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Abstract

We introduce max-plus analogues of basic Euclidian geometry notions: scalar product is
replaced by a scalar division, and the associated distance is essentially Hilbert’s projective dis-
tance. We introduce an orthogonal projection and prove a Hahn-Banach type theorem: a point
can be separated from a semimodule by a hyperplane orthogonal to the direction of projection.
We use these results to separate max-plus convex sets, and illustrate this new geometry by two-
dimensional examples.

1 Introduction

In the last twenty years, the max-plus algebra and related structures (called “dioids” or idem-
potent semirings) have emerged as a natural setting for various areas of applied mathematics
and mathematical models (e.g. the so-called “discrete event systems” area [1], optimization
theory [13], etc.). As vector spaces are built up from fields of scalars, likeC orR, semimod-
ules with an idempotent addition can be built up from the max-plus semiring. Such algebraic
structures share several common features with their more conventional counterparts. The
main departure point is the idempotency of addition which induces a semilattice structure,
and often a lattice structure. This natural order provides an alternative way to solve problems
which are more usually solved by appealing to the minus sign or division in conventional al-
gebra. Residuation theory [2], the aim of which is to provide solution concepts to equations,
is perhaps the best illustration of how order can help to provide for the absence of invertibility
of operations such as addition and multiplication.

Since discrete event systems entered the realm of system theory in particular through the
use of such algebraic tools, this is a good instance for making the following considerations.
In linear system theory, most techniques (in particular for control synthesis purposes, but
already for system description) have two origins: algebra and geometry (of linear vector
spaces). This duality is well illustrated by the parallel works of Wolovich [15] and Wonham
[16]. The confrontation of both points of view has been very fruitful for this area. Thanks to
the algebraic tools alluded to before, similar (indeed very similar) developments have been
made possible for discrete event systems, at least for the subcategory recognized as “linear
systems” (which can also be viewed as timed event graphs in the Petri net parlance), and as far
asalgebraictechniques are concerned. But, admittedly, thegeometricdevelopments did not
follow the same path and, in fact, our understanding of geometry in idempotent semimodules
is more limited at this moment.
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In the last few years, the authors made some progress in understanding some elementary
geometric notions such as that of projection on the image of an operator parallel to the ker-
nel of another operator [4]. These operators need not be linear — residuated is enough —
and indeed residuation was the basic technique to provide expressions for projectors. Conse-
quently, even when one starts from linear operators, projectors appear to be nonlinear if one
wants to stick to either the max-plus or the min-plus algebra (both algebras need in fact be
mixed in general). However, there are interesting cases when linearity of projectors can be
preserved [5].

This paper is a continuation of this effort to understand some geometric notions in max-
plus semimodules. As already said, projectors have been introduced so far using residuation
techniques which are specific to lattice structures. In conventional Hilbert spaces and in con-
vexity theory,orthogonalprojections are defined by using such notions as scalar or duality
product and minimization of norms. A related and very important topic is that of the Hahn-
Banach theorem in its geometric form, namely the separation of nonintersecting convex sets.
This result is the ground for many fundamental results in convexity (“external” represen-
tations of convex as intersections of “supporting” half spaces, subdifferential calculus for
convex functions) and in optimization (duality and multipliers).

In the present paper, we will focus on what we believe to be analogues of these notions in
max-plus semimodules. After a summary on the basic tools provided by residuation and on
results obtained so far on projections, we will considerorthogonalprojections, at least special
projections which seem to play that role. Then, we will turn ourselves towards putting these
notions of orthogonal projections in relation with some kind of “scalar products” allowing
us to define kinds of “hyperplanes” which will then be used to state a “separation theorem”.
Despite the fact that our “scalar products” are not really products and that several other analo-
gies we make may seem odd at first sight, we hope that these preliminary results will open
the road to more progress in understanding the geometry of “subspaces” and analogues to
“convex sets” in the framework of idempotent semimodules.

2 Summary about Residuation and Nonorthogonal Projections

2.1 Max-Plus Algebra and Idempotent Semimodules

The max-plus semiring,Rmax, is the setR ∪ {−∞} equipped with the max operation as
addition (denoted⊕) and the conventional+ as multiplication (denoted⊗, but this symbol
is often omitted). The zero is−∞, which is denotedε. The usual 0, denotede, is the unit
for ⊗, and⊗ distributes over⊕. Finally, ε is absorbing for⊗ (ε ⊗ x = ε for all x), and
⊕ is idempotent (x ⊕ x = x). A natural order is associated with any idempotent operation,
namely,x ≤ y⇔ y = y⊕x, and this order (here the usual order inR∪{−∞}) is compatible
with ⊗ (that is, all elements behave as “nonnegative” elements when multiplying both sides
of inequalities). This natural order endows an idempotent semiring with a sup-semilattice
structure (for whichx⊕y = x∨y is the least upper bound ofx andy), and, in the case ofRmax,
it suffices to add+∞ (denoted>) to the set to obtain acompletesup-semilattice (in which
arbitrary subsets have a least upper bound). The corresponding semiring will be denoted
Rmax. It is a standard result that complete sup-semilattices are also (complete) lattices, which
means that arbitrary subsets have a greatest lower bound (in particular, we denotex ∧ y the
greatest lower bound of{x, y}). In the case ofRmax, ∧ is nothing but min. We say that an
idempotent semiring is complete when it is complete as an ordered set, and when the product
distributes over arbitrary sups. For instance, the semiringRmax is complete. (Notice that, in
Rmax, since zero is absorbing,ε⊗> = −∞+∞ = ε = −∞.) It is straightforward to extend
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“addition” and “multiplication” to rectangular matrices. In particular, making the semiring
of scalarsRmax act on the additive monoid(Rn

max,⊕) of n-dimensional columns vectors by
multiplication, we equipRn

max with a structure of (free, finitely generated) semimodule, in
which addition is idempotent. We warn the reader that unlike vector spaces, idempotent
semimodules arenot free, except in very special cases. Although some of our results do
hold for rather general semimodules, we shall only consider, in the sequel, finitely generated
subsemimodules of the free semimoduleRn

max: the main interesting features of the theory are
already apparent in this case.

2.2 Residuation Theory

A mapping f : U→ X between two ordered sets isresiduatedif it is isotone (that is, order-
preserving), and if, for allx ∈ X, the subset{u ∈ U | f (u) ≤ x} admits a maximal element,
denotedf ](x). The isotone mappingf ] : X → U is called theresidualof f . The residual
f ] is the only isotone mapping satisfying the following properties:1

f B f ] ≤ I , f ] B f ≥ I . (1)

A simple characterization holds in the case ofcompletelattices. Before considering it, let us
introduce some terminology.

WhenU andX are lattices, we say thatf : U→ X is a∨- or sup-morphismif f (u∨v) =
f (u) ∨ f (v) for all u, v ∈ U (same terminology with∧). When the latticesU andX are
complete, we say thatf is∨- or sup-continuousif f preserves least upper bounds of arbitrary
sets (specializing this property to the empty set, we getf (ε) = f (sup∅) = sup∅ = ε,
where,ε denotes the bottom element of an ordered set). The dual property for∧ is called inf-
continuity (in [1], these properties are calledlower andupper semicontinuity, respectively).
Finally, if U andX are semimodules, we say thatf is linear if it is an additive morphism and,
in addition, f (αu) = α f (u) with α a scalar andu ∈ U. Now, returning to our residuation
summary,f is residuated ifff is sup-continuous. In particular, linear mappings between free
finitely generated semimodules are residuated.

The following identities can be easily derived from (1):

f B f ] B f = f , f ] B f B f ] = f ] , (h B f )] = f ] B h] , (2)

where f,h are residuated mappings withf : U→ X, h : X→ Y.
The notion ofdually residuatedmapping is defined naturally by reversing the order in

the above definitions. See [1] for details. We use the notationf [ for the dual residual off .
An immediate consequence of characterization (1) and its dual is that a residuated mapf ] is
itself dually residuated and

(
f ]
)[ = f .

2.3 Matrix Residuation

In Rmax, consider the mappingLa : x 7→ ax for some givena (L is for Left multiplication
by a). This mapping is linear and thus residuated. Its residualL]a is denotedy 7→ a ◦\ y (left
“division” by a) and is actually the conventional subtraction ofa from y with the additional
rule (which results from the very definition):ε ◦\ ε = > (that is,−∞ + ∞ = +∞, to be
contrasted withε ⊗> = ε which may also, ambiguously, be written as−∞+∞ = −∞).

1We denoteI the identity map, without reference to the underlying set, which should be clear from the
context.
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Similar considerations apply to the left multiplicationL A by a rectangular matrixA ∈ Rm×n

max ,
with the following formula:

(A◦\ B)ik =
m∧

j=1

(
Aji ◦\ Bjk

)
, for 1≤ i ≤ n, 1≤ k ≤ p ,

whereB ∈ Rm×p

max . Therefore, calculatingA◦\ B amounts to performing a kind of (left) matrix
product of B by the transposeof A where scalar multiplication is replaced by (left) divi-
sion and scalar addition is replaced by lower bound. Of course, since matrix product is not
commutative, one must distinguish betweenleft andright division, the latter, denoted· ◦/ A,
being the residual of right multiplicationRA(·) = · ⊗ A. We shall use the following general
residuation inequalities (see [1, Table 4.1]), which hold in particular for rectangular matrices
(of compatible dimensions):

A(A◦\ B) ≤ B , (3a)

(A◦\ B)C ≤ A◦\(BC) . (3b)

One must be careful in using expressions such asA◦\ Bx which, as written without parenthe-
ses, are ambiguous. On the one hand, when for instancex ∈ Rp

max, A◦\(Bx) is interpreted as
L]A B L B(x): L]A B L B is not in general a⊕-morphism fromRp

max toRn

max. On the other hand,
x 7→ (A◦\ B)x is to be interpreted as alinear operator fromRp

max to Rn

max becauseA◦\ B is,
by definition, the greatest matrixX such thatAX ≤ B. In terms of operators, one can prove
thatL]A B L B ≥ A◦\ B using (3b).

3 Projections

3.1 Nonorthogonal Projections

This section summarizes results published in [4, 5] on projections on imB parallel to the
kernel ofC (denoted kerC), whereB : U → X andC : X → Y are residuated or linear
operators between complete semimodules (say, here,U = Rm

max, X = Rn

max, Y = Rp

max). In
semimodules, it makes sense to define kerC as the followingequivalence relationoverX:

x
kerC∼ ξ ⇔ C(x) = C(ξ)⇔ x ∈ C−1

(
C(ξ)

)
, (4)

rather than in the more usual way{x ∈ X | C(x) = ε} which is not very useful. The

projectionξ of x ∈ X on im B parallel tokerC is such thatξ ∈ im B andξ
kerC∼ x. Compared

with the analogous notion in conventional vector spaces, one must consider that, in a way,
ξ − x ∈ kerC is the direction of projection, but notice how the absence of a “minus sign”
is now compensated for. As in the classical case, there are conditions for existence and
uniqueness of such projections, and then one can possibly get an explicit formula for the
corresponding projector in terms ofB andC (in linear vector spaces and for matricesB and
C such thatCB is invertible, the projector5C

B is equal toB(CB)−1C).
In the present situation, conditions for existence and uniqueness are also known (see [4])

under which5C
B is given by the expression

5C
B = B B (C B B)] BC = (B B B]) B (C] B C) . (5)

Observe that the former expression has a strong similarity with that encountered in vector
spaces, whereas the latter form is written as the composition of two projectors, one on imB
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and the other one parallel to kerC. These individual projectors areorthogonalprojectors
which are discussed in the next section.

Even if either the uniqueness or the existence (or both) condition(s) is (are) not satisfied,
the operator5C

B, defined by (5), acts in an interesting way:5C
B(x) is the maximal elementξ

of the image ofB such thatCξ ≤ Cx (but equality does hold true ifx is already in imB).
If B andC are not only residuated butlinear, and if the uniqueness and existence con-

ditions are both satisfied, then, it turns out that5C
B is indeedlinear. More explicitly, the

expressions in (5) which are seemingly nonlinear, boil down to either of the following two
forms:

5C
B =

(
B ◦/(CB)

)
C = B

(
(CB) ◦\C

)
. (6)

The question arises of when, for a given subsemimodule imB (B andC are still supposed
linear here), there exists a subsemimodule of the form kerC which is such that the existence
and uniqueness conditions are satisfied (then the projector is linear as just said), in which
case we say that imB and kerC aredirect factors.2 We showed in [5] that this property
holds iff B is regular, that is, if B has a g-inverseB†, which satisfiesBB†B = B. Then,
the maximal g-inverse isB ◦\ B ◦/ B, and B has a g-inverse iffB = B(B ◦\ B ◦/ B)B, which
allows us to check regularity (the expressionB ◦\ B ◦/ B is nonambiguous because, in general,
(U ◦\V) ◦/W = U ◦\(V ◦/W)).

3.2 Orthogonal Projections

Let B : U → X be a residuated operator withU = Rm

max andX = Rn

max. The following
theorem provides equivalent definitions of theorthogonal projection5B on imB.

Theorem 1. Let5B
def= B B B]. Then,

• ξ = 5B(x) is thegreatestelement inim B which islessthan x.

• 5B is the projector onim B ⊂ X parallel tokerB] ⊂ X.

Proof. Looking for ξ such thatξ = Bz for somez and Bz ≤ x, we know that the greatest
solution is provided byz = B](x), henceξ = 5B(x), which proves the former statement.
Also, B](ξ) = B](x) (from (2)) which shows that the projection is parallel to kerB].

Of course, ifx ∈ im B,5B(x) = x, which shows that im5B = im B and5B B B = B.
We call5B anorthogonalprojector because in standard algebra, withB a matrix, kerB>

(the transpose ofB) is orthogonal to imB, and we believe thatB] plays the role ofB> in
our context. This terminology will also be enforced by the results to come on the separation
theorem.

4 Max-plus Inversion, Scalar Division, and Hilbert’s Projective Metric

In Rmax, we consider the transformation:x 7→ x− def= e◦/ x = x ◦\e. Note that(x−)− = x,
e− = e andε− = >. Whenx ∈ Rn×p

max, we setx− = 8p ◦/ x = x ◦\8n, where for allk ≥ 1,8k

denotes thek× k matrix:

8k
def=
 e > ... >
> e

...
...

...
...
... >

> ... > e

 .

2The role of the “given” and the “whether there exists” operators can be inverted, that is, the property is a
symmetric one between the image and the kernel subsemimodules.
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In the sequel, we shall simply write8 instead of8k, and we denotee the identity matrix of
any size. The practical rule to computex− is: transposethe matrix andinverseits entries.
Again(x−)− = x, ande− = 8, ε− = >. We next list some useful properties of the inversion
x 7→ x−, which follow from the general formulæ of [1, Table 4.1]. First(a⊕b)− = a− ∧b−,
hence(a∧b)− = a−⊕b−. In particular, the mappinga 7→ a− is antitone, residuated, dually
residuated— in an adapted sense — and“self-residuated” (both residuals are equal to the
mapping itself). Also,(ab)− = b ◦\ a− = b− ◦/ a, henceb ◦\ a = (a−b)− anda ◦/ b = (ba−)−

(avoid division!). Moreover,aa− ≤ 8. For example,

a = ( e ε
ε ε ) , a− = ( e >

> >
)
, aa− = ( e >

ε ε

)
.

However,a ◦\ (aa−
) = (a−a

)
◦/a = a−.

We now play withcolumnvectors with entries inRmax. We define〈x | y〉 def= x−y and

[x | y]
def= x ◦\ y. We shall need the following easy properties, that we state without proof:

1. 〈x | y〉 = (y ◦\ x)− = (y− ◦/ x−)− and [x | y] = 〈y | x〉−;

2. for all x ∈ Rn

max, 〈x | x〉 ≤ e and [x | x] ≥ e;

3. for scalarsα,

〈x | y〉 α = 〈x ◦/ α | y〉 = 〈x | yα〉 and α ◦\ [x | y] = [xα | y] = 〈x | y ◦/ α〉 ;

4. for all matricesA, 〈x | Ay〉 = 〈A](x) | y
〉
and

[
x | A](y)

] = [ Ax | y];

5. the following three statements are equivalent:

(a) 〈x | x〉 = e,

(b) [x | x] = e,

(c) x has at least one finite coordinate (6= ε and>).

6. If 〈y | x〉 ≤ e andy ≤ x, theny = x.

Whenx, y havefiniteentries, the scalar products〈· | ·〉 and [· | ·] have a remarkable geometric
interpretation:〈x | y〉⊕〈y | x〉 = ‖x−y‖∞, where‖·‖∞ denotes the sup-norm, and〈x | y〉⊗
〈y | x〉 = ‖x − y‖H , where‖x‖H = max1≤i≤n xi −min1≤i≤n xi denotes Hilbert’s seminorm.
Hilbert’s seminorm induces a norm on the additive projective space, which is the quotient of
Rn by the additive parallelism relation:x ‖ y ⇐⇒ x − y is a constant vector⇐⇒ x =
λ ⊗ y for someλ ∈ R. In the sequel, it will be convenient to extend the definition of the
associated Hilbert’s additive projective distance,dH(x, y) = ‖x− y‖H , to the case whenx, y
have infinite values. The right definition turns out to be:

dH(x, y) = ( [x | y] ⊗ [y | x]
)−

(since for scalarsa,b, (ab)− = a−b− except in the exceptional case when(a,b) = (ε,>)
or (>, ε), we see in particular thatdH(x, y) coincides with〈x | y〉 ⊗ 〈y | x〉 when the entries
of x and y are finite). Our generalizationdH of Hilbert’s distance satisfies the following
properties:

dH(x, z) ≤
(
dH(x, y)− ⊗ dH(y, z)−

)−
(triangular inequality) (7a)

dH(x, y) = 0 H⇒ x = λ⊗ y for someλ ∈ R (definiteness) (7b)

dH(x, y) < 0 ⇐⇒ x = y ∈ {ε,>}n (nonnegativity) (7c)

(the converse implication holds in (7b) whenx, y 6∈ {ε,>}n).
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5 Bivectors, Duality and Separation Theorem

We callbivectora pair of vectors(x, y). Theorthogonalof the bivector(x, y) ∈ (Rn

max)
2 is

the semimodule:

(x, y)⊥ def=
{

z ∈ Rn

max

∣∣∣ 〈x | z〉 = 〈y | z〉 } .
Theorem 2. Given a linear operator B: Rp

max → Rn

max and x ∈ Rn

max, 5B(x) is the least
ξ ∈ Rn

max such that

im B ⊂ (x, ξ)⊥ .
Proof. Since 〈x | B(u)〉 = 〈ξ | B(u)〉 iff

〈
B](x) | u〉 = 〈

B](ξ) | u〉, im B ⊂ (x, ξ)⊥ iff
B](x) = B](ξ). The least suchξ is B

(
B](x)

)
becauseB] is dually residuated with(B])[ =

B.

Theorem 3. The bivector
(
x,5B(x)

)
separatesim B from x iff x 6∈ im B.

Proof. We know from Theorem 2 that imB ⊂ (x,5B(x)
)⊥

. It remains to prove thatx itself
is not orthogonal to that bivector iff it does not belong to imB, that is,

〈x | x〉 6= 〈5B(x) | x〉 ⇐⇒ x 6∈ im B .

Indeed, it suffices to prove that〈x | x〉 = 〈5B(x) | x〉 ⇒ x ∈ im B (which is equivalent to
saying thatx = 5B(x)). If 〈x | x〉 = 〈5B(x) | x〉, then〈5B(x) | x〉 ≤ e according to item 2
of §4. Moreover,5B(x) ≤ x (see Theorem 1), hence both assumptions in item 6 of§4 are
satisfied and we get that5B(x) = x.

As an immediate corollary of the separation theorem, we get the following duality result,
a variant of which was already proved in [7, Ch. 3, Cor.1.2.5] (see also [9, Th. 9]). The
orthogonalim B> is the set of bivectors(y, z) ∈ (Rn

max)
2 such that〈y | u〉 = 〈z | u〉 for all

u ∈ im B.

Corollary 4. We have(im B>)⊥ = im B.

Theorem 3 should be geometrically intuitive: in an Euclidian space, to separate a point
x from a convex setB, a canonical choice is to take an hyperplane orthogonal to the vector
(x, x′), wherex′ is the projection ofx ontoB. Moreover, the projection minimizes the Euclid-
ian distance. We next give a max-plus analogue of the later property: the point5B(x) which
defines the direction of the separating hyperplane in Theorem 3 minimizes the generalized
Hilbert’s projective distancedH .

Theorem 5. For all x ∈ Rn

max and y∈ im B, dH(x, y) ≥ dH(x,5B(x)).

Proof. Settingy = Bu and using the inequalities (3) together with items 2 and 4 of§4, we
get

dH(x, Bu)− = [x | Bu] [ Bu | x]

= [x | Bu]
[
u | B](x)

] = (x ◦\(Bu)
)(

u ◦\ B](x)
)

≤ x ◦\
(

Bu
(
u ◦\ B](x)

)) ≤ x ◦\(BB](x))

≤
(

x ◦\ (BB](x)
))(

B](x) ◦\ B](x)
)

= [
x | BB](x)

] [
BB](x) | x] = dH(x,5B(x))− ,

and after inversion, we obtaindH(x, Bu) ≥ dH(x,5B(x)).
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6 Max-plus Affine Spaces and Convex Sets

In this section, we illustrate the above constructions with max-plus convex sets, using the
classical correspondence between projective and affine geometry, which sends convex cones
to convex sets.

A max-plus convex combination of two vectorsu, v ∈ Rn

max is any vector of the form
αu⊕βv, whereα⊕β = e. A subsetB ⊂ Rn

max isconvexif it is stable by convex combinations.

We say thatB is finitely generatedif B = vexB for someB ∈ Rn×p

max, where vexB = {Bu |⊕
i ui = e} denotes the set of convex combinations of the columns of a matrixB. We denote

by B̂ ∈ R(n+1)×p

max the matrix obtained by adding a row of unit elements toB. With any convex

setB ⊂ Rn

max, we associate the semimoduleB̂ ⊂ Rn+1

max generated by the vectors of the formû,
whereu ∈ B. In particular, whenB = vexB is finitely generated (as a convex set),B̂ = im B̂
is finitely generated (as a semimodule).

The results of the above section allow us to separate a point from a finitely generated
convex set, by means of affine hyperplanes. Indeed, ifx does not belong to the convex set
vexB, x̂ does not belong to the semimodule im̂B, and by Theorem 3, the bivector(x̂,5B̂(x̂))
separateŝx from im B̂. This result can be translated in affine terms by introducingaffine
hyperplanes, which are sets of pointsz ∈ Rn

max solutions of〈a | z〉 ⊕ α = 〈b | z〉 ⊕ β, for
somea,b ∈ Rn

max andα,β ∈ Rmax such that(a, α) 6= (b, β). Since

5B̂(x̂) =
(

B(B](x)∧ E)
Et (B](x)∧ E)

)
,

whereE denotes thep dimensional column vector whose entries are equal toe, let us intro-
duce the affine hyperplane

H (x) =
{

z ∈ Rn

max | 〈x | z〉 ⊕ e= 〈B(B](x)∧ E) | z〉⊕ 〈Et (B](x)∧ E) | e〉} . (8)

Theorem 3 implies thatH (x) separatesx from vexB, i.e H (x) ⊃ vexB but x 6∈ H (x).
Moreover, Theorem 1 shows that the operator5′B defined by

5′B(x) =
(
Et(B](x)∧ E)

)−1
B(B](x)∧ E) (9)

for all x ∈ Rn

max such thatB](x) 6= ε, is a projector onto vexB.
For instance, the convex set generated by the columns of the matrixB = (

0 1 3
0 3 4

)
is the

dark region depicted in Figure 1. The three columns are the extremal pointsP,N,M of the

P

N

M

Q
B Q

Figure 1: The convex generated by the 3 points (M,N,P) and the action of the projector.
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convex set. The projector on̂B is

5B̂((x, y, z)) =
(x ∧ y ∧ z)⊕ (x ∧ (−1)y∧ 3z)
(2x ∧ y ∧ 3z)⊕ (1x ∧ y ∧ 4z)

x ∧ y ∧ z


and the action of the projector5′B on vexB is represented by arrows. In this figure, we see
that the pointQ is sent to5′B(Q) and that(5′B)

−1(P) is the shaded region with vertexP. We
have represented some balls of centerQ for the distanced′H obtained by transporting Hilbert’s
projective distance to the affine space:d′H(x, y) = dH(x̂, ŷ). Since5B̂(x̂) minimizes the
Hilbert’s projective distance from̂x to im B̂, 5′B(x) minimizes the distanced′H from x to
vexB, a property that is geometrically clear from the shape of the balls.

Before considering separating hyperplanes, it is useful to look at the geometry of affine

max-plus hyperplanes ofR2
max, that we shall calllines. The general line is defined by an

equation of the formax⊕by⊕ c = a′x⊕ b′y⊕ c′, for somea,b, c,a′ ,b′, c′ ∈ Rmax, but not
so many coefficients are needed. For instance, the lines with equations 2x⊕ y = 1x ⊕ y⊕ 3
and 2x⊕y = y⊕3, coincide. More generally, it is not difficult to see that there are 12 generic
shapes of lines, as shown in Figure 2. Indeed, a generic line can be defined by three real

M

N
by ax c
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ax
ax
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c
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a x

by
c

ax by
c c

ax
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c
ax

c

ax by ax by c
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ax

by
c

ax
by

c
c

ax
ax

by
c

ax
by

c
by

c

Figure 2: The twelve generic lines ofR2

max

numbersa,b, c plus a “sign” information, which tells the side of the equation in which the
corresponding coefficients is dominant (say “⊕” for the left hand side, “	” for the right and
side, and a dot when coefficients on both sides are equal). For instance, the line with equation
ax⊕ c = by⊕ c will be denotedL(⊕a,	b, ċ). This notation can be justified by introducing
thesymmetrizedmax-plus semiring [12, 1]. It is fundamental to note that a line with a dotted
coefficient has dimension 2 in the usual sense. There is no point to distinguish algebraically
between lines and half-planes, since for instance an inequality of the formx ≥ y can be
written as an equationx = x ⊕ y. Coming back to our example, the separating lineH (Q),
given by (8), isL(1, 2̇, 2̇) = {(x, y) | 1x ⊕ y⊕ 2= y⊕ 2}.

Corollary 4 can be rephrased by saying that a (finitely generated) semimodule is exactly
the set of solutions of the linear equations that it satisfies. Translating this theorem to the
affine case, we get in particular that the convex vexB is the intersection of the lines in which

9



it is contained. In fact, it is not difficult to see that vexB is the intersection of the five following
lines:

L(1̇,0, 3̇) : 1x ⊕ y⊕ 3= 1x ⊕ 3, L(0,−1̇, 0̇) : x ⊕ (−1)y⊕ 0= (−1)y⊕ 0,
L(0̇,−2,0) : x ⊕ (−2)y⊕ 0= x, L(0, ε, 3̇) : x ⊕ 3= 3, L(ε, 0̇,0) : y⊕ 0= y .

The first line,L(1̇,0, 3̇) is the half-plane whose upper boundary contains the segment(M,N),
the second line,L(0,−1̇, 0̇), has a lower boundary which contains the segment(P,M),
whereas the third line,L(0̇,−2,0), has upper boundary(P,N). The two remaining lines
make vertical and horizontal cuts atM andP, respectively.

More generally, a finitely generated convex set is the intersection of finitely many hyper-
planes. Passing from the set of generators of a convex set to a definition as an intersection
of hyperplanes is a non trivial operation: the only known algorithm is nonpolynomial [3], [7,
Ch. 3] (see also [9, 8]).
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reference [11] which contains related results. We also learned that K. Zimmerman proved a
separation theorem [17], but we could not obtain this reference yet. Finally, we thank P. Lotito
and E. Mancinelli for useful discussions around the inversion introduced in section 4.
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