other elements are
obtained as the intersection of the closures of several base sets.

Theorem 3.16. Let A = {A1 , . . . , Ap} denote a finite subset of Sn. The set of minimal
upper bounds of A has the decomposition∨

A =
⊎
q∈Q
Csdpq with Q ⊂ {q ∈ Np :

∑
k

qk > n} .

The set Csdpq is the subset of
∨
A characterized by

X ∈ Csdpq ⇐⇒ ∀k , dim ker(X −Ak) = qk .

It can be identified to Rd(q) with

d(q) :=
∑
k

qk(n− qk)−
∑
k<l

qkql .

When
∑

k qk = n, we have d(q) =
∑

k<l qkql.

Moreover, the collection of sets (Csdpq )q∈Q follows the hierarchy property

Csdpp ∩ Csdpq ⊆
⋃
r>p,q

Csdpr ,

where r > p, q means that rk > max(pk, qk) for all k and X denotes the closure of X in the
Euclidean topology.

Before proving this theorem in Section 3.6.2, we point out some possible refinements. We
believe in particular that the following holds.
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(a) Three mutually uncomparable quadrics

Csdp
1,1,1

Csdp
1,1,0 Csdp

0,1,1

Csdp
1,0,1

(b) Structure of minimal upper bounds

(c) The triple point Csdp111 (d) An element of the branch Csdp110

(e) An element of the branch Csdp101 (f) An element of the branch Csdp011

Figure 3.3: Minimal upper bounds of 3 quadrics - the “atom”
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Conjecture 3.17. In the previous theorem, equality holds in the hierarchy

Csdpp ∩ Csdpq =
⋃
r>p,q

Csdpr .

In contrast with the case of 2 matrices, this description is hardly computationally acces-
sible because obtaining the set of non-empty cells Csdp

q is difficult.

Proposition 3.18. Deciding whether there is q ∈ Q such that q1 > 0 is NP-hard.

Proof. This decision problem is equivalent to finding a nonzero vector x such that xT (Qi −
Q1)x < 0 for all i > 1. This is equivalent to the fact that the optimal value v∗ of the following
quadratically constrained quadratic program is negative:

v∗ := min
v∈R,‖x‖=1

{v : xT (Qi −Q1)x 6 v , ∀i > 1} .

Solving this problem is NP-hard by [MK87].

Corollary 3.19. Deciding the non-emptiness of a set Csdpq is NP-hard.

Proof. At least one coordinate of q must be positive. Checking the positivity of this coordinate
is NP-hard by Proposition 3.18.

3.6.2 Proof of Theorem 3.16

The proof of Theorem 3.16 is split in several parts. First, we prove that the decomposition
of
∨
A into the reunion of several Csdp

q sets. Then, we identify the dimension of the cell Csdp
q

and derive the homeomorphism to Rd(q) when
∑

k qk = n. Finally, we show the hierarchy
property.

Decomposition By Theorem 2.15, any element of Csdp
q for q ∈ Q is a minimal upper bound

of A, hence
∨
A ⊇ ∪q∈QCsdp

q . Moreover, by the same corollary, any minimal upper bound

must belong to some set Csdp
q , thus equality holds.

Dimension The key argument is a characterization via tangency subspaces. Let q ∈ Q and
X ∈ Csdp

q . For all k, let Vk := ker(X − Ak) and denote by Wk a subspace of Vk such that
Rn = ⊕kWk. Without loss of generality, we assume that W1 is spanned by the first dimW1

vectors of the canonical base of Rn,W2 is spanned by the next dimW2 canonical base vectors,
and so on. Moreover, let πk denote the orthogonal projection onto Wk. Then the matrix X
is recovered as

X =
∑
i,j

πTi Aiπj (3.6)

Indeed, let us temporarily denote by Y the right hand side of Equation (3.6). Then, by
orthogonality of the projectors, we have (Y − Ak)πk =

∑
i π

T
i (Ai − Ak)πk; and writing Ai −

Ak = (X−Ak)−(X−Ai) shows that πTi (Ai−Ak)πk = 0, and we deduce that (X−Y )πk = 0 for
all k. The sum of the subspaces Wk is Rn, hence X = Y . One can check that Equation (3.6)
does not depend on the choice of the subspaces Wk.
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We introduce the subset S of (GLn)p defined by

(S1, . . . , Sp) ∈ S ⇐⇒


xT = xTSi
y = Siy
0 = (Six)T (Ai −Aj)(Sjy)

for all x ∈ Vi , y ∈ Vj , i 6= j .

The previous reasoning shows that (I, . . . , I) ∈ S. We count the degrees of freedom, with
qk = dimVk. The first and second conditions imply that Sk has only qk(n − qk) degrees of
freedom. Moreover, the third condition imposes qiqj additional equations for all i < j. We
deduce that the set S can be identified to a real vector space that has dimension

d(q) =
∑
i

qi(n− qi)−
∑
i<j

qiqj .

When
∑

i qi = n, this reduces to

d(q) =
(∑

i

qi)
2 −

∑
i

q2
i −

∑
i<j

qiqj =
∑
i<j

qiqj .

Hierarchy Let X ∈ Csdp
p ∩ Csdp

q , meaning that there are sequences Yk ∈ Csdp
p and Zk ∈ Csdp

q

converging to X.
By definition of Yk, the kernel of Yk −Ai has dimension pi. In other words, the sequence

of vectors containing the n − pi + 1 minors of the latter matrix is identically equal to 0. By
continuity of the determinant, this also holds for the limit X, hence dim ker(X − Ai) > pi.
By symmetry, the same is true for Z, hence dim ker(X − Ai) > max(pi, qi). This also shows

by Theorem 2.15 that X is a minimal upper bound of A. Hence Csdp
p ∩ Csdp

q ⊆
⋃
r>p,q C

sdp
r .



CHAPTER 4
A canonical invariant minimal upper

bound selection

Given a compact convex set in Rn with non-empty interior, there is a unique ellipsoid that
contains this set and that has minimum volume. This ellipsoid is called the Löwner ellipsoid.
It is a fundamental tool many fields, such as convex geometry, statistics and control theory,
see [DLL57, Bal97, Gru11]. An ellipsoid E can be identified to a positive semidefinite matrix A
by x ∈ E ⇐⇒ xxT 4 A. The notions of inclusion and volume of ellipsoids are translated into
the Löwner order and the determinant of their associated matrices. In particular, the problem
of computing the Löwner ellipsoid of a union of ellipsoids can be written as a semidefinite
program.

We extend in this chapter the definition of the Löwner ellipsoid to all proper convex
cones Ω by replacing the volume/determinant considerations by the characteristic function ϕ
associated with the cone Ω.

Our main result (Theorem 4.4) states that there is a unique vector in the cone Ω which
minimizes the value of the characteristic function over the set of upper bounds of a finite
collection of vectors. Moreover, it states that it is the only minimal upper bound that selects
itself as an exposed point (see Theorem 2.10) via a canonical bijection between the cone
and its dual, provided the cone satisfies some geometric conditions. Finally, we prove that
this minimal upper bound selection has desirable invariance properties with respect to order-
preserving transformations.

Our result holds in particular for the non-exceptional symmetric cones. When applied
to the Euclidean Lorentz cone, we obtain a seemingly new minimal upper bound selection
and exhibit its properties. We use this new point of view in the case of positive semidefinite
matrices to prove a matrix inequality showing that the “Löwner ellipsoid of p matrices” is
dominated by the sum of these matrices in the Löwner order.
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The results in Sections 4.6.2 and 4.6.4 have appeared in [AGG+15]. Further results are
newer.

4.1 Notations and definitions

4.1.1 Automorphisms of convex cones

Let Ω denote a open convex pointed cone in a vector space E so that E = Ω− Ω. The space
E is equipped with a scalar product 〈·, ·〉. The closed cone Ω defines an order relation of the
vector E , denoted by 4. We also denote by Ω∗ the open dual cone of the open convex cone
Ω, defined by

y ∈ Ω∗ ⇐⇒ 〈y, x〉 > 0 , ∀x ∈ Ω \ {0} .

The cone Ω∗ is the interior of the dual cone of Ω. We have the identity (Ω∗)∗ = Ω. Moreover,
we denote by Aut(Ω) the set of automorphisms of E that stabilize the open cone Ω:

Aut(Ω) := {g ∈ GL(E) : g(Ω) = Ω} .

Since the space E is finite dimensional, every such g is continuous and thus g ∈ Aut(Ω) if and
only if g(Ω) = Ω. We refer to the set Aut(Ω) as the set of automorphisms of Ω. As in [FK94],
for x ∈ Ω and g ∈ Aut(Ω), we use the short notation

g · x := g(x) .

We say that the cone Ω is homogeneous if the group Aut(E) acts transitively on Ω, that
is for all x, y ∈ Ω, there is g ∈ Aut(Ω) such that y = g · x.

The adjoint of the automorphism g, denoted by g∗, is defined by

〈x, g · y〉 = 〈g∗ · x, y〉 , ∀x, y ∈ E .

The next lemma justifies the common notation of the adjoint and the open dual cone.

Lemma 4.1 (see [FK94, Proposition I.1.7]). For any open convex pointed cone Ω, we have

g ∈ Aut(Ω) ⇐⇒ g∗ ∈ Aut(Ω∗) .

4.1.1.a Automorphisms of the Euclidean Lorentz cone The group of automorphisms of
the Euclidean Lorentz cone is generated by rotations around its “central axis” and the Lorentz
transformations. The first kind of linear transformation is given by(

t
x

)
7→
(
t
Ux

)
with U ∈ O(Rn) .

The Lorentz transformations are given by the map parametrized by the angle θ:
t
x1

x2
...

 7→

t cosh θ + x1 sinh θ
t sinh θ + x1 cosh θ

x2
...

 .

The Euclidean Lorentz cone is homogeneous. We refer to [FK94, Chapter 1.2] for the proof.
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4.1.1.b Automorphisms of the cone of positive definite matrices The group of automor-
phism of the cone of positive definite matrices S++

n is given by the maps

ΓM := X 7→MXMT with M ∈ GLn .

This group acts transitively on S++
n : let A,B denote two positive definite matrices, then the

matrix M := B1/2A−1/2 satisfies MAMT = B.

4.1.2 Characteristic function

Following the definition in [FK94, Chapter 1, Section 3], the characteristic function ϕ of the
open cone Ω is the map defined for x ∈ Ω by

ϕ(x) :=

∫
Ω∗
e−〈y,x〉 dy .

Faraut and Korányi show in [FK94, Proposition I.3.1 and Proposition I.3.3] that the char-
acteristic function ϕ is analytic over Ω, satisfies ϕ(gx) = (det g)−1ϕ(x) and that the map
x 7→ logϕ(x) is strictly convex. Moreover, given a point x ∈ Ω, the point σ0(x) ∈ Ω∗ is
defined by

σ0(x) := −∇ logϕ(x) .

Proposition 4.2 (see [FK94], Proposition I.1.4). Let Ω denote a homogeneous cone. Then
the map σ0(·) is a bijection between Ω and Ω∗. Moreover, it satisfies

1. ϕ(x)ϕ(σ0(x)) is constant,

2. σ0(g · x) = θ(g) · σ0(x) with θ(g) = (g∗)−1,

3. 〈σ0(x), x〉 = n for all x ∈ Ω,

4. σ0(σ0(x)) = x for all x ∈ Ω,

5. there is a unique e0 ∈ Ω such that σ0(e0) = e0.

When the cone Ω is homogeneous, every vector x ∈ Ω is the unique fixed point of an
automorphism in Aut(Ω). Indeed, if the cone Ω is homogeneous, there is h ∈ Aut(Ω) such
that x = h · e0. We can then define the automorphism

σx : z 7→ h · σ0(h−1 · z)

and it is readily checked that x is indeed a fixed point. The fact that σ0 has a unique fixed
point ensures that it is also the case for σx.

Remark 4.1 (Lorentz Cone). As shown in [FK94, Chapter 1.4], the characteristic function is

ϕ
[
(t x)T

]
= (t2 − ‖x‖2)−n/2

and the involution σ0(·) is given by

σ0( t x )T =
n

t2 − ‖x‖2
( t −x )T .

Its fixed point is the vector (
√
n 0 )T .
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Remark 4.2 (Cone of positive definite matrices). As shown in [FK94, Chapter 1.4], the char-
acteristic function is

ϕ(X) = (detX)−(n+1)/2

and the involution σ0(·) is given by

σ0(X) =
n+ 1

2
X−1

and its fixed point is the vector
√

n+1
2 In.

4.1.3 Selections of minimal upper bounds

Let D denote the set D := ℘(Ω)× Ω. The value Φ(A, c) is defined for A ⊂ Ω and c ∈ Ω by

Φ(A, c) := arg min
x<A
〈σ(c), x〉 . (4.1)

This defines a map Φ from D to Ω. By Theorem 2.10, this map takes non-empty values when
the set A is finite and it is a multivalued selection of minimal upper bounds. Indeed, given a
finite subset A ⊂ Ω and c ∈ Ω, every value y ∈ Φ(A, c) is a minimal upper bound of A. In
other words, we have Φ(A, c) ⊂

∨
A. By Theorem 2.10, every minimal upper bound arises in

this way, so that the stronger equality holds:∨
A =

⋃
c∈Ω

Φ(A, c) .

When x ∈ Φ(A, c), we say that x is a minimal upper bound of A that is selected by c.
The map Φ can be extended 1 to the set D′ defined by

D′ :=
⋃

faceF of Ω

℘(F )× rel intF .

where rel intF denotes the relative interior of the face F , i.e. the interior of the cone F with
respect to the induced topology in the vector space spanned by F .

Indeed, we have shown in Theorem 2.10 that minimal upper bounds of a set A belong
to the extreme face F(A) and can be selected by elements of its open dual cone F(A)∗ ∩ V ,
with V = spanF(A). The extension is defined as follows. The cone F(A) has a characteristic
function ϕF(A) which can be used to defined a bijection σF(A) from the interior of F(A) onto
its open dual cone in V given by F(A)∗∩V . We extend the map Φ on ℘

(
F(A)

)
×
(

intF(A)
)

by replacing the involution σ by σF(A) in Equation (4.1).

4.2 The main results

We are interested in vectors x such that x ∈ Φ(A, x), i.e. minimal upper bound x that select
themselves through the involution σ. Thus for the sake of readability, we write ΦA(·) to mean
the partial map Φ(A, ·). Vectors x which satisfy x ∈ ΦA(x) are then called fixed points of the
map ΦA.

1We have D ⊆ D′ since Ω is a face of itself and rel int Ω = Ω.
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4.2.1 Two technical assumptions

Our main results characterize the fixed points of the map ΦA under two technical assumptions
on the cone Ω.

Assumption 4.1. The cone Ω is homogeneous, i.e. for all x, y ∈ Ω, there is g ∈ Aut(Ω)
such that y = g · x.

Assumption 4.2. There is e ∈ Ω such that 〈x, x〉 = 〈e, x〉2 for all x ∈ Extr(Ω). We denote
the automorphism σe(·) by σ(·) for short.

Since automorphisms g ∈ Aut(Ω) are monotone, the image of an extreme ray is also an
extreme ray. Thus a consequence of Assumption 4.1 is the invariance and homogeneity of the
set of extreme rays by Aut(Ω).

Assumption 4.2 implies that the set of extreme rays is a subset of the boundary of the
Lorentz cone {x ∈ E : 〈x, x〉1/2 6 〈e, x〉}.

Assumption 4.1 and Assumption 4.2 also imply that the vector e acts as an axis of rotation
for the cone Ω, whose group of rotations is exactly Aut(Ω) ∩ O(E). In particular,the set of
extreme rays must remain invariant under the action of the group Aut(Ω)∩O(E), where O(E)
is the orthogonal group of the space E . When the cone Ω has only finitely many extreme rays
Rx, it implies for instance in dimension n = 3 that sections of the cone taken orthogonally
to the vector e are regular polygons. When the cone Ω has infinitely many extreme rays Rx,
sections of the cone are spheres.

Proposition 4.3. Let Ω denote a cone satisfying Assumptions 4.1 and 4.2. Then the vector
e is a nonlinear eigenvector of the involution σ0(·): there is a positive λ such that σ0(e) = λe.
Moreover, the vector e is a common fixed point of every automorphism in Aut(Ω) ∩ O(E).

Proof. Let H denote the affine hyperplane defined by x ∈ H ⇐⇒ 〈e, x〉 = 1. By Assump-
tions 4.1 and 4.2, the group Aut(Ω) ∩ O(E) acts transitively on the set Extr(Ω) ∩H. Hence,
given two extreme rays x, y ∈ H, there is g ∈ Aut(Ω) ∩O(E) such that y = g · x and we have

〈g∗ · e, x〉 = 〈e, g · x〉 = ‖y‖ = ‖x‖ = 〈e, x〉 .

Hence 〈g∗ · e− e, x〉 = 0 holds for all g ∈ Aut(Ω) ∩ O(E) and x ∈ Extr(Ω). The cone Ω has
nonempty interior, thus it must have at least n linearly independent extreme rays (this can
be deduced from the Krein-Millman theorem). We obtain that g∗ · e = e for all orthogonal
automorphisms g. Such an automorphism g satisfies gg∗ = idE , hence g · e = e.

Moreover, the characteristic function ϕ is invariant by an automorphism g ∈ Aut(Ω) ∩
O(E): ϕ(g · x) = ϕ(x) for all x ∈ Ω. Given u ∈ Extr(Ω) ∩ H, we have ϕ(e + tg · (u − e)) =
ϕ(e + t(u − e)) for all g ∈ Aut(Ω) ∩ O(E). By homogeneity, the gradient of the map logϕ
must satisfy

〈∇ logϕ(e), u− v〉 = 0 , for all u, v ∈ Extr Ω ∩H .

Again, the set of extreme rays of Ω in H must span the subspace H, thus ∇ logϕ is orthogonal
to H: there is λ > 0 such that σ0(e) = λe by definition of σ0.

Remark 4.3. Proposition 4.3 implies that the results stated for the map σ0 in Proposition 4.2
also hold for the involution σe.
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Remark 4.4. By Lemma 2.5, the set of extreme rays of Ω are the non-negative multiplies of
the set of extreme points of {x ∈ Ω: 〈e, x〉 = 1}. This set is homogeneous under the action
of Aut(Ω) ∩ O(E) which is a compact group, thus the former set is compact too. We deduce
that the set of extreme half-lines Rx also form a compact set.

We have already shown in Section 4.1.1 that both the open Euclidean Lorentz cone intL2
n

and the cone of positive definite matrices S++
n are homogeneous, so Assumption 4.1 holds for

these cones. We point out that Assumption 4.2 also holds for these cones.

Remark 4.5 (Lorentz Cone). Recall that an extreme ray of the Lorentz cone is of the form
u = ( ‖x‖ x )T . We deduce that

〈u, u〉 =
〈(‖x‖

x

)
,

(
‖x‖
x

)〉
= 2‖x‖2 =

〈(√
2

0

)
,

(
‖x‖
x

)〉2
= 〈e, u〉2 ,

with e :=
(√

2 0
)T

. Finally, we have

σ
[(t

x

)]
:=

2

t2 − ‖x‖2

(
t
−x

)
and σ(e) = e .

Remark 4.6 (Cone of positive definite matrices). Recall that an extreme ray of the cone of
positive semidefinite matrices is of the form u = xxT . We deduce that

〈u, u〉 = trace(xxTxxT ) = (xTx)2 = trace(xxT )2 = 〈In, xxT 〉2 = 〈e, u〉2

with e = In. The involution σ(·) then take the form

σ(X) := X−1 .

4.2.2 Statement of the theorems

The first theorem shows that a vector x ∈ Ω is a fixed point of the map ΦA if and only
its image by the involution σ is an optimal solution to a semi-infinite conic programming
problem.

Theorem 4.4. Let Ω be a cone satisfying Assumptions 4.1 and 4.2. Given a finite set A ⊂ Ω
such that F(A) = Ω and a vector x ∈ Ω, the following assertions are equivalent:

(i) x ∈ Φ(A, x),

(ii) σ(x) ∈ arg min
{

logϕ(c) : c ∈ Ω∗ , 〈c, u〉 6 1 , ∀u ∈ U
}

where U := ∪a∈A{u ∈ Extr(Ω): 0 4 u 4 a}.

The map ϕ acts as a measurement of “how far inside” the cone Ω a given vector x is, since
it tends to infinity when x tends to the boundary of the cone (see [FK94, Proposition I.3.2]).
The smaller the value of ϕ(x), the more the vector x is “inside the cone Ω”. Theorem 4.4
then states that a minimal upper bound x for which the vector σ(x) is “most inside the cone
Ω” among all minimal upper bounds of A is a fixed point of ΦA.

Moreover, the map logϕ is strictly convex. Hence the conic optimization problem in
Assertion (ii) above has a unique solution, which implies the following theorem.
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Theorem 4.5. Let Ω be a cone satisfying Assumptions 4.1 and 4.2. Given a finite set A ⊂ Ω
such that F(A) = Ω, the map x 7→ Φ(A, x) has a unique fixed point in Ω.

By Theorem 2.10, minimal upper bounds of a set A belong to the extreme face F(A) and
the map ΦA sends F(A) into F(A). We deduce from Theorem 4.5 the following corollary.

Corollary 4.6. Let Ω be a cone satisfying Assumptions 4.1 and 4.2. Given a finite set A ⊂ Ω,
the map x 7→ Φ(A, x) has a unique fixed point in F(A).

4.2.3 Discussion and conjectures

Theorem 4.4 gives the reader the path that has been followed in order to obtain uniqueness of
the fixed point of the map ΦA which is central to the analysis in Sections 4.4 to 4.6. We give
a precise characterization of such fixed points as well as a computational method to compute
it, via a semi-infinite conic problem.

A standard method for proving the uniqueness of the fixed point is to show that the
considered map is a strict contraction with respect to some metric. Despite several attempts,
this approach has failed us, mostly due to the absence of an explicit formula for the minimal
upper bound selected by a given vector c. In the case of positive semidefinite matrices, we
have an explicit formula for the minimal upper bound x in terms of the matrices ak ∈ A
and the selecting vector c ∈ Ω∗, but it also requires the data of the Lagrange multipliers λk
associated with the “tangency constraints”. It is

x = c−1
∑
k

λkak with
∑
k

λk = c .

In the case of 2 positive semidefinite matrices, we can use Theorem 3.3 to show that the
map ΦA is indeed a contraction with contraction rate 1

2 in Thompson’s metric. Moreover, we
have observed the same contraction rate on tens of thousands of numerical simulations, for
sets ranging from 2 to 20 matrices and all dimensions lower than 20. We have done tests of
similar scale for the Euclidean Lorentz cone, with the same positive result. This motivates
us to formulate the following conjecture:

Conjecture 4.7. Let Ω be a cone satisfying Assumptions 4.1 and 4.2. Then the map ΦA is
a contraction in Thompson’s metric with contraction rate 1

2 :

dT
[
ΦA(c),ΦA(d)

]
6

1

2
dT (c, d) ,

where Thompson’s metric dT is defined by

dT (x, y) = inf{λ > 0: λ−1y 4 x 4 λy} .

Finally, the results of Section 4.2.2 remain true when the open cone Ω is the image of a
cone satisfying Assumptions 4.1 and 4.2 by an invertible linear map L. Indeed, it suffices to
replace the scalar product 〈·, ·〉 by (x, y) 7→ 〈L−1x, L−1y〉 to preserve the validity of the two
assumptions. Moreover, the automorphism group of L · Ω is simply given by {LgL−1 : g ∈
Aut(Ω)} and the cone L · Ω is homogeneous if and only if the cone Ω is homogeneous.

Hence Theorems 4.4 and 4.5 and Corollary 4.6 remain valid if Assumption 4.2 is replaced
by the weaker assumption:

Assumption 4.2’. There is e ∈ Ω and an invertible linear map L such that 〈Lx,Lx〉 =
〈e, Lx〉2 for all x ∈ Extr(Ω).
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4.3 Proof of Theorem 4.4

4.3.1 Two conic optimization problems

We introduce two conic optimization problems, corresponding to Assertions (i) and (ii), and
derive their dual counterpart.

Problem corresponding to Assertion (i) For x ∈ Ω, the primal conic optimization prob-
lem (Pfix(x)) associated with Assertion (i) is:

minimize 〈σ(x), y〉 (Pfix(x))

subject to y < A .

The Lagrangian, denoted by Lfix is

Lfix(y, λ) = 〈σ(x), y〉 −
∑
a∈A
〈λa, y − a〉 ,

with λa ∈ Ω∗. The dual counterpart (Dfix(x)) is hence classically [BTN01] given by

maximize
∑
a∈A
〈λa, a〉 (Dfix(x))

subject to
∑
a∈A

λa 4 σ(x) , λa ∈ Ω∗ .

Both problems are clearly strictly feasible, thus by [Bar] the duality gap is zero and there is
a primal dual optimal solution (y, λ). By complementary slackness, such an optimal solution
is characterized by 〈λa, y − a〉 = 0 for all a ∈ A.

Problem corresponding to Assertion (ii) The set U := ∪a∈A{u ∈ Extr(Ω): 0 4 u 4 a}
is bounded and closed by Remark 4.4 hence it is compact. Moreover, by the assumption
F(A) = Ω, we have F(U) = Ω, hence c ∈ Ω if and only if 〈c, u〉 > 0 for all u ∈ U .

Let Lϕ denote the Lagrangian

Lϕ(c, ν) = logϕ(c)−
∫
U

(1− 〈c, u〉) dν(u) ,

where c ∈ Ω∗ and ν is a non-negative measure on U .
The function Lϕ is strictly convex in c and Ω∗ is convex. Moreover, given any measure

ν on U with positive weight and c ∈ Ω∗, the value Lϕ(tc, ν) tends to +∞ when t tends to 0
or +∞, or as c tends to the boundary of the cone [FK94]. Finally, given c ∈ Ω∗ whose norm
is large enough, there is u ∈ U such that 〈c, u〉 > 1. Then the value Lϕ(c, tδu) tends to −∞
when t tends to +∞. By Proposition 2.2, p.173 in [ET99], the function Lϕ has a saddle point
and we have

max
ν

inf
c
Lϕ(c, ν) = inf

c
max
ν

Lϕ(c, ν) . (4.2)

Maximizing the quantity Lϕ(c, ν) in the variable ν is equivalent to minimizing
∫
U (1 −

〈c, u〉) dν(u). This value is finite if and only if 〈c, u〉 6 1 for all u ∈ U . Hence the left-hand
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side of Equation (4.2) yields the primal conic optimization problem (Pϕ(A)) associated with
Assertion (ii), up to a logarithm:

minimize logϕ(c) (Pϕ(A))

subject to c ∈ Ω∗

〈c, u〉 6 1 , ∀u ∈ U ,

We minimize the quantity Lϕ(c, ν) in the variable c by differentiating in c. We obtain
σ0(c) =

∫
U u dν(u) , so by Proposition 4.2

Lϕ
(
c(ν), ν1, ν2

)
= logϕ ◦ σ0

[ ∫
U
u dν(u)

]
+ n−

∫
U
dν(u) .

Moreover, the measure ν must have positive finite weight, otherwise the dual cost function is
−∞. We write ν = w ν0 with w = ν(U), so ν0 is a probability measure. We can rewrite the

dual objective function, up to an additive constant, as log(w)−w − logϕ
[ ∫
U u dν0(u)

]
. The

variables ν0 and w are independent and maximizing in w yields w = 1, thus ν = ν0 is a prob-
ability measure. The right-hand side of Equation (4.2) yields the dual conic problem (Dϕ(A))

maximize − logϕ
[ ∫
U
u dν(u)

]
(Dϕ(A))

subject to ν probability measure on U .

By complementary slackness, a point (c, ν) is an optimal solution of and only if σ(c) =∫
U u dν(u) and

supp ν ⊆ {u ∈ U : 〈c, u〉 = 1} .

We show that x is an optimal primal solution of Problem (Pfix(x)) if and only if σ(x) is an
optimal primal solution of Problem (Pϕ(A)).

Let us first show a technical lemma:

Lemma 4.8. Let Ω be a cone satisfying Assumptions 4.1 and 4.2. For all u ∈ Extr(Ω) and
b ∈ Ω, the inequality 〈σ(b), u〉 6 1 holds if and only if u 4 b.

Moreover, if u 4 a 4 b with a ∈ Ω and b = g · e with g ∈ Aut(Ω), then

〈σ(b), u〉 = 1 =⇒ 〈(gg∗)−1 · u, b− a〉 = 0 .

Proof. We assume that 〈σ(b), u〉 6 1. Let v ∈ Extr(Ω). We have the sequence of inequalities

〈v, u〉 = 〈g∗ · v, g−1 · u〉 6 ‖g∗ · v‖‖g−1 · u‖ = 〈e, g∗ · v〉〈e, g−1 · u〉
= 〈g · e, v〉〈θ(g) · e, u〉 = 〈g · e, v〉〈σ(b), u〉 6 〈g · e, v〉 .

This holds for all v ∈ Extr(Ω), thus u 4 g · e = b.
Conversely, we have the sequence of inequalities:

〈σ(b), u〉2 = 〈θ(g) · e, u〉2 = 〈e, g−1 · u〉2 = ‖g−1 · u‖2

= 〈u, (gg∗)−1 · u〉 6 〈a, (gg∗)−1 · u〉 6 〈b, (gg∗)−1 · u〉
= 〈g · e, (gg∗)−1 · u〉 = 〈σ(b), u〉 .

We deduce that 〈σ(b), u〉 6 1. If 〈σ(b), u〉 = 1, all inequalities must be equalities, which
implies in turn that 〈(gg∗)−1 · u, b− a〉 = 0.



62 CHAPTER 4. CANONICAL INVARIANT MINIMAL UPPER BOUND SELECTION

4.3.2 Assertion (ii) =⇒ Assertion (i)

Let (σ(x), ν) denote an optimal solution of the pair of primal-dual optimizations prob-
lems (Pϕ(A)) and (Dϕ(A)), with x ∈ Ω, i.e., ν is a probability measure,

supp ν ⊆ V := U ∩ {u ∈ Extr(Ω): 〈σ(x), u〉 = 1} and

∫
U
u dν(u) = x .

First, we show that x < A. By definition of σ(x) as a primal feasible point, we have

u ∈ U =⇒ 〈σ(x), u〉 6 1 .

Thus, Lemmas 2.8 and 4.8 imply that a 4 x for all a ∈ A.
Since the cone Ω is homogeneous, let g ∈ Aut(Ω) such that x = g · e. By Lemma 4.8, we

partition the set V into finitely many measurable sets V(a):

V = ∪a∈AV(a) , a 6= b =⇒ V(a) ∩ V(b) = ∅ , u ∈ V(a) =⇒ 〈(gg∗)−1 · u, x− a〉 = 0 .

We define the collection {µa}a∈A by

µa := (gg∗)−1 ·
∫
V(a)

u dν(u) .

The collection µ is a feasible point for (Dfix(x)) since∑
a∈A

µa = (gg∗)−1 ·
∫
V
u dν(u) = (gg∗)−1 · x = σ(x) .

By definition of the set V(a), we must have∑
a∈A
〈µa, x− a〉 =

∑
a∈A

∫
V(a)
〈(gg∗)−1 · u, x− a〉 dν(u) = 0 .

Hence, the pair (x, µ) is a primal-dual optimal solution of Problems (Pfix(x)) and (Dfix(x)).

4.3.3 Assertion (i) =⇒ Assertion (ii)

Conversely, let x denote a fixed point of the map ΦA, so that x < A and there is a collection
of vectors λa ∈ Ω∗ such that

∑
a∈A λa = σ(x) and

∑
a∈A〈λa, x− a〉 = 0.

Let a ∈ A and u ∈ Extr(Ω) such that u 4 a. Since a 4 σ(x), we can apply Lemma 4.8
and deduce that 〈σ(x), u〉 6 1. Thus σ(x) is a feasible point of Problem (Pϕ(A)).

Given a ∈ A, the vector (gg∗) · λa belongs to the closed cone Ω, thus it can be written as
the sum of finitely many extreme rays:

(gg∗) · λa =
∑
k

αk(a)uk(a) ,

. We introduce the measure ν ′ defined by

ν ′ :=
∑
a∈A

∑
k

αk(a)〈σ(x), uk(a)〉 δ
[ 1

〈σ(x), uk(a)〉
uk(a)

]
,
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where δ[u] denote the Dirac measure at the point u. By construction, this measure satisfies∫
U
u dν ′(u) =

∑
a∈A

∑
k

αk(a)uk(a) = (gg∗) ·
∑
a∈A

λa = (gg∗) · σ(x) = x .

In other words, we have
∫
U u dν

′(u) = σ(c) with c := σ(x). Moreover, the support of ν ′ is
included in the set U ∩{u ∈ Extr Ω: 〈σ(x), u〉 = 1}. Hence the pair (σ(x), ν ′) is a primal-dual
optimal solution of Problems (Pϕ(A)) and (Dϕ(A)). This concludes the proof of Theorem 4.4.

4.4 Invariant minimal upper bound selection

In this section, we assume that the cone Ω satisfies Assumptions 4.1 and 4.2.

4.4.1 Commutation and uniqueness

As a consequence of Theorem 4.5, we can define a new minimal upper bound selection of the
set A, denoted by tA, and defined by

tA := the unique fixed point of the map ΦA .

We say that this selection is “invariant” because it commutes with the action of an auto-
morphism of the cone Ω:

Proposition 4.9. Let A denote a finite subset of Ω and g denote an automorphism of the
cone Ω that leave the extreme face F(A) invariant. Then we have

t
(
g · A

)
= g ·

(
t A

)
.

Proof of Proposition 4.9. By Corollary 4.6, we can assume without loss of generality that Ω =
F(A). Let x = tA and y = Φ(g ·A, g ·x). Then by definition of the map Φ and Theorem 4.5,
the vector y must be the unique minimizer of

minimize 〈σ(g · x), z〉 subject to z < g · A .

Writing z′ := g−1 · z, the vector y′ := g−1 · y must be the unique minimizer of

minimize 〈σ(x), z′〉 subject to z′ < A .

The unique minimizer of this quantity is x. Hence y′ = x, and g · x = Φ(A, g · x).

We warn the reader that, in the general case, this is not the only selection that commutes
with the action of automorphisms of the cone Ω. Indeed, for finite sets A ⊂ Ω and positive
scalars λa we can define a selection process Tλ by:

Tλ(A) := Φ
(
A,
∑
a∈A

λaa
)
.

The same proof as above shows that the map Tλ commutes with all automorphisms of Ω.
Moreover, it is easy to find two vectors λ, µ such that the maps Tλ and Tµ are different. For
instance, one may check that this is the case when Ω = S++

n and cardA > 3. However, it is
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the only selection that commutes with the automorphisms of Ω in the case where Ω = S++
n

and cardA = 2 by Theorem 4.13. The latter theorem is the reason why the map t is called
an invariant selection of minimal upper bounds: the selection does not depend on the choice
of a basis, whether it is orthogonal or not. We also call this selection the invariant join, by
borrowing the terminology from lattice theory.

We conjecture that this property also holds for the Euclidean Lorentz cone, and more
generally for all cones that satisfy Assumptions 4.1 and 4.2.

Conjecture 4.10. Let Ω denote an open cone that satisfies Assumptions 4.1 and 4.2. Then
the restriction of t to Ω × Ω is the only minimal upper bound selection that commutes with
the action of Aut(Ω).

4.5 Application: the Euclidean Lorentz cone

In this section, we restrict our analysis to the Euclidean Lorentz cone Λn, and we will drop
the term “Euclidean” for easy reading.

There is one specific minimal upper bound selection in the Lorentz cone that is considered
in the literature for practical applications. It is given by the “minimal penumbra”, as described
in [BK13].

Coming back to the geometric interpretation of Lorentz cones given in Section 2.3.2, an
element x̂ := (t x) of the Lorentz cone can be identified to a (Euclidean) ball B(x, t) centered
at x with radius t. This ball must contain the point 0 since (t x) ∈ Λn if and only if ‖0−x‖ 6 t.

A selection of minimal upper bounds that would arise naturally in an over-approximation
context is the “minimal radius selection”, meaning that we would like to select the minimal
upper bound of a union of balls which has the smallest radius. The radius of the ball associated
with the vector x̂ is obtained by taking the scalar product of x̂ with the vector (1 0), which
belongs to the interior of the Lorentz cone. Hence, by Corollary 2.13, we obtain this minimal
upper bound by solving a second-order conic program. Given a finite set A = {âi}i∈I ⊂ Λn,
the “minimal radius selection” x̂ is the unique optimal solution of

minimize 〈(1 0), x̂〉
subject to x̂− âi ∈ Λn , ∀i ∈ I

We illustrate this selection on Figure 4.1.

This selection is useful in a synchronization context, where the cone Λ3 is the light cone
from special relativity. We illustrate our interpretation on an example. Let A = {

(
ti
xi

)
}i∈I ∈

Λn which represents a collection of observers, each located at xi and emitting a light signal at
time ti. The smallest radius minimal upper bound

(
t
x

)
gives the time t and position x of the

object which is detected by all observers at the earliest time possible. Dually, the maximal
lower bound with largest radius gives the latest time t and the position x of a lamp which
would light up the combined field of view of all the observers in A.

In most cases, this selection does not yield a fixed point of the map ΦA. Recall that the
group of automorphisms of the Lorentz cone is generated by rotations around the main axis
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x

y

x

y

Figure 4.1: Computation of the “minimum radius” selection (blue and dashed) and invariant
selection (green and plain)

(t x)T 7→ (t Ux)T with U ∈ O(n) and the Lorentz transformations with parameter θ:


t
x1

x2
...

 7→

t cosh θ + x1 sinh θ
t sinh θ + x1 cosh θ

x2
...

 .

The minimal radius selection does commute with the former rotations, which is a very natural
property to require, since we expect the selection to be independent of any relativistic reference
frame. However, it does not commute with the Lorentz transformations.

The latter property is satisfied by the selection t, which does not aim to minimize the
radius t of the enclosing ball, but instead minimizes the quantity ϕ(x̂) = (t2 − ‖x‖2)−1, and
thus maximizes the quantity t2 − ‖x‖2.

Moreover, it does by Proposition 4.9 commute with the Lorentz transformations. We show
on Figure 4.1 computations of the invariant selection. Although there are many instances in
which the latter selection is “close” to the minimum volume one, we show in Figure 4.1 an
instance where these selections take very different values.

In the later instances, the invariant selection yields a coarse approximation of the union
of the balls. This is of course a side-effect of the representation method, i.e. the balls
containing 0, rather than a blame of the intrinsic quality of the selection, which depends on
the application. If the volume of the ball is the criteria, the first selection is clearly optimal.
However, if Lorentz transformations play a role in the application, it may appear that the
second selection is optimal.
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4.6 Application: the cone of positive semidefinite matrices

4.6.1 Positive semidefinite matrices and ellipsoids

Like the case of the Lorentz cone, we can provide a geometric interpretation of elements in
the cone S+

n . Given a matrix A ∈ S+
n , we define the set of vectors EA by

x ∈ EA ⇐⇒ xxT 4 A .

This is an ellipsoid, i.e. the deformation of a euclidean ball by a linear transformation, as
shown by the following lemma.

Lemma 4.11. The image of the unit ball B(0, 1) under the linear map x 7→ Mx is equal to
the set EA, where A = MMT .

Proof. We first remark that z belongs to the ball B(0, 1) if and only if zzT 4 I. Indeed, by
definition of the Löwner order, the latter property amounts to (zT y)2 6 yT y for all y ∈ Rn.
Now, assuming that zT z 6 1, we get by the Cauchy-Schwarz inequality:

(zT y)2 6 (zT z)(yT y) 6 yT y .

Reciprocally, if (zT y)2 6 yT y for all y ∈ Rn, then taking y = z provides (zT z)2 6 zT z. If
z 6= 0, we obtain that z ∈ B(0, 1), and this is still true if z = 0. This proves the expected
equivalence.

Now, let E be the ellipsoid given by the image of B(0, 1) under the map x 7→ Mx. Let
x ∈ E , and z ∈ B(0, 1) satisfying x = Mz. As zzT 4 I, we have:

xxT = M(zzT )MT 4MMT = A .

This shows E ⊆ EA. Reciprocally, if x ∈ EA, it can be shown than x belongs to the range of
A, meaning that there exists y such that x = Ay, as the range of the matrix M is equal to the
range of the matrix A. We introduce z := MT y, so that x = Mz. Since xxT 4 A, we know
that (yTx)2 6 yTAy = yTx, hence yTx 6 1. Now observe that yTx = yTMMT y = zT z. We
deduce that z ∈ B(0, 1).

Remark 4.7. By Lemma 4.8, we know that xxT 4 A is equivalent to xTA−1x 6 1 when
A is positive definite. In this sense, the definition of ellipsoids we give here is dual to the
definition of a quadric given in Section 3.5. There, we were interested in unbounded ellipsoids
and non-convex overapproximating quadrics, but that representation did not allow for “flat”
ellipsoids, i.e. they had to be full dimensional. The present setting allows for “flat” ellipsoids
EA whenever the matrix A does not have full rank.

The present representation is compatible with the Löwner order 4, since EA ⊆ EB is
equivalent to A 4 B whenever, A,B ∈ S+

n . Moreover, the volume of the ellipsoid EA is pro-
portional to

√
detA. By [FK94, Chapter 1.3], the characteristic function ϕ of the cone S++

n is
given by logϕ(X) = −m+1

2 log detX+logϕ(In). Hence, by Proposition 4.2 and Theorem 4.4,
the invariant join is obtained by selecting the ellipsoid EX that contains ∪A∈AEA which has
the smallest volume. We recover in this way the definition of the Löwner ellipsoid :

Theorem 4.12. Given a finite set A ⊂ S+
n such that

∑
A∈AA is positive definite, the ellipsoid

EtA coincides with the Löwner ellipsoid of the set ∪A∈AEA:

EtA = the unique ellipsoid containing ∪A∈A EA that has smallest volume .
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This correspondence gives another proof of the invariance of this selection, since the
volume of the ellipsoids EMAMT and EA only differ by the constant factor | detM |.

4.6.2 The unique invariant selection

A third argument for the canonicity of the selection t, besides it begin the only fixed point of
ΦA and the fact that it commutes with invertible congruences, is the fact that it is the only
selection that commutes with invertible congruences when the set A contains two elements.

Theorem 4.13. The map t restricted to S++
n ×S++

n is the only selection of a minimal upper
bound on that set that commutes with the action of invertible congruences.

Proof. Let A,B ∈ S++
n , P an invertible matrix P and a diagonal matrixD such that A = PP T

and B = PDP T . We recall how these matrices are obtained: let UDUT be the eigen-
factorization of the matrix A−1/2BA−1/2; then P := A1/2U is an invertible matrix that
satisfies the desired equalities.

Let 5 denote a selection of minimal upper bounds that commutes with congruences. In
particular, it must commute with the map X 7→ PXP T , thus it is only necessary to consider
the value of I 5D.

Furthermore, let Si denote the symmetry with respect to the hyperplane e⊥i , given by
Si(x) = x − 2〈ei, x〉ei. In the canonical basis of Rn, its matrix, denoted again by Si, is
diagonal, with a 1 in each entry, except the i-th diagonal entry which contains a −1. This
map is invertible, thus5must commute with the congruence X 7→ SiXS

T
i . Since the matrices

I,D are diagonal, this amounts to (I 5D)ij = 0 whenever i 6= j, hence I 5D is a diagonal
matrix. By minimality, we must have (I 5 D)ii = max(1, Dii). Hence there is only one
selection that commutes with invertible congruences.

4.6.3 Invariant join of shorted matrices

4.6.3.a A nontrivial shorted matrices equality We recall that the short of a positive
semidefinite matrix A with respect to the subspace V is given by

short(A,V) := max{X < 0: X 4 A and ranX ⊆ V} .

It is jointly monotone [And99], meaning that A 4 B and U ⊂ V imply that short(A,U) 4
short(B,V). Chapter 3 introduced the generalized short that satisfies [B]A = short(A, ranB).

We also recall that by Lemma 2.7, a positive semidefinite matrix A is equal to the supre-
mum of all rank 1 matrices that it dominates, i.e.

∨
{xxT : xxT 4 A} = {A}. A similar

equality holds for the short of a matrix.

Lemma 4.14. Given a positive semidefinite matrix A and a subspace V, we have∨
{xxT : xxT 4 A , x ∈ V} = { short(A,V) } .

Proof. For simplicity, we denote by M the set M :=
∨
{xxT : xxT 4 A , x ∈ V} and S the

matrix S := short(A,V). By definition of the short operator, there must be M ∈ M such
that M 4 S.

Let M ∈ M and assume that M < S does not hold, so that there must be a nonzero
vector x such that xxT 4 S holds but xxT 4M does not, by a similar argument to the proof
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of Lemma 2.7. By definition of S, the vector x satisfies x ∈ V and xxT 4 A, which contradicts
the fact that M ∈M. Hence M < S.

We deduce that S ∈ M and M < S, thus M = {S} by definition of minimal upper
bounds.

A consequence of Lemma 4.14 is that, given a positive semidefinite matrix A and a positive
definite matrix B such that A 4 B, the shorts short(A,V) and short(B,V) coincide if and
only if xxT 4 B =⇒ xxT 4 A for all x ∈ V. By Lemma 4.8, the fact that xxT 4 B is
equivalent to xTB−1x 6 1, so that the latter equivalence holds in particular for all vectors
x ∈ V such that xTB−1x = 1. We deduce that

1 = (B−1x)T xxT (B−1x) 4 (B−1x)T A (B−1x) 4 xTB−1x = 1 ,

so that B−1x ∈ ker(B −A) since A 4 B. This proves the following lemma:

Lemma 4.15. Given two symmetric matrices A,B such that A < 0 and B � 0 and a
subspace V, the shorts of the matrices A and B by the subspace V coincide if and only if
V ⊆ B · ker(B −A).

4.6.3.b The non-commutative analogue of a classical inequality By Theorem 2.15, the
matrix X is a minimal upper bound of A = {Ak}16k6p if and only if X < A and

∑
k ker(X −

Ak) = Rn.
We provide another remarkable property of the invariant join. In the general case, the

data of the subspaces ker(X −Ak) and the set A fully determines the minimal upper bound
X by Theorem 2.15. It turns out that in the case of the invariant join, it is only necessary to
have access to the subspaces ker(X − Ak) and the values of the matrices Ak shorted by the
subspace Ak · ker(X −Ak), which coincides with the tangency subspace of the ellipsoids EAk
and EX .

Theorem 4.16. Let A denote a finite subset of S+
n such that

∑
k Ak is positive definite. Let

also Vk := Ak · ker(tA−Ak). Then

tA = tk short(Ak,Vk) .

Proof. First, we denote the set of shorts by B := {short(Ak,Vk)}k. We point out that the
subspace Vk can also be written as (tA) · ker(tA − Ak). Note that

∑
k Ak � 0 implies that

F(A) = S+
n , hence tA is positive definite. We specialize the notation introduce for general

cones in Section 4.3 to the semidefinite cone. Let U(A) denote the set ∪k{x ∈ Rn : xxT 4 Ak},
and (Pϕ(A)), (Dϕ(A)) denote the pair of primal-dual optimization problems corresponding
to minimizing − log detC over U(A):

minimize − log detC (Pϕ(A))

subject to C � 0

xTCx 6 1 , ∀x ∈ U(A) ,

maximize − log det
[ ∫
U(A)

xxT dν(x)
]

(Dϕ(A))

subject to ν non-negative measure on U(A) .

Recall that a primal dual solution (C, ν) is an optimal solution of and only if

C−1 =

∫
U(A)

xxT dν(x) and supp ν ⊆ U(A) ∩ {x ∈ Rn : xTC−1x = 1} ,
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and that C−1 = tA. We define U(B),
(
Pϕ(B)

)
and

(
Dϕ(B)

)
in the same way.

First, the inclusion U(B) ⊆ U(A) holds, since by definition of the short operator, we have
short(Ak,Vk) 4 Ak. Thus, the feasible set of (Pϕ(A)) is contained in the one of

(
Pϕ(B)

)
. In

particular, the matrix C satisfies yTCy 6 1 for all y ∈ U(B).

By Lemma 4.8, given x ∈ U(A) such that xxT 4 Ak and xTCx = 1, we must have
Cx ∈ ker(C−1−Ak), i.e. x ∈ Vk. By the choice of x, we have xxT 4 Ak. Hence, by definition
of the short operator, we must have xxT 4 short(Ak,Vk). Hence x ∈ U(B).

We deduce that

U(A) ∩ {x ∈ Rn : xTCx = 1} = U(B) ∩ {x ∈ Rn : xTCx = 1} . (4.3)

It then follows that the optimal dual solution of (Dϕ(A)) is also optimal for
(
Dϕ(B)

)
, which

shows that tB = tA.

A consequence of Theorem 4.16 is that the value of the invariant join depends only on
the values of the linear maps associated with the matrices A with respect to their “tangency
space”: the information contained elsewhere does not influence the latter value. The following
theorem shows that, when these tangency subspace are in direct sum, then the invariant join
is in fact obtained as the sum of the shorted matrices. This is a witness of the fact that the
shorted matrices contain no more information than is needed to compute the invariant join.
The result of Theorem 4.16 also allows us to prove the analogue of the classical inequality on
non-negative reals maxk xk 6

∑
k xk.

Theorem 4.17. Let A denote a finite subset of S+
n such that

∑
k Ak is positive definite and

Vk := Ak · ker(tA−Ak). Then

tA 4
∑
k

short(Ak,Vk) ,

with equality if Rn =
⊕

k Vk. As a consequence, we have

tA 4
∑
k

Ak .

Proof. We use the notation of the previous proof. We introduce the set Sk = Vk ∩ {x ∈ Rn |
xTCx = 1}. We have shown in Section 4.3 that there is a probability measure ν supported
on U(A) = ∪kSk such that

tA =

∫
U(A)

xxTdν .

Since Sk ⊂ U(A), the matrix
∫
Sk xx

Tdν is smaller than tA in the Löwner order. Moreover,
its range in included in Vk, thus it is less than short(tA,Vk). Since U(A) = ∪kSk, we have

tA 4
∑
k

short(tA,Vk) ,

and equality holds if Rn = ⊕kVk, since then U(A) is the disjoint union of the sets Sk. Finally,
the fact that short(tA,Vk) = short(Ak,Vk) is a consequence of Lemma 4.15.
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Remark 4.8. We point out that these inequalities may not hold for other minimal upper bound
selections. Indeed, it we consider the trace-minimizing selection on the matrices A = ( 1 1

1 1 )
and B = ( 1 0

0 0 ), we obtain AtB = ( 1.44 0.72
0.72 1.17 ) for which the spectrum of (A+B)− (AtB) is

{0.64,−0.24} and is not non-negative.

Remark 4.9. Also note that the arithmetic mean is dominated by the invariant join. Indeed,
we have Ak 4 tA for all k, so p−1

∑
k Ak 4 tA. By the same reasoning, the invariant

join dominates any mean of the matrices in A, see [Kub79, PT05, Bha07] for background on
matrix means.

4.6.4 Several properties of the invariant selection

We list in the following two positive results on the binary invariant join (X,Y ) 7→ X tY and
several negative ones, that justify the sometimes convoluted proofs that are needed in the
sequel.

First, given a map f : R→ R and a symmetric matrix X, the value f(X) is defined by

f(X) = U diag
[
f(di)

]
UT ,

where X = U diag(di)U
T , see [Bha97] for more background.

Proposition 4.18. Let f denote any function preserving the set of positive reals and M ∈Mn

any matrix such that choosing

MMT = X1/2f
[
X−1/2Y X−1/2

]
X1/2

Then the binary invariant join X t Y can be computed by

X t Y =
X + Y

2
+

1

2
M
∣∣M−1(X − Y )M−T

∣∣MT . (4.4)

In particular,

1. f ≡ 0 (resp. f ≡ 1) yields C = X (resp. C = Y ),

2. f ≡ x 7→ x1/2 yields C = the Riemannian barycenter (Karcher mean) of X,Y ,

3. f ≡ x 7→ max(1, x) yields C = X t Y .

Proof. A classical result in linear algebra states that given two positive definite matrices
X,Y , there is an invertible matrix P and a positive diagonal matrix D such that X = PDP T

and Y = PP T . Moreover, there is a (not necessarily unique) orthogonal matrix U such
that X1/2 = PU . We deduce that X−1/2Y X−1/2 = UTDU . By Theorem 4.13, we have
D t I = D ∨ I where the maximum is taken entry- wise on the diagonal. Applying the
congruence by P yields X t Y = P (D ∨ I)P T .

Let M ∈ Mn such that MMT = X1/2f
(
X−1/2Y X−1/2

)
X1/2 = Pf(D)P T . Hence there

is an orthogonal matrix V such that M = Pf(D)1/2V . One can check that M
∣∣M−1(X −

Y )M−T
∣∣MT = P

∣∣D − I∣∣P T .

Remark 4.10. In particular, M can be chosen to be a triangular matrix by the Cholesky
decomposition.
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As a direct consequence of the expression above, we obtain the continuity of the binary
invariant join. It does not extend continuously to the closed cone.

Proposition 4.19. The binary invariant join is continuous on the open cone (S++
n )2 but it

is not continuous on the closed cone (S+
n )2.

Proof. The continuity on the interior of the cone follows from Equation (4.4) and the con-
tinuity of the sum, inverse, square root and modulus on the set S++

n . We now give a
counter-example showing that continuity does not hold on the closed cone. Let X(s) :=(

cos2(s) cos(s) sin(s)

cos(s) sin(s) sin2(s)

)
and Y (s) :=

(
cos2(s) − cos(s) sin(s)

− cos(s) sin(s) sin2(s)

)
. These matrices have rank 1

and their images are distinct when s /∈ π
2Z, in particular when |s| < 1 and s 6= 0. By Theo-

rem 4.16, the invariant join of X(s) and Y (s) is their sum: X(s) t Y (s) =
(

2 cos2(s)

2 sin2(s)

)
.

Moreover, X(0) = Y (0), so when s tends to 0, we have lims→0X(s) t Y (s) = ( 2
0 ) but

X(0) t Y (0) = ( 1
0 ).

Proposition 4.20 (Theorem 1 in [GNS+13]). No binary selection of minimal upper bounds
in S+

n is order preserving or associative. This holds in particular for the binary invariant
join.

Finally, we point out two properties that the maximum operator satisfies on the reals but
do not extend to the case of symmetric matrices.

Proposition 4.21. The binary invariant is not convex: the inequality

(tX1 + (1− t)X2) t Y 4 t(X1 t Y ) + (1− t)(X2 t Y ) .

is not satisfied in general.

Proof. We choose X1 = ( 2 1
1 1 ) X2 = ( 1 0

0 0 ) and Y = I2. With t = 0.5, the spectrum of the
difference between the right-hand side and the left-hand side is {0.23,−0.036}.

Proposition 4.22. The invariant join does not commute with the addition of a constant: in
general, we have

(X +M) t (Y +M) 6= (X t Y ) +M ,

for X,Y,M ∈ S+
n . Moreover, these quantities are not comparable.

Proof. We choose X = ( 2 1
1 1 ) Y = ( 1 0

0 0 ) and M = I2. The spectrum of the difference between
the right-hand side and the left-hand side is {−1, 0.06}.
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CHAPTER 5
Lipschitz bounds on the invariant join

5.1 Introduction

We recall that the minimal upper bound selection in the cone S+
n corresponding to the Löwner

ellipsoid is denoted by t and called the invariant join. We study in this chapter Lipschitz
properties of the invariant join with respect to three classical metrics on the cone of posi-
tive definite matrices, namely the Thompson metric, the Hilbert (semi-)metric and the (in-
variant) Riemann metric. Our first main result (Theorem 5.1) shows that this operator is
non-expansive with respect to the Riemann metric. Our second and third main result (The-
orems 5.2 and 5.3) show that the invariant join is “possibly expansive” and that its Lipschitz
constant behaves asymptotically like log n.

The Thompson, Hilbert and Riemann metrics are respectively denoted by dT , dH and dR
and defined by

dT (X,Y ) = ‖ log Sp(X−1Y )‖∞ ,
dH(X,Y ) = ω

(
log Sp(X−1Y )

)
,

dR(X,Y ) = ‖ log Sp(X−1Y )‖2 ,

where ‖ · ‖∞, ω(·) and ‖ · ‖2 respectively denote the max-norm, the diameter (or oscillation)
and the Euclidean 2-norm on the space Rn:

‖x‖∞ = max
i
|xi| , ω(x) = max

i
xi −min

i
xi , ‖x‖2 =

(∑
i

x2
i

)1/2
.

The Lipschitz constant of the map f with respect to the metric m ∈ {T,H,R} is the
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quantity denoted Lipm f and defined by

Lipm f = sup
X,Y�0

dm
(
f(X), f(Y )

)
dm(X,Y )

.

In the present setting, the invariant join t maps a pair of n× n positive definite matrices
(X1, X2) to a single positive definite matrix X1tX2, thus it may be seen as a map sending the
block-diagonal (2n)×(2n) symmetric matrix X1⊕X2 := diag(X1, X2) to the n×n symmetric
matrix X1 tX2. We are interested in computing the Lipschitz constant of that map, and it
is given by

Lipm t := sup
X1,X2,Y1,Y2

dm(X1 tX2, Y1 t Y2)

dm(X1 ⊕X2, Y1 ⊕ Y2)
.

5.1.1 The main results

Our main result shows that the Lipschitz constant of the invariant join is finite for all these
metrics, that it is constant equal to 1 for the Riemann metric, and that it depends in a
logarithmic way in the dimension for the Thompson and Hilbert metrics:

Theorem 5.1. The invariant join is non-expansive in the Riemann metric:

LipR t = 1 .

Theorem 5.2. The Lipschitz constant of the invariant join in the Thompson metric on S+
n

satisfies LipT t > 1 when n > 2 and

1

π
− 0.92

log n
6

LipT t
log n

6
4

π
+

2

log n
+ o(1) .

Theorem 5.3. The Lipschitz constant of the invariant join in the Hilbert metric satisfies:

LipH t = LipT t .

5.1.2 Proof outline and conjecture

Before giving the full detail of the proof, we outline the main steps that are involved. First, in
a common step for all theorems, we recall in Section 5.2.1 properties arising from the Finsler
nature of the considered metrics to reduce the computation of the Lipschitz constant of a
smooth map to the computation of a local Lipschitz constant, by replacing each metric by
its local norm counterpart. The supremum of the local Lipschitz constants along a given
geodesic hence gives an upper bound on the (global) Lipschitz constant.

The aforementioned results do not apply directly to the invariant join, because it is not
smooth everywhere. After a reduction step to the diagonal case in Section 5.2.2 and the
computation of an explicit formula for the differential of the invariant join in Section 5.2.3,
we show in Section 5.2.4 that the set of non-differentiability points “behaves well”, that is
one of the following cases is true:

1. there are either finitely many points on a geodesic where the invariant join is not smooth,
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2. there is a small perturbation of the geodesic’s end-points such that the new geodesic
joining them has finitely many non-differentiability points.

Then the proofs of the theorems diverge. First, we prove Theorem 5.1 in Section 5.3. The
proof of Theorem 5.2 in Section 5.4 reduces to bounding a Schur multiplier norm with respect
to the spectral norm. This is a difficult computation, which is why we only obtain lower and
upper bounds. Using results from [Mat93], we get an upper bound in O(log n) in Section 5.4.1,
and we give in Section 5.4.2 an example of a point where the local Lipschitz constant scales
as log(n). The proof of Theorem 5.3 in Section 5.5 uses a particular relationship between the
Thompson and Hilbert metrics to deduce equality of the Lipschitz constants.

The trivial bound Lipm t > 1 holds since there is an injection from S+
n to S+

n+1 given
by M 7→ M ⊕ 1, showing that the Lipschitz constant Lipm t is non-decreasing with the
dimension. In particular, the operator t coincides with the maximum operator on R+, hence
Lipm t > 1. Moreover, LipT t > 1 when n = 2 as shown by the following example:

X1 =

(
2.63 0.33
0.33 1.82

)
Y1 =

(
3.70 −0.82
−0.82 1.68

)
X2 = Y2 =

(
0.40 0.77
0.77 1.51

)
.

We have dT (X1 tX2, Y1 t Y2) = 0.63 while dT (X1 ⊕X2, Y1 ⊕X2) = 0.62.

Finally, following rigorous testing on a wide range of dimension and set sizes, we conjecture
that the invariant join is non-expansive in general.

Conjecture 5.4. The invariant join is non-expansive in the Riemann metric: given two
collections of positive definite matrices A = (Ak)16k6p and B = (Bk)16k6p, we have

dR(tA,tB) 6 dR
( ⊕

16k6p

Ak,
⊕

16k6p

Bk
)
.

5.2 Common step in the proofs

It will be convenient to write expressions of the form AXAT in a concise way in the sequel.
To do this, we recall the congruence operator, denoted by Γ and defined by

ΓAX := AXAT .

For X ∈ S+
n and A,B ∈ GLn, we have

ΓA ΓBX = ΓABX .

In particular, we deduce that the inverse of the congruence ΓA is the congruence Γ−1
A = ΓA−1 ,

and that, when A is positive semidefinite, the congruence ΓA has a square root, given by

Γ
1/2
A = Γ

A1/2 .

5.2.1 Infinitesimal approach

Before proving Theorems 5.1 to 5.3, we describe a common step in all proofs and introduce
the local Lipschitz constant.
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The Thompson, Hilbert and Riemann metrics can be defined alternatively. Indeed, for
m ∈ {T,H,R}, we have

dm(X,Y ) = inf
γ

∫ 1

0
νm

(
Γ
−1/2
γ(s) γ̇(s)

)
ds (5.1)

where γ is a curve joining X to Y . In the latter equation, νT (·) is the spectral norm, νH(·) is
the Hilbert semi-norm and νR(·) is the Frobenius norm:

νT (X) := ‖X‖ = inf{α > 0: − α2I 4 XXT 4 α2I} , (5.2)

νH(X) := ‖X‖H = inf{β − α : α2I 4 XXT 4 β2I} , (5.3)

νR(X) := ‖X‖F =
[

trace(XXT )
]1/2

=
(∑

ij

X2
ij

)1/2
. (5.4)

Hence, the Thompson, Hilbert and Riemann metrics are Finsler metrics, meaning that, locally,
they resemble norms. More precisely, given any positive definite matrix Z, the metric dm is
locally given by a deformed version of the norm νm depending only on Z:

dm(X,Y ) ∼ νm
(
Γ
−1/2
Z (X − Y )

)
when X,Y → Z .

In all cases, the infimum in Equation (5.1) is obtained with the curve γ : [0, 1] 7→ S++
n defined

by

γ(s) := Γ
1/2
X

[[
Γ
−1/2
X Y

]s]
= X1/2

[
X−1/2Y X−1/2

]s
X1/2 , (5.5)

which is thus a geodesic line joining X and Y with respect to all three metrics. Moreover, it
is the unique geodesic joining X to Y in the Thompson and Riemann metrics, see [Nus88].

The local Lipschitz constant of f at X with respect to the metric m ∈ {T,H,R} is the
quantity denoted LipmZ f and defined by

LipXm f = lim sup
ε→0

sup
Z : dm(X,Z)6ε

dm
(
f(X), f(Z)

)
dm(X,Z)

.

Thus, if f is denotes a map that is differentiable at X, the local Lipschitz constant is given
by

LipXm f = sup
H∈Sn

νm

(
Γ
−1/2
f(X) (dfX ·H)

)
νm

(
Γ
−1/2
X H

) . (5.6)

Moreover, when the map f is differentiable everywhere, its Lipschitz constant is equal to the
supremum of its local Lipschitz constants:

Lipm f = sup
X

LipXm f . (5.7)

We show in Section 5.2.4 that Equation (5.7) also holds for the invariant join, despite it
not being differentiable everywhere.
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5.2.2 Reduction to the co-diagonal case

We have shown previously that the invariant join commutes with the action of the linear
group, meaning that if P is an invertible matrix, then, for all positive definite X,Y , we have

(ΓP X) t (ΓP Y ) = ΓP (X t Y ) . (5.8)

It follows that, if the invariant join is differentiable at some point X ⊕ Y , its differential
at this point satisfies

d t(ΓP X)⊕(ΓP Y ) ·
[
(ΓP H)⊕ (ΓP K)

]
= ΓP

[
d tX⊕Y ·(H ⊕K)

]
. (5.9)

Since the matrices X,Y are positive definite, there is1 an invertible matrix P and a diagonal
matrix D, with positive diagonal entries, such that ΓP X = D and ΓP Y = D−1. We deduce
from Equations (5.8) and (5.9) that

Γ
−1/2
XtY

[
d tX⊕Y ·(H ⊕K)

]
= Γ

−1/2
DtD−1

[
d tD⊕D−1 ·(H ′ ⊕K ′)

]
,

Γ
−1/2
X⊕Y

[
H ⊕K

]
= Γ

−1/2
D⊕D−1 (H ′ ⊕K ′) ,

where we have used the shortcut notation H ′ = Γ−1
P H. Thus we have

LipX⊕Ym t = LipD⊕D
−1

m t ,

meaning that computing the local Lipschitz constant of the invariant join at a differentiability
point X⊕Y is equivalent to the computation of the local Lipschitz constant at a point where
both matrices X,Y are diagonal matrices, and inverses of one another.

5.2.3 Differential of the invariant join

In the sequel, we denote by D a diagonal matrix with positive diagonal entries. We use the
shorthand Di to mean the diagonal entry Dii.

We recall that the invariant join of two positive definite matrices X,Y is given by

X t Y =
X + Y

2
+

1

2
X1/2

∣∣X−1/2Y X−1/2 − I
∣∣X1/2 ,

where |X| denotes the matrix (XXT )1/2.

We also recall that the Löwner matrix associated with a differentiable map f and a
symmetric matrix X with eigenvalues xi ∈ R is the matrix LfX defined by

[LfX ]ij :=

{
(xj − xi)−1

(
f(xj)− f(xi)

)
if i 6= j

f ′(xi) otherwise .

It follows from [Mat93, Bha97] that the differential of the invariant join is given by a
Hadamard product (or Schur product). We recall that the Hadamard product of two matrices
A,B is given by

(
A ◦B

)
ij

= AijBij .

1See Section 4.6.2 for more detail.
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Lemma 5.5. The invariant join is differentiable at the point D⊕D−1 if the matrix D− I is
invertible and its differential is given by

d tD⊕D−1 ·(H ⊕K) = LtD2−I ◦H + LtD−2−I ◦K , (5.10)

where the matrix LtX is the Löwner matrix associated to the maximum operation at the diag-
onal matrix X, which is given by

(LtX)ij =
1

2
+

1

2

|Xjj | − |Xii|
Xjj −Xii

=
1

2
+

1

2

Xii +Xjj

|Xii|+ |Xjj |
. (5.11)

Remark 5.1. We point out that the map H 7→ L ◦H with L ∈ {LtD2−I , L
t
D−2−I} commutes

with the congruences ΓαD · and the congruence ΓαDtD−1 · for α ∈ {−1/2, 1/2} since the matrices
D,D−1 and D tD−1 are diagonal.

Remark 5.2. More generally, the invariant join is differentiable at the matrix X ⊕ Y if the
matrix X − Y is invertible.

5.2.4 Local and global Lipschitz constants

We now show that the global Lipschitz constant of the invariant join, with respect to the
Thompson or Riemann metric, is equal to the supremum over local Lipschitz constants at
its differentiability points, with respect to the same metric. In this section, we restrict the
analysis to the case m ∈ {T,R}.

First, note that the inequality LipXm t 6 Lipm t holds for all matrix X, since the quantity
on the left-hand side only measures the rate of change of the map t locally around the point
X.

Then, we show the reverse inequality. Given positive definite matrices X1, X2, Y1, Y2, let
γ denote the geodesic joining X := X1 ⊕X2 to Y := Y1 ⊕ Y2 given by Equation (5.5). One
can show that any value taken by γ is also a block diagonal matrix:

γ(s) = γ1(s)⊕ γ2(s) ,

where γi is the geodesic joining Xi to Yi, with i ∈ {1, 2}. We introduce the curve η joining
X1 tX2 to Y1 t Y2 defined by

η(s) := γ1(s) t γ2(s) .

Note in particular that for all 0 6 s 6 1, we have γ1(s) 4 η(s) and γ2(s) 4 η(s).
We shall distinguish two cases in our analysis.

5.2.4.a Case 1: the map η has finitely many non-differentiability points Let also (xk)06k6p

denote the non-differentiability points of η on [0, 1]. On each open interval ]xk, xk+1[, we have

η̇(s) = d tγ(s) ·
(
γ̇(s)

)
,

so that, using Equation (5.1) and the definition of the local Lipschitz constant, we have

dm(X1 tX2, Y1 t Y2) 6
p−1∑
k=0

∫ xk+1

xk

νm
(
Γ
−1/2
η(s) η̇(s)

)
ds

=

p−1∑
k=0

∫ xk+1

xk

νm

[
Γ
−1/2
η(s)

[
d tγ(s) ·γ̇(s)

]]
ds .
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By definition of the local Lipschitz constant Lip
γ(s)
m , we have:

νm

[
Γ
−1/2
η(s)

[
d tγ(s) ·γ̇(s)

]]
6 Lipγ(s)

m νm

[
Γ
−1/2
γ(s)

[
γ̇(s)

]]
.

Hence,

dm(X1 tX2, Y1 t Y2) 6
p−1∑
k=0

∫ xk+1

xk

Lipγ(s)
m νm

[
Γ
−1/2
γ(s)

[
γ̇(s)

]]
ds

6
[

sup
s∈[0,1]

Lipγ(s)
m t

]
dm(X1 ⊕X2, Y1 ⊕ Y2) .

Thus, we obtain

dm(X1 tX2, Y1 t Y2)

dm(X1 ⊕X2, Y1 ⊕ Y2)
6 sup

s∈[0,1]
Lipγ(s)

m t 6 sup
Z

LipZm t ,

where the latter supremum is taken over all matrices Z at which the invariant join is differ-
entiable.

5.2.4.b Case 2: the map η has infinitely many non-differentiability points First, we give
a technical lemma which will greatly simplify the proof of the second case. We prove this
lemma in Section 5.2.4.c.

Lemma 5.6. Given ε > 0 and two positive definite matrices X,Y , there is a matrix Y ε such
that the invariant join only has finitely many non-differentiability points on the geodesic γX
joining X to Y ε and on the geodesic γY joining Y ε to Y . Moreover, the matrix Y ε satisfies
dm(Y, Y ε) 6 εdm(X,Y ).

We apply this lemma to the two geodesics γ1 and γ2, which yields the matrix Y ε := Y ε
1 ⊕Y ε

2 .
Next, we apply the results of the previous case twice, which yields the following sequence of
inequalities:

dm(X1 tX2, Y1 t Y2) 6 dm(X1 tX2, Y
ε

1 t Y ε
2 ) + dm(Y ε

1 t Y ε
2 , Y1 t Y2)

6
[

sup
Z

LipZm t
](
dm(X,Y ε) + dm(Y ε, Y )

)
6 (1 + 2ε)

[
sup
Z

LipZm t
]
dm(X,Y ) .

Since the value of ε can be taken arbitrarily small, we get

dm(X1 tX2, Y1 t Y2)

dm(X1 ⊕X2, Y1 ⊕ Y2)
6 sup

Z
LipZm t ,

where the latter supremum is taken over all matrices Z at which the invariant join is differ-
entiable. This concludes the proof.
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5.2.4.c Proof of Lemma 5.6 Using the notation introduced earlier and Lemma 5.5, the
map η has infinitely many non-differentiability points if the equation

det
(
γ1(s)− γ2(s)

)
= 0 infinitely often for s ∈ [0, 1] . (5.12)

By Equation (5.5), there are invertible matrices A,B and diagonal matrices D,∆ such that
γ1(s) = A exp(sD)AT and γ2(s) = B exp(s∆)BT . Thus, Equation (5.12) is equivalent to

det
(

exp(sD)−M exp(s∆)MT
)

= 0 infinitely often for s ∈ [0, 1] , (5.13)

with M = A−1B. The map F := s 7→ det
(

exp(sD)−M exp(s∆)MT
)

is analytic, thus if it

has infinitely many zeros on the compact set [0, 1], it must be identically zero. By the Leibniz
formula, we have

F (s) =
∑

I⊆[1,n]

(−1)|I| det
(
M exp(s∆)MT

)
Ic

exp
(
s
∑
i∈I

Di

)
.

In the latter equation, we denote by det(X)I the determinant of the square sub-matrix of X
whose rows and columns indices are in the set I. By definition, we have det(X)∅ = 1.

Let us consider the term corresponding to I = {1, · · · , n}, which is equal to

(−1)n exp(s traceD) 6= 0 .

Thus, in order for the map F to be zero, there must be at least another term in the sum
which contains a term proportional to exp(s traceD). The value of det

(
M exp(s∆)MT

)
Ic

is
a multinomial in exp(s∆i), thus the existence of another term proportional to exp(s traceD)
implies that some linear combination∑

i∈I
αi∆i +

∑
j∈J

Dj =
∑

16i6n

Di

is satisfied for some sets I, J and αk ∈ {1, . . . , n}. There is only a finite number of such
relations, and they are generically not verified. Thus, the map η generically has only a finite
number number of non-differentiability points. Hence, there must an open neighborhood of
the matrix Y such that, for any matrix Y ε in this neighborhood, the geodesics joining X to
Y ε and Y ε to Y contain a finite number of non-differentiability points of the map η.

5.3 Nonexpansivity in the Riemann metric

We combine Equations (5.4), (5.6) and (5.10) with Remark 5.1 to obtain the expression of
the local Lipschitz constant of the invariant join with respect to the Riemann metric at the
matrix D ⊕D−1:

LipD⊕D
−1

R t = sup
H,K∈Sn

‖LtD2−I ◦ (Γ
−1/2
DtD−1 H) + LtD−2−I ◦ (Γ

−1/2
DtD−1 K)‖F

‖(Γ−1/2
D H)⊕ (Γ

1/2
D K)‖F

. (5.14)
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Without loss of generality, we may assume that the diagonal entries of the matrix D are
ordered in decreasing order. Let (λi)16i6p denote the entries of D that are larger than 1 and
(µi)16i6q the entries that are smaller than 1. By Equation (5.11), we get the expressions:

LtD2−1 =

(
Jp Z
ZT 0q

)
with Zij =

λ2
i − 1

λ2
i − µ2

j

, (5.15)

LtD−2−I =

(
0p W
W T Jq

)
with Wij =

λ−2
i − 1

λ−2
i − µ

−2
j

. (5.16)

Note in particular that 0 6 Zij ,Wij 6 1.
For brevity, we denote the numerator in Equation (5.14) as N(H,K) and to the denomina-

tor as D(H,K). Our goal is to show that N(H,K)2 6 D(H,K)2. Recall that the Frobenius
norm of the matrix X is given by

‖X‖2F =
∑
i,j

X2
ij .

We prove that for each (i, j), the squared term appearing in the numerator with the variables
Hij and Kij (also called ij-term) is no larger than the squared term appearing in the denom-
inator with the same variables. To do this, we split the set of indexes of the matrix into 4
sets, each corresponding to a block in the matrices written in Equations (5.15) and (5.16).

5.3.1 The case of diagonal blocks

First, assume that 1 6 i, j 6 p. Due to the J and zero diagonal blocks present in the matrices
in Equations (5.15) and (5.16), the ij-term in the numerator is simply written (λiλj)

−1H2
ij

and the denominator is written (λiλj)
−1H2

ij +λiλjK
2
ij . Since all the data is non-negative, we

obtain the desired inequality. The case i, j > p+ 1 is obtained by symmetry.

5.3.2 The case of off-diagonal blocks

By symmetry, we assume that i > j. We need to show that the following inequality holds:[ Zij√
λiµ
−1
j

Hij +
Wij√
λiµ
−1
j

Kij

]2
6
[ 1√

λiµj
Hij

]2
+
[ 1√

λ−1
i µ−1

j

Kij

]2
. (5.17)

We write λi =
√

1 + a and µj =
√

1− b with 0 < a and 0 < b < 1, so after simplifica-
tion, Equation (5.17) is equivalent to[ a

a+ b
Hij +

b

a+ b
(1 + a)Kij

]2
6 H2

ij +
1 + a

1− b
K2
ij ,

By the Jensen inequality, we already have[ a

a+ b
Hij +

b

a+ b
(1 + a)Kij

]2
6

a

a+ b
H2
ij +

b

a+ b
(1 + a)2K2

ij ,

thus it remains to be proven that b
a+b(1 + a) 6 1

1−b . In other words, one must show that

a(1+b2−b)+b2 > 0. This inequality is satisfied, since a(1+b2−b)+b2 > a(1+b2−2b)+b2 =
a(1− b)2 + b2 > 0. This concludes the proof.
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5.4 Lipschitz constant bounds in the Thompson metric

5.4.1 Upper bound in the Thompson metric

First, we prove the upper bound on the Lipschitz constant in Theorem 5.2. We combine Equa-
tion (5.6) with Remark 5.1 to obtain

LipD⊕D
−1

T t =
1

2
sup

H′,K′∈Sn

∥∥∥ΓA
[
L1 ◦H ′

]
+ ΓB

[
L2 ◦K ′

]∥∥∥∥∥H ′ ⊕K ′∥∥
with

A :=
(
D tD−1

)−1/2
D1/2 ,

L1 := LtD2−I ,

H ′ := Γ
−1/2
D H ,

B :=
(
D tD−1

)−1/2
D−1/2 ,

L2 := LtD−2−I ,

K ′ := Γ
1/2
D K .

By definition of the invariant join, we have D t D−1 < D,D−1. Thus the matrices
A,B satisfy AAT 6 I and BBT 4 I, and the spectral norms of A,B are no larger than 1:
‖A‖, ‖B‖ 6 1.

By the triangle inequality and the fact that the spectral norm ‖ · ‖ is sub-multiplicative,
we deduce that∥∥∥ΓA

[
L1 ◦H ′

]
+ ΓB

[
L2 ◦K ′

]∥∥∥ 6 ‖A‖2∥∥L1 ◦H ′
∥∥+ ‖B‖2

∥∥L2 ◦K ′
∥∥ .

Moreover, we have LtX = 1
2J + 1

2L
|·|
X where J denotes the matrix with a 1 in each entry.

We also have
∥∥H ′ ⊕K ′∥∥ = max

[∥∥H ′∥∥,∥∥K ′∥∥]. Thus, we have

LipD⊕D
−1

T t 6 1 +
1

2
‖L|·|

D2−I‖
◦ +

1

2
‖L|·|

D−2−I‖
◦ ,

where we have introduced the Schur multiplier norm ‖ · ‖◦ of the matrices L
|·|
D2−I and L

|·|
D−2−I

defined by

‖L‖◦ := sup
H∈Sn

‖L ◦H‖
‖H‖

.

Mathias has shown in [Mat93] that the following inequality holds for all diagonal matrix X:

sup
H∈Mn

‖L|·|X ◦H‖
‖H‖

6 2γn + 1 with γn =
1

n

n∑
j=1

| cot
(2j − 1)π

2n
| .

Moreover, we have γn = 2
π log n+ o(log n). Since Sn ⊂Mn, we immediately obtain

LipT t = sup
D

LipD⊕D
−1

T t 6 2 +
4

π
log n+ o(log n) .
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5.4.2 Lower bounds in the Thompson metric

We introduce the parametric collection of diagonal (2n)× (2n) matrices {Dt}t>0 defined by

Dt = diag
(√

1 + t2i+1
)

16i6n ⊕ diag
(√

1− t2j
)

16j6n ,

as well as the (2n)× (2n) matrix H given by

H =

(
0 W
W T 0

)
with Wij =

{
0 if i = j
(i− j)−1 otherwise

.

The Löwner matrix Lt of the invariant join at the matrix D2
t − I is

Lt =

(
J Mt

MT
t 0

)
with

(
Mt

)
ij

=
1

2

t2i+1 − t2j

t2i+1 + t2j
.

Finally, let L0 denote the limit of the Löwner matrices Lt which is given by

L0 :=

(
J M0

MT
0 0

)
.

We give a lower bound on local Lipschitz constant of the invariant join at the matrix Dt

by bounding the value of the Schur multiplier norm of Lt with respect to the local (spectral)
norm induced by Dt tD−1

t . To this end, by means of the matrix H, we show that the value
‖(Dt tD−1

t )−1(Lt ◦H)‖ is larger than (log(n)/π − 0.92 +O(t))‖H‖.
As the parameter t tends to 0, the matrix Mt tends to the matrix M0 given by M0 :=

T − J/2, where T is the triangular truncation operator defined by Tij = 1 if i > j and 0

otherwise. It has already been shown in [ACN92] that ‖T ◦W‖ > (logn−1)
π ‖W‖.

Moreover, there are positive constants αn, βn depending only on the dimension n such
that

|L0 − Lt|ij 6 αnt , |(Dt tD−1
t )−1/2 − I|ij 6 βnt ,

for all indexes i, j. Hence, since all norms on Rn are equivalent, there is a constant γn,
depending only on n such that ‖(Dt tD−1

t )−1
[
Lt ◦H

]
− L0 ◦H‖ 6 γnt‖H‖. Moreover, we

have ‖H‖ = ‖W‖ and ‖L0 ◦H‖ = ‖T ◦W −W/2‖. We deduce that

‖(Dt tD−1
t )−1

[
Lt ◦H

]
‖ > ‖T ◦W‖ − 1

2
‖W‖ − γnt

>
[ log n

π
− 1

π
− 1

2
+O(t)

]
‖H‖

=
[ log(2n)

π
− 1 + log 2

π
− 1

2
+O(t)

]
‖H‖ .

Taking the limit when t→ 0, we obtain LipT t > log(n)/π − 0.92.

5.5 Lipschitz constant in the Hilbert metric

Before proving Theorem 5.3, we recall a link between the Thompson and Hilbert metrics: for
all positive definite matrices X,Y , we have

dH(X,Y ) = 2 inf
λ>0

dT (λX, Y ) . (5.18)
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Moreover, this infimum is always reached for some positive value of λ.
We can now prove the equality of Lipschitz constants. Given positive definite matrices

X1, X2, Y1, Y2, there is a positive λ such that

dH(X1 ⊕X2, Y1 ⊕ Y2) = 2dT

(
(λX1)⊕ (λX2), Y1 ⊕ Y2

)
.

The invariant join is positively homogeneous, thus (λX1) t (λX2) = λ(X1 tX2) and

dH(X1 tX2, Y1 t Y2) 6 2dT

(
(λX1) t (λX2), Y1 t Y2

)
.

Hence, the following inequality holds

dH(X1 tX2, Y1 t Y2)

dH(X1 ⊕X2, Y1 ⊕ Y2)
6
dT
(
λ(X1 tX2), Y1 t Y2

)
dT
(
λ(X1 ⊕X2), Y1 ⊕ Y2

) ,
from which we deduce LipH t 6 LipT t.

Similarly, there is a positive µ such that

dH(X1 tX2, Y1 t Y2) = 2dT

(
(µX1) t (µX2), Y1 t Y2

)
.

We also have

dH(X1 ⊕X2, Y1 ⊕ Y2) 6 2dT

(
(µX1)⊕ (µX2), Y1 ⊕ Y2

)
,

from which we deduce the opposite inequality

dH
(
X1 tX2, Y1 t Y2

)
dH
(
X1 ⊕X2, Y1 ⊕ Y2

) > dT
(
µ(X1 tX2), Y1 t Y2

)
dT
(
µ(X1 ⊕X2), Y1 ⊕ Y2

) ,
and LipH t > LipT t.
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CHAPTER 6
Introduction to switched systems,

ellipsoids and abstract interpretation

We recall in this chapter several notions of interest in the sequel: switched systems, operations
on ellipsoids and the abstract interpretation framework on which we rely.

6.1 Classes of switched systems

6.1.1 Affine switched systems

The following notation is common to all types of switched systems that we consider. We
denote by x (resp. y) the vector containing the state variables x1, . . . , xn (resp. y1, . . . , yn).
We assume that we are given a bounded set of initial states I. We also denote by u the vector
of input variables u1, . . . , um, that may represent values measured from a sensor. These
values are measured from a bounded set U . The operations + and × are vector or matrix
operations. A vector assignment is denoted (x1, . . . , xn) := (y1, . . . , yn), or x := y for short.
The non-deterministic choice of a value for the vector x inside a set X is denoted x ← X .
Each occurrence of the symbol � can be replaced by either < or 6, so that an expression
of the form 〈f, x〉 � g defines a affine guard condition, separating the state space into two
half-spaces when the vector f is nonzero. The system switches between p modes that are
labeled by integers in Σ := {1, . . . , p}. In the following, for each i ∈ Σ, Ai denotes a n × n
matrix, Bi denotes a n×m matrix and ci denotes a vector of dimension n. Finally, rand bool
refers a non-deterministic choice in {true, false}.

In its most general form, a switched affine system takes the form of Program 2, involving
several affine switching conditions within a loop. For simplicity, we assume that all variables
have global scope.
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Program 2: Switched affine program with guards

y ← I;
while rand bool do

x := y;
u← U ;
if
(
〈f1,1, x〉 � g1,1

)
∧ · · · ∧

(
〈f1,P , x〉 � g1,P

)
then

y := A1 × x+B1 × u+ c1;
end
...
if
(
〈fp,1, x〉 � gp,1

)
∧ · · · ∧

(
〈fp,P , x〉 � gp,P

)
then

y := Ap × x+Bp × u+ cp;
end

end

In most applications we have in mind, the switching conditions are mutually exclusive,
meaning exactly one switching condition is valid for any value of the variable vector x. We
point out that this assumption can be made without loss of generality, up to adding more
conditional statements within the loop and adjusting the assignments accordingly.

We shall also consider the somehow simpler variant of this program in which every guard
condition 〈fi,j , x〉 � gi,j is replaced by the test of a random boolean, and refer to it as a non-
deterministic switched system. Note that in this case, the switching conditions are mutually
exclusive. An example is shown in Program 3.

Program 3: Non-deterministic switched affine program

x← I;
while rand bool do

u← U ;
b← Σ;
if b = 1 then

x := A1 × x+B1 × u+ c1;
end
...
if b = p then

x := Ap × x+Bp × u+ cp;
end

end

An invariant for Program 2 is defined as a set X that satisfies I ⊆ X , and, for all i, j,
x ∈ X and u ∈ U ,

Aix+Biu+ ci ∈ X whenever 〈fi,j , x〉 � gi,j .

In the non-deterministic case, the condition 〈fi,j , x〉 � gi,j is dropped.
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6.1.2 Linear switched systems

Joint spectral radius We specialize Program 3 by dropping the affine part and influence
of an external control, by setting Bi = 0 and ci = 0 for all i. This yields an instance of
a linear switched system, depicted in Program 4. We do not consider linear systems with
state-dependent switching laws, thus we drop the term “non-deterministic” in this setting.

Program 4: Switched linear program

x← I;
while rand bool do

b← Σ;
if b = 1 then

x := A1 × x;
end
...
if b = p then

x := Ap × x;
end

end

Alternatively, a discrete-time switched linear system is described by:

x(k + 1) = Aσ(k)x(k), σ(k) ∈ Σ

where x(k) ∈ Rn denotes the trajectory of the system, and σ is the switching mechanism,
which selects one of the matrices in A = {A1, . . . , Ap} at each instant. It is known that the
system described in Program 4 is stable if and only if the joint spectral radius of the set of
matrices A is no more than 1, see [Jun09]. The latter is defined by

ρ(A) := lim
k→+∞

max
16i1,...,ik6p

‖Ai1 . . . Aik‖
1/k .

Note is particular that since the spectral norm ‖ · ‖ of a matrix and of its transpose are
the same, the joint spectral radius of A and AT := {AT1 , . . . , ATp } coincide. Moreover, the
definition of the join spectral radius is independent of the norm, since all norms on Rn are
equivalent and limk→+∞ α

1/k = 1 when α > 0.

A fundamental result of Barabanov [Bar88] shows that if A is irreducible, meaning that
there is no nontrivial subspace of Rn that is left invariant by every matrix in A, then there is
a norm v on Rn such that

λv(x) = max
16i6p

v(Aix), ∀x ∈ Rn ,

for some λ > 0. The scalar λ is unique and it coincides with the joint spectral radius ρ(A).
This shows that, when A is irreducible, all the trajectories of the switched linear system
converge to zero if and only if ρ < 1. The norm v is known as a Barabanov norm. A norm
which satisfies the inequality maxi v(Aix) 6 ρ(A)v(x) for all x ∈ Rn is called an extremal
norm.
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A closely related result by Dranishnikov, Konyagin and Protasov [Pro96] shows that when
the set of matrix A is irreducible, there is a symmetric convex set with non-empty interior
(i.e. a symmetric convex body) M and a positive λ such that

conv∪i{Ai ·M} = λM

The scalar λ is unique a coincides again with the joint spectral radius of A. Any such body
is called an invariant body and is obtained as the polar set of ball B of a Barabanov norm of
the set of adjoint matrices AT :

x ∈M ⇐⇒ ∀y ∈ B, |〈x, y〉| 6 1 .

When ρ(A) 6 1, the sub-level set {x ∈ Rn : v(x) 6 α} for α > 0 is mapped into itself by
each dynamic x 7→ Aix, so that choosing α := supy∈I v(y) yields an invariant for the switched
linear system in Program 4. The same property holds for the Protasov ball M . We point out
that the invariant that is obtained in the linear case in convex. This does not hold for affine
systems.

Path-complete graph Lyapunov functions In [AJPR14], Ahmadi and al. developed a method
to compute an overapproximation of the joint spectral radius of a finite set of matrices, to
which we shall compare our method.

Given a set of states W and an alphabet Σ, an edge of a labeled graph is a triple (i, σ, j) ∈
W ×Σ×W. The set of edges is denoted E. Such a graph is called path-complete if for every
state i and letter σ, there is some state j such that (i, σ, j) is an edge.

Let A = {Aσ}σ∈Σ denote a finite set of n× n matrices and ρ a non-negative real number.
In [AJPR14], the authors examine graphs, denoted G(X, ρ), whose states are positive definite
matrices {Xi}i and whose edges are determined by

(i, σ, j) ∈ E ⇐⇒ ATσXiAσ 4 ρ
2Xj .

The main theorem in [AJPR14] shows that the construction of a path-complete graph
G(X, ρ) gives an upper bound of the joint spectral radius:

Theorem 6.1 (Theorem 2.4 [AJPR14]). If the graph G(X, ρ) is path-complete for some set
of positive definite matrices {Xi}i, then ρ(A) 6 ρ. Moreover, the map V : z 7→ maxi z

TXiz
is a Lyapunov-type function: it satisfies V (Aσx) 6 ρ2V (x) for all σ ∈ Σ and x ∈ Rn.

Moreover, for every ε > 0, there is an automaton (Σ,W, τ) such that an LMI (Pρ) built
with this automaton has a solution with ρ 6 ρ(A) + ε.

In practice, for a fixed value of ρ and a given path-complete graph G, checking the existence
of a path-complete graph G(X, ρ) whose edges coincide with G amounts to checking the
feasibility of the LMI (Pρ):

ρ2Xj < A
T
σXiAσ , ∀(i, σ, j) : τ(i, σ) = j ,

Xi � 0 , ∀i .
(Pρ)

A bisection scheme is then implemented to refine ρ. For brevity, we shall refer to this
method as the LMI method.

A class of graphs which provides good theoretical and experimental approximations is the
class of De Bruijn graphs. The set of states of the De Bruijn graph of order d is the set Σd

of words built on Σ which have length d. There is an edge (i, σ, j) between states i and j if
and only if i = σ1 . . . σd and j = σ2 . . . σdσ. This graph, denoted by Dd, is path-complete by
construction.
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6.1.3 Optimal switching problem

We also consider the following problem of optimal switching between linear quadratic models,
studied by McEneaney [McE07], namely approximating the value function V of an optimal
control problem having both a control u taking values in Rm and a discrete control (switches
between different modes) µ taking values in Σ := {1, . . . , p}:

V (x) = sup
u∈U

sup
µ∈D

sup
t>0

∫ t

0

1

2
ξ(s)TDµ(s)ξ(s)− γ2

2
|u(s)|2 ds .

Here, D denotes the set of measurable functions from [0,+∞) to Σ (i.e. switching functions),
U := L2([0,+∞),Rm) is the space of Rm-valued control functions, and the state ξ is subject
to

ξ̇(s) = Aσξ(s) +Bσu(s) , ξ(0) = x ,

where σ = µ(s) denotes the mode that is selected at time s.
In contrast with the programs considered earlier, where the switching occurred as a con-

sequence of the state crossing some hyperplane or a random boolean changing its value, the
discrete switching process µ is in this case a parameter on which the user can act.

It is known [McE07] that, under some assumptions on the parameters, the value function
V takes finite values and is the unique viscosity solution of the stationary Hamilton-Jacobi-
Bellman PDE:

H(x,∇V ) = 0 , x ∈ Rn .

The Hamiltonian H(x, p) in the latter equation is the point-wise maximum of simpler Hamil-
tonians Hσ(x, p) given for σ ∈ Σ by

Hσ(x, p) = (Aσx)T p+
1

2
xTDσx+

1

2
pTQσp ,

and Qσ = γ−2Bσ(Bσ)T .
We associate with this problem the Lax-Oleinik semi-group {St}t>0 defined by

St[V
0](x) = sup

u∈U
sup
µ∈D

∫ t

0

1

2
ξ(s)TDµ(s)ξ(s)− γ2

2
|u(s)|2 ds+ V 0

(
ξ(t)

)
.

It is a semi-group in the sense that St ◦ Ss = St+s for all s, t > 0. Moreover, it is known
[Mas87, AQV+98] that it is max-plus linear :

St[max(f, g)] = max
(
St[f ], St[g]

)
St[f + λ] = St[f ] + λ ,

where max denotes the point-wise maximum and λ is a constant.
McEneaney showed in [McE07] that V (x) coincides with limt→+∞ St[V

0](x) and that the
latter limit is uniform on compact sets if V 0 satisfies a quadratic growth condition (one
requires that ε|x|2 6 V 0(x) 6 λ|x|2 for some positive constants ε, λ that are determined from
the parameters).

We also associate with every value σ ∈ Σ the semi-group {Sσt }t>0 corresponding to the
unswitched control problem obtained by setting µ(s) ≡ σ, i.e.,

Sσt [V 0](x) = sup
u∈U

∫ t

0

1

2
ξ(s)TDσξ(s)− γ2

2
|u(s)|2 ds+ V 0

(
ξ(t)

)
. (6.1)
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Computing Sσt [V 0] when V 0(x) = xTP0x, reduces to solving the following indefinite Ric-
cati differential equation,

Ṗ = (Aσ)TP + PAσ + PQσP +Dσ , P (0) = P0 ,

with P (s) ∈ Sn. Indeed, we have Sσt [V 0](x) = xTP (t)x. We denote by ricct,σ the flow of this
equation, so that ricct,σ[P0] := P (t).

This modified control problem is written like a switched system in discrete time in Pro-
gram 5.

Program 5: Switched control problem

x← I;
while rand bool do

Choose σ ∈ Σ and u ∈ L2([0, t),Rm) that maximize the
value of problem (6.1);

x := exp
[
tAσ

]
x +

∫ t
0 exp

[
(t− s)Aσ

]
Bσu(s) ds;

end

6.1.4 McEneaney’s curse of dimensionality attenuation scheme

We assume that V 0 is a quadratic function V 0(x) = xTP 0x. The method of [McE07] that
solves the linear quadratic optimal control problem described in Section 6.1.3 approximates
the value function V by a finite supremum of quadratic forms

V ≈ sup
σ1,...,σN∈Σ

Sσ1t · · ·S
σN
t [V 0] , (6.2)

where t is a (small) time discretization step and N is a maximal number of switches. The
latter supremum represent the value of a modified optimal control problem, in horizon tN , in
which switches occur only at times multiple of t.

The key ingredient in this approach is the explicit computation of Sσt [V 0] when when
V 0(x) = xTP0x, reduces to solving the following indefinite Riccati differential equation,

Ṗ = (Aσ)TP + PAσ + PQσP +Dσ , P (0) = P0 ,

with P (s) ∈ Sn. Indeed, we have Sσt [V 0](x) = xTP (t)x. We denote by ricct,σ the flow of this
equation, so that ricct,σ[P0] := P (t).

We have Sσ1t · · ·S
σN
t [V 0](x) = xTQx, where Q = ricct,σ1 ◦ · · · ◦ ricct,σN (P0), can be com-

puted by integrating successive Riccati equations, which allows us to evaluate the expression
in Equation (6.2).

The propagation of a quadratic form by the Lax-Oleinik semi-group has only a cubic
cost in terms of the dimension n, contrary to classical grid-based methods whose cost is
exponential in the dimension. In this sense, the curse of dimensionality has been reduced.
However, the memory footprint of this method is exponential in the number of switches, since
mN quadratic forms are computed after N iterations. Several pruning schemes have been
proposed in [GMQ11] to limit this growth. This is a costly operation, indeed, 99% of the
computation time is spent solving LMIs inside the pruning procedure [GMQ11].
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6.2 The space of ellipsoids

6.2.1 Uncentered ellipsoids

In this section, we introduce the domain of uncentered ellipsoids and several operations on
ellipsoids that are needed in our analysis. Some definitions have already been given in Chap-
ter 4; they are repeated here for the sake of completeness. For readability, we drop the term
“uncentered” if it is clear from the context.

Let Bn = {x ∈ Rn : xTx 6 1} denote the unit ball of Rn. An uncentered ellipsoid is
defined as the image of the unit ball Bn under an affine map x 7→ Lx+ q, where L ∈Mn and
q ∈ Rp. When the matrix L is invertible, the matrix Q = LLT is positive definite and the
ellipsoid E(Q, q) is given by

E(Q, q) := {y ∈ Rn : (y − q)TQ−1(y − q) 6 1} .

When the matrix L is not invertible, the matrix Q is only positive semi-definite, so we have
E(Q, q) = {y ∈ Rp : (y − q)(y − q)T 4 Q} as a consequence of Lemma 4.8. When the
matrix Q is positive definite, the ellipsoid E(Q, q) is full-dimensional, whereas the ellipsoid
E(Q, q) is “flat” when Q is only positive semi-definite. The volume of a full-dimensional
ellipsoid is proportional to detL = (detQ)1/2 (the proportionality constant only depends on
the dimension).

We denote the set of uncentered ellipsoids in Rn by En. This set is equipped with the
inclusion order. By extension of Theorem 3.1 is constitutes an anti-lattice.

6.2.2 The Löwner ellipsoid

Let us recall a famous result by Löwner in the setting of uncentered ellipsoids.

Theorem 6.2 (Löwner [Bus50, Bal97]). Given a compact and full-dimensional set X ⊂ Rn,
there is a unique ellipsoid E(Q, q) that contains X and that has minimum volume.

This ellipsoid is called the Löwner ellipsoid of the set X , and we denote it by Löw(X ).
The Löwner ellipsoid has a special property.

Proposition 6.3. The Löwner ellipsoid commutes with invertible affine transformations:
given a compact full-dimensional X ⊂ Rn and an invertible affine map f , we have

f
(

Löw(X )
)

= Löw
(
f(X )

)
.

Proof. Let E denote an ellipsoid containing X . We denote the invertible affine map f by
x 7→ Ax + b. The map f is monotone, so that E ⊇ f(X ) ⇐⇒ f−1(E) ⊇ X . Moreover, the
volume of the ellipsoid E is equal to the volume of the ellipsoid f−1(E) multiplied by detA.
Combined with the uniqueness of the Löwner ellipsoid, we deduce that E = Löw

(
f(X )

)
if

and only if f−1(E) = Löw(X ).

The affine automorphism group AutX of a set X is the set of affine transformations
T : x 7→ Ax+ c that leave X invariant, i.e. T (X ) = X . The linear automorphism group is de-
fined similarly for linear transformations. Danzer, Laugwitz and Lenz have shown in [DLL57]
that the Löwner ellipsoid E of a set X retains the symmetry properties of the set X .
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Theorem 6.4. The group of affine automorphisms of a full-dimensional set X is a subset of
the group of automorphisms of LöwX :

AutX ⊆ Aut Löw(X ) .

Proof. This is a direct consequence of Proposition 6.3. Given f ∈ AutX , we have f
(

LöwX
)

=
Löw

(
f(X )

)
= LöwX , hence f ∈ Aut LöwX .

6.2.3 Operations on uncentered ellipsoids

We now describe operations on ellipsoids that are useful in the sequel.

6.2.3.a Testing the inclusion of ellipsoids We can check if an ellipsoid E(Q1, q1) is included
in the ellipsoid E(Q2, q2). In the case where the ellipsoid E(Q2, q2) is full dimensional, this
problem is equivalent to checking if an LMI has a solution: it contains the ellipsoid E(Q1, q1)
if and only there is some real number λ such that When the matrix Q2 is positive definite,
checking the inclusion E(Q1, q1) ⊆ E(Q2, q2) is equivalent to checking if the following LMI has
a solution as proved in [BTN01]:

E(Q1, q1) ⊆ E(Q2, q2) ⇐⇒ ∃λ ∈ R :

 Q2 q1 − q2 L1

(q1 − q2)T 1− λ 01,n

LT1 0n,1 λIn

 < 0 , (6.3)

where L1 satisfies Q1 = L1L
T
1 . Checking the inclusion is thus equivalent to solving an LMI.

In the special case where q1 = q2, this amounts to checking if Q1 4 Q2. We shall see later
on that the case where the ellipsoid E(Q2, q2) is not full dimensional does not arise in our
analysis. If E(Q2, c2) is not full-dimensional, it is first necessary to check that ranQ1 ⊆ ranQ2

and that c2 − c1 ∈ ranQ2. If this is true, the inclusion between the ellipsoids holds if and
only if the inclusion of the image of those ellipsoids under the projection onto ranQ2 holds.

6.2.3.b Image under an affine map The image of an ellipsoid by an affine map is again an
ellipsoid:

(x 7→ Ax+ c) · E(Q, q) = E(AQAT , Aq + c) .

Indeed, let L such that Q = LLT . We know that E(Q, q) and E(AQAT , Aq + c) respectively
correspond to the image of the unit ball Bn under the affine maps x 7→ Lx + q and x 7→
A(Lx+ q) + c. The expected result follows straightforwardly.

6.2.3.c Union of ellipsoids We over-approximate the union of a finite number of ellipsoids
by the Löwner ellipsoid Löw

(
∪k Ek

)
. The latter can be computed as E(Y −2, Y −1y), where

(Y, y) is the optimal solution of the following semi-definite program [BTN01]:

argmin
Y,y

− log detY

subject to

 In (Y qk − y) Y Lk
(Y qk − y)T 1− λk 01,n

LTk Y 0n,1 λkIn

 < 0 , ∀k

Y < 0

(6.4)
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and Ek = E(LkL
T
k , qk). This is only true when the convex hull of ∪kEk is full-dimensional (the

opposite case will not arise in our analysis). For the sake of brevity, we denote this Löwner
ellipsoid by

tkEk = E1 t · · · t Ep := Löw
(
∪k Ek

)
. (6.5)

It will be convenient to write in infix form, E1t · · ·tEp instead of tkEk, noting that this is an
abuse of notation, since the operation t is not associative. , i.e., E1t(E2tE3) 6= (E1tE2)tE3.

This notation is coherent with the notation t introduced in Chapter 4. Indeed, given
ellipsoids (E(Qi, q) that have the same center q, their Löwner ellipsoid also has the same
center, since the Löwner ellipsoid commutes with the affine map x 7→ 2q−x and the ellipsoids
E(Qi, q) are left invariant by this map.

6.2.3.d Minkowski sum of ellipsoids Recall that the Minkowski sum of two sets X,Y is
the set X + Y := {x+ y : x ∈ X, y ∈ Y }. and that the Minkowski sum of two ellipsoids may
not be an ellipsoid. For instance, the Minkowski sum of the two flat ellipsoids E(( 1 0

0 0 ), 0)
and E(( 0 0

0 1 ), 0) is the unit square {(x, y) ∈ R2 : max(|x|, |y|) 6 1}. Similarly, replacing the
previous two ellipsoids by “nearly flat” yields a slightly rounded square. Like the case of the
union of ellipsoids, we over-approximate the Minkowski sum of two ellipsoids E0, E1 by its
Löwner ellipsoid, and denote it by

E0 � E1 := Löw
(
E0 + E1

)
. (6.6)

It has been shown in [BTN01] that, given two full-dimensional ellipsoids E(Q1, q1) and
E(Q2, q2), the Löwner ellipsoid of E(Q1, q1) + E(Q2, q2) is then equal to E(Z−1, q1 + q2),
where Z is the solution of the semi-definite program

argmin
Z,λ

− log detZ

subject to

(
λQ−1

1 0n
0n (1− λ)Q−1

2

)
<

(
Z Z
Z Z

)
Z < 0, 0 6 λ 6 1 .

(6.7)

6.2.3.e Intersection of an ellipsoids with a half-space We denote by H(f, g) the half-space
{x ∈ Rn : fTx 6 g}, where f ∈ Rn is a non-zero vector and g is a real number. In general,
the intersection of an ellipsoid E with a half-space H is not an ellipsoid. Given an ellipsoid
E , we over-approximate its intersection with the half-space H by its Löwner ellipsoid, and we
denote it by

E u H := Löw
(
E ∩ H

)
.

When E is full-dimensional (we shall see later that it is always the case in our computations),
the set E u H can be computed analytically following [BGT81]. We give the formula below
for the sake of completeness. Given an ellipsoid E(Q, q) and a half-space H(f, g), let α denote
the quantity α := (fTQf)−1(g − fT q). If α > 1/n, we have E u H = E . If α < −1, then
E ∩ H = ∅. If α = −1, the ellipsoid E u H is reduced to the point q. If −1 6 α 6 1/n, we
have E u H = E(Q+, q+), with q+ = q − (1 + n)−1(1− nα)Qf and

Q+ =
n2(1− α2)

n2 − 1

(
Q− 2

1− nα
(1 + n)(1− α)

(Qf)(Qf)T
)
.
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The intersection with several half-spaces is handled in a sequential way, meaning that we
evaluate Löw

(
E ∩ (H ∩ H′)

)
as (E u H) u H′. It will again be convenient to do an abuse of

notation, denoting the latter operation by E u (H ∩ H′). Although this evaluation remains
sound, it may yield a very coarse over-approximation, since the maps E 7→ E u H and E 7→
EuH′ do not commute in general. When several half-spaces are involved, Unfortunately, there
is no tractable way to get finding a better over-approximation is a difficult and intractable
problem, see [BTN01, Section 3.7].

6.2.4 Centered ellipsoids: definitions and operations

The applications presented in Sections 6.1.2 and 6.1.3 have linear dynamics and the invariants
considered are centrally symmetric around the origin (we refer to such sets as symmetric sets).
We specialize the former framework to centered ellipsoids to benefit from this symmetry
property. We say that an ellipsoid E(Q, q) is centered if q = 0. It is then denoted by E(Q)
and

x ∈ E(Q) ⇐⇒ xxT 4 Q . (6.8)

The Löwner ellipsoid is left invariant by the affine automorphism group of its enclosing
set. The same property holds in particular for the linear automorphism group of if the initial
set is symmetric, whose Löwner ellipsoid is centered. Hence all operations defined with the
Löwner ellipsoid in the affine case yield centered ellipsoids when applied on centered ellipsoids.

6.2.4.a Testing the inclusion of ellipsoids The LMI defined in Equation (6.3) reduces in
the case of centered ellipsoids E(Q1), E(Q2) to checking if the positive semidefinite matrices
Q1, Q2 are comparable in the Löwner order:

E(Q1) ⊆ E(Q2) ⇐⇒ Q1 4 Q2 .

6.2.4.b Image under an affine map The image of a centered ellipsoid by an affine map is
again a centered ellipsoid:

A · E(Q) = E(AQAT ) .

6.2.4.c Union of ellipsoids We over-approximate the union of a finite number of centered
ellipsoids by the Löwner ellipsoid Löw

(
∪kEk

)
. The latter can be computed as tkEk := E(Z−1),

where Z is the optimal solution of the following semi-definite program [BTN01]:

argmin
Z

− log detZ

subject to Z 4 Q−1
k

Z < 0

(6.9)

when the ellipsoids Ek = E(Qk) are full-dimensional. Otherwise, we refer to the semi-infinite
program defined in Section 4.3. When only two ellipsoids are involved, it can be computed
using Equation (4.4).
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6.2.4.d Minkowski sum of ellipsoids The Minkowski sum of two symmetric sets is also
symmetric, hence

E(Q1)� E(Q2) := Löw
(
E0 + E1

)
= E(Z−1) ,

where Z is the solution of the semi-definite program in Equation (6.7).

6.2.4.e Intersection of an ellipsoids with a half-space This operation does not arise in
the centered case.

6.3 Abstract interpretation for switched affine programs

Abstract interpretation describes a framework in which two semantics describing of a same
system or program co-exist. The first description is concrete and usually mimics very closely
the behavior of the original system/program. In Section 6.3.1 we exhibit a collecting semantics
that simply extends the definition of the program’s semantics to sets of variables. It is often
not computationally feasible to handle objects in this representation directly. This role is
served by the second description, dubbed abstract semantics, which has a structure well suited
for computational purposes. The key ingredient is a so-called “concretization operator” that
maps abstract objects to concrete ones. Once several technical requirements are satisfied, the
interplay of those semantics allows one to disregard the concrete objects and solely manipulate
abstract elements. In particular, for our purposes, the search for an invariant set is “lifted”
to the abstract domain.

We recall in this section the construction of the abstract domain of lower sets of ellipsoids
in the case of switched affine systems.

6.3.1 A collecting semantics

We extend the definition of the three main operations that occur in our implementations of
switched systems to act on bounded subsets of Rn. These operations are the assignments of
a vector variable, testing an if statement guarded by a conjunction of affine inequalities or a
random integer value and a while loop with non-deterministic exit.

In the sequel, the set X belongs to the complete lattice ℘bounded(Rn) ∪ {∞} of bounded
subsets of Rn to which we have added an element identifying non-bounded sets.

Affine assignment The action of an affine assignment of variables x := Aσx+cσ on a concrete
element X , i.e. a (bounded) subset of Rn, is denoted by [[x := Aσx + cσ]] and defined by

[[x := Aσx + cσ]]
(
X
)

:= {Aσx+ cσ : x ∈ X} .

If this affine assignment is rather of the form x := Aσx + Bσu + cσ where u takes values
in the set U , the concrete operator is

[[x := Aσx +Bσu + cσ]]
(
X
)

:=
{
Aσx+ cσ : x ∈ X

}
+
{
Bσu : u ∈ U} . (6.10)
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If-then-else and switch statements Let us first consider the case of Program 2. We have
assumed that the conditions are mutually exclusive, hence only one assignment operation
occurs on the variable y in each loop iteration. Assume that condition σ ∈ Σ is satisfied and
that some operator opσ acts within this branch (in our case, opσ is an affine assignment).
Then the concrete operation associated with this branch is

[[if x ∈
⋂
l

Hσ,l then opσ(x); end]]
(
X
)

=
{

opσ(x) : x ∈ X and x ∈
⋂
l

Hσ,l
}
,

It is then necessary to merge (or join) the branches, hence the concrete operator for the
whole switch statement takes the form:

[[switch σ ; case(x ∈
⋂
l

Hσ,l) : opσ(x);]]
(
X
)

=
⋃
σ

{
opσ(x) : x ∈ X and x ∈

⋂
l

Hσ,l
}
.

Loops The body of the loops in the programs of interest contain a sequence of mutually
exclusive “if-then” statements, in which a single vector-assignment is performed. The concrete
operator s corresponding to the body of the loop of Program 2 is given by the map

s : X 7→
⋃
σ∈Σ

{
Aσx+ cσ : x ∈ X ∩

⋂
l

Hσ,l}+
{
Bσu : u ∈ U

}
. (6.11)

We deduce the expression of the loop-body abstraction for Program 3

s : X 7→
⋃
σ∈Σ

{
Aσx+ cσ : x ∈ X}+

{
Bσu : u ∈ U

}
.

The least fixed point of the operator [[p]] : X 7→ I ∪ s(X ) then provides a invariant for
the switched affine program. The existence of this least fixed point is a consequence of the
monotonicity of the concrete operators and the Knaster-Tarski theorem [Tar55], see [Rou13]
for a complete proof. In fact, any post-fixed point of the operator [[p]], i.e. a set X such that
[[p]](X ) ⊆ X is an invariant.

6.3.2 The abstract domain of lower sets

6.3.2.a Lower sets: definitions and properties We begin by recalling the definition of
lower sets.

Given a partially ordered set (X ,6), a subset L is an lower set is x ∈ L and y > x implies
y ∈ L. The set of lower sets in X is denoted1 by O(X ). The reunion and the intersection of
two lower sets is again an lower set, and these operations endow the space

(
O(X ),⊆

)
with

a complete lattice structure, with

sup
i
Li = ∪iLi and inf

i
Li = ∩iLi .

An element x is a maximal element of a lower set L if y ∈ L and x 6 y imply x = y. A
lower set L is principal if it has a unique maximal element l, in which case

L = ↓ {l} := {x ∈ X : x 6 l} .
1This is a standard notation, not to be confused with an orthogonal group O(n).
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More generally, the set ↓ S refers to the lower set generated by S:

↓ S =
⋃
s∈S
↓ {s} .

The set of maximal elements of a lower set L is denoted by MaxL. The latter set constitutes
an antichain, i.e. two distinct elements of MaxL are never comparable. Moreover, these
maximal elements fully characterize the lower set L:

L =↓ (MaxL) .

6.3.2.b Application in abstract interpretation Lower sets provide a good abstract domain
in the setting of abstract interpretation, see [CC94]. Given a lattice (D,4) and a monotone
concretization map γ : O(X ) 7→ D, the operator α : D 7→ O(X ) defined for d ∈ D by

α(d) := sup{L ∈ O(X ) : γ(L) ⊆ d}

defines a monotone abstraction operator. Indeed, let d, e ∈ D such that d 4 e. Then
γ
[
α(d)

]
4 d 4 e, hence by definition of α we have α(d) ⊇ α(e). As a consequence, the pair

(α, γ) defines a Galois connection between D and O(X ):

α(d) 6 L ⇐⇒ d 4 γ(L) ,

see [CC94] for more background.
In our work we choose (X ,6) =

(
En,⊆

)
and D the lattice of bounded subsets of Rn in

the inclusion order. The concretization γ maps an lower set of ellipsoids to their reunion in
Rn and the abstraction α returns the upper set of ellipsoids that are subsets of a bounded set

γ(L) := ∪{E ∈ L} and α(S) := {E ∈ En : E ⊆ S} .

Now, we can define the counterparts of the operations introduced in Section 6.3.1 on the
abstract domain O(En). Since the pair (α, γ) is a Galois connection, then Cousot and Cousot
showed in [CC77a] that the abstract counterpart [[·]]# of each operator [[·]] is simply given by

[[·]]# := α ◦ [[·]] ◦ γ .

Moreover these operators are set-valued hence they are monotone in the inclusion order, hence
the abstract operator corresponding to the body of the loop of Program 2 is monotone and
given by

s#(L) := α
[ ⋃
σ∈Σ

{
Aσx+ cσ : x ∈ γ(L) ∩

⋂
l

Hσ,l}+
{
Bσu : u ∈ U

}]
An abstract invariant is a lower set L such that s#(L) ⊆ L and I ⊆ ∪{E ∈ L}. Such

an invariant can be computed by a Kleene iteration scheme. Let LI ∈ O(En) such that
γ(LI) ⊇ I. Then the iteration

L0 = LI (6.12)

Lk+1 = LI ∪ s#(Lk) (6.13)

converges towards the least fixed point of the map s# that contains LI . Indeed, the sequence
Lk is increasing and bounded above by thus it converges and its limit L must satisfy LI ⊆ L
and s#(L) ⊆ L.
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CHAPTER 7
Disjunctive ellipsoidal invariants for

switched affine systems

This chapter is based on the articles “A Scalable Algebraic Method to Infer Quadratic Invari-
ants of Switched Systems” [AGS+16] and “A fast method to compute disjunctive quadratic
invariants of numerical programs” [AGG+17]

7.1 Introduction

7.1.1 Context

Although the abstraction by lower sets presented in Chapter 6 has the same expressivity as
subsets of Rn, it is not possible to implement. We tackle this issue by discretizing the space of
lower sets O(En) by considering only lower sets that arise as the reunion of N principal lower
sets, for some integer N . In other words, our abstract elements can be identified vectors of
ellipsoids and the concretization map becomes γ : (Ei)16i6N 7→ ∪iEi, i.e., we abstract a subset
of Rn by its cover in terms of N ellipsoids. This is no longer an exact abstraction but it is
still defined for every bounded set. Moreover, although this approach has the key advantage
of being implementable, it lacks several important ingredients. First, it no longer constitutes
a lattice. Second, the abstraction operator is no longer defined. Hence the abstract operators
acting on this space are no longer defined like in Section 6.3.2.

7.1.2 Contribution

We provide alternatives to each of these problems by overapproximating concrete elements by
their Löwner ellipsoids. We use these primitives in two algorithms that compute invariants
as unions of ellipsoids. The first algorithm deals with affine switched systems and consists in
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a modified Kleene iteration: a small perturbation parameter is added to ensure convergence
in finite time and robustness to numerical imprecisions. Second, a power-like algorithm is
introduced to compute invariants of linear systems. We provide numerical benchmarks for
each algorithm and compare the results with state of the art methods.

7.2 The domain of unions of ellipsoids

7.2.1 Definitions and notation

In the sequel, we consider a switched program like one presented in Programs 2 to 4.1. We label
the branches of the loop of the program by integers from 1 to p, and denote by Σ := {1, . . . , p}.
We can thus identify the set of finite traces of the program with the set Σ∗ of finite words built
on the alphabet Σ. Let W denote a subset of Σ∗ with cardinal N and τ denote a map from
W × Σ to W. The triple (Σ,W, τ) defines a deterministic finite automaton, whose alphabet
is Σ, whose states are elements of W and whose transition function is τ . Every state in this
automaton is both an initial and final state. The function τ being totally defined overW×Σ,
the automaton (Σ,W, τ) accepts every word of Σ∗. We say that (i, σ, j) ∈ W × Σ×W is an
admissible transition when τ(i, σ) = j.

We are now ready to present union of ellipsoids in the framework of abstract interpreta-
tion. Following the terminology of abstract interpretation, our concrete domain is defined as
℘bounded(Rn), the lattice of bounded subsets of Rn equipped with the subset partial order ⊆.

The abstract domain is the set of functions E from W to the set of ellipsoids En. We
denote by Ew the ellipsoid associated with w ∈ W by this function. It will be convenient
to identify E to the vector (Ew)w∈W in EWn indexed by elements of w. Operators defined on
the abstract domain EWn are vector mappings. Hence the w-th coordinate of the abstract
operator [[·]]# is denoted by [[·]]#w .

We equip the abstract domain EWn with the coordinate-wise ordering:

E1 v E2 ⇐⇒ E1
w ⊆ E2

w , ∀w ∈ W .

This is, up to a permutation in the indexes w, the same order on the lower sets generated by
the reunion of ↓ {Ew} for w ∈ W.

The concretization operator γ, which maps an abstract element to a concrete one, is
defined as the function γ : EWn → ℘bounded(Rn) which associates a vector of ellipsoids E to
the union of these ellipsoids in Rn. The concretization operator γ is order-preserving:

Lemma 7.1. The map γ : E 7→ ∪wEw is order-preserving.

Proof. Given E1 v E2, let x ∈ γ(E1), i.e., x ∈ E1
w for some w ∈ W. Hence x ∈ E2

w and
x ∈ γ(E2).

Like several other abstract domains (convex polyhedra [CH78], zonotopes [GGP09], etc.),
the domain of unions of ellipsoids cannot be equipped with an abstraction operator α. Indeed,
this operator would be supposed to map any bounded subset S to the “smallest” vector of
ellipsoids E such that S ⊆ ∪wEw.2 Such an element does not exist in general, since it implies
for instance that the boundary of the closure of S is the reunion of finitely many quadratic
hypersurfaces.

1Program 5 is treated separately.
2In this case, (α, γ) forms a Galois connection.
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7.2.2 Affine assignment

Given an abstract element E , the abstract operator corresponding to the affine assignment of
variables x := Aσx + cσ, denoted by [[x := Aσx + cσ]]#, is the coordinate-wise affine transfor-
mation of ellipsoids:

[[x := Aσx + cσ]]#v
(
E
)

:=
(
x 7→ Aσx+ cσ

)
· Ev .

Indeed, affine transformations are order-preserving. Hence, given a lower set of the form
↓ {Ew}w∈W , its image by the abstract affine assignment operator is exactly the lower set
↓
{

(x 7→ Aσx+ cσ) · Ew
}
w∈W

Lemma 7.2. The abstract assignment operator [[x := Aσx + cσ]]# is exact:

[[x := Aσx + cσ]]
[
γ(E)

]
= γ

[
[[x := Aσx + cσ]]#(E)

]
.

Proof. The image of an ellipsoid by an affine map is again an ellipsoid, hence

[[x := Aσx + cσ]]
[
γ(E)

]
= (x 7→ Aσx+ cσ) ·

⋃
v

Ev = γ
[
[[x := Aσx + cσ]]#(E)

]
If this affine assignment is rather of the form x := Aσx + Bσu + cσ where u takes values

in the set U (that is not reduced to a single point), the abstract operator defined in Equa-
tion (6.10) no longer preserves finitely generated lower sets, as Minkowski sums of ellipsoids
are generically not finite reunion of ellipsoids, see [KV06]. Hence we choose a coordinate-wise
over-approximation of the Minkowski sum, using the operator � defined in Equation (6.6).
This yields the the abstract operator

[[x := Aσx +Bσu + cσ]]#v
(
E
)

:=
(
x 7→ Aσx+ cσ

)
· Ev �

(
u 7→ Bσu

)
· EU ,

where EU is the Löwner ellipsoid of the set U .

This operator is not exact due to the approximation with �. However it provides a sound
over-approximation of the concrete version.

Lemma 7.3. The affine assignment operator [[x := Aσx +Bσu + cσ]]# is sound:

[[x := Aσx +Bσu + cσ]]
[
γ(E)

]
⊆ γ

[
[[x := Aσx +Bσu + cσ]]#(E)

]
.

Proof. By definition of �, we have E1 + E2 ⊆ E1 � E2. The result follows in a straightforward
way.

7.2.3 If-then-else and switch statements

We have already argued to the intersection of an ellipsoid with a half-space may not be
an ellipsoid, hence it is also the case for union of ellipsoids intersected with multiple half-
spaces. In other words, we cannot expect the abstract counterpart of the guard condition
[[if x ∈

⋂
lHσ,l then opσ(x); end]] to preserve finitely generated lower sets of ellipsoids. We

adopt a similar approach as for the Minkowski sum and approximate the intersection of an
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ellipsoid with several half-spaces with its Löwner ellipsoid. Hence, the abstract operator
corresponding to a single branch is

[[if x ∈
⋂
l

Hσ,l then opσ(x); end]]#v
(
E
)

:= op#
σ ◦ guardσ

(
Ev
)

where op#
σ is the abstract counterpart of opσ (an affine assignment in our applications) and

guardσ is a shorthand for the ellipsoidal mapping E 7→ E u
(⋂

lHσ,l
)
. The latter map over-

approximates the subset of E contained in all half-spaces Hσ,l by its Löwner ellipsoid.

Merging the different branches is done in the lower set framework by taking the reunion
over all branches. Doing this operations in the present framework would multiply the size of
the generated set by the number of branches, leading to an exponential increase along the
computation. We control this growth by means of the automaton and over-approximate by
a single ellipsoid Ew all ellipsoids [[if . . . then opσ(x) ; end]]#(Ev) such that w = τ(v, σ). We
choose Ew to be the Löwner ellipsoid of the former matrices. A good choice of automaton
will merge ellipsoids that are already “close” and introduce a little approximation gap. This
yields an abstract operator of the form:

[[switch σ ; case(x ∈
⋂
l

Hσ,l) : opσ(x);]]#w
(
E
)

=
⊔

σ∈Σ,v∈W
τ(v,σ)=w

op#
σ ◦ guardσ

(
Ev
)
.

When the condition is evaluated by a random integer value, the guard operator vanishes
and the abstract operator is obtained as a special case:

[[switch b ; case(b = σ) : opσ(x);]]#w
(
E
)

=
⊔

σ∈Σ,v∈W
τ(v,σ)=w

op#
σ

(
Ev
)
.

By definition of the t operator on ellipsoids, the operators defined above are sound:

Lemma 7.4. The abstract operator [[switch σ ; case(x ∈
⋂
lHσ,l) : opσ(x);]]# is sound:

[[switch σ ; case(x ∈
⋂
l

Hσ,l) : opσ(x);]]
[
γ(E)

]
⊆ γ

[
[[switch σ ; case(x ∈

⋂
l

Hσ,l) : opσ(x);]]#(E)
]
.

7.2.4 Body of loops

We combine the abstract operators for affine assignments and affine guards to obtain the
abstract counterpart of the map s in Equation (6.11) denoted by s#. It maps EWn into itself
and is defined coordinate-wise by

s#
w : E 7→

⊔
σ∈Σ,v∈W
τ(v,σ)=w

(
x 7→ Aσx+ cσ

)
◦ guardσ

(
Ev
)
�
(
u 7→ Bσu

)(
EU
)
. (7.1)

It is a sound abstraction of the loop-body operator s.
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Lemma 7.5. The abstract operator s# is sound: for all E ∈ EWn , we have

s
[
γ(E)

]
⊆ γ

[
s#(E)

]
.

Proof. The map s is set-valued, hence s
[
γ(E)

]
= ∪w∈Ws(Ew). Following Lemmas 7.3 and 7.4,

the abstract operators used in s# overapproximate their concrete counterpart, hence s(Ew) ⊆
s#
w (E) for all w ∈ W. We deduce that s

[
γ(E)

]
⊆ ∪w∈Ws#

w (E) = γ
[
s#(E)

]
.

We deduce the expression of the loop-body abstraction for non-deterministic switched
affine programs

s#
w : E 7→

⊔
σ∈Σ,v∈W
τ(v,σ)=w

(
x 7→ Aσx+ cσ

)(
Ev
)
�
(
u 7→ Bσu

)(
EU
)
.

For non-deterministic switched linear programs, the map s# acts on centered ellipsoids. Writ-
ing Ew = E(Qw) and Q = (Qw)w∈W , this operator can be rewritten as a map s# acting on

(S+
n )W defined by

s#
w : Q 7→

⊔
σ∈Σ,v∈W
τ(v,σ)=w

AσQvA
T
σ (7.2)

7.2.5 Loop invariants

We recall that a (loop) invariant for Program 2 is a set X that contains the set of initial
points I such that Aσx + Bσu + cσ ∈ X for all x ∈ X ∩ (

⋂
lHσ,l), u ∈ U and σ ∈ Σ. In

other words, an invariant is a set X such that I ⊆ X and s(X ) ⊆ X . In the spirit of abstract
interpretation, we solve the problem of computing an invariant in the abstract domain. First,
we abstract the set of initial states I by a finitely generated lower set, which yields the vector
of ellipsoid EI := (EIw)w whose concretization covers I: I ⊆ ∪wEIw. Second, we define the
map T by

Tw(E) := EIw t s#
w (E)

and solve for E the post-fixed point equation

T (E) v E . (7.3)

A loop invariant is then obtained as the concretization of any solution of Equation (7.3) in
the abstract domain:

Theorem 7.6. Let E denote a post-fixed point of the map T . Then the set γ(E) = ∪w∈WEw
is an invariant for Program 2.

Proof. If E ∈ EWn satisfies T (E) v E , then, by monotonicity of the concretization, we obtain
γ
[
T (E)

]
⊆ γ(E). By Lemma 7.5 we also have s

[
γ(E)

]
⊆ γ

[
s#(E)

]
, hence s

[
γ(E)

]
⊆ γ(E).
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Program 6: Program X

switch rand bool :
case true

x := Ax+ a
end
case false

x := Bx+ b
end

Program 7: Program Y

switch rand bool :
case true

y := UAU−1(y − v) + Ua+ v
end
case false

y := UBU−1(y − v) + Ub+ v
end

Figure 7.1: Affine change of variables in a switch statement

7.2.6 A robust analysis

We have defined our abstract operators by overapproximating in each instance the concrete
element by its Löwner ellipsoid. The remarkable geometric properties of the Löwner ellipsoid
are a major advantage when applied to program verification. Not only does the Löwner
ellipsoid preserve any symmetries that are present, it also allows our analysis to be invariant
under affine rewriting of the program.

Let us illustrate the latter property on the programs given in Figure 7.1. The right-hand
side program is obtained from the left-hand side one by applying the affine change of variables
y := Ux + v. We denote by E0

X the initial abstract state in the analysis of the left-hand side
program, i.e., before the execution of the switch statement. Accordingly, we assume that the
abstract state of the right-hand side program is given by E0

Y = (x 7→ Ux+ v) · E0
X . Following

the definition of the abstract primitives, the analysis of the two programs respectively provides
the following final invariants:

EfX = (x 7→ Ax+ a) · E0
X t (x 7→ Bx+ b) · E0

X

EfY = (y 7→ A′y + a′) · E0
Y t (y 7→ B′y + b′) · E0

Y

where X ′ = UXU−1 and x′ = Ux + v − UXU−1v for (X,x) ∈ {(A, a), (B, b)}. Then it can
be verified using Proposition 4.9 that the final invariant of the second program corresponds
to a rewriting of the invariant of the first program, i.e.,

EfY = (x 7→ Ux+ v) · EfX .

7.3 Non-monotone Kleene algorithm for switched affine systems

7.3.1 The non-monotone Kleene iteration

In this section, we present to compute an invariant for Program 2 as the union of finitely
many ellipsoids. It is obtained as the fixed point of a non-monotone map that is based on an
automaton, whose states represent finite execution traces (in the case of De Bruijn automata,
see Section 7.3.5, these distinguish between different suffixes of traces of the same length). As
a consequence, we expect that the more states this automaton has (i.e., the more execution
traces are taken into account during the computation), the more accurate the invariant to
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be. Moreover, since an ellipsoid is associated with each state of the automaton, the number
of disjunctions in the invariant is constant during the computation.

We introduce an action of Σ∗ on the set of ellipsoids En, denoted by · and defined for
σ ∈ Σ and E ∈ En by:

σ · E :=
(
fσ ◦ guardσ(E)

)
�
(
BσEU

)
,

where fσ denotes the affine map x 7→ Aσx + cσ. In this way, the map E 7→ σ · E represents
the abstract operator associated with the branch σ of the program.

The abstract operator for the whole loop is then written coordinate-wise in condensed
form as

Tw(E) := EIw t
⊔

τ(v,σ)=w

σ · Ev . (7.4)

The fact that semi-definite programs can only be solved up to a prescribed accuracy is a
well known source of difficulties in numerical program verification. If the approximate invari-
ant which is found is mapped to its interior, meaning that some strictly feasible solution is
returned by the solver, then, an exact invariant can be obtained a posteriori by some rounding
procedure, see the discussion in [RJGF12]. In order to make such methods applicable in the
present setting, we introduce a small margin ε > 0 which will absorb numerical imprecisions
as suggested by the authors in [RVS16]. Hence, we define the perturbed map T ε from EWn to
itself, whose w-th coordinate is obtained by adding a “padding” εIn to each ellipsoid:

T εw(E) := E
(
Qw + εIn, qw

)
where E(Qw, qw) = Tw(E) .

Remark 7.1. The ellipsoids E(Qw, qw) and E(Qw + εIn, qw) have the same center and Qw 4
Qw + εIn, hence by monotony of the translation x 7→ x− qw, we may assume3 that they are
centered and the inequality Qw 4 Qw + εIn implies that T εw(E) ⊇ Tw(E).

This is a sound over-approximation of the abstract loop operator: s#
w (E) ⊆ T εw(E). Intro-

ducing the parameter ε induces a trade-off between speed (ε large) and precision (ε small).
The speed-up effect is shown in Equation (7.6), resulting from the complexity analysis the
next section. The loss of precision is due to the fact that the map T ε is a “deformation” of
the true map T . In the experiments, we have chosen 0.01 6 ε 6 0.2.

These operators enable the computation of invariants as unions of ellipsoids:

Theorem 7.7. Let E = (Ew)w∈W denote a fixed point of the map T ε. Then the set ∪w∈WEw
is an invariant for Program 2.

Proof. Let E denote such a fixed point, i.e., T εw(E) = Ew for all w ∈ W. By Remark 7.1,
we have T εw(E) ⊃ Tw(E) for all w, hence T (E) v E , which show that γ(E) is an invariant
by Theorem 7.6

The same is true if E is only a post-fixed point of the map T ε, i.e., if for all w ∈ W, we
have T εw(E) ⊆ Ew.

The map T ε is the analogue of the fixed point functional in abstract interpretation. Clas-
sical abstract interpretation requires the fixed point functional to be a monotone map defined

3Alternatively, one can check that choosing λ = 1 validates the LMI in Equation (6.3).
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on a complete lattice [CC77b]. Then, a program invariant can be obtained as the least fixed
point of this functional, which can be computed by a standard fixed point scheme, Kleene
iteration. The present setting is more complex, for the space EWn is not a lattice, and the
operators t, u and � are not monotone (this can be quickly verified, even for ellipsoids of
dimension 2). This entails that the map T ε is not monotone. However, we can still formulate
an iteration scheme a la Kleene in the present setting, defining

E0 = (EI1 , . . . , EIN )

Ek+1 = T ε(Ek) .
(7.5)

7.3.2 On the convergence of the scheme

We assume in the sequel that the set of initial states I and the set of controls U are full-
dimensional. If this is not the case, we may approximate these ellipsoids by unions of “nearly
flat” ellipsoids. Then, it is easily shown by induction that all occurrences of the operators t,
u and � in the Kleene iteration can be computed with the means presented in Section 6.2:

Lemma 7.8. Assume that the ellipsoids EI and EU are full-dimensional. Then all the ellip-
soids Ekw computed at each step of the Kleene iteration in Equation (7.5) are full-dimensional.

The lack of monotonicity of the operator T ε, and the fact that the space of ellipsoids
does not constitute a lattice, make more difficult the analysis of the Kleene iteration scheme
than in the classical case of abstract analysis. In particular, we have to replace some order
theoretical arguments by metric fixed point properties. We establish the convergence of the
Kleene iteration in the linear case — i.e., when the assignments are linear (Bσ = 0 and
cσ = 0), the switching process is non-deterministic and the ellipsoids are centered — if the
“stability margin” is sufficient.

Theorem 7.9. Assume that the assignments are linear (Bσ = 0 and cσ = 0), the switching
process is non-deterministic and that the ellipsoids EIw are centered and full-dimensional. Then
there is a positive constant µn,I depending on the dimension n and the initial states EI such
that if the spectral norms of the matrices (Aσ)σ∈Σ are smaller than µn,I , then the Kleene
iteration Ek+1 = T ε(Ek) converges.

Proof. Since all ellipsoids are centered, we use the notation from Chapter 4 and write Q1tQ2

instead of E(Q1, 0) t E(Q2, 0), and abuse the notation to write T εw(Q) instead of T εw(E). We

denote EIw = E(QIw, 0). The map T ε is written

T εw(Q) = QIw t
⊔

τ(v,σ)=w

(AσQvA
T
σ + εIn) .

First, we show that there are positive reals λ0 < λ1 such that the set of X such that for
all Q ∈ (S++

n )W ,(
∀w. λ0In 4 Qw 4 λ1In

)
=⇒

(
∀w. λ0In 4 T

ε
w(Q) 4 λ1In

)
.

The map T εw is bounded below by QIw, which is positive definite, so there is λ0 > 0 such
that T εw(Q) < λ0In for all X. We deduce from Theorem 4.17 that if the spectral norms
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of the matrices Aσ are strictly less than N−1/2, then the desired property is satisfied for
λ1 := ε+ ‖QI‖2(1−

∑
σ ‖Aσ‖)−1.

The set K := {X ∈ S++
n : λ0In 4 X 4 λ1In} is bounded in Riemann’s metric (its diameter

is less than n log(λ1λ
−1
0 )). Moreover, one can obtain the very coarse bound

(λ1/λ
2
0)−1‖X − Y ‖2 6 dR(X,Y ) 6 (λ2

1/λ0)‖X − Y ‖2 .

Hence the t operator must be Lipschitz with respect to the euclidean norm on the set K,
with a Lipschitz constant no larger than (λ1/λ0)3. Moreover, we recall that the Riemann
is invariant by a congruence by an invertible matrix P : dR(PXP T , PY P T ) = dR(X,Y ).
Combining these results, we deduce, for Q,Q′ ∈ (S++

n )W and α := maxσ ‖Aσ‖22,

‖T εw(Q)− T εw(Q′)‖2 6 α
(λ1

λ0

)3|W|√
p max
τ(v,σ)=w

‖Qv −Q′v‖2 .

Hence, the Kleene iteration converges if the spectral norms of the matrices Aσ are small
enough.

It is sufficient that ‖T εw(Q) − T εw(Q′)‖2 6 ε to obtain an invariant, thus we deduce the
number of iterations given in Equation (7.6).

The bound µn,I that is given is very conservative. However, we shall see in Section 7.3.5
that our algorithm converges although the condition is not satisfied.

We also deduce that

O
( log ε− log maxw ‖Q0

w −Q∞w ‖2
3|W| log(λ1/λ0) +

√
p+ 2 log maxσ ‖Aσ‖2

)
(7.6)

iterations suffice to compute an invariant. As shown in Section 7.3.2, the values λ0 < λ1

depend only on the set of initial states and the matrices Aσ.
Establishing the convergence of the Kleene iteration in Equation 7.5 in the general case

is difficult problem and remains open.

Open problem 7.10. Does the iterative scheme in Equation 7.5 converge if the matrices
Aσ are suitably small, when either affine assignments (cσ 6= 0), guards (switching is state-
dependent) or non-constant controls are present (Bσ 6= 0) ?

7.3.3 Two implementations for affine and linear programs

The “small-LMI” approach When implementing the Kleene iteration scheme in Equa-
tion (7.5), a semi-definite program needs to be solved for each evaluation of the operator
t and �. The number of variables in each of these semi-definite programs only depends on
the dimension n of the problem, not on the size N = |W| of the automaton, in contrast with
alternative approaches detailed in Section 7.3.4, inspired by state of the art methods. For
this reason, we call the method to compute invariants based on Theorem 7.7 and on Kleene
iteration the “small-LMI” approach.

Note that Theorem 7.7 is also valid for the map T . As a consequence, we may be tempted
to use this map rather than T ε in the Kleene scheme. However, in practice, most operators are
evaluated by solving semi-definite programs, which only return approximate optimal solutions.
Introducing the parameter ε counters several hurdles that may be encountered and could
endanger confidence in the final invariant. First, the parameter ε absorbs approximation errors
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that appear throughout the computation, and thus gives a margin of safety if computations
are done using finite precision. Moreover, padding each inclusion constraint ensures that the
set of feasible points has non-empty interior, so that the a posteriori numerical check presented
in [RVS16] can be used. Finally, if the parameter ε was not present, a fixed point would only
be reached ultimately, i.e., after an infinite number of iterations. Now, a post-fixed point can
be reached in a finite number of iterations.

The “no-LMI” approach When the assignments in each branch are linear (Bσ = 0 and
cσ = 0) and when the switching condition is non-deterministic (meaning that the test is
replaced by a random boolean), it is possible to get rid of LMIs altogether, still building on
the same principles. Indeed, it was shown in [AGS+16] that the Löwner ellipsoid of the union
of two centered ellipsoids can be computed from a Cholesky decomposition, avoiding the use
of LMI, resulting in an important speed-up. We will exploit here the latter result, by relaxing
the computation of tkEk to a sequential computation

(
(E1 t E2) · · · t Ew

)
. The variant of the

map T ε obtained in this way can now be computed without solving semi-definite programs. In
the sequel, we will refer to this variant of the present “small-LMI” approach as the “no-LMI”
approach. We explore the “no-LMI” in further detail in Section 7.4.

7.3.4 Alternative approaches: the “big-LMI” and “big-BMI” methods

For comparison, we next present two alternative approaches, derived from earlier works [AJPR14,
RJGF12], leading to larger LMI or to non-convex programs.

The first approach has been studied in [AJPR14]. It is restricted to the special case
of linear assignments under non-deterministic switching, where the initial state has been
approximated by a centered ellipsoid. In other words, it requires that B1 = B2 = 0, c1 =
c2 = 0, the guard condition fTx 6 g has been replaced by a non-deterministic switching
mechanism and EI = E(QI , 0). Then, the post-fixed point problem can be rewritten as a
single LMI involving the whole collection of design variables (Qw)w∈W :

QI 4 Qw, ∀w ∈ W ,

AσQvA
T
σ 4 Qw, ∀w, v, σ such that τ(v, σ) = w .

(7.7)

The variables in this LMI are highly coupled among themselves. Indeed, the variable Qw
appears N times on the right-hand-side of an inequality of the form above, but also N times
on the left-hand-side. Thus, unless the transition map τ is constant (τ(v, σ) = v for all σ),
it is not possible to solve Equation (7.7) for each word w separately. This case does not
appear in practice: the transition map used in Section 7.3.5 induces a maximal coupling,
where (almost) each word is related to p other words.

If (Qw)w∈W is a solution of this LMI, then the union of the ellipsoids ∪w∈WE(Qw, 0) is
an invariant for the associated program. It is in fact a variation on the method in [AJPR14],
because the LMI Qw � 0 has been replaced by Qw < QI . This only requires that the solution
provided in [AJPR14] be scaled to contain the set of initial states.

The latter optimization problem has |W|n(n+1)/2 independent variables. We say that this
optimization problem is a “big LMI” because the number of variables depends on the size of
the automaton. Finding an approximate solution via semi-definite programming thus has an
arithmetic complexity of O(n6.5|W|5), according to the formulas in Section 4.6.3 of [BTN01].
In comparison, the semi-definite programs used to compute the operators t and � both have
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an arithmetic complexity of O(n6.5) that does not depend on |W|. Each iteration of the
Kleene iteration only needs to compute O(|W|) of these, for a total arithmetic complexity of
O(n6.5|W|) per iteration. As a consequence, when the automaton used in the computation of
the map T ε has many states, the “big-LMI” approach becomes intractable, contrary to the
“small-LMI” method.

The “big-LMI” method may be thought of as dual of a Lyapunov-type approach, also
detailed in [AJPR14]: the latter is equivalent to representing the unit ball of the Barabanov
norm by an intersection of ellipsoid. Instead, the “big-LMI” method computes an invariant set
given by a union of ellipsoids. Both methods lead to semi-definite programs of a comparable
nature and size.

In the case of a single centered ellipsoid, it is still possible to use LMIs if we assume that
B1 or B2 is non-zero (but not both). We can use a method akin to the one used in [RJGF12],
where bisection is used in order to successively compute a value for λ in Equation (6.7).

However, the more general case of affine assignments under non-deterministic switching
cannot be dealt with LMIs, since the stability problem then involves several bilinear inequali-
ties in terms of the design variables. This can dealt with by solving a bilinear matrix inequality
(BMI for short), which has the form

A0 +

d∑
i=1

xiAi +

d∑
i=1

d∑
j=1

xixjAi,j < 0 . (7.8)

For instance, when B1 = B2 = 0 and the switching is non-deterministic, the post-fixed point
problem can be rewritten as a BMI in the variables (Lw)w∈W , (λw)w∈W and (µv,σ)(v,σ)∈W×Σ:

∀w, ∃λw ∈ R :

 LwL
T
w q0 − qw L0

(q0 − qw)T 1− λw 01,n

LT0 0n,1 λwIn

 < 0 ,

∀v, σ, ∃µv,σ ∈ R : Lτ(v,σ)L
T
τ(v,σ) Aσqv + cσ − qτ(v,σ) Lv

(Aσqv + cσ − qτ(v,σ))
T 1− µv,σ 01,n

LTv 0n,1 µv,σIn

 < 0 ,

where EI = E(L0L
T
0 , q0). Any solution of this BMI yields as invariant the union of the ellip-

soids E(LwL
T
w, qw). Unlike LMI, BMI have generally non-convex feasible sets, and therefore

numerical solvers may return only locally optimal solutions. Despite the computational draw-
backs of the “big-BMI” method, it is to our knowledge the only state of the art method that
can deal with affine assignments with different equilibria.

7.3.5 Benchmarks

We present in this section numerical benchmarks of our method. The experiments are im-
plemented in Matlab, running on one core of an 2.2GHz Intel Core i7 with 8Gb RAM. We
use the SDPT-3 solver [TTT03], in conjunction with YALMIP [Löf04] to solve LMIs, and the
PENLAB solver [JF13] to solve BMIs. In all subsequent pictures, the initial state is shown
in magenta and the disjunctive invariant I := ∪w∈WEw is shown in red. We show in blue
(resp. green) the image of the invariant I by the abstract operators of the branch 1 (resp.
2), i.e., ∪w∈W1 · Ew (resp. ∪w∈W2 · Ew), which prove an over-approximation of the reachable
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Program 8: A simple switched affine program

x← EI ;
while true do

u← EU ;
if fTx 6 g then

x := A1x+B1u+ c1;
else

x := A2x+B2u+ c2;
end

end

set in branch 1 (resp. 2). In all examples, it was sufficient to compute 30 iterations to obtain
a post-fixed point, and thus an invariant.

Switched linear system with guards We next show that automata that “keep in memory”
the m last switches that happened produce better invariants than other types of automata.
Moreover, we demonstrate that the invariants that are produced are more accurate the more
switches are “remembered”. We instantiate the elements from Program 8 as follows: EI =
E(0.04I2, ( 1

0.5 )), U = E(0.1I2, 0), A1 = 0.5( 1 1
0 1 ), B1 = I2, c1 = 0, A2 = 0.5( 1 0

1 1 ), B2 = I2,
c2 = 0, f = ( 1

0 ), g = 1. Note that it involves an affine guard, so the analysis of this example
is out of reach of a “big-LMI”, or “big-BMI”,-type method.

We recall that the De Bruijn automaton on the set Σm is an automaton whose alphabet
is Σ and whose states are precisely Σm. Its transition map τ deletes a word’s first letter
and appends the transition letter to its end. In other words, we have τ(v, σ) = w if and
only if v = σ1σ2 . . . σm and w = σ2 . . . σmσ, with σi ∈ Σ. By construction, this automaton
“remembers” the last m transitions. For this reason, we expect invariants computed using
larger De Bruijn automata to be more precise. This has been verified experimentally and
is shown in Figures 7.2a-7.2c. We have also experimented with non-De Bruijn automata,
as shown in Figure 7.2d. Notice that as the more switches are “remembered”, the more
concise the invariant becomes throughout Figure 7.2. We also point out that the transition
function for the automaton used in Figure 7.2d does not reflect a memory process. Although
it performs slightly better that the De Bruijn automaton on Σ0, using only one ellipsoid,
the invariant computed with this automaton remains convex and thus less accurate than the
previous ones.

Defocused switched affine systems We demonstrate again the fact that the “small-LMI”
method provides better invariants the more states the underlying automaton has. We consider
a discretized version of Example 6.3 in [NBSN13], to which we have added a guard condition.
Using a discretization step δt = 0.5, we instantiate Program 8 with EI = E(0.04I2, ( 0.5

0 )),
EU = E(0, 0), A1 =

(
0.68 −0.75
0.19 0.68

)
, B1 = 0, c1 =

(
0.5432
−0.0724

)
, A2 =

(
0.72 −0.39
0.39 0.72

)
, B2 = 0, c2 = ( 0

0 ),
f = ( 0

1 ), g = 0. This system has two distinct fixed points. Since it involves an affine guard,
the analysis of this example is out of reach of a “big-LMI”, or “big-BMI”,-type method. We
show in Figure 7.3 two invariants computed by using the De Bruijn automata on Σ2 (4 states)
and Σ4 (16 states). The invariant computed with the latter automaton is strictly better than
the one computed with the former.
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(a) De Bruijn automaton
on Σ0 (1 ellipsoid)

(b) De Bruijn automaton
on Σ1 (2 ellipsoids)

(c) De Bruijn automaton
on Σ2 (4 ellipsoids)

(d) Non-De Bruijn automaton with 3 states (3
ellipsoids)

Figure 7.2: Invariants (red) computed for a switched linear system w.r.t. the automaton,
their image by the abstract operators (blue and green) and the initial state (magenta)

Observer based controller for a coupled mass system [RG13] We show that our method
can also be used to analyze systems with saturations. The addition of saturation simulates
sensors that measure a physical quantity precisely within some range, but cannot measure
values outside this range. We study the stability of an affine dynamical system subject to
saturation conditions on the first coordinate of the state vector:

x
k+1/2
1 =


β if fTxk > β (7.9a)

−β if fTxk < −β (7.9b)

xk1 otherwise (7.9c)

xk+1 = Aix
k+1/2 +Biu

k+1/2 + ci , i ∈ I ,

with a bounded control u ∈ EU , first in a case without switching, and then in a case where
switching occurs.

The semantics of a program implementing this system are the same of the program which
resets the state vector to an initial value in the branches (7.9a) (also denoted by a) and (7.9b)
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(a) De Bruijn automaton on Σ2

(4 ellipsoids)

(b) De Bruijn automaton on Σ4

(16 ellipsoids) – invariant with 4 ellipsoids in
dashed

Figure 7.3: Invariants (red) computed for a defocused switched system w.r.t. the automaton,
their image by the abstract operators (blue and green) and the initial state (magenta)

(a) Section in the (x1, x2) plane (b) Section in the (x3, x4) plane

Figure 7.4: Sections of the invariant ellipsoid (red) for the coupled mass system and the
reference in [RG13] (black)

(also denoted by b). In other words, we may choose a · E := EI for all ellipsoid E (the same
equation holds for b). Thus, the map T takes the usual form as in Equation (7.4) when the
word w ends with c, and is written Tw(E) = EI when w ends with 1 or 2.

First, we demonstrate our method with I = {1}, c1 = 0, f = ( 1 0 0 0 )T , β = 0.5,

A1 =

( 0.6227 0.3871 −0.113 0.0102
−0.3407 0.9103 −0.3388 0.0649
0.0918 −0.0265 −0.7319 0.2669
0.2643 −0.1298 −0.9903 0.3331

)
and B1 =

(
0.3064 0.1826
−0.0054 0.6731
0.0494 1.6138
0.0531 0.4012

)
.

We use the De Bruijn graph on Σ2 (4 ellipsoids). Our algorithm converges towards some
collection of matrices E , and the resulting ellipsoids satisfy E ⊂ Eaa for all E ∈ E , meaning
that the invariant is a single ellipsoid. Sections of this ellipsoid, as well as sections of the
ellipsoid obtained in [RG13] are depicted in Figure 7.4.

We also demonstrate our algorithm on a variant of the system in [RG13], that combines
a switching mechanism with a saturation constraint. More precisely, we shall use I = {1, 2},
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(a) The 4 ellipsoids representing the invariant
(b) Invariant (red) and its image by the ab-
stract operators (green and blue)

Figure 7.5: Section in the (x1, x2) plane of the invariant for a switching variant of the coupled
mass system (4 ellipsoids)

A1 = A2, B1 = B2, c1 = (−1/2 0 0 0 )T and c2 = ( 1/2 0 0 0 )T . The mode 1 is active if x1 > 0
and the mode 2 is active otherwise. By design, this system has two fixed points (when u = 0).
In this example, our method yields a non-convex invariant, whose section in the (x1, x2) plane
is shown in Figure 7.5.

Comparison in the centered case: big-LMI versus no-LMI We compare the “big-LMI”
and “no-LMI” methods numerically on systems switching between implementations of two
damped harmonic oscillators Miẍ+ Ciẋ+Kix = 0, with a discretization time δt = 0.1. The
matrices Mi, Ci,Ki are randomly generated positive definite matrices, for dimensions ranging
from 2 to 30. In these examples, we have B1 = B2 = 0, c1 = c2 = 0 and the guard condition
fTx 6 g has been replaced by a non-deterministic switching process. We use the De Bruijn
automaton on Σ3 in all computations, so the invariants that are computed are given as unions
of 8 ellipsoids. The execution times for the “big-LMI” and “no-LMI” methods are shown in
Table 7.1. We point out that the “no-LMI” method outperforms the “big-LMI” method by
several orders of magnitude. The fact that the time-complexity relative to the dimension of
the matrices is much smaller for the “no-LMI” method is also apparent.

Finally, we compare the relative accuracy of the “no-LMI” method with respect to the
“big-LMI” approach by the relative volume of the computed invariants, defined by the n-th
root of the ratio between the volume of the “no-LMI” invariant by the volume of the “big-
LMI” invariant. We report a difference in relative volume no larger than 25% in Table 7.1,
where the volumes have been estimated by a Monte-Carlo approximation, up to dimension
15 (no results for higher dimensions, due to lack of precision of the Monte-Carlo approach).

Comparison in the uncentered case: big-BMI versus small-LMI We compare the “big-
BMI” and “small-LMI” methods numerically on systems switching between implementations
of two damped harmonic oscillators with a non-deterministic control Miẍ + Ciẋ + Kix = u,
with a discretization time δt = 0.1 and the control u is bounded in a non-centered ellipsoid.
The matrices Mi, Ci,Ki are randomly generated positive definite matrices, for dimensions
ranging from 2 to 14. The switching process is non-deterministic. We have used the De
Bruijn automaton on Σ2 in all computations, so the invariants that are computed are given
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Dimension n “big-LMI” “no-LMI” relative volume

5 0.4s 0.2s 1.24

10 0.8s 0.3s 1.12

15 5s 0.4s 1.15

20 22s 0.7s -

25 2min 1.0s -

30 6min 1.4s -

Table 7.1: Invariant computation time of each method w.r.t. the dimension n of the matrices
(8 ellipsoids)

Dimension n “big-BMI” “small-LMI” relative volume

2 3.5s 24s 1.08

4 9.2s 26s 1.04

6 34s 36.3s 1.03

8 2.8min 42.5s 1.03

10 9.5min 1.2min 1.03

12 20.5min 1.5min 1.02

14 2.1h 2.1min 1.05

16 > 3h 3.8min 1.04

Table 7.2: Invariant computation time of each method w.r.t. the dimension n of the matrices
(4 ellipsoids)

as unions of 4 ellipsoids. The execution times for the “big-BMI” and “small-LMI” methods are
shown in Table 7.2. Although the “big-BMI” is more efficient on lower dimensional examples,
one can see that it is very time-costly for 14×14 matrices, as solving the BMI takes 2000 times
longer than for 2× 2 matrices. In contrast, the “small-LMI” method has a base time cost per
iteration that only grows from 1s in dimension 2 to 4s in dimension 14. Finally, we compare
the relative accuracy of the “small-LMI” method with respect to the “big-BMI” approach by
the relative volume of the computed invariants. We report an difference in relative volume no
larger than 8% in Table 7.2, where the volumes have again been estimated by a Monte-Carlo
approximation.

7.4 A nonlinear power algorithm for linear systems

It is possible to split the computation of an invariant set into two parts in the linear case,
i.e., when the operator s# is written

s#
w : Q 7→

⊔
σ∈Σ,v∈W
τ(v,σ)=w

AσQvA
T
σ (7.10)

We first look for a vector of matrices Q in the interior of (S+
n )W (we say by extension that

Q is positive definite) satisfying s#(Q) v Q (i.e., a post-fixed point of the abstract operator

s#) using the power-like algorithm described in Section 7.4. The abstract element Q is then
scaled in order to “contain” the abstract element QI corresponding to the initial set I, i.e., we
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return the abstract element µQ, where µT = inf{µ ∈ R+ | µQ w QI}. This approach yields
a sound invariant, because every abstract operator is positively homogeneous when dealing
with the linear case.

As a consequence, the vector of matrices Q somehow serves as a template which is here
computed in an automatic way. A similar scaling technique appeared in [Rou13], in which
the template is computed using semidefinite programming.

7.4.1 Additive and multiplicative power iterations

In this section, we present two scalable algorithms which will allow us to find an ellipsoid
invariant. We shall consider an auxiliary nonlinear spectral problem, which consists in finding
a positive definite Q ∈ (S++

n )W and a scalar λ > 0 such that

s#(Q) = λQ . (7.11)

If we find an element Q for which λ 6 1, then the original problem s#(Q) v Q is solved. An
interest of introducing the extra degree of freedom λ is to allow for finite precision computa-
tions. If s#(Q) = λQ holds for λ < 1 and Q positive definite, then, the relation s#(Q) v Q
remains valid under a small perturbation of Q.

A simple idea to solve (7.11) is to choose an order preserving linear form ψ : (S+
n )W → R+,

and to define the following fixed point scheme

Qk+1 =
1

ψ ◦ s#(Qk)
s#(Qk) (7.12)

initialized with a positive definite Q0. A convenient choice of ψ is the trace functional:

ψ(Q) =
∑

w trace(Q
w

). The latter has the property that it does not vanish on (S+
n )W except

at the zero vector. So, a division by zero will not occur in (7.12), unless s(Qk) vanishes
at some iteration, which will not be the case for the abstract operators considered here. By

construction, ψ(Qk+1) = 1 holds for all k. If Q
k

converges to a matrix Q, we get Q =
s#(Q)

ψ(s#(Q))

and so, s#(Q) = λQ with λ = ψ(s#(Q)), which solves problem (7.11).
The algorithm (7.12) is a non-linear analogue of the power algorithm which is familiar

in matrix theory [GVL13]. The latter allows one to compute an eigenvector associated to a
dominant eigenvalue (eigenvalue of maximal modulus) of a real matrix M by computing the
sequence

xk+1 =
Mxk
‖Mxk‖2

(7.13)

where x0 is a non-zero vector. This is similar to (7.12), except that we replaced the Euclidean
norm ‖ · ‖2 by the linear functional ψ. The well known advantage of the power algorithm is
its scalability. To implement it, the matrix M need not be explicitly stored, it suffices to have
an oracle which takes x as input and return Mx, hence, it is adapted to instances of large
dimension (e.g., the “pagerank” algorithm is a variant of the power iteration). The classical
power iteration is known to converge for generic values of the initial vector x0, provided that
the matrix M has a unique eigenvalue of maximal modulus. This is the case in particular
when the matrix M has positive entries. It is straightforward to find examples in which the
power iteration (7.13) does not converge if the latter positivity condition is relaxed.
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Therefore, in order to guarantee that the non-linear iteration (7.12) converges, we need
to find an analogue of the classical positivity condition. Geometrically speaking, the latter
means that the map x 7→ Mx sends the cone Rn+ to its interior. By analogy, it is natural to
require that the abstract operator s# sends the cone (S+

n )W to its interior, i.e., to require
that s#(Q) is positive definite as soon as Q is non-zero. We can always make sure that this
assumption is satisfied by introducing a damping parameter ε > 0 and replacing the operator
s# coordinate-wise by

q 7→ s#
w (q) + εψ

[
s#(q)

]
I .

This leads to the damped non-linear power iteration

Qk+1
w

=
s#
w (Qk) + εψ

[
s#(Qk)

]
I

ψ
[
s#
w (Qk) + εψ

[
s#(Qk)

]
I
] . (7.14)

We shall refer to (7.14) as the non-linear additive power iteration in the sequel, for the ε-
perturbation acts in an additive way on s.

The choice of ε will be a trade off between making the perturbation small, which requires
to choose a small ε, and ensuring a fast convergence, which is the case when ε is large.
For the present experimental purposes, we will see that taking ε ∈ [10−2, 10−1] leads to
satisfactory results. The interest of the non-linear additive power iteration is its simplicity of
implementation.

We also use a variant that uses a multiplicative perturbation instead of an additive one,
which experimentally gives comparable results, with 0 < ε < 1:

Qk+1
w

=
s#
w (Qk)1−ε

ψ
[
s#
w (Q

k
)1−ε

] . (7.15)

Recall that for all positive semidefinite matrices Y and for all s > 0, Y s denotes the s-th
power of Y defined to be the matrix UTDsU , where Y = UTDU and Ds is the diagonal
matrix obtained by raising to the power s every diagonal entry of D. We say that As is the
s-th power of A, as it coincides with the usual s-th power for integer values of s. For brevity,
we write s#(q)1−ε for

(
s#(q)

)1−ε
. We refer to (7.15) as the non-linear multiplicative power

iteration.

We show in Section 8.3 that these iterations converge independently of their starting point
provided ε is large enough.

7.4.2 Benchmarks

We now experiment the methods that we have introduced, and we compare them with alter-
native techniques based on LMI. The experiments are implemented in MATLAB, running on
one core of an 2.2GHz Intel Core i7 with 8Gb RAM.

We show in Figure 7.6a the average time to find an invariant using LMIs (in red), the ad-
ditive nonlinear power algorithm (in blue) and the multiplicative power algorithm (in green).
These results were obtained on randomly generated programs of the form depicted in Fig-
ure 9, where A1 and A2 are invertible matrices. For the benchmarks, the power algorithms
are always initialized at In and the LMI approach for finding an invariant is done by testing



7.4. A NONLINEAR POWER ALGORITHM FOR LINEAR SYSTEMS 119

(a) Program invariant, with LMI (red), additive
power (blue) and multiplicative power (green)

(b) Program invariant in high dimensions, with
an LMI (red), additive power (blue) and multi-
plicative power (green)

Figure 7.6: Computation times (in s) w.r.t. the dimension of the problem.

Program 9: Structure of programs used in the benchmarks

while rand bool do
if rand bool then

x := A1x
else

x := A2x
end

end

the feasibility of the following LMI: 
X < A1XA

T
1

X < A2XA
T
2

X � 0
. (7.16)

Such a feasible element X is an invariant for the programs described above. We observe that
the power type algorithms bring a significant speed-up over the LMI technique.

Furthermore, we compare in Figure 7.6b the execution time of the power algorithms with
the resolution of an LMI on a set of high-dimensional linear systems without any switch. The
linear systems correspond to parallel simulations of damped oscillators ẍi + ciẋi + kixi = 0,

i.e., given by A0 =
(

In hIn
−hK In−hC

)
, where h = 0.05, and C,K ∈ Rn×n are diagonal matrices,

respectively with positive diagonal elements ci and ki. Unlike Figure 7.6a, the additive power
algorithm seems to be faster: here, there is no invariant join computation, hence the cost of
the matrix power in the multiplicative algorithm becomes visible. This example highlights
another scalability aspect of the power algorithms: while the semidefinite program approach
runs out of memory for systems of dimension 140 and beyond, the computation of an invariant
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Example Switched oscillator Switched system Symplectic operator

ε 0.05 0.1 0.8 0.1

Time
(ms)

LMI 160 190 190 100

add 5 6 3 1

mult 80 15 14 3

Stability
margin

LMI 4.10−3 0.36 0.36 6 5.10−3

add 4.10−4 0.07 0.36 6 5.10−3

mult 9.10−3 0.02 0.36 6 5.10−3

Invariant
size

LMI 1.52 1.56 1.56 1

add 1.91 23.37 2.19 1

mult 2.48 9.78 1.50 1

Table 7.3: Benchmarks on specific examples

through the power-methods is successful and still runs in less than 2s even when there are 200
variables. Note that when there is no switch, the present power algorithm essentially reduces
to the classical power algorithm applied to the linear operator X 7→ AXAT .

In Table 7.3, we compare our method with an LMI-based approach on a specific set of
instances. On top of providing the execution time of the analyses, we also provide the relative
stability margin of the invariants that we obtain. Given an invariant X, the latter quantity is
defined as λmin

(
X − s(X)

)
/λmax(X), where λmin(M) and λmax(M) respectively denote the

smallest and largest eigenvalues of the matrix M . This quantity is non-negative and well
defined as an invariant X satisfies X � 0 and X < s(X). A large relative margin ensures
that the invariant is stable with respect to rounding errors. Except in the last example, the
invariants that we obtain using the two approaches are not comparable. However, we give
an estimate of the precision of each invariant by using its largest eigenvalue once it has been
rescaled to contain the identity matrix, or, in terms of ellipsoids, the unit ball: a size of 1
means that the invariant is very close to the unit ball, while greater sizes mean that the
ellipsoid spans far from the unit ball in some directions.

The switched oscillator refers to the example of Figure 10. We also consider another
switched linear system, already studied in [SH10], characterized by the matrices

A1 =
(−0.06515 −0.4744 0.3041
−0.4744 0.4872 0.3732
0.3041 0.3732 −0.1271

)
A2 =

( 0.04419 0.3155 −0.04247
0.1451 −0.04931 −0.2805
0.2833 −0.01418 0.1554

)
.

This system allows us to show the importance of the parameter ε by its action on the
final quality of the invariant. Indeed, if the power algorithms use ε = 0.1, then the quality of
the invariants is quite bad relative to the one computed by the LMI. In contrast, if they use
ε = 0.8, then, with even less computation time, the quality of the new invariants similar to
the one computed by the LMI.

Finally, we apply the power algorithms to the simulation of the non-damped oscillator
ẍ + cẋ + x = 0 with c = 0. In this case, the energy of the oscillator is preserved. However,
the Euler scheme used in the example in Figure 10 is not energy-preserving and even diverges
when applied to this system. This is why we use a variant of a symplectic integration scheme

(xn+1, vn+1)T = S(xn, vn)T , where A =
(

1−τ2/2 τ3/4−τ
τ 1−τ2/2

)
and τ = 0.001. This integration
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Program 10: Implementation of the switched oscillator us-
ing an explicit Euler integration scheme

h = 0.01, ω0 = 1, ω1 = 0.8 are constants
x← [−1, 1]
v ← [−1, 1]
while rand bool do

if rand bool then(
x
v

)
←
(

x+ hv
−(hω2

0)x+ (1− hω0)v

)
else(

x
v

)
←
(

x+ hv
−(hω2

1)x+ (1− hω1)v

)
end

end

method preserves a quadratic energy function represented by a positive definite matrix Q,
i.e., (x, v)ATQA(x, v)T = (x, v)Q(x, v)T . This means that there is no stability margin. In
spite of that, all three methods return an invariant, scalar multiples of the same matrix(

1 0
0 1−τ2/4

)
which is very close to the identity matrix. It is remarkable that both power

algorithms successfully compute that invariant, as other algorithms may not even find a
bounded invariant [AGG12].
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CHAPTER 8
Tropical Kraus maps for optimal

control of switched systems

In quantum information theory [KBDW83], Kraus maps refer to trace-preserving completely
positive linear maps on the cone S+

n that take the form

X 7→
∑
i

AiXA
∗
i with

∑
i

A∗iAi = In .

Here positive semidefinite matrices of trace 1 are called density matrices and represent quan-
tum probability measures. Kraus maps correspond to the transformations of these measures
by quantum channels. A fixed point of a Kraus map (or, equivalently, an eigenvector as-
sociated with the eigenvalue 1) represents a quantum measure that is left invariant by the
channel.

In program verification and control, a positive semidefinite matrix is used to represent a
quadratic Lyapunov functions certifying the stability of a linear transformation if ATQA 4 Q.
Such matrices also give sufficient conditions for the stability of a switched linear system, acting
as a common quadratic Lyapunov function by ATi QAi 4 Q for all mode i.

We introduce in the chapter the notion of “tropical Kraus maps” which is the analogue
to classical Kraus in a control setting. They are multivalued transformations induced by a
switched linear system on the space of positive semidefinite matrices.

We show that non-linear eigenvectors of these maps produce Lyapunov-type certificates
and that their associated eigenvalue gives an upper bound on the joint spectral radius. We
present a Krasnoselskii-Mann-type iteration to compute these eigenvectors and discuss the
convergence of our method. Our method is related to the one in [AJPR14] except it completely
avoids the recourse to semidefinite programming. This entails a large gain in scalability that
is demonstrated in Section 8.4.
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We also explore a variant of our approach that enables us to deal with the hybrid optimal
control problem defined in Section 6.1.3.

This chapter is based on the articles “Tropical Kraus maps for optimal control of switched
systems” [GS17] and “A Scalable Algebraic Method to Infer Quadratic Invariants of Switched
Systems” [AGS+16].

8.1 Tropical Kraus maps

8.1.1 Notation and definitions

We define a tropical Kraus map as a multivalued map from S+
n to ℘(S+

n ) by

X 7→
∨
i

AiXA
T
i . (8.1)

It has a similar structure to the classical Kraus map K, except the sum has been replaced with
the “supremum” operation

∨
(the set of minimal upper bounds). Moreover, it is convenient

to omit the normalization requirement. This is why, in light of tropical algebra where the
usual sum is replaced by the maximum, this map is christened a tropical Kraus map. As
we work with real quadratic forms, instead of hermitian forms, the hermitian conjugate ∗ is
replaced by transposition T .

It will be useful to consider vector versions of tropical Kraus maps T on (S+
n )W , whose

i-th coordinate for i ∈ W is the tropical Kraus map:

X 7→
∨
j

AijXjA
T
ij . (8.2)

The latter map can be written as a standard tropical Kraus map by identifying the cone
(S+
n )W to the sub-cone of n× n block-diagonal matrices in S+

n|W| via the map:

(Xw)w∈W 7→ diag
(
Xw

)
w∈W .

So the coordinate i is obtained as the i-th diagonal block of the map

X 7→
∨
j

BijXB
T
ij with

{
X = diag

(
Xw

)
w∈W

Bij = Eij ⊗Aij
,

where ⊗ is the Kronecker product. Indeed, the matrices Bij preserve the block-diagonal
structure of the matrices:

BijXB
T
ij = (Eij ⊗Aij)(Ekk ⊗

∑
k

Xk)(Eij ⊗Aij)T

=
∑
k

(Eij ⊗Aij)(Ekk ⊗Xk)(Eij ⊗ATij)

=
∑
k

(EijEkkEji)⊗ (AijXkA
T
ij)

= Eii ⊗ (AijXjA
T
ij) ,

because ExyEzw = Exw if y = z and 0 otherwise.
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Moreover, since the cone S+
n is self-dual, the cone (S+

n )W is also self-dual. Thus, by The-
orem 2.15, a minimal upper bound Yj of {AijXjA

T
ij : 1 6 i, j 6 N} is selected by a positive

definite matrices Cj for all j if and only if the matrix Y = diag(Y1, . . . , YN ) is a minimal
upper bound of {BijXBT

ij : 1 6 i, j 6 N} selected by C := (C1, . . . , CN ). For this reason, we
shall also refer to maps of the form in Equation (8.2) as tropical Kraus maps. An element X
of the cone (S+

n )W satisfies Xi < 0 for all i, and we abbreviate this notation to simply write
X < 0.

Given a minimal upper bound selection, a tropical Kraus map specializes into a map from
(S+
n )W to (S+

n )W by choosing for each X the minimal upper bound of {AiXATi : i ∈ W}
selected by the selection process. We shall in particular deal with the invariant selection
defined in Chapter 4, yielding the map from S+

n to S+
n by

X 7→
⊔
i

AiXA
T
i .

8.1.2 Tropical Kraus map associated with a switched linear system

The latter map is identical to the coordinates of the operator s# defined in Equation (7.10) to
compute a disjunctive invariant of a linear switched system like Program 4 of the form ∪wEw
where Ew are ellipsoids. In particular, the convex hull of the latter set M := conv(∪wEw) is
an invariant symmetric convex body, and by convexity we have

conv
[⋃
σ

Aσ ·M
]
⊆ λM .

The analysis in Chapter 7 thus falls in the case of the computation of a Protasov ball. We
recall that λ provides an upper bound on the join spectral radius ρ(A) defined by

ρ(A) := lim
k→+∞

max
16σ1,...,σk6p

‖Aσ1 . . . Aσk‖
1/k ,

and that this definition is independent of the choice of the norm.

We develop in this chapter a method to compute approximate Barabanov norms, so we
work with the collection of adjoint matrices AT . The transposition is not surprising: in addi-
tion to the remark made in Section 6.1.2, classical Kraus maps provide a forward propagation
of density matrices, whereas we are interested in Lyapunov functions, whose propagation fol-
lows a backward scheme. I.e., the present tropical Kraus maps are analogues to the adjoints
of classical Kraus maps.

We consider a switched linear program that switches between p modes, indexed by Σ =
{1, . . . , p}, whose σ-th mode is given by the matrix Aσ. We say that (i, σ, j) ∈ W × Σ ×W
is an admissible transition when τ(i, σ) = j. Our analysis deals with the tropical Kraus map
associated with this switched linear program. Let W denote a subset of Σ∗ and τ denote
a map from W × Σ to W. The triple (Σ,W, τ) defines a deterministic finite automaton,
whose alphabet is Σ, whose states are elements of W and whose transition function is τ .
The tropical Kraus map is defined from (S+

n )W to (℘(S+
n ))W , and its j-th coordinate maps

X = (Xw)w∈W ∈ (S+
n )W to the subset of S+

n :

T lin
j : X 7→

∨{
ATσXiAσ : (i, σ) ∈ W × Σ , i · σ = j

}
.
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We also consider a variant of the tropical Kraus map, adapted to the optimal control
problem in Section 6.1.3 and Program 5, defining the map Mτ from (S+

n )W to (℘(S+
n ))W by:

(M t)j(X) :=
∨{

ricct,σXi : (i, σ) ∈ W × Σ , i · σ = j
}
.

We recall that ricct,σ denotes the Riccati flow in time t of the mode σ, which maps a posi-
tive semidefinite matrix P to the positive semidefinite matrix Q = ricct,σ P obtained as the
solution of the optimal control problem

Sσt [V ](x) = sup
u∈U

∫ t

0

1

2
ξ(s)TDσξ(s)− γ2

2
|u(s)|2 ds+ V

(
ξ(t)

)
, (6.1-recalled)

V (x) = xTPx , Sσt [V ](x) = xTQx .

Remark 8.1. The operator ricct,σ maps the cone of positive semidefinite matrices into itself.
This key property is not valid for the operator considered in Equation (7.1) for affine systems.
This is why we do not extend the definition of tropical Kraus maps to affine systems but allow
the former case.

8.1.3 Non linear eigenvalue and fixed point problems associated to Tropical
Kraus Maps

The tropical Kraus map T lin is positively homogeneous, meaning that T lin(αX) = αT lin(X)
for all X ∈ S+

n and α > 0. This suggests to consider a multivalued eigenproblem.

Definition 8.1. A (non-linear) eigenvector of T , associated to the eigenvalue λ is an element
X ∈ (S+

n )W such that λXj ∈ T lin
j (X) holds for all j ∈ W. We write λX ∈ T lin(X) for brevity.

This notation is licit since we can identify T lin(X) which is an element of (℘(Sn))W to an
element of ℘

(
(Sn)W

)
.

The following result shows that a non-linear eigenvalue of the tropical Kraus map provides
an upper bound for the joint spectral radius.

Theorem 8.1. If the multivalued eigenvector problem λX ∈ T lin(X) has a positive semidef-
inite solution such that the matrix

∑
w∈W Xw is positive definite, then, the map

v(z) := sup
w∈W

(zTXwz)
1/2

is a norm, and v(Aσz) 6
√
λv(z) holds for all z ∈ Rn and σ ∈ Σ. In particular, the joint

spectral radius of A does not exceed
√
λ.

Proof. Let (X,λ) denote such an eigenvector-eigenvalue pair and v the map defined above.
The map v is clearly non-negative, positively homogeneous and satisfies the triangular in-
equality. We only show that it is positive definite: let z ∈ Rn such that v(z) = 0, i.e.,
zTXwz = 0 for all w. The matrices Xw are positive semidefinite, hence z belongs to the
kernel of all the matrices Xw. In particular, z belongs to the kernel of their sum, which is
positive definite, hence z = 0. Thus v defines a norm on Rn.

The pair (X,λ) satisfies ATσXiAσ 4 λXτ(i,σ) for all (i, σ) ∈ W × Σ. Hence

v(Aσz) = sup
w∈W

[
zTATσXwAσz

]1/2
6 sup

w∈W
λ1/2

[
zTXτ(w,σ)z

]1/2
6
√
λv(z) . (8.3)
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The norm v on Rn induces a subordinate norm ‖ · ‖v on Sn by

‖M‖v := max
z 6=0

v(Mz)

v(z)
.

We can bound the product Aσ1 . . . Aσk in this norm by successive applications of Equa-
tion (8.3) as follows:

‖Aσ1 . . . Aσk‖v 6 sup
z 6=0

v(Aσ1 . . . Aσkz)

v(z)
6 λk/2 .

Taking the k-root and the supremum over all products of length k as k tends to +∞, we
deduce that ρ(A) 6

√
λ.

We have the an analogous result for the switched linear quadratic control problem.

Theorem 8.2. If the multivalued fixed point problem X ∈ M t(X) has a solution, then the
map V := z 7→ supw∈W zTXwz determines a sub-invariant function of all the Lax-Oleinik
semi-groups Sσt , meaning that:

max
σ∈Σ

Sσt [V ](z) 6 V (z) for all z .

Proof. A solution X satisfies ricct,σXi 4 Xτ(i,σ) for all (i, σ) ∈ W×Σ. By max-plus linearity
of the semi-group St, we have

max
σ∈Σ

Sσt [V ](z) = max
σ∈Σ

max
i∈W

Sσt [x 7→ xTXix](z)

= max
σ∈Σ

max
i∈W

zT (ricct,σXi)z

6 max
σ∈Σ

max
i∈W

zTXτ(i,σ)z

6 V (z) .

8.1.4 Non-linear eigenvectors of tropical Kraus maps and computation by a
Krasnoselskii-Mann iteration

For a completely positive map, X 7→
∑

iAiXA
T
i , the existence of a positive semidefinite

eigenvector follows from the Perron-Frobenius theorem [LN12b]. Moreover, such an eigenvec-
tor is necessarily positive definite as soon as the map is irreducible in the Perron-Frobenius
sense, meaning that the map does not leave invariant a non-trivial face of the closed cone
S+
n . As shown in [Far96], the latter condition holds if and only if the set of matrices {Ai} is

irreducible in the algebraic sense, meaning that there is no non-trivial subspace invariant by
each matrix in this set.

In order to show that tropical Kraus maps have eigenvectors, we specialize the multivalued
map T defined in Section 8.1.1 by fixing a selection of minimal upper bound f. We obtain
the map T defined on (S+

n )W by

Tj(X) := f
{
ATσXiAσ : i · σ = j

}
.
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We will prove that the map T has a non-linear eigenvector if the selection f is the invariant
join t. We introduce the “non-commutative simplex”

∆W := {X ∈ (S+
n )W :

∑
w

〈In, Xw〉 = 1}

and the map T̂ sending ∆W to itself:

T̂ (X) :=
1

2

[ 1∑
w〈In, Tw(X)〉

T (X) +X
]
. (8.4)

Observe that, independently of the selection f, a fixed point X ∈ ∆W of the map T̂ yields an
eigenvector for the map T associated with the eigenvalue

∑
w〈In, Tw(X)〉. We can now state

the theorem.

Theorem 8.3. If the set of matrices {Eij ⊗ Aσ : τ(i, σ) = j} is irreducible, then the map T̂
has a positive definite fixed point.

This is proved in Section 8.2. We point out that assuming the irreducibility of the set of
matrices {Eij ⊗ Aσ : τ(i, σ) = j} is a stronger statement than assuming the irreducibility of
A.

We obtain as an immediate corollary:

Corollary 8.4. If the set of matrices {Eij ⊗Aσ : τ(i, σ) = j} is irreducible, then, the tropical
Kraus map T has a positive definite eigenvector.

In order to compute a fixed point of the map T̂ , we compute successive iterates starting
from a positive definite matrix X(0). We shall consider the following scheme

Xk+1 =
1

2

[ 1∑
w〈In, Tw(Xk)〉

T (Xk) +Xk
]
.

This is a power-type iteration, involving a renormalization and a “damping term” (addition
of X(k)) to avoid oscillations. This is inspired by the classical Krasnoselskii-Mann iteration,
which applies to non-expansive mappings T , and takes the form X(k+1) = (T (X(k))+X(k))/2,
see [RZ00]. We discuss the convergence of this scheme in Section 8.2.5.

Remark 8.2. There is a multiplicative variant of the iteration, defined by

Xk+1 =
[ T (Xk)∑

w〈In, Tw(Xk)〉

]
#Xk ,

where P#Q := P 1/2
(
P−1/2QP−1/2

)1/2
P 1/2 denotes the Riemannian barycenter of the pos-

itive definite matrices P,Q, see [Bha07, Chapter 2] for more information. This multiplica-
tive version does converge in the “commutative case”, i.e., when n = 1. Indeed, the map
X 7→

∑
w〈In, Tw(X)〉−1T (X) is then nonexpansive in the Hilbert metric [LN12b], and then,

the general result of [RZ00] can be applied. The additive version can also be shown to be
converging when n = 1, by a reduction to the same result, but the proof is more involved.
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We use a different iteration scheme to compute fixed points of the variant M t defined in
terms of Riccati flows. First, we specialize again the multivalued map M t with a minimal
upper bound selection f

Xk+1 = (M t)sel(Xk) . (8.5)

Contrary to the map T , the operator M t is not positively homogeneous, hence there is no
need to renormalize as in Equation (8.4).

Although this iteration converge quite well for a variety of selection such as the invariant
join or the minimum trace selection, see Section 8.4.3, proving the convergence remains an
open problem. It is known that the (indefinite) Riccati flow is a contraction in the Thompson
metric, with contraction rate α > 0 determined by the parameters of the flow [GQ14b,
Corollary 4.7], but this constant α depends on a compact invariant interval of the form
{X ∈ S+

n : λ1In 4 X 4 λ2In}.
Unfortunately, the selections mentioned earlier do not preserve this interval, i.e., it is

possible to find two positive semidefinite matrices whose eigenvalues are smaller than λ2,
but the spectrum of their associated minimal upper bound crosses this threshold. It is not
hopeless, since there are selections that preserve this interval:

Given a collection of matrices {Qi}16i6p ⊆ S+
n , let λ := maxi λmax(Qi) denote the largest

eigenvalue of among the matrices Qi. A selection that preserves such intervals is then given
by the unique optimal solution of the following semidefinite program, for a positive definite
matrix C:

minimize 〈C,X〉
Qi 4 X , ∀i
X 4 λIn

If such a selection process is shown to be Lipschitz in the Thompson metric with constant
Ln, we can combine these results to show that the iteration is guaranteed to converge when
exp(αt) > Ln. This remains an open problem:

Open problem 8.5. Is there a minimal upper bound selection in S++
n ×S++

n that preserves
intervals of the form {X ∈ S+

n : λ1In 4 X 4 λ2In} and has a finite Lipschitz constant in
Thompson’s metric ?

8.1.5 ”Relaxation” of the graph-Lyapunov-function approach

The iterative algorithm presented in Section 8.1.4 is a relaxation of a variant of the LMI (Pρ),
that has been considered by Ahmadi et al. that is recalled here:

ρ2Xj < A
T
σXiAσ , ∀(i, σ, j) : τ(i, σ) = j ,

Xi � 0 , ∀i .
(Pρ)

Indeed, if we pad the right-hand side of each inequality and minimize the trace of the matrices
Xi satisfying these new inequalities, we obtain the semidefinite program

minimize
∑
i

traceXi

ρ2Xj < A
T
σXiAσ + εIn , ∀(i, σ, j) : τ(i, σ) = j ,

Xi � 0 , ∀i .

(8.6)
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Then optimal solutions of Equation (8.6) are nonlinear eigenvectors of a perturbed tropical
Kraus map:

Proposition 8.6. Let ρ > 0 such that Equation (Pρ) has a strict solution and ε > 0.
Problem (8.6) admits an optimal solution. Any optimal solution X satisfies

ρ2Xj ∈
∨

τ(i,σ)=j

ATσXiAσ + εIn .

Proof. Introducing dual variables Λi,σ < 0 and µi < 0, the Lagrangian of this LMI is written

L(X,Λ, µ) =
∑
i

traceXi −
∑
i,σ

〈Λi,σ, ρ2Xτ(i,σ) −ATσXiAσ − εI〉 − 〈µi, Xi〉 .

The dual problem is then written

maximize ε
∑
i,σ

trace Λi,σ

Λi,σ < 0

µi < 0

In +
∑
σ

AσΛj,σA
T
σ = µj +

∑
τ(i,σ)=j

Λi,σ , ∀j

The dual problem is strictly feasible, since for η > 0 small enough, choosing Λi,σ = ηIn yields
µj = In − O(η) � 0. Hence strong duality holds and there is a primal-dual optimal solution
to the pair of primal-dual problems, see [Bar]. Given such an optimal solution (X,Λ, µ),
complementary slackness implies that 〈µj , Xj〉 = 0 holds for all i . However, we must have
ρ2Xi < εIn � 0. Hence µj = 0 and

∑
τ(i,σ)=j Λi,σ < In � 0, i.e.

∑
τ(i,σ)=j ran Λi,σ = Rn.

By Theorem 2.15 and complementary slackness, it implies that ρ2Xj is a minimal upper
bound of {ATσXiAσ + εIn : τ(i, σ) = j}.

8.2 Existence of nonlinear eigenvectors

We denote in this section by T the tropical Kraus map from S+
n to S+

n specialized with the
invariant join defined by

T : X 7→
⊔

16i6N

AiXA
T
i .

8.2.1 Inequalities between classical and tropical Kraus maps

The key ingredient for showing the existence of a nonlinear eigenvector is a double inequal-
ity which generalizes the inequalities 1

N

∑
k xk 6 maxk xk 6

∑
k xk for non-negative reals

(xk)16k6N to the non-commutative case when the “maximum” is the invariant join.

Proposition 8.7. The inequalities

1

N
K(X) 4 T (X) 4 K(X)

holds for all X ∈ S+
n .
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Proof. The lower bound is a consequence of Remark 4.9. The upper bound follows from The-
orem 4.17.

This result shows that the distance between the values of the classical and tropical Kraus
maps remains bounded in the Hilbert metric. It also proves that T (X) and K(X) belong to
the same face of the cone S+

n for all X ∈ S+
n .

A similar result holds for iterated versions of the classical and tropical Kraus maps:

Corollary 8.8. The inequalities

1

N q
Kq(X) 4 T q(X) 4 Kq(X)

holds for all X ∈ S+
n .

Proof. We write f 4 g to mean f(X) 4 g(X) for all X ∈ S+
n . We prove this result by

induction on q. The case q = 1 is true by Proposition 8.7. Assume that N−1Kq 4 T q 4
Kq. By Proposition 8.7, we have T (T q) 4 K(T q). Moreover, the map K is monotone, so
K(T q) 4 K(Kq), which shows that T q+1 4 Kq+1. Similarly, by Proposition 8.7, we have
T (T q) < N−1K(T q) and the monotony of the map K implies K(T q) < N−qT q+1, so that
T q+1 < N−q−1Kq+1.

It also follows from Proposition 8.7 and Corollary 8.8 that the map T (resp. T q) sends
S+
n \ {0} to its interior if and only if K (resp. Kq) does. When q = 1, we say that the maps
T and K are strictly positive. Gaubert and Qu have shown [GQ14a] that checking the strict
positivity for K is NP-hard, thus it is also the case for T . We say that T is primitive if there
is some q > 1 such that T q is strictly positive. Corollary 8.8 implies that T is primitive if
and only if K is primitive. Finally, we extend the definition of irreducibility to the tropical
Kraus map T , i.e. T is irreducible if there is no non-trivial face of the cone S+

n that is left
invariant by the map T . Again, Proposition 8.7 implies that T is irreducible if and only if K
is irreducible.

8.2.2 Existence of non-linear eigenvectors

We now state a theorem regarding the existence of nonlinear eigenvectors under varying
assumptions which are analogues of results guaranteeing the existence of eigenvectors of clas-
sical Kraus maps, respectively when the tropical Kraus map is strictly positive, primitive and
irreducible.

Theorem 8.9. There is a positive definite Q and λ > 0 such that T (Q) = λQ if the tropical
Kraus map T is irreducible. In particular, this is the case when T is primitive or strictly
positive.

We obtain Theorem 8.3 as a corollary of Theorem 8.9.

8.2.3 Proof of Theorem 8.9

We first prove the theorem when T is strictly positive. We then prove the case when T is
primitive. Finally, we prove the most general case when T is irreducible.
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Case 1: T is strictly positive Let ∆ := {X ∈ S+
n | traceX = 1}. Observe that ∆ is compact

and convex. Let also T̂ (X) := trace(T (X))−1T (X).
The map K is continuous on S+

n , so we have αI 6 K(X) 6 βI for all X ∈ ∆ for some non-
negative α, β. Since T is strictly positive, the map K is strictly positive, hence α is positive. It
follows that T̂ maps ∆ to a bounded subset of ∆ in the Hilbert metric: T̂ (∆) ⊆ BH(I,R)∩∆,
with R = log(Nβ/α).

In particular, since the map T is continuous on the interior of S+
n , T̂ sends continuously

BT (e,R) to itself. We apply Brouwer’s theorem to the map T̂ and obtain an eigenvector Q.

Case 2: T is primitive Similarly to the previous proof, we shall show that there is a subset of
the interior of ∆ that is compact, convex and invariant by T̂ . Since the map T is not convex,
it is not clear that the set T̂ q(∆) is convex. Instead, we use a “convexified” version of this set.
Recall that the map T is positively-homogeneous, so that for any cone C ⊂ S+

n the following
equality holds

(cone ◦T )
(
C
)
∩∆ = (conv ◦T̂ )

(
C
)
.

Here conv(X ) denotes the convex hull of the set X and cone(X ) is the conic hull of X . The
map X 7→ (cone ◦T )(X ) is multivalued and maps a set X to the cone generated by T (X ). In
this spirit, we establish the following technical lemma.

Lemma 8.10. For all y ∈ (cone ◦T )q
(
S+
n

)
, there is x ∈ S+

n such that

N−qKq(x) 4 y 4 Kq(x) .

Proof. We work by induction on q. The case q = 0 is trivial. Assume now that the property
holds for some q. Let y ∈ (cone ◦T )q+1(S+

n ), meaning that there are some zk ∈ (cone ◦T )q(S+
n )

and λk ∈ R+ such that y =
∑

k λkT (zk). By Corollary 8.8, we have

N−1
∑
k

λkK(zk) 4 y 4
∑
k

λkK(zk) .

Moreover, there are by assumption some xk ∈ S+
n such that

N−qKq(xk) 4 zk 4 K
q(xk) .

The map K is linear and monotone, so

N−q−1
∑
k

λkK
q+1(xk) 4 y 4

∑
k

λkK
q+1(xk) .

The set Kq+1(S+
n ) is convex, thus

∑
k λkK

q+1(xk) ∈ Kq+1(S+
n ), which concludes the proof.

Let now q such that Kq (or equivalently T q) is strictly positive. Following the same
argument as in the proof when T is strictly positive, there are positive α, β such that αI 4
Kq(X) 4 βI for all X ∈ ∆.

Let P denote the set (cone ◦T )q(S+
n )∩∆. Using Lemma 8.10, we deduce from the previous

inequalities that for all X ∈ P, we have

αN−qI 4 X 4 βI ,
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so the set P is a convex bounded subset of the interior of S+
n ∩∆. Let P denote the closure

in the topology induced by the Hilbert metric of P (Recall that the topology of the Hilbert
metric is the same as the Euclidean topology on the interior of ∆ because the cone S+

n is
finite-dimensional, see [LN12a, AGN15]). We have

T̂ (P) ⊂ (cone ◦T )(P) ∩∆ ⊂ (cone ◦T )q+1(S+
n ) ∩∆ ⊂ P ,

since all operators are monotone as set-valued maps. Moreover, since the map T̂ is continuous

on the interior of ∆, we have T̂ (P) ⊂ T̂ (P), so that T̂ (P) ⊂ P. Thus, the map T̂ sends the
bounded closed (hence compact) convex set P continuously into itself. We apply Brouwer’s
theorem to the map T̂ and obtain an eigenvector Q.

Case 3: T is irreducible Note that the matrix Q is an eigenvector of the map T with
eigenvalue λ if and only if it is an eigenvector of the map T1 := X 7→ T (X) + X with
eigenvalue λ+ 1.

Moreover, since 0 4 X 4 T1(X), the face F (X) must be a subset of the face F
(
T1(X)

)
.

If the matrix X is nonzero and not invertible, this inclusion must be strict. Indeed, by the
inequality T (X) 4 T1(X), the fact that the equality F (X) = F

(
T1(X)

)
implies that the map

T leaves the non-trivial face F (X) invariant, which contradicts the irreducibility assumption.
Hence we must have1

0 < rkX < n =⇒ rkX < rkT1(X) .

It follows that the n-th iterate of the map T1 maps nonzero positive semidefinite matrices
to positive definite matrices, i.e. the map T1 is primitive. The existence of an eigenvector
follows from Case 2.

8.2.4 Obstacles for simpler proofs

Several basic methods allow one to prove non-linear extensions of the Perron-Frobenius theo-
rem. These involve contraction properties with respect to Hilbert’s projective metric, Brouwer
fixed point theorem, or monotonicity properties, see [LN12b]. These approaches fail in the
case of the specialized tropical Kraus map T described in this chapter.

Indeed, the map T is not always contracting: applying Theorem 5.1 to tropical Kraus
maps only yields an upper bound on the Lipschitz constant in the Riemann metric of

√
p and

we show in Section 8.2.5.a an example where T is expansive on an open set.
Similarly, one can observe that the map T may not be monotone, which is not surprising

since the invariant join is not monotone either by Proposition 4.20.
Finally, the invariant join does not have a continuous extension to the closure on the cone

of positive definite matrices, hence it is also not surprising that the tropical Kraus map T is
not continuous either on the closed cone S+

n .

8.2.5 On the convergence towards a non-linear eigenvector

We present two special cases which highlight the difficulties that are encountered in an attempt
to prove convergence of the scheme towards a non-linear eigenvector. We exhibit in the

1Recall that a matrix Y belongs to the face F (Z) if and only if the image of Y is contained in the image
of Z.
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following two examples in their simplest form: the tropical Kraus maps send S+
2 into S+

2 and
take the form

T : X 7→ AXAT tBXBT ,

where A,B are 2 × 2 real matrices. We study the values of the map T̂ on ∆ := {X ∈
S+
n : trace(X) = 1}.

In the first case, we exhibit a tropical Kraus map which is locally expansive at its only
non-linear eigenvector. In the second example, the tropical Kraus map does not have a unique
eigenvector.

8.2.5.a Locally expansive tropical Kraus maps We consider the tropical Kraus map T1

with

A =

(
−0.4285 −0.2825
0.0400 0.4006

)
B =

(
−2.1017 0.4002
−0.6605 −1.3176

)
.

This map is strictly expansive in the Riemann metric on an open subset of ∆ as shown
in Figure 8.1a. It can be observed on Figure 8.1b that this does not impair the convergence
of the iterative scheme. Moreover, the limit point of all sequences is actually inside the
“expansivity set”: the directional derivative at the limit point takes values between 0.94 and
1.03. Figure 8.1 shows in more detail the position of this limit point.

We observe several regimes in the convergence towards the fixed point. Although the
iterations lead to a neighborhood of the fixed point quite fast, a much slower regime is
observed within this neighborhood. This change of regime is shown in Figure 8.2 where we
have plotted the (logarithm of the) distance to the fixed point in Riemann’s metric with
respect to the number of iterations: 40 iterations are sufficient to reach an error of 10−4, yet
4 times more are required to reach an error of 10−8.

This example illustrates that, although the tropical Kraus map is expansive with respect
to the Riemann metric near its unique fixed point, it is still possible that this map is a
contraction with respect to other metrics. Indeed, on the set ∆ the map T̂1 can be identified
to a map from the unit disk in R2 to R2 by

ι : ( xy ) 7→
( x y
y 1−x

)
,

and the differential of the map ι−1 ◦ T̂1 ◦ ι at this fixed point is given by the matrix(
1.0177 −0.2809
0.1355 0.9093

)
whose eigenvalues are 0.9635± 0.1874i. Their modulus is 0.9816 < 1, hence the fixed point is
attractive.

8.2.5.b Multiplicity of eigenvectors We consider the tropical Kraus map T2 with

A =

(
−0.4285 −0.2825
0.0400 0.4006

)
B =

(
−2.1017 0.4002
−0.6605 −1.3176

)
.

This map has infinitely many nonlinear eigenvectors, and the Krasnoselskii-Mann iterations
do not converge towards a single eigenvector. All eigenvectors are located in the interior of
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(a) Value of the local Lipschitz constant (b) Traces of iterations from random points

(c) Close-up look at the convergence towards the eigenvector

Figure 8.1: Lipschitz constant, fixed point and trajectory of iterated tropical Kraus maps on
the slice ∆

the cone, associated with the same non-linear eigenvalue: one can check numerically that the
matrices X(s) yield such eigenvectors for the eigenvalue 1.9428 with

X(s) =

(
s 5.5656s− 2.4548

5.5656s− 2.4548 1− s

)
0.41 6 s 6 0.52 .

These matrices satisfy AX(s)AT 4 BX(s)BT , so T2

[
X(s)

]
= BX(s)BT . This entails

that the joint spectral radius ρ = ρ({A2, B2}) is the spectral radius of B and that X(s) is a
common quadratic Lyapunov certificate: AXAT , BXBT 4 ρ2X. In this example, the maps
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Figure 8.2: The two regimes of convergence

T and X 7→ BXBT coincide on a proper subset of ∆ with non-empty interior. We deduce in
particular that the map T is non-expansive on this subset, which contains the former matrices.

8.3 Perturbations methods to ensure convergence

We show in this section that the perturbation methods introduced in Section 7.4.1 converge
provided their parameter ε is large enough. We deal with the additive approach in Sec-
tion 8.3.1 and with the multiplicative perturbation in Section 8.3.2.

We consider the tropical Kraus map T defined on S+
n by

T (X) :=
⊔

16i6p

AiXA
T
i .

We define the projective Riemann metric between X,Y ∈ ∆ as the infimum of the asso-
ciated distance between elements on the rays passing through X and Y by:

dpR(X,Y ) := inf
λ,µ>0

dR(λX, µY ) .

Since the Riemann metric in invariant by multiplication of its arguments by a positive scalar,
one can choose µ = λ−1 in the minimization above.

We can define the “projective Thompson metric dpT ” in the same way. By Equation (5.18),
this projective metric coincides with the (double of the) Hilbert metric dH .

A key remark in the following is that when the invariant join is evaluated sequentially, the
Lipschitz constant of the map T in the Hilbert metric and in the projective Riemann metric
are finite.
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(a) Value of the local Lipschitz constant
(b) Plot of the map X 7→ dR

(
X, T̂ (X)

)
showing

the position of the fixed points

(c) Trajectories converging towards the fixed points

Figure 8.3: Lipschitz constant, fixed point and trajectory of iterated tropical Kraus maps on
the slice ∆

Corollary 8.11. They are respectively bounded by LipH [T ] and LippR[T ] with

log(n)/π − 1 6 LipH [T ] 6 (2 +
4

π
log n)p−1 1 6 LippR[T ] 6

√
p . (8.7)

Proof. These bounds are obtained as corollaries of Theorems 5.1 and 5.3. By Theorem 5.1,
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the invariant join is Lipschitz with respect to the product Riemann metric on S++
n × S++

n ,
i.e.

dR(X1 tX2, Y1 t Y2) 6
[
dR(X1, Y1)2 + dR(X2, Y2)2

]1/2
.

When the invariant join is evaluated sequentially, the invariance of the Riemann metric by
congruences implies that

dR
( ⊔

16i6p

AiXA
T
i ,

⊔
16i6p

AiY A
T
i

)
6
√
p dR(X,Y ) .

We deduce that the Lipschitz constant of the operator T in the Riemann metric does not
exceed

√
p. Similarly, the Lipschitz constant in Hilbert’s metric is bounded by (2+ 4

π log n)p−1

as a consequence of Theorem 5.3.

The bound on LipH [T ] is very conservative, especially if p > 2, but we do expect it to
depend both on n and p. This result is mostly of theoretical interest. Observe that the bound
on LippR[T ] is independent of the dimension n.

8.3.1 Additive damping approach

We first consider an additive variant of the tropical Kraus map T , like in Section 7.4, where we
introduce a small positive perturbation ε. Let gε denote the map gε : X 7→ X + ε trace(X)In.
Then the variant T ε is defined by T ε(X) := gε ◦ T (X):

T ε(X) := T (X) + ε trace
[
T (X)

]
In . (8.8)

This leads to a new power iteration

Xk+1 =
1∑

w〈In, T εw(Xk)〉
T ε(Xk) . (8.9)

The map gε is linear and maps the cone S+
n into itself. By the Birkhoff-Hopf contraction

theorem, the map gε is a contraction if the cone gε(S+
n ) has a finite diameter in Hilbert’s

metric:

Theorem 8.12 (Birkhoff-Hopf, see [Bir57, Nus87]). A linear map f such that f(S+
n ) ⊆ S+

n is
a contraction in Hilbert’s metric if and only if the image of the cone S+

n has a finite diameter
δ in this metric. Its contraction coefficient is bounded by LipH f 6 tanh(δ/4).

We show that the diameter of gε(S+
n ) in Hilbert’s metric is finite as soon as ε > 0 and

deduce the contraction rate of the map gε in this metric:

Lemma 8.13. For all x, y ∈ S+
n , we have dH

[
gε(x), gε(y)

]
6 2 log 1+ε

ε . Hence gε is a
contraction in the Hilbert metric:

dH
[
gε(x), gε(y)

]
6

1

1 + 2ε
dH(x, y) .
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Proof. It is sufficient to bound the distance between two rank-one 2 × 2 matrices. Without

loss of generality, we choose x = ( 1 0
0 0 ) and y =

(
cos2(t) cos(t) sin(t)

cos(t) sin(t) sin2(t)

)
. We have

(1 + ε)2

ε
gε(y)− gε(x) =

(
1+ε
ε − ε− cos2(t) sin(t) cos(t)

sin(t) cos(t) 1− sin2(t)

)
.

The inequality (1 + ε)2/ε − ε > 1 holds trivially, hence (1+ε)2

ε gε(y) − gε(x) < 0. The same
inequality holds if x and y are swapped. We deduce that

dH
[
gε(x), gε(y)

]
= inf

{
log(µ/λ) : λ−1gε(y) 4 gε(y) 4 µgε(x)

}
6 2 log

1 + ε

ε
.

Using the formula tanh(u) =
(
1 − exp(−2u)

)(
1 + exp(−2u)

)−1
and Theorem 8.12, we get

LipH gε 6
1

1+2ε .

Hence the modified iteration scheme using T ε converges if ε is large enough:

Theorem 8.14. The modified iteration starting at X0 ∈ S+
n defined by

Xk+1 =
T (Xk) + ε trace(Xk)In

trace
[
T (Xk) + ε trace(Xk)In

] ,
converges if ε > min

[
(n
√
p− 1)/2 , (2 + 4 log(n)/π)p−1/2− 1/2)

]
.

Proof. The Hilbert metric is equal to the double of the projective Thompson metric. More-
over, following classical norm comparison results, we have

dT (x, y) 6 dR(x, y) 6 n dT (x, y) .

Hence the Lipschitz constant of a map in the projective Riemann metric does not exceed n
times its Lipschitz constant in the Hilbert metric. Combined with Lemma 8.13, we obtain
that gε is n/(1 + 2ε)-Lipschitz in the projective Riemann metric. By Equation (8.7), the
map T is at most

√
p-Lipschitz. Thus the iteration is contractive in the projective Riemann

metric if n
√
p < 1 + 2ε. The reasoning for Hilbert’s metric is more direct, since we only

combine Lemma 8.13 and Theorem 5.3.

Although the bound in the Hilbert metric is very coarse, when p = 2 (2 switching modes),
it provides more reasonable estimates for moderate values of n: ε > (1+4 log(n)/π)/2. When
p > 2, it is preferable to consider the estimation from the projective Riemann metric.

We obtain as a corollary of Theorem 8.14 that the iterative schemes in Equation (7.14)
and Equation (8.9) converge for a larger enough ε:

Corollary 8.15. The iterative scheme in Equation (8.9) starting at (X0
w)w ∈ (S+

n )W con-
verges if ε > (n

√
p|W|3/2 − 1)/2.

Proof. In the lifting procedure described in Section 8.1.1, the dimension of the matrices grows
from n to n|W| and the number of matrices in the collection A grows from p to p|W|.

These estimates on ε are very conservative: in practice, we use values of ε less than 10−2.
This is due to the coarse estimation of the contraction rate in Riemann’s projective metric
of the map gε in the proof of Theorem 8.14, which seems to indicates that the map gε is a
contraction in this metric only if ε is large. We observe experimentally that this is not true,
and we conjecture that it is a contraction as soon as ε > 0:



140 CHAPTER 8. TROPICAL KRAUS MAPS FOR SWITCHED SYSTEMS

Conjecture 8.16. The map gε defined on S+
n is a contraction in the Riemann projective

metric:

dpR
[
gε(X), gε(Y )

]
6

1

1 + αnε
dpR(X,Y ) for some αn > n

1/2 .

Let us give some elements supporting the conjecture. Locally, the Riemann projective
metric is the standard deviation σ of the spectrum of the modified matrix X−1H: dpR(X,X+
H) = infµ∈R ‖X−1H − µIn‖F = σ

[
SpX−1H

]
. When ε� 1, we linearize to get[

gε(X)
]−1

gε(H) = X−1H + ε
(

trace(H)X−1 − trace(X)HX−2
)

When X = In, we have
[
gε(X)

]−1
gε(H) = (1 − nε)H + ε trace(H)In. Classical formulas for

standard variation give a local contraction rate of 1 − nε ∼ (1 + nε)−1. This shows that
αn 6 n. However, equality does not hold. Indeed, one can check that αn < n, using the
example

X =
( 7.2776 −0.3214 0.2509
−0.3214 6.3741 −0.0739
0.2509 −0.0739 3.7221

)
H =

( 4.8879 −3.1582 2.1688
−3.1582 −6.0836 −1.6669
2.1688 −1.6669 −1.0169

)
.

We deduce, conditionally to Conjecture 8.16, a better estimation on ε:

Theorem 8.17. Assuming that Conjecture 8.16 holds, the modified multiplicative iteration
defined on S+

n by

Xk+1 =
1

trace
[
T ε(Xk)

]T ε(Xk) ,

converges if ε > (
√
p− 1)/n.

Consequently, the iterations defined in Equation (7.14) converge if ε > p1/2n−1.

8.3.2 Convergence analysis of the multiplicative power iteration

We now consider a multiplicative variant of the tropical Kraus map T as used in Equa-
tion (7.15) for 0 6 ε < 1 by

T ε(X) :=
[
T (X)

]1−ε
The reason for considering the multiplicative power iteration is that, when Y is positive

definite and 0 < s < 1, the map Y 7→ Y s is a contraction with respect to Thompson’s (part)
metric dT [Nus88] and Riemann’s metric dR [Bha07, Theorem 6.1.12].

It is known (ibid.) that a geodesic for Thompson’s and Riemann’s metric linking I and a
positive matrix X is given by the curve sending t ∈ [0, 1] to t 7→ Xt. By geodesic, we mean
that the equality holds in the triangular inequality dm(I,Xt) 6 dm(I,Xs) + dm(Xs, Xt) for
all 0 < s < t and m ∈ {T,R}.

The geodesics between I and two positive matrices X and Y have the following property,
which is known in metric geometry as non-positive curvature in the sense of Busemann for
the Thompson metric,

dT (Xt, Y t) 6 t dT (X,Y ) . (8.10)



8.4. EXPERIMENTAL RESULTS 141

I

Xs

Y s

X

Y

Figure 8.4: The non-positive curvature property of Thompson’s metric on the space of positive
definite matrices.

This can be deduced either from [Bha03] or from classical log-majorization inequalities for
matrix eigenvalues [Zha02], see [GV12] for details. This inequality means that the triangles
are thin, it is illustrated Figure 8.4. We warn the reader that non positive curvature in the
sense of Busemann is a milder condition than other non-positive curvature conditions more
commonly used like being CAT(0), see [Pap05] for background. The same inequality holds
for the Riemann metric dR(Xt, Y t) 6 t dR(X,Y ). In this setting, the underlying notion of
non-positive curvature is CAT(0), see [Bha07, Theorem 6.1.9].

Finally, the same inequality holds for the projective Riemann metric and Hilbert’s metric.
For the projective Riemann metric, if s 6= 0, we have

dpR(Xs, Y s) 6 dR
[
λXs, µY s

]
6 s dR[λ1/sX,µ1/sY

]
,

thus by the change of variable x′ := x1/s, taking the infimum over λ′, µ′ yields the inequality

dpR(Xs, Y s) 6 s dpR(X,Y ) . (8.11)

The proof in Hilbert’s metric is done identically.

The next result shows that the power algorithm does converge for a large enough ε. In
the present experiments, we use a much smaller value of ε.

Theorem 8.18. The modified iteration starting at X0 ∈ S+
n defined by

Xk+1 =

[
T (X)

]1−ε
trace

[[
T (X)

]1−ε]
converges if ε > 1− 1

√
p.

Remark 8.3. The limit X∞ can be approximated with an accuracy η in

p∗ :=
⌈ log η − log dpm(X0, X∞)

log(1− ε) + log(
√
p)

⌉
,

iterations, leading to O(n3Np∗) arithmetic operations.
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8.4 Experimental results

8.4.1 Implementation issues

We describe in this section the resolution to several issues that arise in the implementation
of the iterative scheme.

In practice, we use values for ε in the range 10−4−10−2 in Equation (8.8). This additional
parameter allows us to obtain, in a finite number of iterations, a solution (X, ρ) that satisfies
ρ2Xj < ATσXiAσ for all admissible (i, σ, j). Moreover, this parameter absorbs numerical
imprecisions that may appear during the computation and ensures that the matrices Xj are
positive definite, so the assumptions of Theorem 8.1 and Theorem 8.2 are satisfied.

We choose f to be the trace minimizing selection denoted by ttr in the computations.
Then, when the set Σ contains only two elements, Tj(X) can be computed analytically thanks
to Theorem 3.3. When Σ has more than two elements, instead of computing the true minimal
upper bound ttrQ, we compute an approximation by sequential evaluation: Q1 ttr (Q2 ttr

(· · · ttr Qp)). Although the original evaluation can be performed by solving a semidefinite
program of a reasonable size, we observe that the sequential evaluation still converges and
produces very good eigenvectors.

Finally, as pointed out in [GMQ11], the propagation of the Riccati operator riccτ,σ on
a single quadratic form P0 is computed analytically by riccτ,σ = Y (τ)X(τ)−1, with Mσ =(−Aσ −Qσ
Dσ Aσ

)
and

(
X(τ) ; Y (τ)

)T
= exp

(
Mστ)

(
In ; P0

)T
.

8.4.2 Application to the joint spectral radius

Given that the approximation of the joint spectral radius ρ(A) depends on the graph G that
underlies the analysis, we denote by ρ̂(A,G) the approximation obtained as (the square root
of) an eigenvalue of a tropical Kraus map and by ρ(A,G) the one obtained by solving the
LMI (8.6).

The map · sending W × Σ to W defined in Section 8.1.1 can be interpreted as a path-
complete graph. For this reason, our method, when applied to the joint spectral radius, is a
relaxation of the path-complete Lyapunov function framework, and thus we always have

ρ(A) 6 ρ(A,G) 6 ρ̂(A,G) .

However, we shall see that the tropical method is much more tractable, so we may use a
bigger graph and sometimes get a better approximation than by solving LMIs, for a similar
time or computational budget.

We compare the performance of our algorithm with the path-complete graph Lyapunov
method, in terms of computation time and accuracy of the approximation of the joint spectral
radius, measured by

δ := (ρ̂(A,G′)− ρ(A,G)/ρ(A,G) .

All the experiments were implemented in Matlab, running on one core of a 2.2 GHz Intel
Core i7 with 8 GB RAM. The semidefinite programs were solved using YALMIP (R20160930),
calling SeDuMi 1.3.
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Table 8.1: Comparison of the methods with respect to the size of the dimension of the
matrices.

Dimension
n

CPU time
(tropical)

CPU time
(LMI)

Upper bound
on ρ(A)

(tropical)

Upper bound
on ρ(A)
(LMI)

Accuracy

5 0.9 s 3.1 s 2.767 2.7627 0.1 %

10 1.5 s 4.2 s 3.797 3.7426 1.4 %

20 3.5 s 31 s 5.4093 5.3891 0.4 %

30 7.9 s 3min 6.2038 6.1942 0.2 %

40 13.7 s 18min 7.3402 7.3363 0.05 %

45 18.1 s − 7.687 − −
50 25.2 s − 8.1591 − −
100 1min − 11.487 − −
500 8min − 25.44 − −

8.4.2.a Accuracy of the approximation We generate 600 pairs A = {A1, A2} of random 6×
6 matrices. For each of these pairs, we compare the approximation of the joint spectral radius
obtained by the LMI method on the graph D3 (involving 8 positive semidefinite matrices) and
by the tropical Kraus method on the graph D6 (involving 64 positive semidefinite matrices).
On these examples, we report that the tropical method obtains a similar approximation of
the joint spectral radius, within a margin of 2.5%, and outperforms the LMI-method on 25%
of these examples. Moreover, whereas the LMI-method requires between 3s and 5s to obtain
this approximation, the tropical method consistently returns an approximation in 1s.

8.4.2.b Scalability - dimension We generate random pairs of n×n matrices, for n ranging
from 5 to 500. We use again the De Bruijn graph D3 in the LMI-method and the graph D6

in the tropical Kraus method. We show in Table 8.1 the mean computation time required
to obtain an overapproximation and the mean relative accuracy of the tropical method with
respect to the LMI-method, when it applies. First, one can observe the major speedup
provided by the tropical method, from 4 times faster when n = 5 to 80 times faster for
n = 40.

Also note that the tropical method is using 8 times more quadratic forms in its analysis
and remains much faster than the LMI-method. Thus, given a fixed time budget, the tropical
method enjoys more flexibility regarding the size of the graph that is used in the analysis.

Moreover, observe that the LMI-method cannot provide estimates on the joint spectral
radius for values of n greater than 45, whereas the tropical method easily reaches values of n
greater than 100.

Finally, the accuracy of the tropical approximation remains within a 1.5% margin of the
one obtained by the LMI-method.

8.4.2.c Scalability - graphs We now analyze the influence of the order of the De Bruijn
graph Dd used in the analysis on the computation of the upper bound on the joint spectral ra-

dius obtained by both methods. We use the matrices A1 =
(−1 1 −1
−1 −1 1

0 1 1

)
and A2 =

(−1 1 −1
−1 −1 0

1 1 1

)
,
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Table 8.2: Comparison of the methods w.r.t. the size of the graph Dd.

Order d 2 4 6 8 10

Size of W 8 32 128 512 2048

CPU time
(tropical)

0.03s 0.07s 0.4s 2.0s 9.0s

CPU time
(LMI)

1.9s 4.0s 24s 1min 10min

Upper bound on
ρ(A) (tropical)

1.842 1.821 1.804 1.800 1.801

Upper bound on
ρ(A) (LMI)

1.8216 1.7974 1.7957 1.7922 1.7905

Accuracy 1.1 % 1.3 % 0.4 % 0.4 % 0.6 %

introduced in [GZ14]. Their joint spectral radius is ρ(A) = 1.78893.
We show in Table 8.2 the upper bound on the joint spectral radius and the computation

time with respect to the length order d of the De Bruijn graphs.

8.4.3 A faster curse of dimensionality attenuation scheme

We now apply the iteration scheme described in Section 8.1.4 to the approximation of the value
function V . In all examples, we measure the quality of the approximation of the value function
as in [McE09, GMQ11] with the H-infinity back-substitution error maxxT x61 |H(x,∇V (x))|
on the subspace spanned by the canonical vectors e1 and e2.

The first example is Example 1 in [McE07] and we use the instance of [GMQ11] in the
second example. Examples 3 and 4 are randomly generated examples that satisfy the technical
assumptions in [McE07].

Table 8.3 depicts the results of the computations. In particular, we give the back-
substitution error at the beginning of the computation, when the value function is approxi-
mated by a single quadratic form (Q(x) = 0.1|x|2 in all cases) and the final back-substitution
error when the scheme has converged.
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Table 8.3: Numerical benchmarks of the tropical Kraus method applied to McEneaney’s
switched linear quadratic problem

Example 1 2 2 3 4

Dimension 2 6 6 20 20

Size of Σ 3 6 6 2 4

τ 0.05 s 0.2 0.1 0.1 0.1

Size of W 81 216 1296 128 256

Initial error 0.78 1.12 1.12 4.2 4.79

Final error 0.047 0.071 0.090 0.0006 0.17

Iterations 194 115 200 55 288

CPU time 8 s 41 s 5 min 5 s 2.5 min
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CHAPTER 9
Implementations of the algorithms

9.1 Presentation of MEGA

MEGA (short for Minimal Ellipsoids Geometric Analyzer) is a static analyzer for linear and
affine programs implementing the algorithms introduced in Chapters 7 and 8. The software
weighs approximately 1600 lines of OCaml and 800 lines of Matlab and consist in several
parts.

First, a parser reads a text file containing the program to be analyzed and transforms
it into an internal representation. This is a common step regardless of the linear or affine
character of the program. Then the analyzes diverge:

• For linear programs, the algorithm in Chapter 8 has been implemented using the La-
Caml library [Mot16] to perform linear algebra operations in OCaml. We have also
implemented the method of [AJPR14] for comparison purposes, using the OSDP li-
brary [GR17]. Optionally, we produce a piece of Matlab code that instantiates the two
former algorithm on the desired program for further analysis within Matlab. In both
cases, we return an upper bound on the joint spectral radius, the computation time
and the quadratic forms whose supremum produces the approximate Barabanov norm.
In the affine case, we also return a png image of the invariant and the image of the
invariant by the abstract operators corresponding to each branch.

• For affine programs, we directly instantiate1 a piece of Matlab code that is then ex-
ecuted to produce the collection of ellipsoids whose reunion produces an invariant as
in Chapter 7. We also implement the big-BMI method for comparison purposes.

1As of October 2017, the pure OCaml implementation using OSDP is not stable, thus the detour through
Matlab is necessary.
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The programs that are fed as input are written in a C-style form, with minor adaptations
for non-deterministic assignments and parallel assignments. Two typical programs are shown
in Programs 11 and 12 and exhibit this syntax.

The non-deterministic assignment of a variable x to a value in the interval [a, b] is written
x ← [a, b]. The assignment operator := works as follows. If the assignment is part of a “if-
then” or “switch-case” structure, it is considered a parallel vector assignment, not a sequential
assignment. Otherwise, it acts like a standard assignment operator, and it is usually used to
set constants for the program.

A program is comprised of variables, floats, expressions and statements. Expressions are
recursively defined as variables, floating point numbers as constants and sum and products
of expressions. In other words:

type expr = Variable v | Float f | expr + expr | expr ∗ expr .

A statement is recursively defined as an deterministic or non-deterministic assignment of an
expression to a variable, two statements separated by a semi-colon, an if-then-else structure
discriminating between the execution of two consecutive statements based on the conjunction
of several expression comparisons, a switch-case between several statements based on the
value of a variable or a looping process based on the comparison of two expressions. In other
words:

type stm = Variable v := expr | Variable v ← [Float low,Float up] |
stm ; stm | if expr 6 expr then stm else stm end |
switch(Variable u) : case i : stmi end | while expr 6 expr do stm end

We show in Programs 11 and 12 two illustrative programs written in this syntax.

Program 11: Non-deterministic switched linear program

x1 ← [−1, 1];
x2 ← [−1, 1];
h := 0.02; p := 1; q := 5; r := 0.1; s := 10;
while 0 6 1 do

switch u :
case 0

x := x+ p ∗ h ∗ v;
v := (−1) ∗ p ∗ h ∗ x+ (1 + (−1) ∗ p ∗ h) ∗ v;

end
case 1

x := x+ q ∗ h ∗ v;
v := (−1) ∗ r ∗ r ∗ q ∗ h ∗ x+ (1 + (−1) ∗ r ∗ q ∗ h) ∗ v;

end
case 2

x := x+ s ∗ h ∗ v;
v := (−1) ∗ r ∗ s ∗ h ∗ x+ (1 + (−1) ∗ r ∗ s ∗ h) ∗ v;

end

end
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Program 12: Switched affine program with guards

x← [−0.2, 0.2];
y ← [−0.2, 0.2];
while 0 6 1 do

if y > 0 then
x := 0.6835 ∗ x+ (−0.7468) ∗ y + 0.5432;
y := 0.1867 ∗ x+ 0.6835 ∗ y + (−0.0724);

else
x := 0.7185 ∗ x+ (−0.3925) ∗ y;
y := 0.3925 ∗ x+ 0.7185 ∗ y;

end

end

9.2 Using MEGA

We give some information on how to use MEGA. A compressed file containing its source
files is available at www.cmap.polytechnique.fr/~stott/mega with instructions on how to
install the required dependencies. The executable is mega and can take several arguments:

-d int Int is the depth of the De Bruijn automaton

-i ”??.txt” Name of the input text file containing the program

-o ”??.txt” Name of the ouput file for the Matlab code

-cmp Activate the comparison with the big-lmi/big-bmi methods

-q Moves Matlab output from terminal to LOG file

-eps float Float is the precision on the joint spectral radius upper bound

-rand int Randomly generated linear program: 2 modes in dimension int

The hosted commpressed file contains the two test programs of Programs 11 and 12. Here
are some executions of mega and the obtained results.

$ . / mega − i ”bench2 . txt ” −d 3
Total Time : 74 .42 s

Figure 9.1: MEGA on example in Program 11

www.cmap.polytechnique.fr/~stott/mega
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$ . / mega − i ”bench1 . txt ” −d 5 −cmp
Depth o f the automaton : 5
Abstract ion Time : 6 .70 e−05 s
Linear program s t r u c t u r e : true

Fin i shed in 84 i t e r a t i o n s .
Trop ica l computation Time : 1 .83 s
Upper bound on the j s r : 1 .021
Computation r e s u l t i s sound : true

SDP computation Time : 2 .69 s
Upper bound on the j s r : 1 .013

P r e c i s i o n : 0.75%
Speed−up : 1 .47

Figure 9.2: MEGA on example in Program 11

$ . / mega −rand 10 −d 3 −cmp
Depth o f the automaton : 3
Abstract ion Time : 1 .33 e−04 s
Random in s tance o f l i n e a r switched program

Fin i shed in 27 i t e r a t i o n s .
Trop ica l computation Time : 0 .12 s
Upper bound on the j s r : 4 .434
Computation r e s u l t i s sound : true

SDP computation Time : 16 .29 s
Upper bound on the j s r : 4 .431

P r e c i s i o n : 0.08%
Speed−up : 135 .88

Figure 9.3: MEGA on a randomly generated example
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Conclusion and perspectives

We now briefly summarize our contributions and point out some open problems.

We have established in Chapters 2 to 4 several theoretical results on minimal upper bound
selections in the cone of positive semidefinite matrices and in more general cones. We have
shown that such a minimal upper bound can be selected by means of a vector belonging to the
interior of the dual cone. Moreover, we have extended the definition of the Löwner ellipsoid to
more general cone as the unique minimal upper that selects itself (via a canonical involution
between a cone and its dual). There is still much to be understood regarding minimal upper
bound selections, even in the special case of positive semidefinite matrices. Indeed, very few
properties of the selection map c 7→ Φ(A, c) defined in Section 4.1.3 are known. Our main
conjecture regarding the latter map (Conjecture 4.7) states that it is contractive with respect
to the Thompson metric when restricted to positive definite matrices.

A key object in the study of minimal upper bounds is the notion of tangency faces or
tangency subspaces. We expect this notion should also play a major role in the study minimal
upper bounds of geometric objects that do not derive from cones, like zonotopes [GPV12] and
uncentered ellipsoids. In the latter case, we point out that it is not possible to reduce to the
diagonal case by simultaneous reduction under congruences, because the underlying order
relation is defined on indefinite matrices and relies on the S-Lemma [BTN01]:

E(I, 0) ⊆ E(Q, q) ⇐⇒ ∃λ > 0:

(
I 0n,1

01,n −1

)
4 λ

(
Q− qqT −q
−qT −1

)
.

We believe that some aspects of the analysis may be preserved by considering anti-Jordan
reduction results [Uhl76, GLO05].

We have computed in Chapter 5 lower and upper Lipschitz bounds for the invariant
selection on positive semidefinite matrices in the Thompson and Hilbert metrics, as well as
shown that it is non-expansive in the product space for the Riemann metric when dealing
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with 2 matrices. We have conjectured that this property holds regardless of the number of
arguments of the invariant join. Moreover, since we have used other selections in practical
applications, it is desirable to be able to obtain estimations for other selections that the
invariant join.

We have introduced in Chapters 7 and 8 a new method to approximate the value function
of optimal control problems for switched systems. This includes the computation of quadratic
invariants of switched affine systems, the computation of the joint spectral radius and a class
of linear quadratic control problems with switches considered by McEneaney. In the first
case, it enabled the study of affine systems that include guards and external inputs. This
was not possible with earlier methods based on the solution of a large semidefinite program
and required instead the solution of a non-convex bilinear matrix inequality. The benefit of
our approach is the major gain in scalability, but it comes at the cost of a loss in precision:
since we replace LMI/BMI formulations by a specific selection of minimal upper bounds of
ellipsoids, we induce a relaxation gap. In other words, the scheme currently allows one to
compute quickly a coarse approximation of an invariant set.

In the setting of the joint spectral radius and McEneaney’s linear quadratic control prob-
lem, we have introduced the notion of tropical Kraus maps as a tool to approximate the value
function of an optimal control problem. In this case, our scheme belongs to the family of
max-plus methods as it approximates the value function by a supremum of quadratic forms.
It completely avoids the recourse to semidefinite programming (which was the bottleneck of
earlier max-plus methods) by a reduction to a non-linear eigenproblem. This leads to a major
speedup, allowing us to obtain approximate solutions of instances in dimension up to 500 in
the case of the joint spectral radius, and 20 for McEneaney’s problem, hardly accessible by
other methods. There is again a trade-off in precision due to the specific selection process.
In other words, the scheme currently allows one to compute quickly a coarse approximation
of the solution of a Hamilton-Jacobi PDE.

The most promising improvement of the scheme may be to adapt dynamically the selec-
tion of a minimal upper bound, which will reduce the relaxation gap, and might also improve
the convergence. This may be achieved by adding the dual tangency variables Λ into the
computation and deriving an update mechanism for these variables from the optimality con-
ditions in the “big-LMI”. These dual variables can then be used to select a good minimal
upper bound as in Section 4.2.3:

X(n+1) ← Φ
({
ATkX

(n)Ak
}
k
,
∑
k

Λ
(n)
k

)
Λ(n+1) ← Ψ

(
X(n),Λ(n)

)
,

where the map Ψ remains to be defined.
The structure of eigenvalues and eigenvectors of tropical Kraus maps is yet to be fully

explored, since it is, for instance, not yet known whether the spectrum of a tropical Kraus
map is finite. The convergence of the Krasnoselkii-Mann iteration of tropical Kraus maps
also remains an open problem in the absence of a perturbation parameter, or an arbitrarily
small perturbation. We point out that although the present work has used tropical Kraus
maps in the setting of quadratic forms, it may be possible to extend their use in applications
dealing with different geometric objects, such as polyhedra.

Finally, the use of tropical Kraus maps may not be the only alternative to interior-point
methods to solve the large scale LMIs that we are dealing with here. The good structure of
the LMIs may enable an efficient analysis by means of first order methods, such as gradient
coordinate descent [FR15].



APPENDIX A
Elements of Semidefinite

Programming

A linear matrix inequality (LMI for short) refers to a constraint of the form

A0 +
d∑

k=1

xkAk < 0 , (A.1)

where x ∈ Rd is the variable, (Ak)16k6d are given symmetric n × n matrices and 4 is the
Löwner order. In other words, given a symmetric matrix A(x1, . . . , xd) whose entries depend
in an affine way on x ∈ Rd, the constraint “A(x1, . . . , xd) is positive semidefinite” is an LMI.

Several LMIs can be combined into a single LMI, since

A(x) < 0 ∧B(x) < 0 ⇐⇒
(
A(x) 0

0 B(x)

)
< 0 .

A constraint of the form X < A0 is an LMI in the variable X ∈ Sn, since

X < A0 ⇐⇒
∑
i6j

xijE
s
i,j < A0

in the variables X = (xij)16i6j6n, where Esi,j denotes the matrix with zeroes everywhere
except for a 1 in the (i, j)-th and (j, i)-th entry.

Finally, the combination of the LMIs A(x) 4 0 and A(x) < 0 allows one to consider
equality constraints A(x) = 0.

The problem of minimizing a convex function in the variable x that satisfies the LMI in
Equation (A.1) is called a semidefinite program (SDP). We refer to [BEFB94] for introductive
background on these programs.
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Semidefinite programs can be solved in “polynomial time” in the following approximate
sense (semidefinite feasibility is not known to be polynomial time in the Turing model of
computation). Given an accuracy parameter ε > 0, one can obtain, in particular by interior
point methods (the most efficient in practice), a ε-approximate solution of a SDP in a number
of arithmetic operations which is polynomial in n, d, log ε, and log(R/r), assuming that the
set F of vectors which satisfy (A.1) is such that B(a, r) ⊂ F ⊂ B(a,R) for some point a ∈ Rn,
where B(a, r) denotes the Euclidean ball of center a and radius r, see [dKV16]. We warn the
reader, however, that the exponent of the polynomial is relatively high. (see Section 7.3.4 for
details). Hence, it is essential for scalability purposes to limit as far as possible the growth
of the dimension n and of the number of variables d, which is one of our main goals in this
thesis.
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Birkhäuser Basel, Basel, 2005.

[GMQ11] S. Gaubert, W. McEneaney, and Z. Qu. Curse of dimensionality reduction in
max-plus based approximation methods: Theoretical estimates and improved
pruning algorithms. In Decision and Control and European Control Conference
(CDC-ECC), 2011 50th IEEE Conference on, pages 1054–1061. IEEE, 2011.

[GNS+13] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Abstract
Interpretation over Non-lattice Abstract Domains, pages 6–24. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[Gou13] E. Goubault. Static analysis by abstract interpretation of numerical programs
and systems, and FLUCTUAT. In Proceedings of SAS’13, pages 1–3, 2013.
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[TTT03] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear
programs using sdpt3. Mathematical Programming, 95(2):189–217, 2003.

[Uhl76] F. Uhlig. A canonical form for a pair of real symmetric matrices that generate a
nonsingular pencil. Linear Algebra and its Applications, 14(3):189 – 209, 1976.

[Wey35] H. Weyl. Elementare theorie der konvexen polyeder. Commentarii mathematici
Helvetici, 7:290–306, 1934/35.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Technical report, 1993.

[Zha02] X. Zhan. Matrix inequalities, volume 1790 of Lecture Notes in Mathematics.
Springer, 2002.

[Zie95] G. M. Ziegler. Polytopes, Polyhedra, and Cones, pages 27–50. Springer New
York, New York, NY, 1995.



Titre : Titre en francais

Mots Clefs : Mettre de 3 à 6 mots clefs

Résumé :

Title : Title in english

Keys words : 3 to 6 key words (in english)

Abstract :

2


	Introduction
	Context and motivation
	Switched systems in program verification
	Stability of switched linear systems
	Switched systems in optimal control
	Löwner order and upper bound selections

	Contributions

	I Minimal upper bounds in cones - The case of the Löwner order
	Characterization of minimal upper bounds in cones
	Cones, duality, order relations and faces 
	Cones and dual cones
	Classical cones
	Order relation induced by a cone
	The faces and extreme rays of a cone
	Faces of the dual cone

	Characterization of minimal upper bounds
	The main result
	Proof of Theorem 1.2

	Application to classical cones
	Polyhedral cones
	The (generalized) Lorentz cone
	The cone of positive semidefinite matrices


	Minimal upper bounds of two symmetric matrices
	Introduction
	Notation
	Parametrization of minimal upper bounds
	Statement of the main theorem
	Preliminary lemmas
	Proof of Theorem 3.3, Corollary 3.4 and Corollary 3.5  

	Minimal upper bounds selection under tangency constraints
	Notation and preliminary lemma
	Statement of the problem and the theorem
	Preliminary lemmas
	 Proof of Theorem 3.10  
	Proof of Corollary 3.11

	Examples
	In dimension 2: O(1) / (O(1) x O(1))
	The quotient Lorentz set: O(n,1) / (O(n) x O(1)) 
	Outer approximation of the union of quadrics

	Minimal upper bounds of p matrices
	Generalizing the parametrization
	Proof of Theorem 3.16


	Canonical invariant minimal upper bound selection
	Notations and definitions
	Automorphisms of convex cones
	Characteristic function
	Selections of minimal upper bounds

	The main results
	Two technical assumptions
	Statement of the theorems
	Discussion and conjectures

	Proof of Theorem 4.4
	Two conic optimization problems
	Assertion (ii) implies Assertion (i)
	Assertion (i) implies Assertion (ii)

	Invariant minimal upper bound selection
	Commutation and uniqueness

	Application: the Euclidean Lorentz cone
	Application: the cone of positive semidefinite matrices
	Positive semidefinite matrices and ellipsoids
	The unique invariant selection
	Invariant join of shorted matrices
	Several properties of the invariant selection


	Lipschitz bounds on the invariant join
	Introduction
	The main results
	Proof outline and conjecture

	Common step in the proofs
	Infinitesimal approach
	Reduction to the co-diagonal case
	Differential of the invariant join
	Local and global Lipschitz constants

	Nonexpansivity in the Riemann metric 
	The case of diagonal blocks
	The case of off-diagonal blocks

	Lipschitz constant bounds in the Thompson metric
	Upper bound in the Thompson metric
	Lower bounds in the Thompson metric

	Lipschitz constant in the Hilbert metric


	II Ellipsoidal invariants for switched systems
	Switched systems, ellipsoids, abstract interpretation
	Classes of switched systems
	Affine switched systems
	Linear switched systems
	Optimal switching problem
	McEneaney's curse of dimensionality attenuation scheme

	The space of ellipsoids
	Uncentered ellipsoids
	The Löwner ellipsoid
	Operations on uncentered ellipsoids
	Centered ellipsoids: definitions and operations

	Abstract interpretation on switched systems
	A collecting semantics
	The abstract domain of lower sets


	Unions of ellipsoids for switched affine systems
	 Introduction 
	Context
	Contribution

	The domain of unions of ellipsoids
	Definitions and notation
	Affine assignment
	If-then-else and switch statements
	Body of loops
	Loop invariants
	A robust analysis

	Non-monotone Kleene algorithm for switched affine systems
	The non-monotone Kleene iteration
	On the convergence of the scheme
	Two implementations for affine and linear programs
	Alternative approaches: the "big-LMI" and "big-BMI" methods
	Benchmarks

	A nonlinear power algorithm for linear systems
	Additive and multiplicative power iterations
	Benchmarks


	Tropical Kraus maps for switched systems
	Tropical Kraus maps
	Notation and definitions
	Tropical Kraus map associated with a switched linear system
	Non-linear eigenvalue and fixed point problems
	Non-linear eigenvectors and computation by Krasnoselskii-Mann iteration
	"Relaxation" of the graph-Lyapunov-function approach

	Existence of nonlinear eigenvectors
	Inequalities between classical and tropical Kraus maps
	Existence of non-linear eigenvectors
	Proof of Theorem 8.9
	Obstacles for simpler proofs
	On the convergence towards a non-linear eigenvector

	Perturbations methods to ensure convergence
	Additive damping approach
	Convergence analysis of the multiplicative power iteration

	Experimental results
	Implementation issues
	Application to the joint spectral radius
	A faster curse of dimensionality attenuation scheme


	Implementations of the algorithms
	Presentation of MEGA
	Using MEGA

	Conclusion and perspectives
	Elements of Semidefinite Programming


