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The positive steady states of chemical reaction systems modeled by mass action kinetics

are investigated. This sparse polynomial system is given by a weighted directed graph
and a weighted bipartite graph. In this application the number of real positive solu-
tions within certain affine subspaces of Rm is of particular interest. We show that the

simplest cases are equivalent to binomial systems and are explained with the help of
toric varieties. The argumentation is constructive and suggests algorithms. In general
the solution structure is highly determined by the properties of the two graphs. We

explain how the graphs determine the Newton polytopes of the system of sparse poly-
nomials and thus determine the solution structure. Results on positive solutions from
real algebraic geometry are applied to this particular situation. Examples illustrate the
theoretical results.

c© 2002 Elsevier Science Ltd

1. Introduction

We investigate a class of sparse polynomial systems which come from applications. These
systems arise in the modeling of chemical reaction systems by the so-called mass action
kinetics. The polynomials in the system are defined by two graphs, a weighted directed
graph for the chemical reactions and a weighted bipartite graph for the involved chemi-
cals. An introduction to graph theory may be found in Diestel (1997).

In the non-algebraic chemical literature (Horn and Jackson, 1972; Feinberg and Horn,
1977; Clarke, 1980; Feinberg, 1979, 1987, 1988, 1991; Schlosser and Feinberg, 1994) there
have been several attempts to study the number of real positive solutions depending
on the structure of the graphs while dynamic phenomena have been greatly studied by
numerical mathematicians (see, for example, Ebert et al., 1981).

The investigation of real positive solutions of the sparse polynomial system f(x) = 0 is
very important for the application since these are the steady state solutions of a dynam-
ical system ẋ = f(x). As a second motivation we mention singular perturbation theory.
This theory exploits the knowledge of the real variety of f(x) = 0 for the investigation of
properties of periodic orbits of ẋ = f(x). A decomposition into slow and fast variables is
done in cases where a periodic orbit is close to the real variety. For another motivation
observe that f(x) may be the reaction part of a partial differential equation of reaction-
diffusion type. The dependence of the steady states on the parameter (e.g. a coefficient
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of a monomial) influences the existence of time- and space-dependent solutions of the
reaction diffusion system.

The study of positive solutions by chemists and applied mathematicians is completely
independent of the literature on sparse polynomial systems in algebraic geometry. There
are at least four methods for dealing with sparse polynomial systems: Gröbner bases,
characteristic sets, sparse resultants, and homotopy methods. In Melenk et al. (1989)
Gröbner basis computations for systems of mass action type have been performed. We
do not follow this approach. The homotopy method (Huber and Sturmfels, 1995) is a
mixed discrete-numeric algorithm in order to find all complex solutions of the sparse
polynomial system. It is based on subdivisions of the Newton polytopes associated to
the sparse equations. Based on this a wide range of articles appeared (see, for example,
Verschelde and Gatermann 1995; Verschelde et al. 1996; Huber and Verschelde 1998; Gao
et al. 1999).

Related to this approach there are results on the number of real and positive real
solutions (Itenberg and Roy, 1996; Sturmfels, 1994a,b). In Sturmfels (1998) an easy to
read summary of these approaches is presented. In the last section we apply this method
to our particular situation.

The aim of this paper is to build a bridge between the two areas, the applied math-
ematics literature and the algebraic literature on sparse polynomial systems. We give a
mathematical introduction into the model and algebraic proofs of the results in the non-
algebraic literature. The application of the results of sparse polynomial systems gives a
deeper understanding and transparency and leads to new algorithms. Since the problem
is formulated by graphs all results have a graph theoretic interpretation. Our main result
is that the Newton polytopes show that parts of the directed graph are closely related
to the existence of positive solutions for various choices of rate constants.

The outline of the paper is as follows. In Section 2 we give a detailed description of the
problem, the sparse polynomial system Y AΨ(x) = 0. Since the coefficients are heavily
determined by the structure of the matrix A this structure is investigated in Section 3.
Section 4 gives the general structure of the equations. Sections 5–7 deal with special
simple cases without mixed equations. Some systems do not have positive solutions. Some
systems can be decoupled explicitly. Other systems are equivalent to binomial systems.
Systems satisfying the assumptions of the Deficiency One Theorem have precisely one
positive solution. The mathematical tools are Smith normal form and Hermite normal
form from linear algebra and toric varieties from algebraic geometry.

Finally, the last section applies the theory of sparse polynomial systems using mixed
subdivisions of Newton polytopes.

Examples illustrating the theoretical results have been computed with the help of
Maple.

2. The Model of Mass Action Kinetics

Chemical reactions are determined by the reacting chemicals and some rules for pos-
sible reactions which transfer one group of chemicals into another group of chemicals.

A mathematical description of this information is given by two graphs. First there is a
weighted directed graph R with oriented edges Cj → Ci for some i, j ∈ {1, . . . , n} linking
the vertices Ci. Each oriented edge (arrow) Cj → Ci has a weight kCj→Ci

= kij ∈ R+.
This information is encoded in the weighted adjacency matrix K = (kij) ∈ (R≥0)n,n with
kij = 0 if and only if Cj → Ci is not an arrow. The second graph is a weighted bipartite
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graph encoding the occurrence of chemical species Si in Cj . The two sets of vertices
consist of the species Si, i = 1, . . . ,m and the Cj , j = 1, . . . , n. Each edge {Cj Si} has a
weight yij ∈ N and yij = 0 if and only if Cj and Si are not adjacent. This defines the
weighted adjacency matrix whose relevant part is Y = (yij)i=1,...,m,j=1,...,n. We denote
the columns of Y by y1, . . . , yn ∈ (Z≥0)m and assume that they are all different.

Remark. In the chemical literature the vertices Ci are called complexes while the weights
kij of the edges are called rate constants. Y is called the stoichiometric matrix since the
complexes are given as Cj =

∑m
i=1 yijSi, j = 1, . . . , n with the so-called stoichiometric

coefficients yij .

There are some non-degeneracy restrictions on the directed graph. For example, each
Ci appears at least once in an oriented edge. A forward reaction Cj → Ci and an anti-
reaction Ci → Cj with two different associated constants are simultaneously possible.
But there are no parallel edges. Also some Cj may appear as results only, while others
appear on the left of a reaction Ci → Cj . The number of the latter is denoted by r.
Obviously, r ≤ n. In the bipartite graph it may happen that one Cj is not linked to
any Si and thus the associated column is yj = 0. But we assume that every vertex Si is
adjacent to at least one vertex Cj .

Remark. Cj which only appear as results are called product complexes. Cj appearing on
the left of a reaction are called reactant complexes. A reaction Cj → Cν with a complex
Cj not linked to any species Si corresponds to the fact that the chemical species in Cν

are constantly poured into the chemical reactor.

In a stirred chemical reactor the behavior of the concentrations xi of species Si under
chemical reaction is modeled by a system of autonomous ordinary differential equations.
The model of mass action kinetics is built from three mappings resulting in a system
given by sparse polynomials.

(1) The directed graph defines a linear mapping A which encodes the information about
the reaction probabilities. The amount of reaction Cj → Ci taking place depends on the
presence of the species in Cj in the reactor. The presence is measured by the quantity uj .
Then the chance that the reaction Cj → Ci actually happens is kijuj where kij is the
associated positive constant. The reaction will decrease the amount of all species in Cj

and increase the species in Ci. Let the unit vectors of Rn be denoted by ω1, . . . , ωn. Then

A : Rn → Rn, u 7→
∑

(Cj→Ci)∈R

kijuj(ωi − ωj),

is a linear mapping measuring the changes. Since

Au =
∑

(Cj→Ci)∈R

kij uj ωi −
∑

(Ci→Cj)∈R

kji ui ωi = Ku−
n∑

i=1

(
n∑

j=1

kji

)
ui ωi,

the matrix of the mapping A with respect to the standard basis ω1, . . . , ωn of Rn is the
matrix A = (K − diag(Kte)), where e = (1, . . . , 1)t ∈ Rn. An alternative presentation
of A uses two incidence matrices. The first incidence matrix of the directed graph is
Ia = (wij)i=1,...,n,j=1,...,a where wij ∈ {−1, 0, 1} and a denotes the number of arrows.
Each column represents an oriented edge Cj → Ci by containing one entry −1 for Cj
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and 1 for Ci. The second incidence matrix is IK = (κµν)µ=1,...,a,ν=1,...,n with κµν ∈
{kij | i, j = 1, . . . , n} or κµν = 0. Each row corresponds to one oriented edge and has at
most one non-zero entry. The µth arrow Cj → Ci gives κµj = kij encoding the weight
and that Cj is the reactant complex. With these notations

A = K − diag(Kte) = Ia IK .

Remark. In the chemical literature A is called the kinetic matrix.

Observe that n− r columns of A corresponding to product complexes are zero.

(2) For each vertex Cj there is a monomial xyj =
∏m

i=1 x
yij

i in the variables x1, . . . , xm

which are the concentrations of the species. Whenever something depends on the chance
that the chemicals in Cj meet in the chemical reactor, the monomial xyj is involved.
Thus we define

Ψ : Rm → Rn, Ψ(x) =

x
y1

...
xyn

.
The exponents yj are the columns of the matrix Y while yij = (yj)i denote the elements
of Y = (yij). Often we will restrict Ψ to the non-negative orthant (R≥0)n or to the
positive orthant (R+)n.

(3) The third mapping is the linear mapping

Y : Rn → Rm, z →
n∑

j=1

yjzj ,

associated to the relevant part Y = (y1, . . . , yn) ∈ (Z≥0)m,n of the weighted adjacency
matrix of the bipartite graph. yj is the j-column of Y while yij = (yj)i denote the
elements of Y = (yij). The change of the jth complex is zj = (Au)j . The chemical
substance Si appears in some of these Cj with coefficient yij . Thus (Y z)i gives the
change of species Si according to the changes of the complexes. The composition is

Y Au = Y (K − diag(Kte))u =
n∑

i=1

n∑
j=1

yikijuj −
n∑

j=1

yj

n∑
i=1

kijuj

=
∑

(Cj→Ci)∈R

kijuj(yi − yj).

Altogether the chemical reaction is modeled by the differential equations

ẋ = Y AΨ(x). (1)

An obvious property is that the monomials corresponding to pure product complexes do
not appear in (1) because of the structure of A.

Remark. Equation (1) is presented in this form by Feinberg. It is a special case of the
systems investigated in Clarke (1980), Eiswirth (1994), Eiswirth et al. (1996), Gatermann
(2000) and Heinrich and Schuster (1996, 1998) and references therein. Clarke uses the
matrix ν := Y Ia which has the property that each column contains the stoichiometric
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Figure 1. A trajectory within an affine subspace as in Lemma 2.1.

coefficients of the reactant complex and the product complex of one reaction, but with
opposite sign. With v(x) = IKΨ(x) system (1) is written as

ẋ = ν v(x). (2)

In the general case the exponents of monomials in Ψ(x) are less than or equal to yij . In
the chemical literature the two graphs are represented as a diagram.

Remark. (i) It should be understood that the weighted directed graph and the weighted
bipartite graph are often a description of the model after the actual problem has been
simplified. Several oriented edges are often summarized as one edge by experience and
by insight into the chemical process by chemical engineers. In the elementary reactions
the complexes consist, most of the time, of two species only. (ii) A special case occurs if
the chemical reaction only happens on the surface of a catalyst. Then the graphs have
a more special structure. (iii) Often the model of mass action kinetics is modified by
taking, instead of monomials, more general functions into account. (iv) The edge 0→ Si

models pouring liquid into the reactor and Sj → 0 taking some substance out: a steady
state of the equations corresponds to a constant flow of the actual system.

When studying the differential equation (1) one is first interested in the steady state
solutions in (R+)m or (R≥0)m in its dependency of the graph structure.

Due to the structure arising from chemical reactions the systems will often be under-
determined. Thus one adds additional linear restrictions in order to find finitely many
solutions. A natural choice are the affine linear subspaces x0 + im(Y A) since they are
flow-invariant by the following lemma.

Lemma 2.1. Let ẋ = Bχ(x) be a differential equation with a vector of monomials χ(x) =
(c1xd1 , . . . , clx

dl)t with ci ∈ R \ {0}, di ∈ (Z≥0)m, i = 1, . . . , l and a matrix B ∈ Rm,l.
A solution trajectory x : R → Rm for the initial condition x(t0) = x0 ∈ (R)m stays for
all t > t0 within the affine space x0 + im(B). Assume, additionally, that the constants
ci in χ are positive. If x(t0) = x0 ∈ (R≥0)m then x(t) stays for all t > t0 in the convex
polyhedral cone x0 +

{∑l
j=1 αjBωj |αj ≥ 0, j = 1, . . . , l

}
.
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Proof. The first statement is equivalent to the fact that for any t1 < t2 the vector
x(t1)− x(t2) is an element of im(B). Simple integration along the solution x(t) yields

x(t2) = x(t1) +
∫ t2

t1

Bχ(x(t)) dt.

This is equivalent to

x(t2)− x(t1) = B

∫ t2

t1

χ(x(t)) dt,

which shows that the difference x(t2) − x(t1) is a linear combination of the columns of
B with coefficients αj =

∫ t2
t1
χj(x(t)) dt =

∫ t2
t1
cjx(t)dj dt.

If x(t) is non-negative then the monomial vector χ is non-negative by the positiveness
of the constants ci and so are the coefficients αj . 2

A trajectory in the positive orthant (R≥0)m staying in the cone x0+
∑

j αjBωj stays in
particular in (x0+im(B))∩(R≥0)m. In our context two special cases of B are interesting.

Corollary 2.2. For the differential equation ẋ = Y AΨ(x) each affine space x0 +
im(Y A) is flow-invariant. In particular ((x0 + im(Y A)) ∩ (R≥0)m for any x0 ∈ Rm

is flow-invariant.

Proof. Apply Lemma 2.1 with B = Y A and χ = Ψ. 2

Corollary 2.3. For the differential equation ẋ = Y IaIKΨ(x) each affine space x0 +
im(Y Ia) is flow-invariant. In particular ((x0 + im(Y Ia)) ∩ (R≥0)m for any x0 ∈ Rm is
flow-invariant.

Proof. Apply Lemma 2.1 with B = Y Ia and χ = IKΨ = v. 2

Remark. In Feinberg (1987) the vector space im(Y A) is called kinetic space and S =
im(Y Ia) = span({yi − yj | (Cj → Ci) ∈ R}) is called stoichiometric space. Obviously,
im(Y A) ⊆ S. In Section 3 we will give a sufficient condition for im(Y A) = S. Choosing
different sets of constants {kij | (Cj − Ci) ∈ R} in general the linear space im(Y A) will
vary with the choices of kij since the matrix A depends on these constants. However, for
many problems arising in applications we have im(Y A) = S.

Let vi, i = 1, . . . ,m − rank(Y A) denote an orthonormal basis of the orthogonal com-
plement of im(Y A). That means the vi form a basis of ker((Y A)t). As known from
elementary linear algebra the condition x ∈ (x0 + im(Y A)) is equivalent to vt

ix− ai = 0,
i = 1, . . . ,m− rank(Y A), for ai = vt

ix0 ∈ R.
One would like to choose all vi to be non-negative, but in general the dimension of the

convex polyhedral cone ker((Y A)t) ∩ (R≥0)m may be smaller than dim(ker(Y A)t) (for
an example, see Heinrich and Schuster, 1996).

Remark. If a vector vi is non-negative then vt
ix − ai = 0 is called the conservation

relation and vi is called the conservation vector since the physical meaning is that a
quantity is conserved.
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We formulate the problem more precisely:

Problem 2.4. Given a weighted directed graph with adjacency matrix K = (kij) ∈
(R≥0)n,n and incidence matrices Ia, IK and matrix A = IaIK . Given a weighted bipartite
graph with matrix Y = (y1, . . . , yn) = (yij) ∈ (Z≥0)m,n. We choose a basis {vi} of
ker((Y A)t) and constants ai ∈ R. We are interested in the solutions in (R≥0)m or
(R+)m of

Y AΨ(x) = 0, vt
ix− ai = 0, i = 1, . . . ,m− s, (3)

s = rank(Y A) depending on the choices of the constants ai and the rate constants kij .
Especially, it is interesting to know whether the number of solutions depends on the
choices of ai when the constants kij are fixed.

We will investigate Problem 2.4 in the context of algebraic geometry where a system
of sparse Laurent polynomials in the variables x1, . . . , xm is written as

f ij(x) =
∑

a∈Ai

cija x
a = 0, j = 1, . . . , ki, i = 1, . . . , r, (4)

where k1 + · · · + kr = m and cija ∈ C are constants and the supports Ai ⊂ Zm have
finite order. The most important objects are the Newton polytopes and the lattice. For
an introduction to the general theory of polytopes see Ziegler (1995).

Definition. The Newton polytope of a sparse polynomial f ij(x) with support Ai ⊂ Zm

is the convex hull of the points a ∈ Ai. This polytope in Rm is denoted by conv({a | a ∈
Ai}). The lattice of one sparse polynomial f ij(x) with support Ai ⊂ Zm is the Z-module
generated by all a− b, b ∈ Ai \{a}, where one element a ∈ Ai is chosen fixed. The lattice
of the system of sparse polynomials f ij(x) with supports Ai ⊂ Zm, i = 1, . . . , r is the
sum of the lattices of the single polynomials.

The naive way of looking at equation (3) is to identify (Y AΨ)k, k = 1, . . . ,m and
vt

ix − ai as sparse polynomials. But Y A does not have full rank and one would like to
perform linear algebra operations first. Before using the results from algebraic geometry
one uses linear algebra in order to find supports as sparse as possible. On the other
hand the coefficient matrix Y A depends on the structure of the graphs. That is why the
literature (Feinberg and Horn, 1977) starts with the investigation of the kinetic matrix A.

3. The Structure of the Matrix A = IaIK

Since the matrix A depends on the structure of the directed graph the basic properties
of a directed graph are recalled first.

Ignoring the orientation of the edges we have a multi-graph. A standard notion of a
graph is that of its connected components. We refer to them as Lλ ⊂ {1, . . . , n}, λ =
1, . . . , l collecting the indices of connected vertices. Thus {1, . . . , n} = L1 ∪̇ L2∪̇ · · · ∪̇ Ll.
Analogously, we decompose the set of indices of oriented edges {1, . . . , a} into Eλ corre-
sponding to connected components.

Since the graph is directed the connected components may be even further decomposed.
While a cycle Ci → Cj1 → Cj2 ← Cj3 → · · · ← Cjk

→ Ci (arrows in one or the
other direction) is called a circuit in matroid theory (Björner et al., 1993) a cycle with
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all arrows in the same direction is called a positive circuit. Two vertices Ci, Cj on a
positive circuit are called strongly linked (Feinberg, 1979, pp. 4–7). A maximal set of
vertices which are pairwise strongly linked is called the strong connected component.
If no Cj in a strong connected component reacts to a Ci not in this component, this
component is called the terminal strong connected component. We denote these terminal
components by T ν

λ ⊂ {1, . . . , n}, ν = 1, . . . , tλ where t1 + · · · + tl = t is their total
number. Accordingly, the set of arrows decompose into Eν

λ ⊂ {1, . . . , a}, ν = 1, . . . , tλ
for the terminal strong connected components. For the arrows between strong connected
components we introduce the index set Cλ ⊆ Eλ \

⋃
ν Eν

λ .

Lemma 3.1. The vector space Cn decomposes into vector spaces according to the con-
nected components which are invariant under A, i.e. Lλ = span({ωi | i ∈ Lλ}) with

Cn = L1 ⊕ · · · ⊕ Ll and ALλ ⊂ Lλ, λ = 1, . . . , l.

Each Lλ further decomposes according to the terminal strong connected components, i.e.
for each λ = 1, . . . , l one defines T ν

λ = span({ωi | i ∈ T ν
λ }) for ν = 1, . . . , tλ, λ = 1, . . . , l

and the rest Rλ = span
({
ωi | i ∈ Lλ \

⋃tλ

ν=1 T ν
λ

})
. Then for all λ = 1, . . . , l

Lλ = T 1
λ ⊕ · · · ⊕ T

tλ

λ ⊕Rλ with AT ν
λ ⊂ T ν

λ , ν = 1, . . . , tλ.

Proof. The matrix A decomposes according to the connected components and terminal
strong connected components after a permutation of rows and columns as

A =

A1

. . .
Al

, Aλ =


B0 0 · · · 0
B1 Aλ1 0
...

. . .
Btλ

0 Aλtλ

, λ = 1, . . . , l.

The connected components give a block structure of Ia and IK with blocks ((Ia)ij)i∈Lλ,j∈Eλ

and ((IK)ij)i∈Eλ,j∈Lλ
. All entries outside these blocks are zero. Then Aλ = ((A)ij)i,j∈Lλ

is the product of blocks, which means that Lλ is invariant.
Analogously, the blocks Aλν associated to terminal strong connected components are

the product of blocks ((Ia)ij)i∈Lν
λ,j∈Eν

λ
and ((IK)ij)i∈Eν

λ ,j∈Lν
λ
. This gives the invariant

space T ν
λ . The remaining block B = ((A)ij)i∈Lλ,j∈Lλ\∪νT ν

λ
is the product of two sub-

blocks ((Ia)ik)i∈Lλ,k∈Eλ\∪νEν
λ

and ((IK)kj)k∈Eλ\∪νEν
λ ,j∈Lλ\∪νT ν

λ
yielding ARλ ⊂ Lλ. 2

The next theorem states that each terminal strong connected component gives a kernel
vector of A.

Theorem 3.2. (Feinberg and Horn, 1977, Proposition 4.1 in Feinberg, 1979)
We assume that the constants kij in the matrix IK are positive if Cj → Ci is an edge in
the directed graph and kij = 0 if and only if Cj → Ci is not an edge. The kernel of the
matrix A = IaIK = K − diag(Kte) decomposes as

ker(A) =
l⊕

λ=1

tλ⊕
ν=1

(ker(A) ∩ T ν
λ ).

Moreover, dim(ker(A) ∩ T ν
λ ) = 1, ν = 1, . . . , tλ, λ = 1, . . . , l and there exist generating

vectors vν
λ ∈ (R)n which are non-negative and have support T ν

λ , that means



A Family of Sparse Polynomial Systems Arising in Chemical Reaction Systems 283

(vν
λ)i > 0 for all i ∈ T ν

λ , (vν
λ)i = 0 for all i ∈ {1, . . . , n} \ T ν

λ .

In other words ker(A) equals span({vν
λ |λ = 1, . . . , l, ν = 1, . . . , tλ}).

Proof. By the block structure it is clear that ker(A) = ⊕λ ker(A) ∩ Lλ. Moreover, we
may restrict ourselves to the case that there are no pure product complexes and thus
IK has maximal rank. Otherwise each pure product complex forms one terminal strong
connected component. Thus each index i corresponding to a pure product complex gives
a unit vector ωi in the kernel of A and consequently an invariant space T ν

λ = span(ωi).
Since IK has maximal rank we only need to investigate kernel vectors w ∈ ker(Ia) and

then solve w = IKv, if possible. But ker(Ia) is generated by vectors associated to circuits.
First we investigate terminal strong connected components and its associated blocks

Aλν since they give invariant subspaces. The kernel of Ia restricted to this (ker(Ia) ∩
span({ωi | i ∈ Eν

λ})) is generated by positive circuits within this terminal strong con-
nected component. Thus w is a linear combination of positive circuits. Since A has
the representation K − diag(Kte) the block Aλν also has such a representation. But
et(K − diag(Kte)) = etK − etK = 0. This yields dim(ker(A) ∩ T ν

λ ) ≥ 1. If the dimen-
sion was two or larger there would be a kernel vector v of Aλν with vi = 0 for one
i ∈ T ν

λ . Then for each circuit Ci
e1−→ Cj1

e2−→ Cj2
e3−→ · · · ek−→ Cjk

ek+1−−−→ Ci we
have (IKv)e1 = 0. Since the columns of ((Ia)kκ)k∈{i,j1,...,jk},κ∈{e2,...,ek+1} are linearly
independent wκ = (Iav)κ = 0, κ ∈ {e2, . . . , ek+1} and thus vjµ = 0, µ = 1, . . . , k by the
maximal rank of IK . Since Ci is strongly linked to all j ∈ T ν

λ it follows v = 0 and thus
dim(ker(A) ∩ T ν

λ ) = 1.
Let w ∈ ker(Ia) be a linear combination of vectors corresponding to circuits within

one non-terminal strong connected component. Then for v with IKv = w we have vi 6= 0
for all i with Ci in this strong connected component by the argumentation earlier. But
then wj 6= 0 for some j ∈ Cλ (some arrow pointing out) contradicting the assumption.

For some graphs there exists no circuit involving arrows from Cλ connecting non-
terminal and terminal strong connected components. Then the proof is complete.

So we assume in general that the linear combination of a kernel vector w ∈ ker(Ia)
involves a circuit with arrows from Cλ. Then there exists a non-terminal strong connected
component and two arrows Ci

µ−→ Cj and Cχ
κ−→ Cξ (pointing out) such that wµ < 0 and

wκ > 0. Because rate constants kij are positive vi < 0 and vχ > 0. Looking at positive
circuits within the non-terminal strong connected component involving Ci and Cχ we
conclude as earlier that all vµ for all Cµ in this component have the same sign. This gives
a contradiction and no such kernel vectors w ∈ ker(Ia) exist. 2

The theorem states that each block Aλν has rank defect one and each block Aλ has rank
defect tλ, the number of terminal strong connected components within the connected
component λ. Thus rank(A) = n − t where t is the total number of terminal strong
connected components.

The following defines a case with a simple structure of A.

Definition. (Feinberg, 1979) The directed graph is called weakly reversible if all its
connected components are strong connected components.

In a weakly reversible graph each connected component equals its terminal strong
connected component. For weakly reversible graphs we have rank(A) = n− l where l is
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the number of connected components. But rank(A) = n− l may be true for graphs which
are not weakly reversible. For the latter, it is sufficient that each connected component
contains precisely one terminal strong connected component (tλ = 1, λ = 1, . . . , l).

4. The Structure of the Equations

In this paragraph we restrict ourselves, for simplicity, to directed graphs which are
weakly reversible. By elementary linear algebra we transform the equations Y AΨ(x) = 0
into the form of system (4) with supports as sparse as possible.

For the coefficient matrix we use the decompositions Yλ = (yij)i=1,...,m,j∈Lλ
and

Aλ = (aij)i,j∈Lλ
. After we have performed some linear algebra operation on Y AΨ(x)

the number of polynomials involving monomials from the connected component λ only
is

kλ = rank(Y A)− rank(Y1A1 · · · ŶλAλ · · ·YlAl)), λ = 1, . . . , l,

where ŶλAλ means to leave out this block. After linear algebra transformations there
remain kl+1 = rank(Y A) −

∑l
λ=1 kλ polynomials (called mixed) involving monomials

from more than one connected component. Finally, kl+2 = m−rank(Y A) linear relations
complete the set of equations.∑

j∈Lλ

cij x
yj = 0, i = 1, . . . , kλ, λ = 1, . . . , l,

n∑
j=1

bij x
yj = 0, i = 1, . . . , kl+1,

vt
i x− ai = 0, i = 1, . . . , kl+2.

(5)

The coefficients cij and bij depend on the rate constants and the structure of the graphs.
Studying the solutions of Y AΨ(x) = 0 within affine shifts of im(Y A) is equivalent to

studying system (5).

Remark. (i) The number of mixed equations in the second group is usually small, just
1, 2 or 3. The support is the collection of supports of the first polynomials. Sometimes one
may even further distinguish the supports of the kl+1 mixed equations. (ii) The Newton
polytopes are of a particular structure. For the linear relations they are simplices.

Since the linear algebra of the coefficient matrix Y A = Y IaIK is so important, Feinberg
(1979) calls δ = rank(Ia) − rank(Y Ia) = n − l − rank(Y Ia) = n − l − dim(S) the
deficiency where l is the number of connected components. In case the directed graph is
weakly reversible δ agrees with rank(A)−rank(Y A), but if one connected component has
several terminal strong connected components than rank(A) < rank(Ia) and rank(A) −
rank(Y A) < δ may be possible.

In the following sections we consider a simple case for a graph which is not weakly
reversible and several results for weakly reversible graphs without mixed equations.
Finally, we investigate the general case with mixed equations.

5. A Case Without Positive Solutions

In the following a system of mass action kinetics is investigated where the directed
graph is not weakly reversible and an equation with a zero-dimensional Newton polytope
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is included. Then the mixed volume of the Newton polytopes is zero. By Bernstein’s the-
orem, the mixed volume of the Newton polytopes gives the number of complex solutions
in (C \ {0})m for generic coefficients, see Cox et al. (1998).

Lemma 5.1. Consider the system Y AΨ(x) = Y IaIKΨ(x) = 0 given by a weighted
directed graph with adjacency matrix K and incidence matrices Ia and IK and a weighted
bipartite graph with matrix Y . Assume that the directed graph is not weakly reversible and
there exists an index i ∈ R =

⋃
λ

(
Lλ \

⋃
ν T ν

λ

)
in the non-terminal part such that Y ai is

linearly independent of the other columns Y aj , j ∈ {1, . . . , n} \ {i}, where ai denotes the
ith column of A. If yi 6= 0 then the system Y AΨ(x) = 0 has no solutions in (C \ {0})m.
Especially, it has no positive real solutions. If yi = 0 then Y AΨ(x) = 0 has no solution
at all.

Proof. The assumptions are such that by linear algebra an equation xyi = 0 has to be
satisfied. If yi 6= 0 this can only be satisfied if some component xj = 0 where j is in the
support of yi. The case yi = 0 yields the unsolvable equation 1 = 0. 2

Example 5.2. A model introduced by Heinmets (see also Bock, 1981 and Melenk et
al., 1989) describes the synthesis of an enzyme in a bacterial cell. Here S10 denotes the
enzyme and S3 is a regulator gene. In the beginning of the reaction only S3, S7 and S8

are present. Since in Bock (1981) and Melenk et al. (1989) only the differential equations
are given we constructed a directed graph and a bipartite graph as in Figure 2 such that
these equations result. The matrix of the directed graph is

A =


A1 0

A2

A3

0 A4


with

A1 =


−p2 − p3 0 p1 0

0 −p4 p15 0

p2 p4 −p1 − p15 0

p3 0 0 0

, A2 =



−p12 0 0 0 0

p12 −p7 0 0 0

0 p7 −p6 0 0

0 0 p6 −p8 0

0 0 0 p8 0


,

A3 =



−p13 0 0 0 0

0 −p11 p10 0 0

p13 0 −p10 − p14 0 0

0 p11 0 0 0

0 0 p14 0 0


, A4 =


−p5 0 0

0 −p9 0

p5 p9 0

.

The index sets of the connected components and of the terminal strong connected com-
ponents of the weighted directed graph are

L1 = {1, 2, 3, 4}, T 1
1 = {4}, L2 = {5, 6, 7, 8, 9}, T 1

2 = {9},
L3 = {10, 11, 12, 13, 14}, T 1

3 = {13}, T 2
3 = {14}, L4 = {15, 16, 17}, T 1

4 = {17}.
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Figure 2. Enzyme synthesis in a bacterial cell (Heinmets). In the bipartite graph on the right we assume

the convention that a weight of the edge Cj − Si is yij = 1 if no number is drawn. If Cj and Si are not

adjacent then yij = 0. The weights pi in the directed graph on the left are all positive constants.

The described differential equations with positive constants pi are

ẋ1 =(−p2 − p3)x1 + p1x3 ẋ2 =−p4x2 + p15x3

ẋ3 =(p2 + p3)x1 + p4x2 − (p1 + p15)x3 ẋ4 = p12x6x7 − p7x4

ẋ5 = p6x7 − p8x5 ẋ6 = p3x1 − p12x6x7 − p5x6

ẋ7 =−p12x6x7 + p7x4 − p6x7 + p8x5 ẋ8 =−p13x8x9 + p14x12

ẋ9 = p8x5 − p13x8x9 − p9x9 ẋ10 = p11x11

ẋ11 =−p11x11 + p10x12 ẋ12 = p13x8x9 + p11x11 − (p10 + p14)x12.

We are interested in the steady state solutions. That means ẋ = 0. Since rank(A3) =
rank(Y3A3) = 3 and rank(Y A) = 9, but rank(Y1A1, Y2A2, Y4A4) = 6 with Y = (Y1, Y2,
Y3, Y4) we deduce that A3Ψ̃(x) = 0 must be satisfied. This is equivalent to the equations

xy10 = x8 x9 = 0, xy11 = x11 = 0, xy12 = x12 = 0.

The assumptions of Lemma 5.1 are satisfied for i = 10, 11, 12. Obviously, we need to
consider two cases.
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1. Case (x8 = x11 = x12 = 0): substitution gives the remaining equations

(−p2 − p3)x1 + p1x3 =0 −p4x2 + p15x3 =0
(p2 + p3)x1 + p4x2 + (−p1 − p15)x3 =0 p12x6x7 − p7x4 =0

p6x7 − p8x5 =0 p3x1 − p12x6x7 − p5x6 =0
−p12x6x7 + p7x4 − p6x7 + p8x5 =0 p8x5 − p9x9 =0.

These are seven linear equations in nine monomials. A solution is obviously

x1 =
x6(p12x7 + p5)

p3
, x3 =

x6(p2p12x7 + p5p2 + p12x7p3 + p5p3)
p3p1

, x5 =
p6x7

p8
,

x2 =
p15x6(p2p12x7 + p5p2 + p12x7p3 + p5p3)

p4p1p3
, x4 =

p12x6x7

p7
, x9 =

p6x7

p9
.

2. Case (x9 = x11 = x12 = 0): this yields x5 = 0, x7 = 0, x4 = 0 and

x1 =
p5x6

p3
, x2 =

p15p5x6(p2 + p3)
p4p1p3

, x3 =
p5x6(p2 + p3)

p3p1
.

These solutions have been computed in Melenk et al. (1989) using Gröbner bases in the
ring Q(p)[x]. Exploiting the structure this system is easily solved by elementary linear
algebra.

The proof of the Lemma 5.1 is based on the approach to first solve the linear system
Y Az = 0 and then solve z = Ψ(x). The assumptions in Lemma 5.1 on the graphs yields
a solution of the first system with zi = 0. In turn the second system gives solutions with
some xj = 0. For sparse polynomial systems in general this is a non-generic situation, but
for chemical reaction systems this happens easily because of the structure of the graphs.
In the following this trivial situation will not show up.

6. Exploiting the Sublattice

If system (5) contains no mixed equations the lattice generated by the exponents of the
monomials is known because there is a close relation between coefficients and exponents.
In fact an explicit decoupling of the equations is possible by choosing an appropriate basis
of the lattice (Z-module). For computation of a good module basis we use the Hermite
normal form (Adkins and Weintraub, 1992, p. 301). For its efficient implementation see
Storjohann (1998) and Storjohann and Labahn (1996). A hint to the following lemma
may be found in Feinberg (1987, p. 2262).

Lemma 6.1. Consider the system Y AΨ(x) = 0 induced by the two graphs. Assume that
the directed graph is weakly reversible and

rank(Y A) =
l∑

λ=1

rank(YλAλ), (6)

where l denotes the number of connected components, A = (aij)i,j=1,...,n and

Aλ = (aij)i,j∈Lλ
, Yλ = (yij)i=1,...,m,j∈Lλ

,

are collections of columns and rows corresponding to connected components, respectively.
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xm

x1

x (zs+1,..., zm)

zi = const, i = 1,..., s

x0 + im(YA)

Figure 3. Transversal nonlinear parameterization derived from Hermite normal form.

By vi, i = 1, . . . ,m− rank(Y A) we denote an orthonormal basis of ker((Y A)t) and con-
sider the family of sets {x ∈ (R+)m | vt

ix−ai = 0, i = 1, . . . ,m−rank(Y A)} parametrized
by the constants ai ∈ R.

Then all non-empty sets of this family contain the same number of real positive solu-
tions of Y AΨ(x) = 0.

Proof. Condition (6) implies that the system Y AΨ(x) = 0 is equivalent to∑
j∈Lλ

cij x
yj = 0, i = 1, . . . , rank(YλAλ), λ = 1, . . . , l,

where cij are constants.
For each connected component we choose a monomial xyj(λ) . Since we are interested in

positive solutions we may divide by this monomial and we obtain the equivalent equations

∑
j∈Lλ\{j(λ)}

cij x
yj−yj(λ) = −cij(λ), i = 1, . . . , λ = 1, . . . , l. (7)

In other words we shift the Newton polytopes.
Each connected component gives a sublattice generated by yj − yj(λ), j ∈ Lλ \ {j(λ)}.

We are interested in the lattice given as the sum of these sublattices. In the matrix
Y A = Y IaIK the columns of Y Ia are differences such as yj − yi and IK does not change
the rank. Because of this and since the directed graph is weakly reversible the sublattice
associated to Lλ has dimension rank(YλAλ). Condition (6) implies that the sublattices
are independent and thus the full lattice has dimension rank(Y A) = dim(S) = s.

We collect the differences yj − yj(λ), j ∈ Lλ \ {j(λ)} as columns of a matrix Π. Then
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the Hermite normal form UΠ = H with upper staircase form

UΠ =


H11 H12 · · · H1l

0 H22 · · · H2l

...
. . .

...
0 0 Hll

0 · · · 0


and unimodular U is computed. The upper staircase blocks Hλλ have integer entries and
rank(YλAλ) many rows and |Lλ|−1 many columns. There are m−s zero-rows. We intro-
duce new coordinates z = (z1, . . . , zm) which are collected into blocks Z1, . . . , Zl, Zl+1

where Zλ collects rank(YλAλ) many variables associated to the connected component λ.
The remaining variables are Zl+1 = (zs+1, . . . , zm). The nonlinear change of coordinates
xi = zu1i

1 · · · zumi
m , i = 1, . . . ,m uses the invertible matrix U = (uij) giving a one-to-one-

correspondence between x and z. Substitution gives new monomials in z. Denote the
columns of Π by πi and the columns of H by hi. The monomial xπi is transformed into
the monomial zhi . But H involves many zeros.

After substitution, system (7) is decoupled. The first group of rank(Y1A1) many poly-
nomials depends on the variables Z1 of order rank(Y1A1). The second group involves
additionally Z2 and so on:

F1(Z1) = 0, F2(Z1, Z2) = 0, . . . , Fl(Z1, . . . , Zl) = 0.

The variables Zl+1 do not appear at all. That means we have an explicit parameterization
by zs+1, . . . , zm of the solution variety of Y AΨ(x) = 0.

But we are only interested in those x which satisfy the conservation relations vt
ix−ai =

0, i = 1, . . . ,m − s imposing some conditions on the remaining variables zs+1, . . . , zm.
Remember that {x ∈ Rm | vt

ix−ai = 0 i = 1, . . . ,m−s} equals an affine space x0+im(Y A)
with some appropriate x0 with ai = vt

ix0.
A solution x = zU is positive if and only if z is positive.
The linearization d

dzx(zs+1, . . . , zm) is given by

∂xj

∂zi
= uijz

u1j

1 z
u2j

2 · · · zuij−1
i · · · zumj

m = uij
1
zi
xj j = 1, . . . ,m, i = s+ 1, . . . ,m.

∂x
∂zi

is a modification of the ith row of U which for i = s + 1, . . . ,m is orthogonal
to im(Y A) = S = im(Π). If x is positive then diag(1/x1, . . . , 1/xm) defines a weighted
inner product. With respect to this local inner product ∂x

∂zi
is orthogonal to im(Y A). This

shows that the real positive variety is always transversal to the affine spaces x0+im(Y A).
Moreover, the equations F (Z1, . . . , Zl) = 0 have finitely many solutions because they
have a suitable Gröbner basis. After linear arrangements look at the leading terms with
respect to the reverse lexicographic ordering. Each leading term is a support involving one
additional variable. Then a Gröbner basis has this property too, yielding finitely many
complex solutions. By the finiteness and the transversality each set {x ∈ (R+)m | vt

ix −
ai = 0, i = 1, . . . ,m− s} contains exactly the same number of real positive solutions. 2

In Lemma 6.1 we have the nice situation that the lattice is the direct sum of the
sublattices associated to each connected component. The conditions in Lemma 6.1 are
strong. If the directed graph is not weakly reversible or the rank condition (6) is violated
then the lattice has dimension larger than rank(Y A). Most often the dimension is m. But
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in some special cases it is still possible to make statements about directions transversal
to the variety using the same technique.

Lemma 6.2. Let the connected component Lλ equal its terminal strong connected com-
ponents for some λ ∈ {1, . . . , l} and assume

rank(Y A) = rank(YλAλ) + rank(Y1A1 · · · ŶλAλ · · ·YlAl), (8)

where ŶλAλ means that this block is neglected. Let vi denote linearly independent normal
vectors being orthogonal to im(Y A). Let wj denote linearly independent normal vectors
being orthogonal to vi and im(YλAλ). We consider a family of non-empty sets Sab =
{x ∈ (R+)m | vt

ix − ai = 0, i = 1, . . . ,m − rank(Y A), wt
jx − bj , j = 1, . . . , } which is

parametrized by ai and bj. If the variety of Y AΨ(x) = 0 intersects a member Sab of the
family then it intersects transversally. All sets in the family contain the same number of
positive solutions of YλAλΨ̃(x) = 0. If additionally rank(Aλ) = rank(YλAλ) then each
Sab contains precisely one positive solution of YλAλΨ̃(x) = 0.

Proof. By the rank condition the system Y AΨ(x) = 0 decouples into YλAλΨ̃(x) =
0, Ψ̃i(x) = xyi , i ∈ Lλ and some other equations. Choosing one j(λ) ∈ Lλ we divide by
xyj(λ) and thus have to investigate the lattice generated by yj − yj(λ), j ∈ Lλ \{j(λ)}. As
in the proof of the previous lemma the parameterization of the variety of YλAλΨ̃(x) = 0
is transversal to each Sab.

If additionally rank(Aλ) = rank(YλAλ) then YλAλΨ̃(x) = 0 is equivalent to AλΨ̃(x) =
0. By Theorem 3.2 this is equivalent to a binomial system. Binomial systems have either
no positive solution or precisely one positive solution. Here we have precisely one positive
solution which is easily seen as follows. By Theorem 3.2 a kernel vector u of Aλ is positive.
u = Ψ(x) is solved by a nonlinear change of variables given by the Smith normal form
or the Hermite normal form. This gives precisely one positive solution. For more details
see the proof of Theorem 7.1. 2

We view the solutions of the system Y AΨ(x) = 0 and vt
ix − ai = 0, i = 1, . . . ,m −

rank(Y A) as the intersection of the set of the solution of Y AΨ(x) = 0 with the set of
solutions of vt

ix − ai = 0, i = 1, . . . ,m − rank(Y A). Especially, we would like to know
how the solutions vary if the constants ai are varied. In general this dependency may be
very complicated. In this section we investigated cases where the intersection of the two
solution sets in the positive orthants are transversal. Moreover, the number of positive
solutions did not depend on the choice of the constants ai.

7. Using Toric Varieties

The proofs of the known deficiency theorems in this section are based on toric varieties,
a fundamental concept which we explain first.

Suppose we are interested in the complex solutions x ∈ (C \ {0})m of a system of
sparse Laurent polynomials

B χ(x) = 0, χ(x) =

x
a1

...
xan

 (9)
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with a matrix B ∈ Cm,n and supportA = {a1, . . . , an} ⊂ Zm generating a vector space of
dimension m. Then the toric ideal IA = {p ∈ C[z1, . . . , zn] | p(xa1 , . . . , xan) ≡ 0} defines
the affine toric variety XA = V (IA) = {z ∈ Cn | p(z) = 0 ∀ p ∈ IA}. Each solution
x ∈ (C\{0})m of (9) defines a z = χ(x) ∈ XA∩ (C\{0})n in ker(B) and conversely each
z ∈ XA ∩ (C \ {0})n ∩ ker(B) gives at least one solution x ∈ (C \ {0})m of (9) by solving
z = χ(x) with Hermite normal form. Since ker(B) is a linear vector space one better use
the version with homogenized monomials: x̃ = (x̃0, . . . , x̃n), d = maxi=1,...,n(deg(xai)),
ãi = (d − deg(ai), ai) with monomials χ̃i(x̃) = x̃ãi . That means we think of Cm as
embedded in the projective space Pm by xi = x̃i

x̃0
, i = 1, . . . ,m. By changing coordinates

we might as well use the support

Â =
{(

1
a1

)
, . . . ,

(
1
an

)}
,

and χ̂(x̂0, . . . , x̂n) = (x̂0x̂
a1 , . . . , x̂0x̂

an), with monomials χ̂i(x̂) = x̂âi . Then the homoge-
neous toric ideal

IÂ = {p ∈ C[z] | p(x0x
a1 , . . . , x0x

an) ≡ 0},
gives the projective toric variety XÂ = V (IÂ) ⊂ Pn−1. Each z ∈ (C \ {0})n with
[z] ∈ XÂ and Bz = 0 gives solutions x ∈ (C \ {0})m of (9) by solving χ̂(x̂) = z and
setting xi = x̂i, i = 1, . . . ,m.

Thus finding solutions x of (9) is equivalent to finding solutions z of

Bz = 0, zuj − zvj = 0, j = 1, . . .

where zuj − zvj denote a set of generators of IÂ. The name toric variety comes from
the fact that the rescaling (x̃0, t1x̃1, . . . , tnx̃n) with t ∈ (C \ {0})m of points in the
projective space Pm defines a group action of the torus group T = (C \ {0})m which
induces a torus action on Pn−1. Then XÂ is invariant under T . Moreover, the orbit
O1 = {[z] ∈ Pn−1 | z = (ta11

1 · · · ta1m
m , . . . , tan1

1 · · · tanm
m ) = t · 1} is dense and open in XÂ.

The rest of XÂ \ O1 is given by points with some coordinates zi = 0 corresponding
to points with some xj = 0 or 1/xj = 0. Often toric varieties are considered in a
more sophisticated manner than here (for a discussion see, for example, Chapter 13 in
Sturmfels, 1996 or Gelfand et al., 1994).

Restricting ourselves to positive solutions of (9) with B ∈ Rm,n we observe the fol-
lowing. Using the Hermite normal form it is easily seen that (R+)m is isomorphic to
the interior of X≥0 = {[z] ∈ XÂ, z ≥ 0}. Thus one needs to investigate the intersection
of the interior of the convex polyhedral cone ker(B) ∩ (R≥0)n with X≥0. The proof of
the Deficiency Zero Theorem (Theorem 7.1) for one connected component fits into this
principle with XÂ = Pn−1. In the Deficiency One Theorem (Theorem 7.3) the toric ideal
is generated by one polynomial.

The name of the following theorem (Feinberg, 1979, 1987, also cited in Epstein and
Pojman, 1998, p. 100) reflects the assumption that the deficiency rank(A) − rank(Y A)
is zero.

Theorem 7.1. (Deficiency Zero Theorem) Consider the system Y AΨ(x) = 0 with
A = K − diag(Kte) with e = (1, . . . , 1) defined by the weighted adjacency matrix K of
a weighted directed graph and the relevant part Y of an adjacency matrix of a weighted
bipartite graph. Let vi, i = 1, . . . ,m−rank(Y A) denote an orthonormal basis of ker((Y A)t).
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If the directed graph is weakly reversible and

rank(A) = rank(Y A),

then each non-empty set {x ∈ (R+)m | vt
ix − ai = 0, i = 1, . . . ,m − rank(Y A)} contains

precisely one real positive solution of Y AΨ(x) = 0.

Proof. Since the directed graph is weakly reversible and rank(Y A) = rank(A) condi-
tions (6) and (8) are satisfied. So the lattice is the direct sum of its sublattices and by
Lemmas 6.1 and 6.2 it is sufficient to look at the case that the directed graph has one
connected component which equals its terminal strong connected component.

Using the idea of toric varieties we need to solve Y Az = 0 and investigate the toric
variety. For the first task we observe that rank(Y A) = rank(A) implies that the equations
Y Az = 0 are equivalent to Az = 0. By Theorem 3.2 ker(A) is generated by one positive
vector z since there is one weakly reversible connected component only.

The toric ideal IŶ is defined by the lifted monomials x̂0x̂
yj , j = 1, . . . , n and we denote

Ŷ =
(

1 · · · 1
Y

)
.

IŶ is generated by polynomials given by kernel vectors of Ŷ (see Chapter 4 in Sturmfels,
1996). Since we show later that rank(Ŷ ) = n we have IŶ = {0} and the projective toric
variety V (IŶ ) equals the projective space Pn−1. The rank of Ŷ is equal to the rank of(

1 0 · · · 0
y1 y2 − y1 · · · yn − y1

)
.

Since there is only one connected component being both strong and terminal we have
rank(A) = rank(Ia) and thus rank(Y A) = rank(Y Ia) = n − 1. Since Ia is an incidence
matrix rank(Y Ia) equals the dimension of span(y2− y1, . . . , yn− y1). Thus rank(Ŷ ) = n.

It remains to solve χ̂(x̂) = z, where χ̂i(x̂) = x̂0x̂
yi and z is the positive vector which

generates ker(Y A). The Hermite normal form of Ŷ is given by a unimodular matrix
U ∈ GL(m + 1,m + 1,Z) and an upper triangular matrix H ∈ Zm+1,n with UŶ = H.
The last m − n + 1 rows of H are zero by rank(Ŷ ) = n. The invertible matrix U =
(uij)i,j=0,...,m suggests the nonlinear change of coordinates x̂i =

∏m
j=0 w

uji

j , i = 0, . . . ,m.
This transforms χ̂(x̂) = z into a binomial system

wh1 = z1, . . . , whn = zn, (10)

where h1, . . . , hn denote the columns of H. Because the last rows of H are zero, sys-
tem (10) does not depend on wn, . . . , wm. Since system (10) is triangular and z is posi-
tive there is exactly one positive solution w0, . . . , wn−1 of (10). Thus wn, . . . , wm give an
explicit parametrization of the variety of Y AΨ(x) = 0. Here xi = x̂i, i = 1, . . . ,m and

dxi

dwj
= ujiw

u0i
0 · · ·wuji−1

j · · ·wumi
m = ujiw

u0i
0 · · ·wuji

j · · ·wumi
m

1
wj

= ujixi
1
wj
.

On the positive orthant diag(1/x1, . . . , 1/xn) defines an inner product and 〈dx/dwj , v〉 =
1

wj
U t

jv with Uj = (uj1, . . . , ujm) the jth row of U minus the first entry. But Uj , j =
n, . . . ,m is orthogonal to span(y2− y1, . . . , yn− y1) since the last rows of H are zero and
thus the Uj are orthogonal to im(Y A). This means the solution variety of Y AΨ(x) = 0
is tranversal to each affine space x0 +im(Y A) = {x ∈ Rm | vt

ix−ai = vt
ix−vt

ix0 = 0, i =
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1, . . . ,m−n+1} in the positive orthant. That is why each space {x ∈ (R+)m | vt
ix−ai =

0, i = 1, . . . ,m− n+ 1} has precisely one positive solution. 2

An alternative proof would not use the projective space but transform Y AΨ(x) = 0
into a binomial system directly. For solving the binomial systems there are three methods:
using the logarithm (Feinberg, 1979; Itenberg and Roy, 1996) or the Hermite normal form
or the Smith normal form (Adkins and Weintraub, 1992). For efficient computation of
normal forms of integer matrices see Storjohann (1996, 1998); Storjohann and Labahn
(1996).

A similiar case also arises for directed graphs which are not weakly reversible.

Theorem 7.2. Consider the system Y AΨ(x) = 0 of polynomial equations defined by a
directed graph with weighted adjacency matrix K and incidence matrices Ia, IK and a
bipartite graph with matrix Y and A = IaIK = K − diag(Kte). Assume the graph has
one connected component only (l = 1). Assume

rank(Y A) = rank(A)− 1 = n− t− 1,

where t is the number of terminal strong connected components and n the number of
vertices of the directed graph. Moreover, assume dim(span({Y Ai, i ∈ T ν

1 })) = |T ν
1 | − 1

for each ν = 1, . . . , t, where Ai denotes the ith column of A and T ν
1 denotes the indices

of the νth terminal strong connected component. For the rest R = L1 \
⋃

ν T ν
1 assume

dim(span({Y Ai | i ∈ R})) = |R| − 1 and that
∑

i∈R Y Aiαi = 0 has a strict positive
solution α. Moreover, we assume

rank(Y A) = rank(Y Ia) = dim({yi − yj | i, j ∈ R or i, j ∈ T ν
1 }). (11)

Let vi, i = 1, . . . ,m− n+ t+ 1 denote an orthonormal basis of ker((Y A)t).
Then each non-empty set {x ∈ (R+)m | vt

ix− ai = 0, i = 1, . . . ,m−n+ t+1} contains
precisely one positive real solution of Y AΨ(x) = 0.

Proof. We follow the principle of intersecting a projective toric variety with the kernel
of the coefficient matrix as explained at the beginning of this section. By the rank assump-
tion rank ker(Y A) has a basis b0, . . . , bt. By Theorem 3.2 and the explicit assumptions
we may assume bν ≥ 0, ν = 0, . . . , t and

(b0)j = 0, j ∈
t⋃

i=1

T i
1 , (bν)j = 0, j ∈ R ∪

t⋃
i=1,i 6=ν

T i
1 , ν = 1, . . . , t

and
∏

j∈R(b0)j ·
∏t

ν=1

∏
j∈T ν

1
(bν)j 6= 0. Since the kernel vectors bν have disjoint sup-

port it is appropriate to look at multi-homogeneous toric ideals. Using extra variables
x̂0, x̂01, . . . , x̂0t we define homogenized monomials

ψ̂j(x̂) =

{
x̂0x̂0ν x̂

yj , if j ∈ T ν
1 for one ν ∈ {1, . . . , t},

x̂0x̂
yj if j ∈ R,

j = 1, . . . , n.

By this construction a solution x̂ which is determined from the intersection of ker(Y A)
with the toric variety gives the solution xj = x̂j , j = 1, . . . ,m. The toric ideal is generated
by polynomials derived from kernel vectors of Ŷ whose jth column is formed by the
exponents of ψ̂j . The rank of Ŷ is 1 + t + dim({yi − yj | i, j ∈ R or i, j ∈ T ν

1 }). The
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desired dimension is by assumption n− t− 1. Then rank(Ŷ ) = n and the toric variety is
a product of projective spaces.

Now one solves ψ̂(x̂) =
∑t

ν=0 λνbν . Once more we use the Hermite normal form
UŶ = H and a nonlinear change of coordinates. Since for each j there is a ν with
(bν)j > 0 there is precisely one positive solution, but some variables remain arbitrary.
There is a parametrization of the solutions of Y Aψ(x) = 0 by m − n slack variables
w1, . . . , wm−n. (Observe that x(w1, . . . , wm−n) does not depend on λν .) As in the proof
of the Deficiency Zero Theorem this variety is in the positive orthant transversal to
each space {x ∈ (R+)m | vt

ix − ai = 0} by use of the local inner product and the
fact that the last rows of U are orthogonal to the lattice. It is here where we require
condition (11). 2

Condition (11) makes an explicit assumption on the lattice. In Lemmas 6.1 and 6.2
and the deficiency theorems there are no explicit assumptions on the lattice since the
assumptions on the coefficient matrix Y A imply conditions for the lattice.

In Feinberg (1979, 1987, 1988), Feinberg formulates a theorem which he calls the
Deficiency One Theorem since a rank defect is one. The assumptions in Feinberg (1988)
are more restrictive than in Feinberg (1979). We present our version here. This theorem
should not be confused with the deficiency one theorem in Feinberg (1995b) which makes
different assumptions leading to several positive solutions.

Theorem 7.3. (Deficiency One Theorem, Feinberg, 1987 p. 2259, proof in
Feinberg, 1995a) Let the graph be weakly reversible and rank(YλAλ) ≥ |Lλ| − 2 for
each connected component, where λ = 1, . . . , l. Moreover, assume

rank(Y A) =
l∑

λ=1

rank(YλAλ). (12)

Let vi, i = 1, . . . ,m− rank(Y A) denote an orthonormal basis of ker((Y A)t).
Then each non-empty set {x ∈ (R+)m | vt

ix−ai = 0, i = 1, . . . ,m−rank(Y A)} contains
precisely one real positive solution of the polynomial equations Y AΨ(x) = 0.

Proof. Because of assumption (12) on the rank, the polynomial system decouples as
stated in the proof of Lemma 6.1. Consequently, we restrict ourselves to the case where
the graph has one connected component with rank(Y A) = rank(A)−1 = n−2. Moreover,
the nonlinear change of coordinates decouples the equations Y AΨ(x) = 0 and the linear
conservation relations. As in the proof of Lemma 6.1 each space (x0+im(Y A))∩ (R+)m =
{x ∈ R+)m | vt

ix − vt
ix0 = 0, i = 1, . . . } contains the same number of positive solutions.

It remains to show the existence of precisely one solution.
First we like to find generators of the convex polyhedral cone ker(Y A) ∩ (R≥0)n. By

Theorem 3.2 rank(A) = n − 1 and there exist a ∈ (R+)n with ker(A) = span(a). By
assumption rank(Y A) = n− 2 and thus there exist vectors b ∈ (R≥0)n and c ∈ (R≥0)n

with zero components such that ker(Y A)∩ (R≥0)n = {λb+µc |λ, µ ≥ 0}. Let us assume
b has one zero component bj and c has the zero component ck, respectively.

Secondly, we investigate the positive part of the projective toric variety. The support
A = {y1, . . . , yn} gives rise to a lattice generated by y2 − y1, . . . , yn − y1 of dimension
< m. The Hermite normal form may be used to decrease the number of variables. But
this does not affect the projective toric variety.
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z3

z2

z1

Figure 4. Schematic picture illustrating the proof of Theorem 7.3: intersection of a projective toric

variety (here a hypersurface) with the kernel in (R+)n, a convex polyhedral cone.

Since the connected component of the directed graph contains exactly one terminal
strong connected component rank(A) = rank(Ia), thus rank(Y A) = rank(Y Ia). By
assumption rank(Y A) = rank(Y Ia) = n − 2. Because the directed graph is weakly
reversible rank(Y Ia) equals dim(span{y2 − y1, . . . , yn − y1}). Thus we know that the
lifted support

Â =
{(

1
y1

)
, . . . ,

(
1
yn

)}
generates a vector space of dimension n − 1. Thus ker(Y ) ∩ ker(1) is generated by one
vector g ∈ Cn which may be chosen to be an integer whose components are relative
prime.

Then IÂ = 〈zg+ − zg−〉 where

(g+)i =

{
gi for gi > 0
0 else

, (g−)i =

{
−gi for gi < 0
0 else

.

It remains to prove that there is precisely one one-dimensional intersection of ker(Y A)
and X≥0. This means we study the behavior of f(z) = zg+ − zg− (or F (z) = zg − 1,
respectively) on the cone {λb+ µc |λ, µ ≥ 0}. Thus we investigate h(λ, µ) = f(λb+ µc).
Since f is homogeneous of zero degree h(wλ,wµ) = h(λ, µ) and we may use a scaling of
(λ, µ). We will investigate p(λ) = h(λ, 1− λ) for λ ∈ [0, 1] and show p(1)p(0) < 0.

In order to do so we investigate the degrees in λ and µ of the Laurent polynomial
(λb+ µc)g. For this we need to take into account that some components of b, c are zero.
Let ωsupp(b) =

∑
i∈supp(b) ωi and ωsupp(c) =

∑
i∈supp(c) ωi be vectors with entry one for

each index of the support. Then

degλ((λb+ µc)g) = ωsupp(b) · g,
degµ((λb+ µc)g) = ωsupp(c) · g.

On the other hand there exist ξb, ξc with ξbg = Ab and ξcg = Ac. By construction the
values ξb and ξc have opposite sign. Now

ξb degλ((λb+ µc)g) = ξb (ωsupp(b))t · g = (ωsupp(b))tAb,
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which yields ωsupp(b)Ab = (− · · · − ∗j − · · ·−) b < 0, because A is negative diagonal
dominant. Analogously, ξc degµ((λb+µc)g) < 0, which shows that λ and µ have different
degrees in (λb+µc)g of opposite sign (see Feinberg, 1995a, Lemma 8.1.4). Since only the
change of sign matters we assume degλ((λb + µc)g) > 0 and degµ((λb + µc)g) < 0 for
simplicity of notation. Then

degλ((λb+ µc)g+) > degλ((λb+ µc)g−),
degµ((λb+ µc)g+) < degµ((λb+ µc)g−).

This yields

p(1) = h(1, 0) = f(b) = bg+ − bg− = bg+ − b(g−)j

j · · · = bg+ − 0 > 0,

p(0) = h(0, 1) = f(c) = cg+ − cg− = c
(g+)k

k · · · − cg− = 0− cg− < 0.

The polynomial p(λ) ∈ R[λ] changes sign in [0, 1] and thus has a zero. This shows the
existence of at least one 1D intersection of X≥0 with ker(Y A). There is at most one 1D
intersection because otherwise between two intersections the tangent space of the toric
variety would include a direction parallel to ker(Y A) which is impossible.

The proof uses the fact that both b and c have precisely one component being zero. In
case b (or c, respectively) has several components being zero such that bg+ 	 0, bg− = 0
(or cg+ = 0, cg− = 0, respectively) nothing changes in the proof. But a case with gi ·gj < 0
and bi = bj = 0, i 6= j leads to a contradiction because there exists α ∈ R with Ab = αg
and A is negative diagonal dominant. 2

This proof nicely reflects the standard techniques for investigation of sparse polynomial
systems. Our case is especially simple since the toric variety is defined by one polynomial
ug+ − ug− . This gives a symbolic–numeric algorithm.

Algorithm 7.4. (Compute unique positive solution reliably)

Input: Y ∈ (Z≥0)m,n,K ∈ (R≥0)n,n, constants ai

Assumption: The directed graph is weakly reversible and has one component.
rank(Y A) = rank(A)− 1

Output: Unique positive solution x of Y AΨ(x) = 0, vt
ix− ai = 0

(1) compute the generator zg+ − zg− of toric ideal by Hermite normal form or Gröbner
bases,

(2) compute the minimal generators b, c of the cone ker(Y A) ∩ (R≥0)n,
(3) find the solution λ̃ ∈ [0, 1] of

p(λ) = (λb+ (1− λ)c)g+ − (λb+ (1− λ)c)g− = 0

explicitly or by numerical bisection, set z̃ = λ̃b+ (1− λ̃)c ∈ (R≥0)n,
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(4) compute Hermite normal form UŶ = H where Ŷ =
(

1
Y

)
and U is unimodular,

solve wH = z̃ giving values w̃1, . . . , w̃s+1, where ws+2, . . . , wm+1 remain arbitrary,
with x̂ = (x0, x1, . . . , xm) the transformation x̂ = wU gives monomial expressions
xj = gj(ws+1, . . . , wm+1; w̃1, . . . , w̃s+1), j = 1, . . . ,m,

(5) compute vectors vi, i = 1, . . . ,m− s orthogonal to im(Y A), solve conservation rela-
tions vt

ix − ai = vt
ig(w) − ai = hi(ws+1, . . . , wm+1) = 0, for example, by numer-

ical pathfollowing from λi = 0 to λi = ai, compute x̂ = wU giving the solutions
xj = x̂j , j = 1, . . . ,m.

Example 7.5. The theorem is illustrated by Example 3D1 in Feinberg (1979, pp. 3–29).
We recall the directed graph and the bipartite graph in Figure 5. The equations are

ẋ1 =−2 k2,1x1
2 + (2 k1,2 + k3,2)x2 + (−k2,3 − k4,3)x1x3 + k3,4x3

2

+(−k7,6 − k8,6)x1x4 + k6,7x5 + k6,8x6

ẋ2 = k2,1x1
2 + (−k1,2 − k3,2 − k4,2)x2 + k2,3x1x3 + k2,4x3

2

ẋ3 =(k3,2 + 2 k4,2)x2 + (−k2,3 + k4,3)x1x3 + (−k3,4 − 2 k2,4 − 2 k5,4)x3
2

+2 k4,5x4 − k10,9x3x5 + k9,10x7
2

ẋ4 = k5,4x3
2 − k4,5x4 + (−k7,6 − k8,6)x1x4 + k6,7x5 + k6,8x6

ẋ5 = k7,6x1x4 + (−k6,7 − k8,7)x5 + k7,8x6 − k10,9x3x5 + k9,10x7
2

ẋ6 = k8,6x1x4 + k8,7x5 + (−k6,8 − k7,8)x6

ẋ7 =2 k10,9x3x5 − 2 k9,10x7
2.

The weakly reversible graph has three connected components such that the blocks of Y A
do not interact and rank(Y1A1) = 3 < 4 = rank(A1), rank(Y2A2) = 2, and rank(Y3A3) =
1, where as usual Y = (Y1, Y2, Y3) and A = diag(A1, A2, A3).

Since we are interested in steady state solutions we set ẋ = 0 and perform linear
manipulations yielding the equations

−k2,1x1
2 + (k1,2 − k4,2)x2 − k4,3x1x3 + (k3,4 + k2,4)x3

2 = 0,
(k3,2 + 2 k4,2)x2 + (−k2,3 + k4,3)x1x3 + (−k3,4 − 2 k2,4)x3

2 = 0,
k5,4x3

2 − k4,5x4 = 0,

for the first connected component and

(−k7,8k7,6 − k7,8k8,6 − k6,8k7,6)x1x4 + (k6,7k6,8 + k6,7k7,8 + k6,8k8,7)x5 = 0,
(−k8,7k7,6 − k8,7k8,6 − k6,7k8,6)x1x4 + (k6,7k6,8 + k6,7k7,8 + k6,8k8,7)x6 = 0

for the second connected component and k10,9x3x5 − k9,10x7
2 = 0 for the third, respec-

tively. The monomials are clearly arranged into three groups. Moreover the three sub-
lattices are decoupled such that no nonlinear change of coordinates by Hermite normal
form is necessary. Once a solution (x1, x2, x3, x4) of the first set of equations and the
conservation relation is known the other components are given by

x5 =
(k7,8k7,6 + k6,8k7,6 + k7,8k8,6)x1x4

k6,7k6,8 + k6,7k7,8 + k6,8k8,7
, x6 =

(k8,7k7,6 + k8,7k8,6 + k6,7k8,6)x1x4

k6,7k6,8 + k6,7k7,8 + k6,8k8,7
,
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Figure 5. Example 3D1 by Feinberg.

from the second set of equations and

x7 = ±
√
k9,10k10,9x3x5

k9,10
,

from the third connected component.
We investigate the first connected component by Algorithm 7.4. In the first step we

find the vector

g = [1, 0,−2, 1, 0]

with Y1g = 0 and 1tg = 0 which is an integer and relatively prime. Thus f(z1, . . . , z5) =
z1
1z

1
4 − z2

3 is homogeneous and satisfies f(x2
1, x2, x1x3, x

2
3, x4) ≡ 0.

In the second step we determine the minimal generators of the cone ker(Y A)∩(R≥0)5.

a =
[
1,
k2,1

k1,2
,
k3,4k2,1k4,2

k4,3k2,4k1,2
,
k2,1k4,2

k2,4k1,2
,
k5,4k2,1k4,2

k4,5k2,4k1,2

]
,

generates ker(A1). We find a vector d with g = A1d and find linear combinations with
zero components yielding

b =
[
k1,2k3,4 + k3,4k4,2 + k2,4k3,2 + 2 k1,2k2,4 + k3,4k3,2

(k3,2 + 2 k4,2)k2,1
,
k3,4 + 2 k2,4

k3,2 + 2 k4,2
, 0, 1,

k5,4

k4,5

]
c1 =

[
− −k1,2k2,3 + k2,3k4,2 + k4,3k4,2 + k4,3k3,2 + k1,2k4,3

(k3,2 + 2 k4,2)k2,1
,−−k2,3 + k4,3

k3,2 + 2 k4,2
, 1, 0, 0

]
c2 =

[
0,

k2,3k2,4 + k2,3k3,4 + k4,3k2,4

k1,2k3,4 + k3,4k4,2 + k2,4k3,2 + 2 k1,2k2,4 + k3,4k3,2
, 1,
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−k1,2k2,3 + k2,3k4,2 + k4,3k4,2 + k4,3k3,2 + k1,2k4,3

k1,2k3,4 + k3,4k4,2 + k2,4k3,2 + 2 k1,2k2,4 + k3,4k3,2
,

k5,4(−k1,2k2,3 + k2,3k4,2 + k4,3k4,2 + k4,3k3,2 + k1,2k4,3)
(k1,2k3,4 + k3,4k4,2 + k2,4k3,2 + 2 k1,2k2,4 + k3,4k3,2)k4,5

]
.

Then the polyhedral cone is generated by b, c1 or b, c2 depending on the sign of the
expression −k1,2k2,3+k2,3k4,2+k4,3k4,2+k4,3k3,2+k1,2k4,3. In both cases the polynomial
p(λ) is quadratic and Maple gives the solution explicitly, but it is too complicated to
present here. Consequently, the vector z is a very complicated expression. (Observe that
z is not unique and only determined up to scaling.)

Now we solve x0x
2
1 = z1, x0x2 = z2, x0x1x3 = z3, x0x

2
3 = z4, x0x4 = z5 by computing

the Hermite normal form UŶ11 = H with

(
1
Y11

)
=


1 1 1 1 1
2 0 1 0 0
0 1 0 0 0
0 0 1 2 0
0 0 0 0 1

U =


−1 1 1 0 1
0 0 1 0 0
2 −1 −2 0 −2
0 0 0 0 1
−2 1 2 1 2

H =


1 0 0 −1 0
0 1 0 0 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0

 .
U gives the transformation x0 = w3

2

w1w52 , x1 = w1w5
w3

, x2 = w1w2w5
2

w32 , x3 = w5, x4 =
w1w4w5

2

w32 . From H we deduce a system in w with solution w1 = z1, w2 = z2, w3 = z3, w4 =
z5, where w5 is still arbitrary. This gives the solution

x1 =
z1w5

z3
, x2 =

z1z2w5
2

z32
, x3 = w5, x4 =

z1z5w5
2

z32
.

The conservation relation vt
1x− a1 = 0 determines the unknown w5. Here

v1 = [1, 2, 1, 2, 3, 3, 2],

which gives the equation

3
z1

2z5(k7,8k7,6 + k6,8k7,6 + k7,8k8,6 + k8,7k7,6 + k8,7k8,6 + k6,7k8,6)
(k6,7k6,8 + k6,7k7,8 + k6,8k8,7)z33

w5
3

+ 2

(√
k10,9(k7,8k7,6 + k6,8k7,6 + k7,8k8,6)z5
k9,10z33(k6,7k6,8 + k6,7k7,8 + k6,8k8,7)

+
z5 + z2
z32

)
z1w5

2

+
(
z1
z3

+ 1
)
w5 − a1 = 0,

which clearly has precisely one positive solution w5 depending on a1 > 0.

All three theorems of this section use the principle that a projective toric variety is
intersected with the kernel of the coefficient matrix. The projective toric variety is either a
projective space or a hypersurface. The three cases may appear simultaneously in a single
system (3). If condition (6) holds, and for each connected component the assumptions of
one of the three theorems are satisfied, then one unique positive solution exists.

8. The General Case

In this section we apply a general theory to general system (5). If the conditions
of Lemma 6.1 are fulfilled, the system decouples. So we may assume we already have
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Figure 6. The number of positive solutions in the beginning (t = 0) of the homotopy equals the number

of positive solutions in the end (t = 1) except if one of the three shown phenomena happens.
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Figure 7. Example of a chemical reaction network by Feinberg due to Edelstein.

performed the decoupling and assume

rank(YλAλ) < rank(Y A)− rank(Y1A1 · · · ŶλAλ · · ·YlAl),

for all λ = 1, . . . , l. This means all connected components contribute with monomials to
the middle set of mixed equations in (5).

The results on the number of complex or real solutions of a sparse polynomial system
are based on a homotopy H(t, x) such that the solutions of H(0, x) are easily determined
by solving binomial systems and H(1, x) is our system of interest.

H(t, x)λ,i =
∑

j∈Lλ

cij t
ωλ

j xyj = 0, i = 1, . . . , kλ, λ = 1, . . . , l, (13)

H(t, x)l+1,i =
n∑

j=1

bij t
ωl+1

j xyj = 0, i = 1, . . . , kl+1, (14)

H(t, x)l+2,i =
m∑

j=1

(vi)j t
ωl+2

j xj − ait
ωl+2

0 = 0. i = 1, . . . , kl+2. (15)

The exponents ωλ
j are randomly chosen integer numbers. By this construction the sup-

ports of the original polynomials A = (A1, . . . ,Al+2), Aλ = {yj , j ∈ Lλ}, λ = 1, . . . , l,
Al+1 = {y1, . . . , yn},Al+2 = {0, e1, . . . , em} are lifted in one additional direction giving
the new supports of H

Âλ =
{(

yj

ωλ
j

)
, j ∈ Lλ

}
, λ = 1, . . . , l,
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Figure 8. Newton polytopes of the system by Edelstein, where i1, i2, i3 are the exponents in the mono-

mial xi1
1 xi2

2 xi3
3 .

Âl+1 =
{(

yj

ωl+1
j

)
, j = 1, . . . , n

}
, Âl+2 =

{(
0

ωl+2
0

)
,

(
ej

ωl+2
j

)
, j = 1, . . . ,m

}
.

The lower facets of the Minkowski sum of the lifted Newton polytopes have a special
meaning. They give rise to a mixed subdivision, a generalization of triangulation.

Definition. (Huber and Sturmfels, 1995; Verschelde and Gatermann, 1995;
Verschelde et al., 1996)

(i) A subdivision of A = (A1, . . . ,Al+2) is a collection S = {C1, . . . , Cr} of r cells
Cj = (C(1)

j , . . . , C
(l+2)
j ) such that

(a) dim(conv(Cj)) = m for j = 1, . . . , r,
(b) conv(Cj)∩conv(Ck) is a common face of conv(Cj) and of conv(Ck) for all pairs

Cj , Ck ∈ S,
(c)

⋃r
j=1 conv(Cj) = conv(A).

(ii) The subdivision is called mixed if the additional property

(d)
∑l+2

λ=1 dim(conv(C(λ)
j )) = m for all cells Cj ∈ S holds.

(iii) A cell Cj is called mixed, if

(e) dim(conv(C(λ)
j )) = kλ, λ = 1, . . . , l + 2.

(iv) A mixed cell Cj is called simple, if

(f)
∑l+2

λ=1(#(C(λ)
j )− 1) = m holds.

(v) A mixed subdivision is called a simple mixed subdivision if all mixed cells are simple
mixed cells.

The definition of mixed subdivision is important since
∑

j vol(Cj) is the number of
complex solutions in (C \ {0})m for generic coefficients (Theorem by Bernstein, see Cox
et al., 1998). The proof in Huber and Sturmfels (1995) gives some insight into the number
of real solutions. But first we need another definition.
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Definition. A simple mixed cell C is called alternating if the associated small initial
system ∑

y∈C(λ)

cijx
y = 0, λ = 1, . . . , l + 2, i = 1, . . . , kλ,

has exactly one positive solution.

This definition was introduced in Itenberg and Roy (1996) and Sturmfels (1998) in the
case where each equation has different support and the associated small initial systems
consist of binomials. By the Smith normal form it is known that binomial systems have
one real solution if and only if the signs of the coefficients are alternating in each binomial
equation.

The number of positive solutions ofH(ε, x) for ε small equals the number of alternating
cells. If nothing goes wrong along the homotopy (see Figure 6) then the number of
alternating cells gives the number of positive solutions of system (5).

Theorem 8.1. (Sturmfels, 1998) Consider Y AΨ(x) = 0, vt
ix−ai = 0, i = 1, . . . , rank

(Y A) with fixed values of the parameters kij and ai. There is a polynomial P (t) ∈ R[t]
with the following property: if P (t) has no solution in (0, 1] and the initial systems
associated to the facets F of the Newton polytopes do not have infinitely many solu-
tions for some t ∈ (0, 1] then the number of positive solutions of Y AΨ(x) = 0 in
{x ∈ (R+)m | vt

ix − ai = 0, i = 1, . . . ,m − rank(Y A)} equals the number of alternat-
ing cells in a simple mixed subdivision.

The theoretical background may be found in Sturmfels (1994a, 1998).

Remark. (i) The polynomial P (t) ∈ R[cij , bij , ai][t] is the sparse resultant ResB(t; k, a)
in R[kij , ai][t] where B is given by the supports A1, . . . ,Al+2 and the support of the
determinant of the toric Jacobian. (ii) The second assumption on infinitely many solutions
of the small initial system associated to a facet is the condition from toric geometry that
the original system has a solution at infinity or with zero components. Here it guarantees
that no real negative solution turns positive (or from positive to negative) along the path.

Example 8.2. We illustrate Theorem 8.1 with the example by Edelstein (Feinberg, 1979,
pp. 2–26) with three variables, five complexes and two connected components, see Fig-
ure 7.

Y =


1 2 1 0 0

0 0 1 0 1

0 0 0 1 0

 , A =



−k2,1 k1,2 0 0 0

k2,1 −k1,2 0 0 0

0 0 −k4,3 k3,4 0

0 0 k4,3 −k3,4 − k5,4 k4,5

0 0 0 k5,4 −k4,5


,

are the matrices given by the bipartite graph and the directed graph, respectively. The
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Figure 9. Mixed subdivision of Newton polytopes of the system by Edelstein. One of the three mixed

cells is alternating.

C5

C4

C3

C2

C1

S3

S1

S2

C2C1

C3 C4 C5

2

0

Figure 10. Parts of the directed graph of the example by Edelstein which corresponds to the alternating

cell which is responsible for the positive solution.

differential equations are

ẋ1 = k2,1x1 − k1,2x1
2 − k4,3x1x2 + k3,4x3,

ẋ2 = −k4,3x1x2 + (k3,4 + k5,4)x3 − k4,5x2,

ẋ3 = k4,3x1x2 + (−k3,4 − k5,4)x3 + k4,5x2.

The polynomial system ẋ = 0 on a subspace is equivalent to

0 = −k4,3x1x2 + (k3,4 + k5,4)x3 − k4,5x2, (λ = 2, i = 1)
0 = k2,1x1 − k1,2x1

2 − k4,3x1x2 + k3,4x3 + 0 · x2, (λ = l + 1 = 3, i = 1)
0 = 0 · x1 + x2 + x3 − a, (λ = l + 2 = 4, i = 1)

with v1 = (0, 1, 1). For positive a the set {x ∈ (R+)3 | vt
1x − a = 0} is non-empty.

Figure 8 shows the Newton polytopes. Since there are two coefficients zero one may
consider even sparser Newton polytopes. We do not do this here and concentrate on the
general structure. The lifting

Â1 = {}, Â2 = {(1, 1, 0, 8), (0, 0, 1, 0), (0, 1, 0, 2)},
Â3 = {(1, 0, 0, 0), (2, 0, 0, 5), (1, 1, 0, 4), (0, 0, 1, 0), (0, 1, 0, 9)},
Â4 = {(0, 0, 0, 5), (1, 0, 0, 20), (0, 1, 0, 0), (0, 0, 1,−1)},



304 K. Gatermann and B. Huber

gives a mixed subdivision with three simple mixed cells

C(2) = {ŷ3, ŷ4}, C(3) = {ŷ2, ŷ3}, C(4) = {ê2, ê3}, γ = (−7,−6,−5, 1),

C(2) = {ŷ4, ŷ5}, C(3) = {ŷ1, ŷ2}, C(4) = {ê1, ê3}, γ = (7, 5,−5, 1),

C(2) = {ŷ4, ŷ5}, C(3) = {ŷ1, ŷ4}, C(4) = {ê1, ê2}, γ = (5, 7, 7, 1),

as shown in Figure 9. Obviously, there is one alternating cell for a > 0 and none for
a < 0. So we expect for some region of the parameters kij one positive solution within a
space {x ∈ (R+)3 | vt

1x− a = 0} = (a
2v1 + im(Y A)) ∩ (R+)3. The alternating cell is part

of the Newton polytopes which in turn are given by the directed graph and the bipartite
graph. Figure 10 shows the parts of the graphs which correspond to the alternating cell
and thus to the positive solution. There might be the chance for a subdivision with three
cells as well. This example has from one to three positive solutions.

The condition in Theorem 8.1 tells us that we have to expect as many real positive
solutions as there are alternating cells in the subdivision if the coefficients of the alter-
nating cells are dominant against the rest of the coefficients. In this context of chemical
reaction systems the coefficients are of very different magnitude since the rate constant
of a forward reaction is very different from the rate constant of the associated backward
reaction. We conclude that for chemical reaction systems Theorem 8.1 gives a realis-
tic estimate for the number of positive solutions. The alternating cells as parts of the
Newton polytopes correspond to parts of the directed graph. We conclude that we can
identify parts of the directed graph which are responsible for positive solutions for some
parameter region.
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