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Abstract— We show that several decision problems origi-
nating from max-plus or tropical convexity are equivalent to
zero-sum, two player game problems. In particular, we set up
an equivalence between the external representation of tropical
convex sets and zero-sum stochastic games, in which tropical
polyhedra correspond to deterministic games with finite action
spaces. Then, we show that the winning initial positions can
be determined from the associated tropical polyhedron. We
obtain as a corollary a game theoretical proof of the fact that
the tropical rank of a matrix, defined as the maximal size of
a submatrix for which the optimal assignment problem has a
unique solution, coincides with the maximal number of rows (or
columns) of the matrix which are linearly independent in the
tropical sense. Our proofs rely on techniques from non-linear
Perron-Frobenius theory.

I. INTRODUCTION

A. Statement of the problems and main results

The three following problems are basic in max-plus or
tropical algebra.

Problem 1.1 (Is a tropical polyhedral cone non-trivial?):
Given m× n matrices A = (Ai j) and B = (Bi j) with entries
in R∪ {−∞}, does there exist a vector x ∈ (R∪ {−∞})n

non-identicaly −∞ such that the inequality “Ax≤ Bx” holds
in the tropical sense, i.e.,

max
j∈[n]

(
Ai j + x j

)
≤max

j∈[n]

(
Bi j + x j

)
, ∀i ∈ [m] ? (1)

Here and in the sequel, we use the notation [n] := {1, . . . ,n}.

Problem 1.2 (Is a tropical polyhedron empty?): Given
m× n matrices A = (Ai j) and B = (Bi j) with entries in
R∪{−∞}, and two vectors c,d of dimension n with entries
in R∪ {−∞}, does there exist a vector x ∈ (R∪ {−∞})n

such that the inequality “Ax + c ≤ Bx + d” holds in the
tropical sense, i.e., for all i ∈ [m]

max
(

max
j∈[n]

(Ai j + x j),ci
)
≤max

(
max
j∈[n]

(Bi j + x j),di
)

? (2)
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Problem 1.3 (Is a family of vectors tropically dependent?):
Given m ≥ n and an m× n matrix A = (Ai j) with entries
in R ∪ {−∞}, are the columns of A tropically linearly
dependent? I.e., can we find scalars x1, . . . ,xn ∈ R∪{−∞},
not all equal to −∞, such that the equation “Ax = 0” holds
in the tropical sense, meaning that for every value of i∈ [m],
when evaluating the expression

max
j∈[n]

(Ai j + x j)

the maximum is attained by at least two values of j?
The representation of a tropical polyhedral cone by in-

equalities turns out to be equivalent to the description of a
mean payoff game by a bipartite directed graph in which the
weights indicate the payments (the weighted graph is coded
by the matrices A and B). More generally, we consider an
infinite system of inequalities, the set [m] being replaced by
an infinite set in (1). The set P of solutions of this system is
a now tropical convex cone (not necessarily polyhedral), and
we associate to it a mean payoff game with infinite action
spaces.

Our main results set up a correspondence between the
external representation (by inequalities) of a tropical convex
cone P, and mean payoff games, in which

∃u∈ P, u 6≡ −∞⇔ there is at least one winning initial state

and when P is polyhedral,

∃u ∈ P, ui 6=−∞⇔ i is a winning initial state,

see Theorems 3.1 and 3.2. This shows that Problem 1.1 and
its affine version, Problem 1.2, are equivalent to mean payoff
game problems. We show by the same techniques that Prob-
lem 1.3 reduces to a mean payoff game problem, and derive
theoretical results concerning tropical linear dependence by
game techniques.

B. Motivation

The first two problems concern max-plus or tropical
convex sets. The latter are subsets C of (R∪{−∞})n such that
for u,v ∈ C, λ ,µ ∈ R∪{−∞}, the equality max(λ ,µ) = 0
implies that (λ +u)∨(µ+v)∈C where “∨” is the supremum
operator for the partial order of R ∪ {−∞}, that is the
“max” applied entrywise, and where λ +u denotes the vector
obtained by adding the scalar λ to every entry of u.

Max-plus or tropical convexity has been developed by sev-
eral researchers under different names. It goes back at least
to the work of Zimmermann [47]. It was studied by Litvinov,
Maslov, and Shpiz [38], in relation to problems of calculus
of variations, and by Cohen, Gaubert, and Quadrat [10], [11],
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motivated by discrete event system problems [13]. Max-plus
polyhedra have also appeared in tropical geometry, after the
work of Develin and Sturmfels [16], followed by several
works including the ones of Joswig and Yu, see [33], [34].

As it is shown in [23] (see also [25], [24]) max-plus
polyhedra can be defined equivalently in terms of genera-
tors (extreme points and rays) or relations (linear or affine
inequalities). In particular, a max-plus polyhedral cone can
be defined by systems of the form “Ax≤ Bx”, whereas max-
plus polyhedra can be defined by their affine analogues,
“Ax+ c ≤ Bx+ d”. Max-plus polyhedra have been used in
particular in [36], [18] to solve controllability and observ-
ability problems for discrete event systems, and they have
been used in [3] as a new domain in static analysis by
abstract interpretation, allowing one to express disjunctive
constraints. The question of solving “Ax ≤ Bx” over (finite)
relative integers has also been considered in [5] with mo-
tivations from SMT (SAT-modulo theory) solving. In this
context, Problems 1.1 and 1.2 are the most basic ones:
checking triviality or emptyness.

The third problem, concerning linear dependence, is mo-
tivated by tropical geometry. In this setting, the tropical
hyperplane [44] determined by a vector u ∈ (R∪ {−∞})n

is defined as the set of points x ∈ (R∪{−∞})n such that the
maximum in the expression maxi∈[n](ui + xi) is attained at
least twice. This arises naturally when considering amoebas,
which are the images of algebraic varieties over a valued
field by the map which takes the valuation entrywise, in
particular, tropical hyperplanes turn out to be amoebas of
classical hyperplanes when the valuation is non archimedean
(this is a special case of Kapranov’s theorem, see [20]).

C. Discussion of the result

One interest of the transformation to mean payoff games
that we describe here is of an algorithmic nature. Mean
payoff games have been well studied, since the work of
Gurvich, Karzanov, and Khachiyan [29]. Since that time, the
existence of a polynomial time algorithm has been an open
problem (results of Condon [14] and Zwick and Paterson [48]
show that these problems are in NP ∩ CO-NP). Pseudo-
polynomial algorithms of value iteration type are known [48],
and other types algorithms have been developed [9], [17],
[6], [35]. These include policy iteration algorithms, which
are experimentally fast on typical inputs, although a comonly
used class of policy improvement rules was recently shown to
lead to a worst case exponential execution time [21]. Hence,
the present transformations allow one to apply any of these
algorithms to solve Problems 1.1–1.3.

If one requires the vector x to be finite, Problem 1.1
becomes simpler. In this special case, a reduction which
inspired the present one was made by Dhingra and Gaubert,
who showed in [17, § IV,C] (Corollary 3.3 below) that
“Ax ≤ Bx” has a finite solution if and only if all the initial
states of an associated mean payoff game are winning.
A related result was established previously by Mohring,
Skutella and Stork [39], who studied a scheduling problem
with and/or precedence constraints, leading to a feasibility

problem which is equivalent to finding a finite vector in a
tropical polyhedron. They showed that the latter problem
is polynomial time equivalent to deciding whether a mean
payoff game has a winning state. In [39] as well as in [17]
and the present work, a mean payoff game is canonically
associated (by a syntaxic construction) to the feasibility
problem. Then, the approach of [39] requires an additional
transformation, adding some auxiliary states, with special
weights (determined by a value iteration argument), and the
proof is combinatorial.

The present work relies on a different approach (based on
non-linear Perron-Frobenius theory). It allows us to deal with
infinite coordinates (i.e., tropically zero coordinates). This
extension is an essential matter, both in applications and for
theoretical reasons, and it leads to simpler results (even in the
case of finite coordinate), since there is no need to transform
the game as in [39]. In particular, our first result shows
that the system “Ax≤ Bx” has a tropically nonzero solution
(possibly with infinite entries) if and only if the associated
game has at least one winnning initial state. In case of
Problem 1.1, our proof relies on a non-linear extension due
to Nussbaum [41] of the Collatz-Wielandt characterization
of the spectral radius of a matrix with nonnegative entries
and the latter allows us to establish more generally a cor-
respondence between the external representation of closed
tropical (not necessarily polyhedral) convex cones and a class
of mean payoff games (possibly with infinite action spaces on
one side). Our approach to Problem 1.2 relies on Kohlberg’s
theorem and is therefore in the more special setting of
polyhedra. Finally, let us note that a tropical analogue of
the Farkas lemma has been recently obtained [4], based on
the present results.

D. A theorem concerning the tropical rank

It is natural to look for characterizations of tropical linear
independence in terms of determinants. The tropical ana-
logue of the determinant of an n×n matrix B (with entries
in R∪{−∞}) is the value of the optimal assignment problem

max
σ

(
∑

i∈[n]
Biσ(i)

)
(3)

where the maximum is taken over all the permutations σ of
the set [n]. Following Develin, Santos, and Sturmfels [15],
we say that a matrix B with entries in R is tropically
singular if the above maximum is attained by at least
two permutations. The same notion was first considered by
Butkovič in [8], [7] (tropically nonsingular matrices being
qualified there as strong regular matrices). We shall indeed
use the following extension of the above definition to the
case of matrices B with entries in R∪{−∞}: B is tropically
singular if the above maximum is either attained by at least
two permutations, or equal to −∞. As a corollary of our game
reduction of Problem 1.3, we obtain the following result (see
Theorem 4.9).

Theorem 1.4: Let A be an m× n matrix with entries in
R∪{−∞}, with m≥ n. Then, the columns of A are tropically
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linearly independent if and only if A has a tropically non-
singular n×n submatrix.
This was first stated by Izhakian, and proved in the square
case, in [30]. The proof of the rectangular case given in the
present paper, relying on mean payoff games, was announced
in [1]. Meanwhile, Izhakian and Rowen completed the proof
in the rectangular case [32], using a different approach. In
fact, as shown in [1], the “if” part of the result can be de-
duced from the max-plus Cramer theory [43] (see also [44],
[1]), and the square case is related to a result of Gondran and
Minoux [26]. It should also be noted that the special case of
Theorem 1.4 in which the entries of the matrix A are finite
can be derived alternatively from a result of Develin, Santos,
and Sturmfels [15, Theorem 5.5], showing that the Kapranov
rank of a matrix is maximal if and only if its tropical rank is
maximal. However, the present game approach (Theorem 4.7
below), yields a pseudo-polynomial algorithm and implying
that the corresponding decision problem (checking whether
the tropical rank is maximal) is in NP∩ CO-NP.

What is surprising is that Theorem 1.4 still holds in the
rectangular case, since the analogue of this result in the
“signed” case, in which tropical hyperplanes are replaced
by sets of the form

H = {x ∈ (R∪{−∞})n |max
i∈I

(ui + xi) = max
i∈J

(ui + xi)}

where I and J are disjoint non-empty subsets of [n], and
the definition of tropical singularity is modified accordingly,
turns out to be non valid in the rectangular case, as shown by
the counter example of [1]. This shows that some tropical
linear algebra issues are better behaved when thinking of
max-plus numbers as images by the valuation of complex
Puiseux series rather than real ones.

II. PRELIMINARY RESULTS

A. Mean payoff games arising from tropical cones

We first recall some basic definitions concerning mean
payoff games and associate a mean payoff game to a tropical
cone. The state space of the game will turn out to be finite
precisely when the cone is polyhedral.

The max-plus semiring Rmax is the set of real numbers,
completed by −∞, equipped with the addition (a,b) 7→
max(a,b) and the multiplication (a,b) 7→ a+ b. The name
“tropical” will be used in the sequel as a synonym of “max-
plus”.

The reader is referred to [11], [16] for more background
on max-plus or tropical convexity, and in particular to [12],
[23] for the results on external representation.

A tropical closed convex cone can be defined externally
by a system of linear tropical inequalities of the form

max
j∈[n]

(Ai j + x j)≤max
j∈[n]

(Bi j + x j), i ∈ I (4)

Here, I is a possibly infinite set, recall that [n] := {1, . . . ,n},
and Ai j,Bi j belong to Rmax. When the previous system
consists of finitely many inequalities, i.e., when I = [m] for
some integer m, we obtain a tropical polyhedral cone. Then,
A and B will be thought of as m×n matrices with entries in

Rmax. In the sequel, we shall denote by Mm,n(Rmax) the set
of these matrices.

We look for a non-trivial element of the cone, i.e., for a
solution x = (x j)∈Rn

max of the above system, not identically
−∞. From the algorithmic point of view, the polyhedral case
is of primary interest. However, some of our results will
turn out to hold as well in the case of infinite systems
of inequalities, and their relation with non-linear Perron-
Frobenius theory will be more apparent in this wider setting.

To study this satisfiability problem, we define the follow-
ing zero-sum game, in which there are two players, “Max”
and “Min” (the maximizer and the minimizer). The state
space consists of the disjoint union of the set I and the set
[n]. The two players alternate their moves. When the current
position is i∈ I, Player Max must choose the next state j∈ [n]
in such a way that Bi j is finite, and receives Bi j from Player
Min. If Player Max does not have any available action, i.e.,
if Bi j = −∞ holds for all j ∈ [n], then Player Max pays
an infinite amount to player Min and the game terminates.
Similarly, when the current state is j ∈ [n], Player Min must
choose the next state i ∈ I in such a way that Ai j is finite,
and receives Ai j from Player Max. If Ai j =−∞ holds for all
i∈ I, then, player Min pays an infinite amount to player Max
and the game terminates.

When I = [m], the game may be represented by a bipartite
(di)graph, with two classes of nodes, [m] and [n]. The players
move alternatively a token on the graph, following the arcs
of the graph, which represent the possible moves. The weight
of an arc represents the associated payment.

We shall often need the following assumptions, which
require every player to have at least one available action
in every state.

Assumption 2.1: For all j ∈ [n], there exists i∈ I such that
Ai j 6=−∞.

Assumption 2.2: For all i∈ I, there exists j ∈ [n] such that
Bi j 6=−∞.
Systems of the form (4) can always be transformed to enforce
these assumptions, see [2] for the details.

Given an initial state i and a horizon (number of turns)
N, we define vN

i to be the value of the corresponding finite
horizon game for player Max. The existence of the value
is immediate when the horizon is finite (but the value may
be infinite if the set I is infinite, or if Assumption 2.1 or
Assumption 2.2 does not hold).

When both Assumptions 2.1 and 2.2 are fulfilled, we shall
also consider the “mean payoff” game, in which the payoff
of an infinite trajectory is defined as the average payment
per turn received by player Max. Formally, we define this
average payment as the limsup as the number N of turns
goes to infinity of the payments received plus the opposite
of the payments made by Player Max up to turn N divided by
N. (When Assumptions 2.1 or 2.2 do not hold, the payments
must be counted up to the termination time if the latter occurs
before time N.) The value of such games was shown to exist
by Ehrenfeucht and Mycielski [19], assuming that the state
space is finite. This can also be deduced from a theorem of
Kohlberg, see [37].
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B. Properties of order preserving and additively homoge-
neous maps

We now recall some basic properties of the dynamic
programming operators arising from the previous games.

We shall think of the collection of rewards (Bi j)i∈I, j∈[n] as
a kernel, to which we associate the max-plus linear operator
B : (R∪{−∞})n→ (R∪{−∞})I ,

(Bx)i := max
j∈[n]

(Bi j + x j), ∀i ∈ I .

When I = [m], (Bi j)i∈[m], j∈[n] will be thought of as a matrix
in Mm,n(Rmax), and Bx is the product in the tropical sense
of the matrix B and the vector x.

When Assumption 2.2 holds, this operator sends Rn to RI .
We define the operator A in the same way. The residuated
operator A] from (R∪{±∞})I to (R∪{±∞})n is defined by

(A]y) j = inf
i∈I

(−Ai j + yi) , (5)

with the convention (+∞)+(−∞)=+∞. This operator sends
(R ∪ {−∞})I to (R ∪ {−∞})n whenever Assumption 2.1
holds, it sends RI to Rn when in addition I is finite.

The term residuated refers to the property

Ax≤ y ⇐⇒ x≤ A]y , (6)

where ≤ is the partial order on (R∪{±∞})I or (R∪{±∞})n.
Hence, System (4), which can be rewritten as Ax ≤ Bx,
is equivalent to x ≤ f (x) where f : (R∪ {−∞})n → (R∪
{−∞})n is defined by

f (x) := A]Bx ,

denoting by concatenation the composition of operators. The
map f sends (R∪{−∞})n to itself whenever Assumption 2.1
holds. It sends Rn to Rn when in addition Assumption 2.2
holds and I is finite.

The map f is the dynamic programming operator of the
previous game, meaning that the vector vN := (vN

j ) j∈[n] of
values of the game in finite horizon can be computed re-
cursively as follows vN = f (vN−1), v0 = 0 . More generally,
setting v0 := x for some x∈Rn determines the value function
of a variant of the game, in which after the last step, Player
Min pays to Player Max a final amount x j depending on the
final state j.

We shall call min-max functions the self-maps of (R∪
{−∞})n that are of the form A]B, when A,B ∈Mm,n(Rmax).
This terminology goes back to Olsder [42] and Gunawar-
dena [27]. However, unlike in the latter reference, we do not
require a min-max function to send Rn to Rn. This generality
will be needed in Section IV-B, in which the games arising
from the tropical linear independence problem will turn out
to have occasionally empty sets of actions for Player Max.

Any min-max function f from (R ∪ {−∞})n to itself
satisfies the following properties:

1) f is order-preserving: x≤ y⇒ f (x)≤ f (y) ∀x,y ∈
(R∪{−∞})n ,

2) f is additively homogeneous: f (λ + x) = λ +
f (x) ∀λ ∈ R∪{−∞}, x ∈ (R∪{−∞})n ,

3) f is continuous.
Here, R∪{−∞} is equipped with the usual topology, defined
for instance by the distance (x,y) 7→ |exp(x)− exp(y)|, and
(R∪{−∞})n is equipped with the product topology.

When an order-preserving and additively homogeneous
map f preserves Rn, it is easily seen to be sup-norm
nonexpansive, meaning that

‖ f (x)− f (y)‖ ≤ ‖x− y‖, ∀x,y ∈ Rn ,

where ‖x‖= maxi∈[n] |xi|. A min-max function that preserves
Rn is piecewise affine (we can cover Rn by finitely many
polyhedra in such a way that the restriction of the function
to each polyhedron is affine). It follows that general results,
such as Kohlberg’s theorem, see [37], are valid for such
min-max functions. In the study of mean payoff games, an
important issue is to determine the limit

χ( f ) := lim
N→∞

f N(0)/N = lim
N→∞

vN/N ,

which gives the additive growth rate of the value of the finite
horizon game as a function of the horizon N. Kohlberg’s
theorem implies that the limit χ( f ) does exist.

Corollary 2.3: Assume that every player has at least one
available action in every state (Assumptions 2.1-2.2) and that
the state space is finite. Then, χ( f ) = η , where (v,η) is an
arbitrary invariant half-line of f .

Remark 2.4: If f is an order-preserving and additively
homogeneous map preserving Rn, then, it was observed
independently by Gunawardena and Sparrow (see [28]) and
by Rubinov and Singer [46] that

f (x) = inf
y∈Rn

(
f (y)+max

j∈[n]
(x j− y j)

)
∀x ∈ Rn .

This shows that f can be represented in the form f = A]B.

C. The Collatz-Wielandt property

Some of the main results of this paper rely on a non-
linear version of the Collatz-Wielandt characterization of the
spectral radius which appears in Perron-Frobenius theory.

Given any self-map f of (R ∪ {−∞})n that is order-
preserving, additively homogeneous, and continuous, we
define the Collatz-Wielandt number of f to be

cw( f ) = inf{µ ∈ R | ∃w ∈ Rn, f (w)≤ µ +w} . (7)

A vector u 6≡ −∞ is a (non-linear) eigenvector of f for the
eigenvalue λ ∈ R∪{−∞} if

f (u) = λ +u .

The (non-linear) spectral radius of f is defined as the
supremum of its eigenvalues

ρ( f ) = sup
{

λ ∈ R∪{−∞}
∣∣∣∣ ∃u ∈ (R∪{−∞})n,

u 6≡ −∞, f (u) = λ +u

}
,

and is itself an eigenvalue of f . The following is a dual
version of the Collatz-Wielandt number

cw′( f ) := sup
{

λ ∈ R∪{−∞}
∣∣∣∣ ∃u ∈ (R∪{−∞})n,

u 6≡ −∞, f (u)≥ λ +u

}
.
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We shall also need a last quantity.
Proposition 2.5: If f is an order-preserving additively

homogeneous self-map of (R∪{−∞})n, then, for all x ∈Rn,
the following limit exists and is independent of the choice
of x:

χ̄( f ) := lim
N→∞

max
j∈[n]

f N
j (x)/N . (8)

Of course, when χ( f ) exists, we readily deduce from the
definitions that

χ̄( f ) = max
j∈[n]

χ j( f ) .

Lemma 2.6 (Collatz-Wielandt property, see [41], [22]):
Let f denote a map from (R ∪ {−∞})n to itself, that is
order-preserving, additively homogeneous, and continuous.
Then,

cw′( f ) = ρ( f ) = cw( f ) = χ̄( f ) . (9)

Moreover, there is at least one coordinate j ∈ [n] such that
χ j( f ) := limN→∞ f N

j (x)/N exists and is equal to χ̄( f ).

D. From spectral theory to mean payoff games

We now interpret the previous results in terms of games.
Whereas the “nonexpansive maps” approach of zero-sum
games is well known [40], [45], the significance in terms
of games of the Collatz-Wielandt property that we show in
Proposition 2.7 does not seem to have been noted previously
(it shows that the value is always well defined if one
player is allowed to select the initial state, without the usual
compactness and regularity assumptions).

We call positional strategy of Player Max a map σ : I→ [n]
such that Biσ(i) is finite for all i ∈ I (so σ is a rule, telling
to Player Max to move to state σ(i) when the current state
is i). Similarly, we call positional strategy of Player Min a
map π : [n]→ I such that Aπ( j) j is finite for all j ∈ [n].

The following proposition, which is a consequence of the
Collatz-Wielandt property, shows that χ̄( f ) can be inter-
preted as the value of a variant of the mean payoff game
in which the choice of the initial state belongs to Player
Max. The lack of symmetry between both players is due to
the fact that the set of states in which Max plays, i.e., the
set I, can be infinite.

Proposition 2.7: Make Assumptions 2.1, 2.2. Then,
Player Max can choose an initial node j ∈ [n], together with
a positional strategy, so that he wins a mean payoff of at least
χ̄( f ), whatever strategy Player Min chooses. Moreover, for
all λ > χ̄( f ), Player Min can choose a positional strategy
so that she looses a mean payoff no greater than λ for all
initial nodes j ∈ [n] and for all strategies of Player Max.

III. THE CORRESPONDENCE BETWEEN TROPICAL
POLYHEDRA AND MEAN PAYOFF GAMES

A. The reductions

We now come back to our original system of inequali-
ties (4), which we write as Ax ≤ Bx for brevity. We asso-
ciated to this system the mean payoff game with dynamic
programming operator f = A]B.

Our first result does not require the number of inequalities
to be finite.

Theorem 3.1: Under Assumption 2.1, the system of linear
tropical inequalities Ax ≤ Bx has a solution x ∈ Rn

max non-
identically −∞ if and only if Player Max has a winning
state in the mean payoff game with dynamic programming
operator f (x) = A]Bx.

Actually we can arrive at the following more precise result
when the number of inequalities is finite.

Theorem 3.2: Let Assumptions 2.1 and 2.2 be satisfied,
and suppose that the system Ax≤Bx consists of finitely many
inequalities (I = [m]). Consider the polyhedral cone P := {x∈
Rn

max; Ax≤Bx}, and define the support S of P to be the union
of the supports of the elements of P:

S := { j ∈ [n]; ∃u ∈ P,u j 6=−∞} .

Then S is also the maximal support of an element of P,
that is there exists u ∈ P such that S = { j ∈ [n]; u j 6= −∞}.
Moreover, S coincides with the set of initial states with a
nonnegative value for the associated mean payoff game, that
is:

S = { j ∈ [n]; χ j( f )≥ 0} , (10)

where f : (R∪{−∞})n→ (R∪{−∞})n is such that f (x) =
A]Bx.

The case of a full support in Theorem 3.2 leads to the
following result, which was already pointed out by Dhingra
and Gaubert in [17].

Corollary 3.3 ([17, §IV, C]): Make Assumptions 2.1 and
2.2, and suppose that the system Ax≤ Bx consists of finitely
many inequalities. Then, this system has a solution x ∈Rn if
and only if all the initial states of the associated game have
a nonnegative value, i.e., χ( f )≥ 0 .

Rather than a tropical polyhedral cone, we now consider a
tropical polyhedron P, which is defined by systems of affine
tropical inequalities of the form

max(max
j∈[n]

(Ai j + x j),ci)≤max(max
j∈[n]

(Bi j + x j),di), i ∈ [m]

(11)

where the matrices A,B are as above and ci,di ∈ Rmax.
As in the case of classical convexity, polyhedra can be

represented by polyhedral cones, the latter being the projec-
tive analogues of the former affine objects. So, we construct
new matrices Â and B̂ by completing the matrices A and B
by an (n+1)th column, in such a way that Âi,n+1 = ci and
B̂i,n+1 = di, for all i ∈ [m].

We now define the map f̂ (y) := Â]B̂y for all y ∈ (R∪
{−∞})n+1.

Theorem 3.4: The tropical polyhedron P defined by (11)
is nonempty if and only if the value of the mean payoff
game with dynamic programming operator f̂ , starting from
the initial state n+1, is nonnegative, i.e., χn+1( f̂ )≥ 0.

Note that this theorem shows that the emptyness problem
for (affine) tropical polyhedra reduces to checking whether
a mean payoff game has a specific winning state.

The next theorem yields the converse reduction.
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Theorem 3.5: Let f = A]B, with A,B ∈Mm,n(Rmax), de-
note the dynamic programming operator of a mean payoff
game (thus Assumptions 2.1 and 2.2 are satisfied). Then,
for every r ∈ [n] and λ ∈ R, the inequality χr( f )≥ λ holds
if and only if the following tropical polyhedron is non-
empty: Pr := {y ∈ RJ

max | λ +max(max j∈J(Ai j + y j),Air) ≤
max(max j∈J(Bi j + y j),Bir), ∀i ∈ [m]} , where J := [n]\{r}.

Corollary 3.6: Each of the following problems:
1) Is an (affine) tropical polyhedron empty?
2) Is a prescribed initial state in a mean payoff game

winning?
can be transformed in linear time to the other one.
When f = A]B is the dynamic programming operator of a
zero-sum deterministic game, the spectral radius ρ( f ) can
be computed in pseudo-polynomial time algorithm, by value
iteration, along the lines of [48, Theorem 2.3] . See [2] for
details.

IV. MEAN PAYOFF GAMES EXPRESSING TROPICAL
LINEAR INDEPENDENCE

A. Extension of the tropical semiring and linear indepen-
dence

In tropical algebra, roots are defined by the requirement
that a certain maximum is attained at least twice. Hence, the
notation “∗= 0” is often used informally. This notation can
in fact be given a formal meaning, by using an extension of
the tropical semiring, which was introduced by Izhakian [30].
The latter may be thought of as the “complex” analogue
of the “real” (signed) extension of the tropical semiring
introduced by M. Plus [43]. In a nutshell, the “numbers”
of the extension of Izhakian carry an information reminding
whether the maximum of an expression is attained twice,
whereas the “numbers” of the extension of M. Plus carry
a sign information, reminding whether the maximum of a
signed formal expression is attained by a positive term, by
a negative one, or both. The approach of [30] has been
pursued in several works of Izhakian and Rowen like [31],
whereas the authors have studied in [1] semirings with an
abstract involution, in order to unify both approaches. Such
extensions provide a convenient notation, and, as shown
in [43], [1], they allow one to perform elimination arguments,
as in the Gauss algorithm, while staying at the tropical
level, and to obtain automatically polynomial identities over
semirings.

In the present section we shall establish our results in the
framework of the extended tropical semiring.

We referee the reader to the works [1], [2], [30] for the
definition and basic properties of the extended semiring Te.

The semiring Te is not idempotent, but is ordered nat-
urally. The map π : Te → Rmax, (a,b) 7→ π(a,b) := b is a
surjective morphism, thus it is order preserving. However
the natural injection from Rmax to Te, which sends b ∈R∗max
to (1,b) and −∞ to (0,−∞) is not a morphism. Nevertheless,
it is a multiplicative morphism, it is order preserving and we
denote by b∨ the image of b ∈ Rmax by this injection.

The following notations are defined in [1] for more general
classes of semirings. We recall them here.

Definition 4.1: For any a∈Te, we set a◦ := a⊕a, and we
denote

T◦e := {a◦; a ∈ Te}, T∨e := (Te \T◦e)∪{(0,−∞)} , and we
define on Te the balance relation ∇ by a∇b iff a⊕b∈T◦e .

The balance relation is reflexive, symmetric but not transitive.
Denoting b◦ := (b∨)◦ for b ∈ Rmax, we get that

T◦e = {b◦; b ∈ Rmax}, T∨e = {b∨; b ∈ Rmax} .

We shall say that an element of Te is of type real if it belongs
to T∨e and of type ghost if it belongs to T◦e (thus, the zero
element of the semiring has both types). An element a of
Te is determined by its projection π(a) ∈ Rmax and by its
type. The elements of T∨e \ {0} are precisely the invertible
elements of Te.

The previous notations will be extended to vectors and
matrices, entrywise. For instance, if x,y ∈ Tn

e , we shall write
x∇y if x j ∇y j for all j ∈ [n].

Definition 4.2: If A is a matrix in Mm,n(Te), we shall
say that the columns of A are tropically linearly dependent
if there exists a vector x ∈ (T∨e )n, different from the zero
vector 0, such that Ax∇0 .

Note that this notion naturally extends the notion of trop-
ical linear dependence over Rmax given in the introduction
(statement of Problem 1.3).

Tropical linear independence turns out to be controlled
by permanents, which are defined in a usual way: Let
A = (Ai j) ∈Mn,n(Te), then the permanent perA of A is the
element of Te defined by perA =

⊕
σ∈Sn A1σ(1) · · · · ·Anσ(n),

where Sn denotes the set of all permutations of the set
[n]. Note that if Ai j = B∨i j for some Bi j ∈ Rmax, then, perA
is invertible if and only if B is tropically nonsingular as
defined in the introduction (see Section I-D). This suggests
the following definition.

Definition 4.3: We shall say that the matrix A∈Mn,n(Te)
is tropically nonsingular if perA is invertible in Te.
Also if Ai j = B∨i j for some Bi j ∈ Rmax, then the projection
onto Rmax of the permanent of A, π(perA) is the value of
the optimal assignment problem with weights Bi j.

In the sequel, we shall establish results for matrices with
entries in the extended tropical semiring Te. Then, we shall
derive the analogous results for matrices with entries in the
tropical semiring as immediate corollaries.

B. Reducing tropical linear independence to mean payoff
games

We denote by A an m×n matrix with entries in Te, and
we shall assume:

Assumption 4.4: The matrix A has no column consisting
only of elements of T◦e .
This assumption is not restrictive, see [2].

We set

E = {(i, j); Ai j ∈ T∨e \{0}} . (12a)

Thanks to Assumption 4.4, for all j ∈ [n], there is at least
one index i ∈ [m] such that (i, j) ∈ E.
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We define the min-max function f : (R∪{−∞})n→ (R∪
{−∞})n given by

f j(x) = min
i∈[m], (i, j)∈E

(−Bi j + max
k∈[n], k 6= j

(Bik + xk)) , (12b)

where
Bi j := πAi j ∈ Rmax . (12c)

This function can be interpreted as the dynamic program-
ming operator of the following combinatorial game, which
is played on a bipartite digraph with n column nodes and m
row nodes. When in column node j, player Min chooses a
row node i such that (i, j)∈E, and moves to node i receiving
Bi j. Then, player Max must move to some column node k
which is different from the previously visited column node
j, and he receives Bik. Thus, when all entries of A are in
T∨e (that is A = B∨), player Min is advantaged, because she
can always come back to the state from which player Max
just came, ensuring her a 0 loss. In that case, it follows that
χ̄( f )≤ 0.

Such a game may be put in the form studied in Section II-
A, in which the available actions only depend on the current
state, by adding the previously visited node to the state.
Formally, the map f may be written as f (x) =C]Dx, where
C,D are (mn)×n matrices, with

C(i, j),k =

{
Bi j if k = j and (i, j) ∈ E
−∞ otherwise,

D(i, j),k =

{
Bik if k 6= j
−∞ otherwise.

(13)

Due to Assumption 4.4, no column of C is identically −∞,
hence f sends (R∪{−∞})n to itself. However, some rows
of D may be identically −∞, as soon as A has a row with at
most one element not equal to −∞. In that case the map f
may not send Rn to itself. But one can apply Proposition 2.5,
Lemma 2.6 and Theorem 3.1.

Theorem 4.5: Let A be an m× n matrix with entries in
Te, satisfying Assumption 4.4. Let E, B and f be defined as
in (12). Then a vector u ∈ Rn

max is such that Au∨∇0 if and
only if u≤ f (u).

We get as an immediate consequence.
Corollary 4.6: Let B be an m× n matrix with entries in

Rmax which has no column consisting only of elements −∞.
Denote E = {(i, j); Bi j 6=−∞}, and define f by (12b). Let u
be a vector in (R∪{−∞})n, not identically −∞. Then, the
following conditions are equivalent:

1) u≤ f (u);
2) The equation “Bu = 0” holds in the tropical sense,

meaning that in every expression max
j∈[n]

(Bi j+u j), i∈ [m]

the maximum is attained at least twice or is equal to
−∞;

3) All the rows of the matrix B are contained in the
tropical hyperplane consisting of those vectors x ∈
Rn

max such that the maximum in max j∈[n](x j + u j) is
attained at least twice or is equal to −∞.

The following theorem provides an expression of tropical
linear independence in terms of mean payoff games.

Theorem 4.7: Let B be an m× n matrix with entries in
Rmax which has no column consisting only of elements −∞.
Denote E = {(i, j); Bi j 6= −∞}, and define f by (12b). The
following assertions are equivalent.

1) The columns of the matrix B are tropically indepen-
dent;

2) Player Max has no winning state in the mean payoff
game with dynamic programming operator f , i.e.,
χ̄( f )< 0;

3) there exists a vector w ∈ Rn and a scalar λ < 0 such
that f (w)≤ λ +w ;

4) there is no vector u ∈ (R∪ {−∞})n, non-identically
−∞, such that u≤ f (u) .

In fact, we shall prove the following more general result, in
the setting of the extended tropical semiring,

Theorem 4.8: Let A be an m× n matrix with entries in
Te, satisfying Assumption 4.4. Let E, B and f be defined
as in (12). Then, the columns of the matrix A are tropically
linearly independent if and only if the map f satisfies one
of the three equivalent conditions (2,3,4) of Theorem 4.7.

C. Characterizations of the tropical rank

We shall now derive Theorem 1.4 and related results
concerning rank of matrices in the more general framework
of matrices with entries in Te. As a consequence of the game
formulation and of the theorem [1, Theorem 6.6], we obtain
the following result.

Theorem 4.9: Let A ∈Mm,n(Te) with m ≥ n. Then, the
columns of A are tropically linearly independent if and only
if A has an n×n submatrix that is tropically nonsingular.
Izhakian and Rowen obtained independently the same result
in a recent work [32], by a different method.

Corollary 4.10: Any m+ 1 vectors of Tm
e are tropically

linearly dependent.
Corollary 4.11: Let A ∈ Mm,n(Te). Then, the maximal

number of tropically linearly independent rows of A, the
maximal number of tropically linearly independent columns
of A, and the maximal size of a tropically nonsingular
submatrix of A coincide.

We next give several corollaries of these results for Rmax.
Till the end of this section we shall consider tropical linear
dependence and tropical nonsingularity in Rmax, i.e., in the
sense given in the introduction.

Corollary 4.12: Let A ∈Mm,n(Rmax) with m ≥ n. Then,
the columns of A are tropically linearly independent if
and only if A has an n× n submatrix, which is tropically
nonsingular.

Recall that the tropical rank of a matrix A ∈Mm,n(Rmax)
is defined as the maximal size of a tropically non-singular
submatrix. In [1], we also defined the maximal row (resp.
column) rank of a matrix A with entries in Rmax as the
maximal number of tropically linearly independent rows
(resp. columns) of A. We get as an immediate corollary
of Corollary 4.11 the equivalence between all these rank
notions.
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Corollary 4.13: Let A ∈Mm,n(Rmax). Then, the maximal
row rank of A, the maximal column rank of A and the tropical
rank of A coincide.

Corollary 4.14: Checking whether a matrix
A ∈ Mm,n(Rmax), with m ≥ n, has tropical rank at least
n− k, reduces to solving

(n
k

)
mean payoff game problems

associated to m× (n− k) matrices, and can therefore be
done in pseudo-polynomial time for a fixed value of k.
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E.D.F., Bulletin de la Direction des Etudes et recherches, Série C,
Mathématiques, Informatique, 1:67–90, 1978.

[27] J. Gunawardena. Min-max functions. Discrete Event Dynamic
Systems, 4:377–406, 1994.

[28] J. Gunawardena. From max-plus algebra to nonexpansive maps: a
nonlinear theory for discrete event systems. Theoretical Computer
Science, 293:141–167, 2003.

[29] V. A. Gurvich, A. V. Karzanov, and L. G. Khachiyan. Cyclic games
and an algorithm to find minimax cycle means in directed graphs.
U.S.S.R. Comput. Math. Phys., 28(5):85–91, 1988.

[30] Z. Izhakian. The tropical rank of a tropical matrix. Eprint
arXiv:math.AC/0604208v2, 2008.

[31] Z. Izhakian and L. Rowen. Solving tropical equations. Eprint
arXiv:0902.2159, 2009.

[32] Z. Izhakian and L. Rowen. The tropical rank of a tropical matrix.
Communications in Algebra, 37(11):3912–3927, 2009.

[33] M. Joswig. Tropical halfspaces. In Combinatorial and computational
geometry, volume 52 of Math. Sci. Res. Inst. Publ., pages 409–431.
Cambridge Univ. Press, Cambridge, 2005.

[34] M. Joswig, B. Sturmfels, and J. Yu. Affine buildings and tropical
convexity. Albanian J. Math., 1(4):187–211, 2007.
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