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Abstract

We present results on the number of linear regions of the functions that can be represented
by artificial feedforward neural networks with maxout units. A rank-k maxout unit is a function
computing the maximum of k linear functions. For networks with a single layer of maxout units,
the linear regions correspond to the upper vertices of a Minkowski sum of polytopes. We obtain
face counting formulas in terms of the intersection posets of tropical hypersurfaces or the number of
upper faces of partial Minkowski sums, along with explicit sharp upper bounds for the number of
regions for any input dimension, any number of units, and any ranks, in the cases with and without
biases. Based on these results we also obtain asymptotically sharp upper bounds for networks with
multiple layers.
Keywords: linear regions of neural networks, upper bound theorem for Minkowski sums, hyperplane
arrangement, tropical hypersurface arrangement, Newton polytope.
MSC2020: 68T07, 52B05, 14T15, 06A07.

1 Introduction

Artificial feedforward neural networks are parametric sets of functions given as fixed compositions of units,
i.e. elementary functions consisting of a parametrized affine map followed by a fixed activation function.
They are extremely useful as sets of hypothesis functions in contemporary machine learning applications.
We are interested in the geometry and combinatorics of the functions represented by networks with
maxout units, which have an activation function of the form Rk → R; (z1, . . . , zk) 7→ max{z1, . . . , zk}.
Maxout units were proposed in [13] generalizing the popular rectified linear units (ReLUs) [12], which
have activation function R→ R; z 7→ max{0, z}. The corresponding functions are piecewise (affine) linear
and induce subdivisions of the input space into linear regions. We will be concerned with estimating the
maximum number of linear regions of the functions that can be represented by maxout networks with
given architectures.

The analysis of neural networks with piecewise linear activation functions based on the number
of linear regions of the represented functions was proposed in [35, 34], showing that deep networks
can represent functions which have many more linear regions than any of the functions that can be
represented by shallow networks with the same number of units or the same number of parameters.
These kind of results illustrate the differences in representational power and possible benefits of different
network architectures. Works in this direction include [45, 46, 11, 47, 52, 32, 36] and earlier works for
Boolean circuits and sum-product networks [20, 21, 10]. The number of linear regions of the functions
represented by networks with piecewise linear activations has sparked substantial interest in the study
of neural networks, with works including [34, 47, 33, 5, 40, 23]. Recent works have explored approaches
based on tropical geometry [55, 9, 3] and power diagram subdivisions [6], while others have studied
the expectated number of linear regions for typical choices of the parameters in the case of ReLU
networks [18, 19], empirical enumeration [39], and the relations between linear regions and the behavior
of algorithms that are used to select the parameters of neural networks based on data, such as speed of
convergence and implicit biases of gradient descent [44, 56, 26].
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ReLU networks have been studied in much more detail than maxout networks. And while ReLUs
are currently more popular in applications, maxout networks are an interesting generalization that enjoy
similar benefits (e.g. linear operation, no saturation) but without some of the possible drawbacks (e.g.
dying neurons). In this work we seek to advance the theory for maxout networks, particularly in regards
to their representational power, whereupon we develop important connections to topics in combinatorial
geometry and tropical geometry.

The nonlinear locus of a ReLU x 7→ max{0, z(x)} with a generic affine function z is a hyperplane.
Hence, linear regions of functions x 7→ [max{0, z1(x)}, . . . ,max{0, zm(x)}]> represented by a layer of
m ReLUs are described by hyperplane arrangements. Hyperplane arrangements have been investigated
since the 19th century [43]. In particular, Buck [8] showed that the number of regions and bounded
regions that can be obtained by slicing n-dimensional Euclidean space with m hyperplanes is

∑n
j=0

(
m
j

)
and

(
m−1
n

)
, respectively. Moreover, a celebrated result by Zaslavsky [53] gives a formula for the number of

faces and bounded faces of hyperplane arrangements based on the poset of intersections. For a discussion
of these results and other properties of hyperplane arrangements see [42].

For maxout units one obtains a more general type of arrangement. Concretely, a rank-k max-
out unit x 7→ max{z1(x), . . . , zk(x)} with generic affine functions z1, . . . , zk has a nonlinear locus
of the form {x ∈ Rn : zi(x) = zj(x) = max{z1(x), . . . , zk(x)} for some i 6= j}. In tropical geome-
try this is known as a tropical hypersurface [31]. Hence the linear regions of the functions x 7→
[max{z11(x), . . . , z1k1(x)}, . . . ,max{zm1(x), . . . , zmkm(x)}]> represented by a layer of m maxout units
of ranks k1, . . . , km are described by arrangements of tropical hypersurfaces. We will also refer to these
as maxout arrangements. The properties of such arrangements are not as well understood, except in
special cases, such as tropical hyperplane arrangements [41, 4, 25], which correspond to networks with
restricted parameters, namely maxout networks whose affine maps are coordinate projections plus con-
stants, zij(x) = xj + bij .

In order to obtain counting formulas and bounds for maxout networks, we will exploit a corre-
spondence between the regions of maxout arrangements and the upper vertices of Minkowski sums of
polytopes (Proposition 2.7). In the special case of hyperplane arrangements (rank-2 maxout units), these
reduce to Minkowski sums of line segments, called zonotopes [57]. Minkowski sums of polytopes are of
relevance in numerous topics, including computational commutative algebra, collision detection, robot
motion planning, computer-aided design, and have been the subject of an intensive research program
over the years. In particular, the work of Gritzmann and Sturmfels [15] showed that for sums of poly-
topes with at most r total nonparallel edges, the maximum number of faces is attained by sums of r
line segments in general position. Tight expressions for the maximum number of faces of Minkowski
sums of two and three full-dimensional polytopes were derived in [30, 29]. Relevant to our discussion,
Weibel [50] obtained an expression for the number of faces of large Minkowski sums of full-dimensional
polytopes in terms of the number of faces of small subsums, and tight upper bounds for the total number
of vertices. Obtaining similar results for sums of polytopes of arbitrary dimensions requires significantly
more complex arguments. A full solution to the so-called upper bound problem for Minkowski sums
(UBPM) was obtained by Adiprasito and Sanyal [2], giving tight upper bounds (in non-closed form)
for the number of faces of any dimension, of Minkowski sums of any polytopes with given numbers of
vertices.

We shall take Zaslavsky’s perspective (Theorem 5.5) to extend Weibel’s result to the case of sums of
polytopes of arbitrary dimensions (Theorem 6.3), including the treatment of upper vertices (Theorem 6.2)
and bounds on the number of strict lower vertices (Theorem 6.9). Combining these with an implication of
Adiprasito-Sanyal’s result (Proposition 2.8), we obtain explicit tight upper bounds for the total number
of vertices and for the number of upper vertices. Our results for Minkowski sums of polytopes translate
to tight upper bounds on the number of linear regions of the functions represented by shallow maxout
networks without and with biases (Theorem 3.6). These are the first tight results for maxout networks
(except for the rank-2 case), closing significant gaps between the upper and lower bounds from previous
works [34]. Based on these results, we also derive results for deep maxout networks (Theorem 3.12)
improving previous lower and upper bounds [34, 40].

This article is organized as follows. In Section 2 we provide definitions and different perspectives on
maxout networks and their linear regions. In Section 3 we present our main results on the maximum
number of linear regions of maxout networks. The main analysis is conducted in Sections 4, 5, and 6. In
Section 4 we present a modification of a result by Weibel to count the upper faces of Minkowski sums. In
Section 5 we present a modification of a result by Zaslavski to count the faces of maxout arrangements.
In Section 6 we combine these two approaches to obtain a generalization of Weibel’s result to sums of
polytopes of arbitrary dimensions. In Section 7 we offer a discussion and outlook.
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2 Definitions and different perspectives

2.1 Maxout networks

We consider standard feedforward fully connected maxout networks with no skip connections, called
maxout networks for short. Maxout networks were introduced in [13] as a generalization of ReLU
networks.

Definition 2.1 (Maxout networks).

1. Let k, n ∈ N. A rank-k maxout unit with n inputs is a parametric function

Rn → R; x 7→ max{〈A1, x〉+ b1, . . . , 〈Ak, x〉+ bk},

parametrized by θ = (Ar, br)
k
r=1, Ar ∈ Rn, br ∈ R, r = 1, . . . , k. Each affine function is called a

pre-activation feature. The parameters Ar and br are called weights and biases.

2. Let m ∈ N and k1, . . . , km ∈ N. A layer with n inputs and m maxout output units of ranks k1, . . . , km is
a parametric function Rn → Rm, whose jth output coordinate is a maxout unit of rank kj, j = 1, . . . ,m.
A layer of maxout units is also called a shallow maxout network.

3. Let L ∈ N and n0, n1, . . . , nL ∈ N. A maxout network with n0 inputs and L layers of widths n1, . . . , nL
is a parametric function Rn0 → RnL of the form fL ◦ · · · ◦ f1, where fl is a function represented by
a layer with nl−1 inputs and nl maxout output units of given ranks, l = 1, . . . , L. A network with
multiple layers is called a deep network.

4. The architecture of a maxout network as described above is determined by the number of inputs n0,
the number of layers L, the number of units per layer n1, . . . , nL, and the ranks of the maxout units
in each layer kl,1, . . . , kl,nl

, l = 1, . . . , L. The parameter of the network, which we will denote by θ,
is the collection of weights and biases of all units. For a given architecture, we denote N the set of
functions that can be represented by the network for all possible choices of the parameter.

We will be concerned mostly with the analysis of shallow networks, from which we will also derive
results for deep networks. We will also present results for networks without biases, in which case the
affine functions 〈Ar, x〉 + br reduce to linear functions 〈Ar, x〉. Notice that each function represented
by a maxout network is a composition of continuous piecewise (affine) linear functions and is itself a
continuous piecewise linear function. When there is no risk of confusion we refer to affine linear functions
simply as linear functions.

Definition 2.2 (Linear regions). Let f be a continuous piecewise linear function with n0 inputs. The
nonlinear locus of f is the set V (f) ⊆ Rn0 of input points x at which ∇xf is discontinuous. A linear
region of f is a maximal connected component of Rn0 \ V . The number of linear regions of f is denoted
N(f). The maximum of the number of linear regions among all functions f that can be expressed by a
network N is denoted N(N ) = maxf∈N N(f).

2.2 Tropical hypersurfaces

Maxout units can be regarded as tropical polynomials. We give a brief description of these notions. For
more details, please see [27, Chapter 1].

Definition 2.3. Given two real numbers a and b, their tropical sum is a ⊕ b = max(a, b) and their
tropical product is a� b = a+ b. A tropical (exponential) polynomial is a function

f : Rn0 → R; f(x) = c1 � x�α1 ⊕ · · · ⊕ ck � x�αk ,

where c1, . . . , ck ∈ R, α1, . . . , αk ∈ Rn0 , and x�α1 = α1x1 + . . . αn0
xn0

. We refer to the ci � x�αi as
tropical monomials and call f a tropical k-nomial if it is the sum of k distinct monomials.

Classically, polynomials (tropical or non-tropical) only have non-negative integer exponents. However,
this restriction is not needed in our discussion. A rank-k maxout unit is equivalent to a tropical k-nomial.

Definition 2.4. The tropical hypersurface of a tropical polynomial f : Rn0 → R is

Trop(f) := {x ∈ Rn0 : cix
αi = cjx

αj = f(x) for i 6= j two distinct monomials}.
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The complement Rn0\Trop(f) is a union of convex polyhedral cells on which the function f is linear.
In particular, the nonlinear locus of a maxout unit is a tropical hypersurface.

From the tropical perspective, the goal of the paper is to answer a question in tropical combinatorics,
namely to bound the number of regions of an arrangement of tropical hypersurfaces. Similar questions on
the combinatorics of tropical hypersurface arrangements have been studied before. However, they often
focus on polynomials of bounded degree, e.g. degree 1 [4, 25] or degree d [28], rather than a bounded
number of monomials. The bounds are important for the complexity of many algorithms in tropical
geometry, which often rely on a enumeration of cells in a tropical arrangement or tropical variety.

2.3 Convex conjugates and Newton polytopes

We relate the regions of a maxout network and the vertices of certain polytopes. The procedure has
been explained in [55] from a tropical geometry perspective. We give a brief description that relies only
on convex duality. For an introduction to convex analysis see [37].

Any continuous piecewise linear function can be expressed as the difference of two convex piecewise
linear functions; see [49]. Hence any function f : Rn → Ro expressed by a maxout network can be written,
for each output coordinate i = 1, . . . , o, as the difference fi = gi − hi of two piecewise linear convex
functions gi and hi. Given such a decomposition, we define a surrogate function f̄ = g + h : Rn → R,
where g =

∑o
i=1 gi and h =

∑o
i=1 hi are convex. This is a piecewise linear convex function and hence it

can be written as
f̄(x) = max

j=1,...,M
{〈aj , x〉+ bj}, x ∈ Rn, (1)

for a finite collection of coefficients aj ∈ Rn, bj ∈ R, j = 1, . . . ,M . We will discuss the coefficients in more
detail further below. Now, any linear region of f is a union of linear regions of f̄ . Hence the number of
linear regions of f̄ is an upper bound on the number of linear regions of f . Moreover, any two distinct
linear regions R,Q ⊆ Rn of f̄ are also distinct linear regions of f unless ∇g|R−∇g|Q = ∇h|R−∇h|Q, a
tie which is broken, for instance, whenever g is scaled independently of h. One can show that for generic
choices of the network parameters f and f̄ actually have the same number of linear regions.

Each linear region of f̄ corresponds to a (full dimensional) neighborhood of inputs x over which one of
the affine functions 〈aj , x〉+ bj attains the maximum. A representation of f̄ as in (1) may involve many
redundant affine functions. One way to characterize the affine functions which attain the maximum over
a neighborhood of the input space is as follows. Consider the convex conjugate of f̄ , which is the convex
piecewise linear function

f̄∗(x∗) = sup
x∈Rn

{〈x, x∗〉 − f̄(x)}, x∗ ∈ Rn.

If f̄(x) = 〈a, x〉 + b for some x ∈ Rn and (a, b) ∈ Rn+1, then (x∗, f̄∗(x∗)) = (a,−b). We conclude that
the graph of f̄∗ is the convex envelope of the points {(aj ,−bj)} ⊆ Rn+1. The vertices of this envelope
correspond to the affine functions 〈aj , x〉 + bj which attain the maximum over a neighborhood of the
input space. An equivalent way of expressing this is as follows.

Definition 2.5 (Lifted Newton polytope). For a function f̄(x) = maxj=1,...,M{〈aj , x〉 + bj}, x ∈ Rn,
define its Newton polytope as conv{aj : j = 1, . . . ,M} ⊆ Rn, and its lifted Newton polytope as Pf̄ =
conv{(aj , bj) : j = 1, . . . ,M} ⊆ Rn+1.

The upper vertices of a polytope P ⊆ Rn+1 are the vertices p which are ‘visible from above’, meaning
that their normal cones {r ∈ Rn+1 : 〈r, p−q〉 > 0 for all q ∈ P \p} intersect the upper halfspace Rn×R>0.

Proposition 2.6 ([27, Theorem 1.13]). The linear regions of f̄(x) = maxj∈{1,...,M}{〈aj , x〉+bj}, x ∈ Rn,
correspond to the upper vertices of its lifted Newton polytope Pf̄ .

The duality between faces of the nonlinear locus and faces of the lifted Newton polytope goes beyond
what is described in Proposition 2.6, and it is fundamental for studying the combinatorics of tropical
hypersurfaces.

2.4 Minkowski sums

The lifted Newton polytopes for single layer networks have a description as Minkowski sums. Recall that
the Minkowski sum of two sets A and B is defined as A+B = {a+ b : a ∈ A, b ∈ B}. For a single layer
of m maxout units of ranks k1, . . . , km,

f̄(x)=
∑
j∈[m]

max
rj∈[kj ]

{〈wj,rj , x〉+ bj,rj}= max
r∈[k1]×···×[km]

{ ∑
j∈[m]

〈wj,rj , x〉+ bj,rj

}
=max

r
{〈wr, x〉+ br},

4



where [k] := {1, . . . , k}, and wr =
∑
j∈[m] wj,rj , br =

∑
j∈[m] bj,rj , for r ∈ [k1]×· · ·× [km]. To see this one

may use that the distributive law holds for tropical addition and multiplication [31, Section 1.1]. Notice
that the resulting set of coefficients is the Minkowski sum of the sets of coefficients of the individual units,
{(wr, br) : r ∈ [k1]× · · ·× [km]} =

∑
j∈[m]{(wj,rj , bj,rj ) : rj ∈ [kj ]}. Now consider the lifted Newton poly-

tope of the layer and the polytopes of the individual units, P[m] = conv {(wr, br) : r ∈ [k1]× · · · × [km]},
Pj = conv

{
(wj,rj , bj,rj ) : rj ∈ [kj ]

}
, j ∈ [m]. Since the Minkowski sum of convex sets is convex, we have

P[m] =
∑
j∈[m]

Pj .

In turn, the polytope for a layer is obtained by taking the Minkowski sum of the polytopes of the
individual units. This is all we will need in our discussion. We note that, following the arguments of
[55], one can also describe how the polytopes corresponding to layers are combined to obtain a polytope
for a deep network. That work focused on ReLU networks, but the same arguments extend naturally to
maxout networks.

We collect a few observations in the next proposition. For maxout units of ranks k1, . . . , km the
polytopes P1, . . . , Pm are arbitrary convex hulls of, respectively, k1, . . . , km points in Rn+1. For units
without biases, the last coordinate of the coefficients is always zero, so that the polytopes are in Rn×{0}
and the upper vertices are simply the vertices.

Proposition 2.7. The linear regions of a function represented by a layer with n inputs and maxout
units of ranks k1, . . . , km correspond to the upper vertices of a Minkowski sum of polytopes which are
convex hulls of k1, . . . , km points in Rn+1. For a layer without biases, the linear regions correspond to
the vertices of a Minkowski sum of polytopes which are convex hulls of k1, . . . , km points in Rn.

The difference between counting the vertices vs the upper vertices of Minkowski sums of polytopes
is analogous to the difference between counting the regions of a central arrangement (without biases) vs
counting the regions of a non-central arrangement (with biases). The nonlinear locus V (f) of a function
f represented by a layer of maxout units without biases is the normal fan of the Newton polytope.
The nonlinear locus of a function with biases is the intersection of the normal fan of the lifted Newton
polytope in Rn+1 and the affine space Rn × {1}. The hardest part in our proofs will be to upper bound
the number of regions of non-central arrangements.

A result of particular importance in our analysis is the Upper Bound Theorem for Minkowski Sums
by Adiprasito and Sanyal [2, Theorem 6.11], which shows that the maximum number of s-dimensional
faces of Minkowski sums of polytopes with given numbers of vertices is attained by sums of so-called
Minkowski neighborly families. From their result we derive the following proposition, which we will later
use to obtain an explicit form of the upper bound for vertices. It will also be an ingredient in our upper
bound for upper vertices. For a polytope P , let fs(P ) denote the number of s-dimensional faces of P .

Proposition 2.8. Let 0 ≤ s ≤ n. If a Minkowski sum of polytopes P = P1 + · · · + Pm ⊆ Rn+1 has
the maximum number of s-faces among all sums with given f0(P1), . . . , f0(Pm), then f0(

∑
i∈S Pi) =∏

i∈S f0(Pi) for all S ⊆ [m], |S| ≤ n.

Intuitively, this proposition states that if a sum of polytopes in Rn with given vertex counts reaches
the largest possible number of vertices, then each partial sum of at most n of the polytopes reaches a
trivial upper bound on the number of vertices.

Proof. We explain how to derive the claim based on [2]. We refer the reader to that paper for details
on Minkowski neighborly families, Cayley polytopes, (relative) Cayley complexes, h-vectors, and the
corresponding Dehn-Sommerville relations. That paper shows that a Minkowski sum P1 + · · · + Pm of
polytopes Pi ⊆ Rd attains the maximum number of k-faces, 0 ≤ k ≤ d, if the family (P1, . . . , Pm) is
Minkowski neighborly. (Following their notation, here we use k for the dimension of the faces). Of
particular interest is the classification of cases maximizing the number of faces of a particular dimension
k0. Following [2, Theorem 6.11], for a given k0, a Minkowski sum P1 + · · · + Pm attains the maximum
number of k0-faces if and only if the h-vector of its relative Cayley complex attains maximum value at all
entries hk+m−1 with k ≤ k0+1. By the Dehn-Sommerville relations, the entries with k+m−1 > bd+m−1

2 c
are determined as positive linear functions of the entries with k + m − 1 ≤ bd+m−1

2 c of the h-vectors
for sub-families (Pi)i∈U , U ⊆ [m]. Hence we only need to verify that the latter entries are maximal.

By [2, Theorem 6.11(2a)], this is equivalent to verifying that for any k′ + m′ − 1 ≤ bd+m′−1
2 c and

U ⊆ [m], |U | = m′, the following holds. For all S ⊆ U , all nonfaces of the Cayley polytope TS of

5



(0, 0, 0)

(2, 2, 0)

max(0, 2x+ 2y)

(1, 0, 1)

(0, 1, 1)

(1, 1, 0)

max(x+ 1, y + 1, x+ y)

(2, 3, 1)

(3, 3, 0)

(1, 0, 1)

(1, 1, 0)+

∪

=

=

not visible from above

Figure 1: Upper vertices of Minkowski sums and regions of maxout arrangements.

cardinality k′+ |S|−1 are supported in some vertex set V (TR) with R ( S. One can rewrite the cases as

k′ ≤ bd+m′−1
2 c− (m′−1) and nonfaces of cardinality ≤ bd−(m′−1)

2 c+ |S|−1. For m′ ≥ d, the condition is
trivially satisfied. Hence we only need to check cases with m′ = d− r, r ≥ 1, and nonfaces of cardinality
≤ b r+1

2 c+ |S| − 1, where |S| ≤ d− r, r ≥ 1. This means that for any S ⊆ [m] of cardinality |S| ≤ n, any
selection of one vertex from each Pi, i ∈ S, results in a vertex of the polytope PS =

∑
i∈S Pi, and hence

that PS attains the trivial upper bound on the number of vertices, f0(PS) =
∏
i∈S f0(Pi).

3 Number of linear regions for maxout networks

In this section we present our main results on the maximum number of linear regions of maxout networks.
First we provide general observations, then turn to our main results on shallow networks, and derive
implications for deep networks. For shallow networks, we obtain sharp bounds and provide a construction
that attains them. The main analysis will be conducted in the upcoming Sections 4, 5, and 6.

3.1 General observations

We begin with a simple general upper bound on the number of linear regions of the functions represented
by maxout networks:

Proposition 3.1 (Simple upper bound on the number of regions). For any maxout network N with a
total of m maxout units of ranks k1, . . . , km ∈ N, N(N ) ≤

∏m
j=1 kj.

Proof. Let n0 be the number of inputs. Let L be the number of layers and denote their widths n1, . . . , nL.
Write kl,j for the rank of the jth unit j = 1, . . . , nl in the lth layer l = 1, . . . , L. Fix the parameters
Al,j,r ∈ Rnl−1 , bl,j,r ∈ R of all preactivation features r = 1, . . . , kl,j , of all units j = 1, . . . , nl, of all
layers l = 1, . . . , L. Then, for each input x, the represented function f takes the form (ĀL · · · Ā1)x +

(
∑L
l=1 ĀL · · · Āl+1b̄l), where each Āl : Rn0 → Rnl×nl−1 and b̄l : Rn0 → Rnl is a piecewise constant function

of x having jth row equal to one of the kl,j values Al,j,1, . . . , Al,j,kl,j ∈ Rnl−1 and bl,j,1, . . . , bl,j,kl,j ∈ R,
depending on which of the preactivation features assumes the maximum. The list of preactivation features
that assume the maximum for each unit is called the activation pattern of the network at the particular
input. The set of inputs with a particular activation pattern is determined by a list of linear inequalities
and hence it is a convex polyhedron. In summary, the input space is split into at most

∏L
l=1

∏nl

i=1 kl,i
connected regions on each of which f is linear.

The following proposition states that generic perturbations of the parameters do not decrease the
number of linear regions. Here, generic means up to a null set with respect to the Lebesgue measure in
parameter space. This is important, as later it will allow us to obtain sharp upper bounds by considering
polytopes that are in general orientation.

Proposition 3.2 (Generic perturbations of parameters do not decrease the number of regions). Consider
a network N consisting of a finite number of maxout units. Let fθ ∈ N . Then there exists an ε = ε(θ) > 0
such that for generic θ′ with ‖θ′ − θ‖ < ε, N(fθ′) ≥ N(fθ).
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Proof. The intuition is that every linear region of fθ contains a neighborhood of an input point x0, and
small perturbations of the parameter θ only cause small changes in the distance between x0 and the
nonlinear locus V (fθ), so that no linear regions can ‘disappear’ under small perturbations of the network
parameters. The formal argument is based on the correspondence between regions and upper vertices of
the lifted Newton polytope, Proposition 2.6. Consider the function fθ represented by the network N with
parameter θ, and the corresponding convex function f̄θ = maxj{〈aj(θ), x〉+ bj(θ)} described in (1). The
lifted Newton polytope of f̄θ is the convex hull of points (aj(θ), bj(θ)) ∈ Rn+1 that have a continuous,
in fact polynomial, parametrization in θ. The statement now follows from the lower semi-continuity of
the face numbers of polytopes discussed in [16, Section 5.3]. More precisely, denote by ρ the Hausdorff
metric which is defined as ρ(A1, A2) = inf{α > 0: A1 ⊆ A2 +Bα, A2 ⊆ A1 +Bα}, where Bα is a radius-α
ball around the origin. If P is a bounded polytope, then there exists an ε = ε(P ) > 0 such that for every
P ′ with ρ(P ′, P ) < ε we have fk(P ′) ≥ fk(P ) for any 0 ≤ k ≤ n, where fk(P ) is the number of k-faces
of P . The same statement clearly applies to the upper faces of polytopes, and hence to the number of
linear regions of f̄θ. Since the linear regions of fθ and f̄θ are equal for generic choices of parameters, the
claim follows.

3.2 Shallow networks

For shallow maxout networks, [34] obtained the following bounds. The upper bound is based on embed-
ding a maxout arrangement in a hyperplane arrangement and using well known upper bounds for that
case. We add a minor improvement which was pointed out in [40] (substituting k2 with k(k − 1)/2).

Proposition 3.3 ([34, Proposition 7]). For a network N with n inputs and a single layer of m rank-k

maxout units, kmin{n,m} ≤ N(N ) ≤
∑n
j=0

(
mk(k−1)/2

j

)
.

Notice the significant gap between the lower and upper bounds in Proposition 3.3, of orders Ω(kn)
and O((mk2)n) in m and k. The construction for the lower bound can be generalized and improved, as
we show in the next proposition. In Theorem 3.6 we will show that this lower bound is optimal.

Proposition 3.4 (Lower bound for shallow maxout networks). For a network N with n inputs and a
single layer of m maxout units of ranks k1, . . . , km, N(N ) ≥

∑n
j=0

∑
S∈([m]

j )
∏
i∈S(ki− 1). The bound is

realized if each of the maxout units has a nonlinear locus consisting of ki−1 distinct parallel hyperplanes
and the normals of different units are in general position.

Proof. We count the number of regions for the special case where each maxout unit has a nonlinear
locus consisting of ki − 1 parallel hyperplanes, i = 1, . . . ,m. This provides a lower bound on the
maximum possible number of regions. Zaslavsky’s theorem [53] states that the number of regions of
an arrangement A of affine hyperplanes in an n-dimensional real vector space is r(A) = (−1)nχA(−1),
where χA is the characteristic polynomial of A. For generic translations of hyperplanes of a linear
arrangement, Stanley [42, pg. 22] shows that χA(t) =

∑
B(−1)|B|tn−|B|, where B ranges over all subsets

of hyperplanes in A with linearly independent normals. Applying these two results to an arrangement
A in Rn consisting of m sets of ki − 1 parallel hyperplanes, i = 1, . . . ,m, with hyperplanes in different
sets being in general position, we obtain χA(t) =

∑n
j=0(

∑
S∈([m]

j )
∏
i∈S(ki − 1))(−1)jtn−j and r(A) =

(−1)nχA(−1) =
∑n
j=0(

∑
S∈([m]

j )
∏
i∈S(ki − 1)).

A similar argument can be used to obtain the following lower bound for the maximum number of
regions for functions represented by maxout networks without biases. In Theorem 3.6 we will show that
this lower bound is also optimal.

Proposition 3.5 (Lower bound for shallow maxout networks without biases). For a network N with
n inputs and a single layer of maxout units of ranks k1, . . . , km and no biases, N(N ) ≥

(
m−1
n−1

)
+∑n−1

j=0

∑
S∈([m]

j )
∏
i∈S(ki − 1).

Proof. Consider Rn and the hyperplane H = {x′ ∈ Rn : x′n = 1}. Any linear function x′ 7→ 〈w′, x′〉 on
Rn takes over H the form 〈w, x〉 + b, where w′ = (w, b) and x′ = (x, 1). Thus, setting the weights of
our layer without biases as w′i = (wi, bi) ∈ Rn, with wi ∈ Rn−1 the weights and bi ∈ R the biases of
Proposition 3.4 for n − 1 inputs, where i runs over all preactivation features of all units, we obtain a
function whose restriction to H has

∑n−1
j=0

∑
S∈([m]

j )
∏
i∈S(ki− 1) linear regions. Now we argue that this

function can be constructed so that it has
(
m−1
n−1

)
additional linear regions that are not intersected by H.
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By our construction, over H the nonlinear locus of the jth unit max{〈wj,1, x〉+bj,1, . . . , 〈wj,kj , x〉+bj,kj}
consists of kj − 1 parallel hyperplanes, meaning that all wj,1, . . . , wj,kj are equal to some fixed wj up to
scaling. Consider the hyperplane G = {x′ ∈ Rn : x′n = −1}. Over G, any of the maxout units takes the
form max{〈α1wj , x〉 − bj,1, . . . , 〈αkjwj , x〉 − bj,kj} and its nonlinear locus includes (actually it consists
precisely of) one hyperplane {x ∈ Rn−1 : (αr − αs)〈wj , x〉 − (bj,r − bj,s)}. Hence, over G our layer has
linear regions determined by m affine hyperplanes. Now, an arrangement of m hyperplanes in general
position in n− 1 dimensions has

(
m−1
n−1

)
relatively bounded regions. None of these intersect H.

Our main result determines the maximal number of linear regions for shallow maxout networks with
and without bias, for any input dimension, any number of maxout units, and any ranks. It shows that
the lower bounds in Propositions 3.4 and 3.5 are sharp.

Theorem 3.6 (Optimal bound for shallow maxout networks). For a shallow network N with n inputs
and a layer of m maxout units of ranks k1, . . . , km, we have

N(N ) =

n∑
j=0

∑
S∈([m]

j )

∏
i∈S

(ki − 1),

where
(

[m]
j

)
is the set of subsets of [m] = {1, . . . ,m} with cardinality j. Here

(
[m]
0

)
= {∅}, empty sums are

0, and empty products are 1. In particular, if k1 = · · · = km = k, we have N(N ) =
∑n
j=0

(
m
j

)
(k − 1)j.

Moreover, if N is without biases, then

N(N ) =

(
m′ − 1

n− 1

)
+

n−1∑
j=0

∑
S∈([m]

j )

∏
i∈S

(ki − 1),

where m′ is the number of maxout units of rank larger than 1. In particular, if k1 = · · · = km = k > 1,
we have N(N ) =

(
m−1
n−1

)
+
∑n−1
j=0

(
m
j

)
(k − 1)j.

The proof relies on several results that will be developed in Sections 4, 5, and 6. The most difficult
part is the upper bound for the case with biases and many units (m ≥ n+1) possibly having small ranks
(allowed to be smaller than n+ 2), which also happens to be the case of highest practical interest. The
main ideas are as follows.

It is not difficult to adapt a result by Weibel to count upper faces of Minkowski sums (Theorem 4.10).
This provides us with a formula for the number of linear regions (and other lower-dimensional features)
for shallow maxout networks. However, the formula consists of an alternating sum over sub-arrangements
whose maximum value is difficult to determine when some of the polytopes are not full dimensional.

Studying whole polytopes instead of their upper faces allows us to leverage Adiprasito-Sanyal’s Upper
Bound Theorem for Minkowski Sums and its implications for small Minkwoski subsums (Proposition 2.8).
To obtain an explicit formula for the maximum number of overall vertices, we generalize Weibel’s formula
for vertices to encompass possibly lower-dimensional polytopes (Theorem 6.3) and upper vertices (Theo-
rem 6.2). To this end we formulate a maxout version of Zaslavsky’s theorem (Theorem 5.5). In order to
differentiate between all vertices and upper vertices, we study bounded regions of maxout arrangements
(Theorem 6.9). In summary, the key results towards proving Theorem 3.6 are the following:

Propositions 3.4 and 3.5: constructive lower bounds for the maximum number of linear regions of shallow
maxout networks with and without biases, improving a previous construction by Montúfar et al. [34].

Proposition 2.8: a consequence of the Upper Bound Theorem for Minkowski sums by Adiprasito-Sanyal [2]
to the number of vertices of small Minkowski subsums of polytopes attaining said upper bound.

Theorem 5.5: a maxout version of Zaslavsky’s theorem for hyperplane arrangements [53], which expresses
the number of regions of a maxout arrangement in terms of the Euler characteristic and the Möbius
function on the intersection poset.

Theorems 6.2 and 6.3: a generalization of Weibel’s counting formula for Minkowski sums [50], which
expresses the number of regions of simple non-central and central maxout arrangements in terms of
the regions of small subarrangements (Minkowski subsums).

Theorem 6.9: a lower bound on the number of bounded regions of a maxout arrangement (strict lower
vertices of a Minkowski sum). This allows us to upper bound the number of upper vertices of a
Minkowski sum, given an upper bound on the total number of vertices.
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Proof of Theorem 3.6. For networks with biases, if m ≤ n, we can apply the trivial upper bound given in
Proposition 3.1. For m ≥ n+ 1, the upper bound follows from the upper bound theorem for Minkowski
sums of polytopes Theorem 2.8 together with the lower bound on the number of strict upper or lower
faces given in Theorem 6.9 inserted into the counting formula given in Theorem 6.2 and reformulated
via Lemma 4.12. The construction attaining the maximum is given in Proposition 3.4. For networks
without biases, if m ≤ n, we can apply the trivial upper bound given in Proposition 3.1. For m ≥ n+ 1,
the upper bound follows from Theorem 2.8 inserted into the counting formula given in Theorem 6.3 and
reformulated via Lemma 4.12. The construction attaining the maximum is given in Proposition 3.5.

We illustrate Theorem 3.6 on a few examples.

Example 3.7.

1. In the case of a single input, n = 1, networks with biases represent functions on the real line which
have at most

∑m
i=1(ki− 1) break points and a maximum of 1 +

∑m
i=1(ki− 1) linear regions. Networks

without biases and at least one unit of rank ≥ 2 represent functions which have at most 1 break point
and a maximum of 2 linear regions.

2. In the case of few units, m ≤ n, networks with and without biases both have the optimal bound
∏m
i=1 ki.

To see this, use the multi-binomial theorem to evaluate the formula in our theorem. This matches the
simple upper bound given in Proposition 3.1.

3. In the case of many units, m ≥ n, the maximum number of regions is no longer exponential in m,
but only polynomial. For k1 = · · · = km = k, the order in m and k is Θ((mk)n) and Θ((mk)n−1)
in the cases with and without biases. This should be compared with the previous bounds Ω(kn) and
O((mk2)n) from Proposition 3.3 for the case with biases.

4. In the case k1 = · · · = km = 2, we recover the well-known formulas for the maximum number of regions
of hyperplane arrangements,

∑n
j=0

(
m
j

)
, and central hyperplane arrangements,

(
m−1
n−1

)
+
∑n−1
j=0

(
m
j

)
=

2
∑n−1
j=0

(
m−1
j

)
. These are also the optimal bounds for shallow ReLU networks with and without biases.

We finish this part with two corollaries. The first gives a lower bound on the number of bounded
regions.

Corollary 3.8 (Lower bound on the number of bounded regions). For a network with n inputs, a layer
of m maxout units of ranks at least 2, and generic parameters, the number of bounded regions is at least(
m−1
n

)
. For networks without biases all regions are unbounded.

Proof. This follows from Theorem 6.9.

By Corollary 3.8, generic maxout arrangements with rank at least 2 have at least as many bounded
regions as generic hyperplane arrangements, which have

(
m−1
n

)
bounded regions. This observation is non-

trivial, since the polyhedral pieces of tropical hypersurfaces do not necessarily all intersect each other. It is
easy to draw examples in R2 showing that, in contrast to hyperplane arrangements, maxout arrangements
do not have a single generic number of bounded regions. Lower bounds for generic parameters are rare
in the literature. A result of this kind is [1, Corollary 8.2] (supplement to [2]), which shows that a
Minkowski sum of m polytopes in general position has at least as many vertices as a sum of m line
segments.

The following is a simple corollary for the number of regions over an affine subspace of the input
space, which we will use in the next part on deep networks.

Corollary 3.9 (Number of regions over an affine subspace). Consider a network N with n inputs and a
layer of m maxout units. Let A be an affine n0-space, n0 ≤ n. Then N(N|A) =

∑n0

j=0

∑
S∈([m]

j )
∏
i∈S(ki−

1). Similarly, for a network N without biases and A a linear n0-space, n0 ≤ n, N(N|A) =
(
m−1
n0−1

)
+∑n0−1

j=0

∑
S∈([m]

j )
∏
i∈S(ki − 1).

Proof. The functions represented by N on A can be written as a layer with n0 inputs.
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3.3 Deep networks

In this subsection we derive consequences of our analysis of shallow networks for deep networks. For
deep maxout networks, [34] obtained the following lower bound. The main point in that work was to
show that the maximum number of linear regions is exponential in the depth of the network. Upper
bounds for deep networks can be obtained by multiplying upper bounds for individual layers, whereby
the effective input dimension of each layer is bounded by the dimension of the image of the previous
layers [33]. The following upper bound of this form was given in [40], whereby we correct a minor typo
(the sum runs up to min{n0, . . . , nl−1} rather than min{n0, . . . , nl}).

Proposition 3.10 ([34, Theorem 9] and [40, Theorem 10]). For a rank-k maxout network N with
n0 inputs and L layers of width n0, N(N ) ≥ kL−1kn0 . For L layers of widths n1, . . . , nL, N(N ) ≤∏L
l=1(

∑el
j=0

(
nlk(k−1)/2

j

)
), where el = min{n0, . . . , nl−1}.

We observe that there is a significant gap between the lower and upper bounds, of orders Ω(kL−1+n0)

and O(
∏L
l=1(nlk

2)n0) in n1, . . . , nL and k. We can refine the approach from [34] to obtain the following

lower bound of order Ω(
∏L
l=1(nlk)n0) in n1, . . . , nL and k. This not only grows exponentially with the

depth L, but also grows with the layer widths.

Proposition 3.11 (Lower bound for deep maxout networks). Consider a network N with n0 inputs and
L layers of n1, . . . , nL rank-k maxout units. Let n ≤ n0,

1
2n1, . . . ,

1
2nL−1. Assume nl

n is even (else take

the largest even lower bound and discard the rest). Then N(N ) ≥ (
∏L−1
l=1 (nl

n (k−1)+1)n)(
∑n
j=0

(
nL

j

)
(k−

1)j). For the same network but without biases, assuming nl−1
n−1 is even, N(N ) ≥ (

∏L−1
l=1 ( nl−1

(n−1) (k − 1) +

1)n−1)(
∑n−1
j=0

(
nL

j

)
(k − 1)j).

Proof. We follow the general arguments from [34] but modify the construction of the weights to be similar
to the one used in the same paper for ReLU layers. The idea is to construct a many-to-one function,
which allows us to multiply the regions across layers.

Consider first the case with biases. We consider the restriction of the network to inputs from a
subspace of dimension n. Further, we insert a linear layer of output dimension n after each layer of maxout
units. In this way, the input dimension for each layer is n. This does not increase the representational
power of the network, since a linear layer can be subsumed into the input weights and biases of the next
layer, as Ai+1(Bifi(x) + ci) + bi+1 = (Ai+1Bi)fi(x) + (Ai+1ci + bi+1). For each layer l = 1, . . . , L − 1,
we organize the nl units into n groups of even size nl

n . By choosing the parameters of the ith group
appropriately, we can achieve that their sum with alternating signs represents a zig-zag function over
Rn with nl

n (k− 1) breakpoints along the ith coordinate. To see this, note that along any given direction
of its input, a maxout unit can represent any piecewise linear convex function with k − 1 break points.
This way we can achieve that the ith layer maps [0, 1]n to [0, 1]n in a (nl

n (k − 1) + 1)n to one manner.
The function computed up to layer L − 1 multiplies these multiplicities. By Proposition 3.4, the last
layer can create

∑n
j=0

(
nL

j

)
(k− 1)j regions over the an n-dimensional subspace of its input space, which,

by appropriate scaling will intersect [0, 1]n. Each of these regions has multiplicity
∏L−1
l=1 (nl

n (k− 1) + 1)n

over the input space of the network, thus giving the indicated lower bound.
Consider now the case without biases. For each layer l = 1, . . . , L, we choose the weights of

all preactivation features of the nlth unit as the coordinate vector enl−1
∈ Rnl−1 , so that xlnl

=

max{xl−1
nl−1

, . . . , xl−1
nl−1
} = xl−1

nl−1
. We consider the restriction of the network to the subset of inputs

given by the hyperplane H = {x0 ∈ Rn0 : x0
n0

= 1}. The number of linear regions of a function over this
subset is a lower bound on its number of regions over the entire input space Rn0 . Notice that, given our
choice of weights, over H the last unit of each layer takes the fixed value x0

n0
= x1

n1
= · · · = xLnL

= 1. As
in Proposition 3.5, we choose the weights of the units i = 1, . . . , nl−1 in layer l as w′i = (wi, bi) ∈ Rnl−1×k,
with wi ∈ R(nl−1−1)×k the weights and bi ∈ R1×k the biases that are used above for a layer with biases
and nl−1 − 1 inputs. Hence, over H we obtain the same many-to-one maps as above, but now with the
widths substituted to n0 − 1, . . . , nL−1 − 1. Finally, note that the last layer can in fact be chosen as in
Proposition 3.5 with n inputs and nL outputs. We take the bound

∑n−1
j=0

(
nL

j

)
(k− 1)j for the number of

regions intersecting {xL−1 ∈ RnL−1 : xL−1
nL−1

= 1} and ignore other regions.

Proposition 3.11 is given for networks where all units have the same rank k, but it is straightforward
to formulate corresponding results for networks with units of different ranks. Also, it is not difficult to
obtain minor improvements if instead of discarding units one keeps them with small weights, without
altering the general construction. However, as we will see below, the asymptotic is already tight.
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We now derive upper bounds the number of linear regions N(Φ) of a function Φ : Rn0 → · · · → RnL

represented by a deep neural network. Notice that each linear region of the function computed up to
the (l− 1)th layer is split by the lth layer into at most the number of linear regions of a shallow network
with nl−1 inputs and nl outputs. As pointed out in [33], the linear output pieces of the (l − 1)th layer
have dimension bounded above by min{n0, . . . , nl−1}, which allows us to slightly improve the bound
based on Corollary 3.9. Similar discussions have also appeared in [40] and [55, Theorem 6.3]. We
obtain the following upper bound for deep networks. When all units have rank k, the bound is of order
O(
∏L
l=1(nlk)n0) in the layer widths n1, . . . , nL and rank k, which in view of Proposition 3.11 is tight.

Theorem 3.12 (Upper bound for deep maxout networks). Let N be an network with n0 inputs and L
layers of nl maxout units of ranks kl,1, . . . , kl,nl

, l = 1, . . . , L. Let el = min{n0, . . . , nl−1}, l = 1, . . . , L.
Then

N(N ) ≤
L∏
l=1

el∑
j=0

∑
S∈([nl]

j )

∏
i∈S

(kl,i − 1).

For the same network but without biases,

N(N ) ≤
L∏
l=1

((nl − 1

el − 1

)
+

el−1∑
j=0

∑
S∈([nl]

j )

∏
i∈S

(kl,i − 1)
)
.

Moreover, these bounds are asymptotically sharp.

Proof. We write Φ(i,j) : Rni−1 → · · · → Rnj for the function represented by the network consisting of
layers i, . . . , j, and write Φ(j) for Φ(1,j). For any l ∈ [L] we have that Φ = Φ(l,L) ◦ Φ(l−1). We consider
Nc(Φ), the smallest number of convex regions that form a refinement of the linear regions of the function
Φ. For a positive integer e ≤ n0, we will also need to consider

Nc(Φ | e) := max{Nc(Φ|Ω) : Ω ⊆ Rn0 is an e-dimensional affine space}.

Now, if F is a layer with output dimension d, and H = G ◦ F , where G is a layer with a compatible
number of inputs, then N(H) ≤ Nc(H) ≤ Nc(G | d) · Nc(F ). See [55, Theorem D.3] for a discussion.
Hence N(Φ) ≤ Nc(Φ(l,L) | el) ·Nc(Φ(l−1)) = Nc(Φ

(l,L)) ·Nc(Φ(l−1)). The bounds then follow by induction
and Corollary 3.9, which bounds the number of regions of a layer with inputs from an affine space of
given dimension. Finally, the asymptotic tightness of the bounds follows in view of Proposition 3.11.

The bound is based on the observation that each of the linear regions of a network with l − 1 layers
is mapped to a polyhedron of dimension at most el in the input space of the lth layer. The lth layer
will split each of these polyhedra into at most as many regions as it can create over an affine space
of dimension el. In principle, one can pursue a more refined analysis by recursively investigating the
arrangement that is induced by the lth layer on the graph of the (l − 1)-layer network, similar to the
analysis that we conduct in Sections 5 and 6 for maxout arrangements.

4 Face counting formulas à la Weibel

Weibel [50] obtained a counting formula for the number of faces of large Minkowski sums of full-
dimensional polytopes P1, . . . , Pm ⊆ Rn+1, m ≥ n + 1, dim(Pi) = n + 1, in terms of the numbers
of faces of partial sums of up to n of the polytopes. In the following we give a similar formula for the
number of upper faces, which also holds when the summands have arbitrary dimensions.

The idea of [50] is to enumerate the s-faces of P = P1 + · · ·+Pm by inclusion-exclusion of the s-faces
of the partial sums PS =

∑
i∈S Pi, S ⊆ {1, . . . ,m} with 1 ≤ |S| ≤ n. In order to do this, polytopes are

associated with spherical complexes, and cells of the complex are assigned a witness westernmost corner.
We use similar definitions with slight modifications.

Definition 4.1 (Spherical complex and upper complex of a polytope). Let P ⊆ Rn+1 be a polytope. To
each face F of P we associate the cell of directions it maximizes: C(F, P ) = {l ∈ Sn : 〈l, x− y〉 > 0 ∀x ∈
F, y ∈ P \F}. The set of all such cells is a spherical complex G(P ) dual to P . The upper complex G+(P )
consists of the intersections of cells in G(P ) with (Rn×R>0). The upper part P+ of a polytope P in Rn+1,
is the collection of faces F of P whose cells C(F, P ) intersect (Rn × R>0). Let Sn≥0 = Sn ∩ (Rn × R≥0).
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<
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(a) U1 = span{e3}

S2 S2

(b)

S2
≥0

(c)

blue cell has no
westernmost point

westernmost corner of blue cell

Figure 2: (a) Shown is G(P1 + P2 + P3), where P1, P2, P3 have 2, 3, 3 vertices respectively, and the
westernmost corners of its 0-, 1-, and 2-cells (westernmost corners of 2-cells are colored by their support);
(b) Cells of G(P ), P lower-dimensional, may not have westernmost points, but (c) cells of G+(P ) do.

Definition 4.2 (General orientation). A polytope P ⊆ Rn+1 is said to be in general orientation (relative
to our coordinates) if none of the great circles defined by one-dimensional cells in G(P ) contains a
standard unit vector. A family of polytopes P1, . . . , Pm ⊆ Rn+1 is in general orientation, if each Pi is in
general orientation and for all S ⊆ [m] and any Ci ∈ G(Pi), i ∈ S, the intersection

⋂
i∈S Ci is either

empty or has codimension at least min{
∑
i codim(Ci), n}.

For i = n+ 1, n− 1, n− 3, . . ., let U i be the i-dimensional subspace span{en+1−i+1, . . . , en+1} if i ≥ 1
and just the zero space {0} if i ≤ 0. Given a fixed U i, we write êk = en+1−i+1+k for 1 ≤ k ≤ i so that
ê1, . . . , êi is a basis of it.

Definition 4.3 (Direction west). Let i > 1. At every point in Sn ∩ U i ∼= Si−1 and not in Sn ∩
U i−2 ∼= Si−3 define the direction west as the direction of increasing θ1 in the coordinate system given
by S1 = {sin(θ1)ê1 + cos(θ1)ê2 : θ1 ∈ [0, 2π)} and Sk = {sin(θk)Sk−1 + cos(θk)êk+1 : θk+1 ∈ [0, π]} for
k = 2, 3, . . . , i− 1. Here, êk = en+1−i+1+k.

Definition 4.4 (Westernmost point and westernmost corner). We define a westernmost point of a cell
C ⊆ Sn as follows: Let U i be the smallest subspace in the sequence Un+1, Un−1, . . . which has a nonempty
intersection with C. If i > 1, a westernmost point of C is a local optimizer of the direction west in the
closure of C ∩U i. If i = 1, then C ∩U i ⊆ {±en+1}. For C ∩U i = {±en+1} the westernmost point of C
is en+1, otherwise it is the single point in the intersection. Finally, we define a westernmost corner of a
cell as the intersection of its closure with a small ball around a westernmost point.

The definition is illustrated in Figure 2 (a). Example 4.5 illustrates the existence and non-existence
of westernmost corners. Lemma 4.6 will state sufficient conditions for existence and uniqueness.

Example 4.5.

1. Consider the upper sphere C = Sn≥0. If n is even, then the smallest subspace among Un+1, Un−1, . . . , U1

which intersects C is U1. Hence the westernmost point of C is the north pole C∩U1 = {(0, . . . , 0, 1)}.
If n is odd, then the smallest subspace which intersects C is U2. Hence the westernmost point of C is
the optimizer of θ1 over the half-circle Sn≥0 ∩ U2 ∼= S1

≥0, which is {(0, . . . , 0, 1, 0)}.

2. If P is not full dimensional, not every cell of G(P ) needs to have a westernmost point: Consider
P = conv{v,−v} ⊆ R3 for a generic v ∈ S2; see Figure 2 (b). Then G(P ) consists of two open
half-spheres and a great circle. Each of the half-spheres intersects U1 at a single point, which is
their westernmost point. The great circle does not intersect U1 and has no local optimum for the
direction west. Hence it has no westernmost point. Note however that each cell of G+(P ) has a
unique westernmost point; see Figure 2 (c).

3. If a cell is not in general orientation relative to the U i, then it can have multiple westernmost points:
Consider a segment of a great circle in S2 passing through north and south poles. If it does not contain
either pole, then any of its points is a westernmost point.
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Lemma 4.6. Let P ⊆ Rn+1 be a polytope. If P is in general orientation (relative to the coordinate
system), then each cell of G+(P ) has a unique westernmost corner. Additionally, if P is full-dimensional,
then each cell of G(P ) has a unique westernmost corner.

Proof. Note that cells of G+(P ) and, for P full-dimensional, of G(P ) are spherically convex in the sense
that any shortest arc between two points is inside the set. Combined with P being in general orientation,
[50, Lemma 6] shows that every cell has a westernmost point and corner. Since P is in general orientation,
each cell has a single westernmost point.

Definition 4.7 (Support). Let P1, . . . , Pm ⊆ Rn+1 be a family of polytopes. The support of a point
w ∈ Sn is defined as

SuppP1,...,Pm
(w) := {i ∈ [m] : w ∈ Ci for some Ci ∈ G(Pi) with co-dim(Ci) ≥ 1} ⊆ [m].

In particular, the support of a generic point is ∅. The support SuppP1,...,Pm
(W ) of a westernmost corner

W of a cell is defined to be the support of its westernmost point.

The following lemma points out that for polytopes in general orientation, westernmost corners that
appear in one sub-complex also appear in any larger sub-complex.

Lemma 4.8. Let P1, . . . , Pm be a family of polytopes in general orientation, and let W be a westernmost
corner of an s-cell of G(P[m]). Then W is the westernmost corner of an s-cell of G(PS) if and only if
SuppP1,...,Pm

(W ) ⊆ S.

Proof. Note that G(PS) coincides with G(P[m]) locally aroundW if and only if its support SuppP1,...,Pm
(W )

is contained in S. Thus the claim is an immediate consequence of [50, Lemma 7], which states that for
spherically convex cells on Sn in general orientation westernmost points are the local optima of the
direction west.

We will use the following lemma in order to enumerate the westernmost points of Minkowski sums
based on the above observation. Notice that

(
m−r
j−r
)

is the number of subsets of [m] of cardinality j which

contain some particular subset of [m] of cardinality r.

Lemma 4.9. For any integers 0 ≤ r ≤ n < m, we have
∑n
j=0(−1)n−j

(
m−1−j
n−j

)(
m−r
j−r
)

= 1. In particular,

for any function ξ(·) : 2[m] → R with
∑
S∈([m]

j ) ξS =
(
m−r
j−r
)

for all 0 ≤ j ≤ n,

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

ξS = 1.

Proof. The proof follows by induction overm ≥ n+1, using form = n+1 the fact that
∑n+1
j=0 (−1)j

(
n+1−r
j−r

)
=

0 and hence
∑n
j=0(−1)n−j

(
n+1−r
j−r

)
= 1 for any 0 ≤ r < n+ 1.

We obtain the following linear relation between the number of upper s-faces of a Minkowski sum
of m polytopes and the number of upper s-faces of subsums of at most n of the polytopes. This is a
version of Weibel’s theorem [50, Theorem 1] for the case of upper faces. Whereas that result is for sums
of full-dimensional polytopes, our statement is valid for any dimensions.

Theorem 4.10 (Number of upper faces of Minkowski sums). Let P1, . . . , Pm be any positive dimensional
polytopes in Rn+1 in general orientations, m ≥ n+ 1, and P = P1 + · · ·+ Pm. Then for the number of
s-faces of the upper part we have

fs(P
+) =

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

fs(P
+
S ), s = 0, . . . , n,

where PS = (
∑
i∈S Pi) for any nonempty S ⊆ [m], and P∅ = {0}.

Proof. Consider the complex G+(P ), and recall that s-dimensional upper faces of P correspond to (n−s)-
dimensional cells of G+(P ). Let W1, . . . ,WN be the westernmost corners of (n − s)-cells of G+(P ) and
let I1, . . . , IN ⊆ [m] denote their supports. Note that 0 ≤ |Ii| ≤ n for all i = 1, . . . , N . Let ws(P

+
S )
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denote the number of west-most corners of (n − s)-cells of P+
S , so that ws(P

+
S ) = fs(P

+
S ). Writing

fs(P
+) = N =

∑N
i=1 1, we then obtain

fs(P
+)

Lem.
=
4.9

N∑
i=1

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

)∑
S∈([m]

j )

1Ii⊆S =

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

)∑
S∈([m]

j )

N∑
i=1

1Ii⊆S

Lem.
=
4.8

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

ws(P
+
S ) =

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

fs(P
+
S ).

One naturally wonders if the proof of Theorem 4.10 can be extended to count the faces of the entire
polytope, generalizing Weibel’s result to sums of polytopes of arbitrary dimensions. Lemma 4.6 does not
cover that case. We will present an alternative approach in Section 6.

Weibel [50, Theorem 3] also shows, for sums of full-dimensional polytopes, that the number of vertices
is maximized when the partial sums attain the trivial upper bound. The same arguments transfer to the
case of upper vertices, and one can show the following corollary. In the following we consider families of
polytopes Pi satisfying f0(Pi) = ki, i = 1, . . . ,m.

Corollary 4.11 (Upper bound for upper vertices of sums of full-dimensional polytopes). Let m ≥ n+ 1
and k1, . . . , km ≥ n+ 2. Then f0(P+) ≤

∑n
j=0(−1)n−j

(
m−1−j
n−j

)∑
S∈([m]

j )
∏
i∈S ki.

By comparison, Weibel’s upper bound for the total number of vertices is f0(P ) ≤
(
m−1
n

)
+∑n

j=0(−1)n−j
(
m−1−j
n−j

)∑
S∈([m]

j )
∏
i∈S ki. Unfortunately his argument does not extend to the case where

some of the ki are small, neither for all vertices nor for upper vertices. To address that case, we will
instead use the upper bound theorem by Adiprasito-Sanyal [2]. Their result implies Proposition 2.8,
which states that if a Minkowski sum maximizes the number of vertices, then the partial sums attain the
trivial upper bound f0(PS) =

∏
i∈S f0(Pi). The problem remaining is whether maximizing the number

of vertices f0(P ) also entails maximizing the number of upper vertices f0(P+) and whether the partial
sums will also attain the trivial upper bound for upper vertices. In Section 6 we will show that this is
indeed the case.

We find it useful to rewrite the alternating sum as follows.

Lemma 4.12. Let m ≥ n+ 1 ≥ 1 and k1, . . . , km ≥ 2. Then

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

∏
i∈S

ki =

n∑
j=0

∑
S∈([m]

j )

∏
i∈S

(ki − 1).

Proof. We prove the equality by viewing both sides as polynomials in the variables ki and examining
the coefficient of each monomial. Fix a subset S ⊆ [m] of size j. The coefficient for the monomial kS =∏
i∈S ki on the left-hand side of the equation is (−1)n−j

(
m−1−j
n−j

)
. On the right-hand side, the term kS

appears with sign equal to (−1)|T |−|S| for each T ⊇ S. The coefficient on the right-hand side is therefore∑
T⊇S(−1)|T |−j =

∑n−j
i=0 (−1)i ·

(
m−j
i

)
. The statement now follows from the following observation, which

is obtained by induction on n: If m ≥ n+ 1 ≥ 1, then
∑n
i=0(−1)i

(
m
i

)
= (−1)n

(
m−1
n

)
.

5 Face counting formulas à la Zaslavsky

Zaslavsky [53] proved a theorem expressing the number of regions defined by a hyperplane arrangement in
terms of the characteristic polynomial, a function obtained from the intersection poset of the arrangement.
In the following we derive a similar type of result for the case of maxout arrangements. Hyperplanes are
special in that their intersections are affine spaces and can be discussed in terms of linear independence
relations. In contrast, for maxout arrangements the intersections involve linear equations and also linear
inequalities. In turn, the elements of the poset have a more complex topology that needs to be accounted
for. In general the poset also has a more complex structure even if the arrangement is in general position.

Definition 5.1 (Maxout arrangement). For a collection of m maxout units zi(x) =
max{Ai,1(x), . . . , Ai,ki(x)}, x ∈ Rn, i = 1, . . . ,m, we define the maxout arrangement A = {Hi

ab : {a, b} ∈
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H1
23
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H2
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12H1

13H1
23 H2

12H2
13H2

23

• ••• •

Figure 3: Shown is an arrangement of two maxout units of ranks k1 = k2 = 3 on R2 along with its
intersection poset discussed in Example 5.2 and 5.6.

(
[ki]
2

)
, i ∈ [m], co-dim(Hi

ab) = 1} in Rn as the collection of nonempty co-dimension 1 indecision boundaries
between pairs of preactivation features, called atoms,

Hi
ab =

{
x ∈ Rn : Ai,a(x) = Ai,b(x) = max

c∈[ki]
{Ai,c(x)}

}
. (2)

We call the arrangement central if the affine functions Ai,a of each unit are linear.
We let L(A) denote the set of all possible nonempty sets obtained by intersecting subsets of elements

in A, including Rn as the empty set intersection. The set L(A) is partially ordered by reverse inclusion,
so that for any s, t ∈ L(A) we have s ≥ t if and only if s ⊆ t. The smallest element, i.e. the 0̂ in this
poset, is Rn. For a given arrangement A, we denote by r(A) the number of connected components of
Rn \ ∪H∈AH, called the regions of A.

Note that rank-1 units have no indecision boundaries and can be ignored. In the following we will
therefore assume without loss of generality that k1, . . . , km ≥ 2.

Example 5.2. Figure 3 shows a maxout arrangement of two rank-3 maxout units and their intersection
poset. The black indecision boundaries arise from z1(x, y) = max{2y, x + y + 1, 2}, while the blue
indecision boundaries arise from z2(x, y) = max{0, 3x+ 2y, 5x+ y}.

Recall that the Möbius function of a poset L with partial order ≤ is defined by µL(s, s) = 1 for s ∈ L,
µL(s, u) = −

∑
s≤t<u µL(s, t) for s < u ∈ L, and µL(s, u) = 0 for s 6≤ u. If the poset has a minimal

element 0̂, one also defines µL(x) := µL(0̂, x). The Möbius inversion formula for locally finite posets
states the following equivalence for functions g and h on the poset [38]:

g(t) =
∑
s≤t

h(s) ∀t ∈ L if and only if h(t) =
∑
s≤t

g(s)µL(s, t) ∀t ∈ L.

Further, recall that if a space X is suitably decomposed into cells with fs cells of dimension s, then
its Euler characteristic is defined as ψ(X) := f0 − f1 + f2 ∓ · · · , whereby we follow the notation of
[42]. Concretely, a polyhedral decomposition or a CW complex decomposition with finitely many pieces
are suitable for computing the Euler characteristic; see [48, Chapter 4 Proposition 2.2]. The Euler
characteristic is independent of the specific decomposition.

A (closed) face of the arrangement A is a set of the form ∅ 6= F = R ∩ x, where R is the closure of
a connected component R of X \ ∪H∈AH, and x ∈ L(A). Denote the set of faces of A by F(A). The
faces of an arrangement A in X create a decomposition X = tF∈F (A) relint(F ).

Definition 5.3 (Proper arrangement). We call an arrangement A in a space X proper if the set of faces
F(A) decomposes X suitably for computing the Euler characteristic.

Lemma 5.4. A maxout arrangement in Rn is always proper. A central maxout arrangement in Rn+1

restricted to Sn is proper whenever the associated Newton polytope in Rn+1 has dimension n+ 1.

Proof. The maxout arrangement creates a polyhedral decomposition of Rn. For a central arrangement
with full-dimensional polytope, the spherical cell complex is equivalent to the boundary of the dual
polytope, which is a CW complex.

We obtain the following counting formula for the number of regions of an arrangement.
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Theorem 5.5 (Number of faces of maxout arrangements). Consider a proper arrangement A in a space
X (e.g. Rn or Sn). Then the number of regions defined by A on X satisfies

r(A) = (−1)dim(X)
∑

y∈L(A)

ψ(y)µL(A)(y).

Moreover, writing L(A)/x = {y ∈ L(A) : y ≥ x}, the number of s-faces satisfies

fs(A) =
∑

x∈L(A)
dim(x)=s

(−1)dim(x)
∑

y∈L(A)/x

ψ(y)µL(A)/x(y), s = 0, . . . ,dim(X)− 1.

This result is an instance of what Zaslavsky calls a fundamental theorem of dissection theory [54,
Theorem 1.2]. We note that if A is an arrangement of hyperplanes in Rn, then each y ∈ L(A) is
an affine subspace with Euler characteristic ψ(y) = (−1)dim(y) and the statement of Theorem 5.5
corresponds to Zaslavsky’s result [53, Theorem A], which states that for hyperplane arrangements
r(A) = (−1)n

∑
x∈L(A)(−1)dim(x)µL(A)(x) = (−1)nχL(A)(−1). Here, the characteristic polynomial of

L(A) is defined as χL(A)(t) :=
∑
x∈L(A) µL(A)(x)tdim(x), t ∈ R.

Proof of Theorem 5.5. The proof follows the Eulerian method, i.e. the arguments of Zaslavsky’s quick
proofs in [53]. Consider an arrangement A in a space X. For any y ∈ L(A), denote the arrangement
induced by A on y as Ay := {y ∩H 6= ∅ : H ∈ A, H 6⊇ y}. Now, every k-face of A is closure of a region
of exactly one Ay, y ∈ L(A), dim(y) = k. Hence we have

fk(A) =
∑

y∈L(A)
dim(y)=k

r(Ay). (3)

Hence, if A is proper, then we have ψ(X) = f0(A) − f1(A) ± · · · =
∑
y∈L(A)(−1)dim(y)r(Ay). We have

an analogous expression for any x ∈ L(A) in place of X. Note that if A is proper, then so is Ay for any
y ∈ L(A). Hence,

ψ(x) =
∑

y∈L(A)
y≥x

(−1)dim(y)r(Ay) ∀x ∈ L(A).

The Möbius inversion formula then gives

(−1)dim(x)r(Ax) =
∑

y∈L(A)
y≥x

ψ(y)µL(A)(x, y) ∀x ∈ L(A).

Substituting x = X gives (−1)dim(X)r(A) =
∑
y∈L(A) ψ(y)µL(A)(y). This completes the proof of the

first statement. The second statement is by (3) and applying the first statement to each element of the
intersection poset of dimension s.

Example 5.6. We illustrate Theorem 5.5. We consider the arrangement of two maxout units of ranks
k1 = k2 = 3 in Rn, n = 2, shown in Figure 3. In this example µ(R2) = 1, µ(Hi

ab) = −1, µ(•) = 2,
µ(•) = 2, µ(•) = 1, and ψ(R2) = (−1)2 = 1, ψ(Hi

ab) = 1− 1 = 0, ψ(•) = ψ(•) = ψ(•) = (−1)0 = 1. By
Theorem 5.5, the number of regions and 1-faces are

r(A) =
∑

y∈L(A)

ψ(y)µL(A)(y) = 1 + 0(−1−1−1−1−1−1) + (−1)0(2+2+1+1+1) = 8,

f1(A) =
∑

x∈L(A)
dim(x)=1

(−1)dim(x)
∑

y∈L(A)/x

ψ(y)µL(A)/x(y)

= (−1)1((0−1−1)

x=H1
12

+ (0−1−1)

x=H1
13

+ (0−1−1)

x=H1
23

+ (0−1−1)

x=H2
12

+ (0−1)

x=H2
13

+ (0−1−1−1)

x=H2
23

) = 12.

For a general maxout arrangement, the Euler characteristic of the elements of the intersection poset
may depend not only on the dimension. Besides the case of hyperplane arrangements, we note another
special case where it depends only on the dimension. For central arrangements of full-dimensional maxout
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units in Rn+1 (i.e. each of the polytopes P1, . . . , Pm has dimension n+ 1), each y ∈ L(A) \ {Rn+1, {0}}
is an unbounded pointed cone with ψ(y) = 0 (this can be deduced from the fact that any bounded
convex polytope has Euler characteristic 1). Hence, noting that ψ(Rn+1) = (−1)n+1 and ψ({0}) = 1,
we may express the number of regions of such an A in terms of the characteristic polynomial χL(A)(t) =∑
y∈L(A) µL(A)(y)tdim(y) as follows.

Proposition 5.7. For a central arrangement A of full-dimensional maxout units in Rn+1, r(A) =
1 + (−1)n+1χL(A)(0).

6 Region counting by regions of sub-arrangements

Our objective in this section is to write the number of regions r(A) of an arrangement A in terms of
the numbers of regions of small sub-arrangements. To this end we will focus on simple arrangements,
which arise from maxout units with generic parameters, and combine the results from Sections 4 and 5.
As before, we will assume that each maxout unit has rank at least two. To draw a bridge between the
upper vertices and all vertices of Minkowski sums of polytopes, we consider both non-central and central
arrangements.

Definition 6.1 (Simple arrangements). Let A = {Hi
ab}i∈[m],{a,b} be a maxout arrangement. For any

S ⊆ [m], write AS = {Hi
ab}i∈S,{a,b} for the sub-arrangement of atoms of units i ∈ S.

A maxout arrangement A is simple, or in general position, if the intersection of any j atoms of
different units is either empty or has co-dimension j. In the case of a central arrangement, all atoms
contain the origin 0. A central maxout arrangement A is simple if the intersection of any j atoms of
different units is either the origin or has co-dimension j.

If A is simple, we define the support of an element y = ∩rl=1H
il
albl
∈ L(A), with y 6= 0 if A is central,

as the set {i1, . . . , ir} ⊆ [m]. Note that while y may not have a unique representation as intersection of
atoms, the support is well-defined if A is simple and y 6= 0 if A central.

6.1 Simple non-central arrangements

Simple non-central arrangements have the convenient property that an element y ∈ L(A) of the intersec-
tion poset is contained in the intersection poset L(AS) of a sub-arrangement AS if and only if the support
of y is contained in S. This mimics the behavior of westernmost corners in Lemma 4.8, but without the
need of a coordinate system and local optimization. We obtain a formula similar to Theorem 4.10 for
upper vertices with a short proof based on Theorem 5.5.

Theorem 6.2 (Number of regions of a simple non-central arrangement). Let A be a simple arrangement
of m ≥ n+ 1 maxout units of ranks k1, . . . , km ≥ 2 in Rn. Then

r(A) =

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

r(AS).

Proof of Theorem 6.2. If A is simple, then any element in L(A) can be written as an intersection of at
most n atoms. Moreover, any y ∈ L(A) is included in L(AS) if and only if its support is contained in S.
Hence, using Lemma 4.9 and the fact that µL(A)(y) = µL(AS)(y) for any y ∈ L(AS), we can rewrite the
expression from Theorem 5.5 as follows:

r(A)
Thm. 5.5

= (−1)n
∑

y∈L(A)

ψ(y)µL(A)(y)

Lem. 4.9
= (−1)n

∑
y∈L(A)

ψ(y)µL(A)(y)

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

1y∈L(AS)

= (−1)n
n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

∑
y∈L(AS)

ψ(y)µL(AS)(y) (4)

Thm. 5.5
=

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

r(AS).

17



A{1,2}

L(A{1,2}) = {R2,R · e1,R · e2, {0}}

A{1,3}

L(A{1,3}) = {R2,R · e1,R · (e1 + e2), {0}}

A{1}

L(A{1}) = {R2,R · e1}

Figure 4: The origin {0} is contained in both the intersection poset of A{1,2} and of A{1,3}, but not in
the intersection poset of A{1,2}∩{1,3}.

6.2 Simple central arrangements

Simple central arrangements come with the added challenge that the origin {0} = 1̂ ∈ L(A) may
be contained in several posets L(AS) with S ⊆ [m], S 6= ∅, while not being contained in the poset
corresponding to the intersection of these S. See Figure 4. Consequently, there is no obvious way to define
a support for {0} that is consistent with Lemma 4.8, which in turn makes it difficult to apply Lemma 4.9.
We thus need to treat {0} separately. We consider central arrangements in Rn+1, corresponding to the
ambient space of the lifted Newton polytopes of maxout networks with input space Rn.

Special case First we present a simple approach to enumerate the regions of a central arrangement
in the special case that the A{i} are proper. We consider the arrangement A ∩ Sn, which for simplicity
of notation we will still denote A. For a central arrangement in Rn+1, the number of regions it defines
in Rn+1 is equal to the number of regions it defines on Sn. Conveniently, {0} no longer appears in the
posets over Sn. For a central arrangement of m ≥ n+ 1 units of ranks k1, . . . , km ≥ 2, as before in (4),

r(A) = (−1)n
∑

y∈L(A)

ψ(y)µL(A)(y) =(−1)n
n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

∑
y∈L(AS)

ψ(y)µL(AS)(y). (5)

Under the additional assumption that the arrangement AS on Sn is proper for all S 6= ∅ (e.g. the lifted
Newton polytopes of all maxout units are full-dimensional), we can use Theorem 5.5 to rewrite (5) as

r(A) =(−1)n
(
m− 1

n

)
ψ(Sn) +

n∑
j=1

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

r(AS)

=ψ(Sn) +

n∑
j=1

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

(r(AS)− ψ(Sn)), (6)

in which we also use
∑
y∈L(A∅) ψ(y)µL(A∅)(y) = ψ(Sn) and

∑n
j=1(−1)n−j

(
m−1−j
n−j

)(
m
j

)
= 1− (−1)n

(
m−1
n

)
which follows from Lemma 4.9. Since ψ(Sn) = 0 if n is odd and ψ(Sn) = 2 if n is even, (6) recovers the
k = 0 case of [50, Theorem 1].

General case Next, we present an approach to handle the origin directly in Rn+1, which will allow
us to address the general case where the lifted Newton polytopes of the maxout units need not be
full-dimensional. Our goal is to prove the following theorem:

Theorem 6.3 (Number of regions of a simple central arrangement). For a central simple arrangement
A of m maxout units of ranks k1, . . . , km ≥ 2 in Rn+1, m ≥ n+ 1,

r(A) =

(
m− 1

n

)
+

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

r(AS).

To prove Theorem 6.3, we will use use Theorem 5.5 to write r(A) as a sum of terms ψ(y)µL(A)(y)
over y ∈ L(A). For the elements y ∈ L(A) \ {0} we can use similar arguments as before. To handle
{0} = 1̂ ∈ L(A) we will use the Cross-cut Theorem:
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Theorem 6.4 (Cross-cut Theorem [38]). Let L be a finite lattice. Let X be a subset of L such that
0̂ 6∈ X and such that if y ∈ L, y 6= 0̂, then some x ∈ X satisfies x ≤ y. Let Nk be the number of k
element subsets of X with join 1̂. Then µL(0̂, 1̂) = N0 −N1 +N2 ∓ · · · .

In the following we will evaluate this formula for the case of the intersection poset L(A) of a simple
central arrangement, and split the expression into terms corresponding to sub-arrangements AS with
0 ≤ |S| ≤ n. We will use following definitions.

Definition 6.5. Let A be a simple central arrangement of m maxout units. For S ⊆ [m] of cardinality
|S| ≤ n, let NS

k denote the number of k element subsets of AS with join {0}. For k > n, let N∗k denote
the number of k element subsets of A which contain atoms of at least n + 1 units. Note that their join
is necessarily {0} as A is simple.

First we note that the terms involving more than n units can be grouped as follows.

Lemma 6.6. Let A be a simple central arrangement of m maxout units in Rn+1, and let M := |A| be

the number of its atoms. Then
∑M
k=n+1(−1)kN∗k = −(−1)n

(
m−1
n

)
.

Proof. The statement follows from reformulations obtained by splitting k element subsets of A with
atoms from A{i}, i ∈ S, into a disjoint union of non-empty Ji ⊆ A{i}, i ∈ S:

M∑
r=n+1

(−1)rN∗r =

m∑
r=n+1

∑
S∈([m]

r )

∑
∅6=Ji⊆A{i}
for all i∈S

(−1)
∑

i∈S |Ji| =

m∑
r=n+1

∑
S∈([m]

r )

∏
i∈S

|A{i}|∑
ji=1

(
|A{i}|
ji

)
(−1)ji

=

m∑
r=n+1

∑
S∈([m]

r )

∏
i∈S

(−1) =

m∑
r=n+1

(
m

r

)
(−1)r = −

n∑
r=0

(
m

r

)
(−1)r = −(−1)n

(
m− 1

n

)
.

Now using Theorem 6.4 and Lemma 6.6, we obtain the following description of µL(A)({0}).

Lemma 6.7. Let A be a simple central arrangement of m maxout units in Rn+1. Then

µL(A)({0}) = −(−1)n
(
m− 1

n

)
+

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

µL(AS)({0})1{0}∈L(AS).

Here 1{0}∈L(AS) takes value 1 if {0} ∈ L(AS) and 0 otherwise.

Proof. Let M := |A| be the number of atoms of A, and for a subset A ⊆ A let Supp(A) ⊆ [m] denote
the minimal S ⊆ [m] with A ⊆ AS . With Theorem 6.4 we can decompose µL(A)({0}) = µL(A)(0̂, 1̂) as

µL(A)({0})
Thm. 6.4

=

M∑
k=0

(−1)kNk =

[ M∑
k=n+1

(−1)kN∗k

]
+

[ M∑
k=0

(−1)k
∑
A∈(Ak)

join(A)={0}
| Supp(A)|≤n

1

]

Lem. 4.9
=

[ M∑
k=n+1

(−1)kN∗k

]
+

[ M∑
k=0

(−1)k
∑
A∈(Ak)

join(A)={0}
| Supp(A)|≤n

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

1Supp(A)⊆S

]

=

[ M∑
k=n+1

(−1)kN∗k

]
+

[ n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

M∑
k=0

(−1)k
∑
A∈(Ak)

join(A)={0}
| Supp(A)|≤n

1Supp(A)⊆S

]

=

[ M∑
k=n+1

(−1)kN∗k

]
+

[ n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

M∑
k=0

(−1)kNS
k

]

=

[ M∑
k=n+1

(−1)kN∗k

]
+

[ n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

µL(AS)({0})1{0}∈L(AS)

]
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Figure 5: Shown are two central maxout arrangements, one in R2 and one R3 (for clarity we show only
the intersection with S2), discussed in Example 6.8.

Lem. 6.6
= −(−1)n

(
m− 1

n

)
+

[ n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

µL(AS)({0})1{0}∈L(AS)

]
.

We now have all the supporting results we need to prove Theorem 6.3.

Proof of Theorem 6.3. Similar to the proof of Theorem 6.2, note that if A is simple, then any element
in L(A) \ {0} can be written as an intersection of at most n atoms. Moreover, any y ∈ L(A) \ {0} is
contained in L(AS) if and only if its support is contained in S. This allows us to apply Lemma 4.9 as in
the proof of Theorem 6.2 for y ∈ L(A) \ {0}. Hence

r(A)
Thm. 5.5

= (−1)n+1ψ({0})µL(A)({0}) + (−1)n+1
∑

y∈L(A)\{0}

ψ(y)µL(A)(y)

Lem. 4.9
= (−1)n+1µL(A)({0}) + (−1)n+1

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

∑
y∈L(AS)\{0}

ψ(y)µL(AS)(y)

Lem. 6.7
=

(
m− 1

n

)
+ (−1)n+1

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

(
µL(AS)({0})1{0}∈L(AS)

+
∑

y∈L(AS)\{0}

ψ(y)µL(AS)(y)
)

=

(
m− 1

n

)
+ (−1)n+1

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

∑
y∈L(AS)

ψ(y)µL(AS)(y)

Thm. 5.5
=

(
m− 1

n

)
+

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

r(AS).

Recall that units of rank 1 have an empty arrangement and can be ignored. Theorem 6.3 generalizes
(6) and Weibel’s result [50, Theorem 1 for k = 0] by removing the requirement that k1, . . . , km ≥ n+ 2.
We illustrate Theorem 6.3 in the next example.

Example 6.8.

1. Consider the arrangement of m = 2 maxout units of ranks k1 = 3, k2 = 2 in Rd, d = n+1 = 2 shown in
the left part of Figure 5. In this example µ(R2) = 1, µ(Hi

ab) = −1, µ(•) = 3. By Theorem 5.5, r(A) =∑
y∈L(A) ψ(y)µL(A)(y) = (−1)21+0(−1−1−1)+(−1)1(−1)+(−1)03 = 5. By Theorem 6.3, this can

be written as r(A) = ψ(Sn)
(
m−1
n

)
+
∑n
j=1(−1)n−j

(
m−1−j
n−j

)∑
S∈([m]

j ) r(AS) = 0 + (−1)0
(

0
0

)
(3 + 2) = 5.

2. Consider now the arrangement of m = 3 maxout units of ranks k1 = 3, k2 = 3, k3 = 2 in Rd,
d = n + 1 = 3, shown in the right part of Figure 5. By Theorem 6.3, the number of regions is
r(A) = 2

(
3−1

2

)
+ (−1)2−1

(
3−1−1

2−1

)
(3 + 3 + 2) + (−1)2−2

(
3−1−2

2−2

)
(9 + 6 + 6) = 15.
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6.3 Strictly upper vertices or bounded regions

We now have counting formulas for the number of upper vertices and the total number of vertices of a
Minkowski sum of polytopes. Given a sharp upper bound on the total number of vertices, we can obtain
a sharp upper bound on the number of upper vertices if we also have an appropriate lower bound on the
number of strict lower vertices. In this subsection we derive such a lower bound.

The strict upper vertices of a Minkowski sum correspond to the bounded regions that a central maxout
arrangement defines on a hyperplane that does not intersect the origin, which are the regions that do
not intersect the negated hyperplane. These are also equivalent to the bounded regions of a non-central
arrangement in one dimension lower. The case of central hyperplane arrangements was studied in [14,
Theorem 3.2], showing that, in that case, the induced arrangement over a general hyperplane has µ(0̂, 1̂)
relatively bounded regions. A particular challenge in the case of maxout arrangements is that the atoms
need not be symmetric. This means that the number of bounded regions it defines over a hyperplane
may depend on the particular choice of the hyperplane. We obtain a lower bound that is independent of
this choice.

Theorem 6.9 (Lower bound on the number of bounded regions). Let A be a simple central maxout
arrangement in Rn+1. Let g = {x ∈ Rn+1 : 〈x,w〉 = 1} be an affine hyperplane that does not contain the
origin. Let Ag = {g ∩H 6= ∅ : H ∈ A, H 6⊇ g}. Then the number of regions of A which do not intersect
g, i.e. regions consisting of points with 〈x,w〉 ≤ 0, satisfies

r(A)− r(Ag) ≥
(
m− 1

n

)
.

Proof. By Theorem 6.3 and Theorem 6.2, we have

r(A)− r(Ag) =

(
m− 1

n

)
+

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

(r(AS)− r(AgS)).

It remains to show that the second summand is non-negative. We define the support of a region R of
AS resp. AgS to be the minimal Q ⊆ [m] such that R is a region of AQ resp. AgQ. Let s(AQ) resp.

s(AgQ) be the number of regions of AQ resp. AgQ with support Q, so that r(AS) =
∑
Q⊆S s(AQ) and

r(AgS) =
∑
Q⊆S s(A

g
Q). Then

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

(r(AS)− r(AgS))

=

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
S∈([m]

j )

∑
Q⊆S

(s(AQ)− s(AgQ))

=

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

) ∑
Q⊆[m]
|Q|≤j

(
m− |Q|
j − |Q|

)
(s(AQ)− s(AgQ))

=
∑
Q⊆[m]
|Q|≤n

(s(AQ)− s(AgQ))

n∑
j=0

(−1)n−j
(
m− 1− j
n− j

)(
m− |Q|
j − |Q|

)

Lem. 4.9
=

∑
Q⊆[m]
|Q|≤n

(s(AQ)− s(AgQ)).

Finally, note that each summand in the final expression is non-negative since the regions of a sub-
arrangement AQ intersecting g is a subset of the regions of AQ, and the same holds true for regions that
are not contained in a smaller arrangement AQ′ , Q′ ( Q.

7 Discussion and outlook
We presented sharp explicit upper bounds for the number of linear regions of the functions that can
be represented by shallow maxout networks with and without biases. These results can be regarded as

21



upper bound theorems for tropical arrangements or upper bound theorems for the number of vertices and
upper vertices of Minkowski sums of polytopes with given numbers of vertices. As a direct application
of our sharp bounds for shallow maxout networks, we obtained asymptotically tight bounds for deep
maxout networks. These results substantially improve previous lower and upper bounds.

We presented counting formulas for the number of faces of maxout arrangements in terms of the
intersection poset. In the case of simple arrangements or Minkowski sums of polytopes in general orien-
tations, we obtained formulas in terms of sub-arrangements or Minkowski subsums. We also presented
a lower bound on the number of strict lower vertices of Minkowski sums of polytopes in general orienta-
tions, which correspond to the bounded regions of maxout arrangements. Our discussion connects the
theoretical analysis of artificial neural networks, tropical geometry, and geometric combinatorics. The
results that we have presented can serve as the basis for addressing several other problems:

• One possible extension of the results we presented here are explicit formulas for the maximum number
of faces of any dimensions or also for the number of bounded faces. Explicit formulas for lower-
dimensional faces are of particular importance for the combinatorial complexity of tropical vari-
eties [28], which are intersections of tropical hypersurfaces, and consequently also for the complexity
of many algorithms in tropical geometry.

• Further refining the bounds for deep networks is also an interesting endeavor for future work. Even the
case of ReLU networks is still the subject of intense investigation. Another interesting avenue is the
explicit number of faces for specific families of non-simple arrangements, for example those that one
might obtain in convolutional networks or graph and simplicial networks, which have been recently
studied in the ReLU case [51, 7].

• An interesting open problem is the estimation of the expected number of faces for a given probability
distribution over the parameters of shallow and deep maxout networks. The case of ReLU networks
was recently studied in [18, 19]. In shallow ReLU networks, any generic parameter gives rise to
the maximum number of regions (the number of regions of a generic hyperplane arrangement or
equivalently the number of upper vertices of a zonotope). In contrast, for shallow maxout networks,
generic choices of parameters can result in different numbers of regions. The expected number of
regions of a single maxout unit with Gaussian weights corresponds to the number of (upper) vertices
of a Gaussian polytope, which has been studied in the literature [24]. However, for a maxout layer
one would need to consider Minkowski sums of random polytopes, which to our knowledge have not
yet been studied.

• A further aspect of interest is the development of parameter initialization strategies that would allow
for faster optimization or better algorithmic biases when training maxout networks. We have presented
ways to select parameters that lead to the maximum number of regions for shallow maxout networks
and to asymptotically maximal number of regions for deep maxout networks. Other properties of the
initialization that can be considered include the normalization of the activation values across layers
and the distribution of linear regions over the space of inputs. Related aspects for the case of ReLU
networks have been studied in [22, 17, 44, 26, 56].
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[34] Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 2924–2932.
Curran Associates, Inc., 2014.
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