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Abstract

We set up a connection between ContinuousTimed Petri
Nets (the fluid version of usual Timed Petri Nets) and
Markov decision processes. We characterize the subclass
of Continuous Timed Petri Nets corresponding to undis-
counted average cost structure. This subclass satisfies con-
servation laws and shows a linear growth: one obtains
as mere application of existing results for Dynamic Pro-
gramming the existence of an asymptotic throughput. This
rate can be computed using Howard-type algorithms, or
by an extension of the well known cycle time formula for
timed event graphs. We present an illustrating example
and briefly sketch the relation with the discrete case.

Keywords— Petri Nets, Dynamic Programming,
Markov Decision Processes, Discrete Event Systems,
Max plus algebra.

I. Introduction

The fact that a subclass of Discrete Event Systems can
be represented by linear equations in the (min,+) or in the
(max,+) semiring is now almost classical [7], [2]. The
(min,+) linearity allows the presence of synchronization
and saturation features but prohibits the modeling of many
interesting phenomena such as “birth” and “death” pro-
cesses (multiplication of tokens) and concurrency. More
recently [3], [8], it was realized that under some assump-
tions on the routing policies, these additional features
could be represented by more general recurrences, involv-
ing both conventional linear systems and (min,+) linear
systems. From the control theoretical point of view, these
are polynomial systems over the (min,+) algebra, that is,
the exact (min,+) counterpart of conventional polynomial
discrete time systems. This approach was outlined in [8],
where in particular the (min,+) analogue of Volterra expan-
sion was given.

Another (simpler) point of view is based on Markov de-
cision processes. As shown in [8], the “polynomial” Petri
Net equations can be interpreted as the dynamic program-
ming equations of a canonical Markov decision process as-
sociated with the net, equipped with an additive discounted
cost. More explicitely, the counter function (number of fir-
ings) of transition q at time t is equal to the value func-
tionat state q for the associated Markov decision process in
horizon t. Of particular interest is the case of undiscounted
costs: then the value function grows linearly as a function

of the horizon, and for the corresponding Petri Nets (that
we call undiscounted), there exists an asymptotic through-
put (mean number of firings of a given transition per time
unit). Undiscounted Petri Nets are characterized by the
followingsimple structural property: there are as many in-
put as output arcs at each place. Then, the routing policy
is uniquely defined (one has to route the tokens equally to-
wards downstream arcs). We show that undiscounted Petri
Nets admit P -invariants (linear combination of markings
invariant by firing of transitions). They also admit T -
invariants (sequences of firings preserving the marking)
which are best interpreted as an input-output homogeneity
property: if we distinguish between input transitions (rep-
resenting e.g. the availability of raw materials) and output
transitions (representing finished parts) and if we add one
unit of each input material, then one obtains one more unit
of each finished part. Finally, we introduce the class of
Petri Nets withpotential, obtained from undiscountedPetri
Nets via rescalings (changes of units). This class is suited
to the modeling of production systems in which parts are
produced according to different ratios.

A more complete presentation in a system theoretical
spirit will be found in [8], to which the reader is referred
for omitted proofs. Here, we focus on the main computa-
tional consequence of this approach, that is, the asymptotic
throughput formula.

II. Continuous Timed Petri Nets under Stationary
Routing Policies
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Fig. 1. A Timed Petri Net.

The definition of Continuous Timed Petri Nets is syn-
taxically very similar to that of conventional Timed Petri
Nets: one has to specify the topology of the graph, the ini-
tial marking and the durations. The main difference lies in
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the functioning and the interpretation of the system, since
fluids instead of tokens circulate in the net.

Definition II.1 (CTPN). A Continuous Timed Petri Net
with Multipliers (CTPN) is a valued bipartite graph given
by a 5-tuple N = (P;Q;M;m; � ) with the following
characteristics.

1. P is a finite set whose elements are called places.
Places should be seen as reservoirs, with input and output
pipes, in which a liquid flows according to a dynamics de-
scribed later on.
2. Q is a finite set whose elements are called transitions.

Transitions mix the flows coming from the places immedi-
ately upstream in given proportions and instantaneously1,
and pour the resulting liquid in downstream places also in
given proportions.
3. M 2 (R+)P�Q[Q�P . The multiplier Mpq (resp.
Mqp) gives the number of edges from transition q to place
p (resp. from place p to transition q). We allow non integer
number of edges. The zero value for M codes the absence
of edge. We say that vertex (place or transition) r is up-
stream vertex s ifMsr 6= 0. Equivalently, s is downstream
r. We denote by rout the set of vertices downstream vertex
r and by rin the set of upstream vertices. Multipliersdeter-
mine the mixing and dispatching proportions as follows:
transition q takes Mqp molecules2 of fluid from each up-
stream place p, and produces Mp0q molecules3 of fluid in
each downstream place p0. The mixing process at transi-
tion q continues as long as all the upstream places are non
empty. When a place is upstream several transitions, we
assume that there is a routing mechanism fixing which pro-
portions of the flow should be sent to the concurrent down-
stream transitions. Keeping the discrete terminology, we
will still call firing of transition q the consumption of Mqp

molecules in each upstream place p and the production of
Mp0q molecules in each downstream place, but now, tran-
sition firings are counted with real numbers.
4. m 2 (R+)P represents the initial marking: mp gives

the amount of fluid initially available in place p.
5. � 2 (R+)P (holding times): �p gives the sojourn

time in place p, i.e. the minimal time from the entry of a
molecule in place p to its avaibility for the firing of down-
stream transitions. This delay may be caused for example
by a preparation time required for heating or homogeniz-
ing the fluid.

1There is no loss of modelling power in assuming the mixing operation
to be instantaneous, since mixing delays can be incorporated in sojourn
times in reservoirs, possibly after adding places and transitions.
2Continuous Petri nets differ from discrete (conventional) ones in that

the fluid quantities are infinitely divisible. E.g. consider a transition q
with two upstream places p1, p2, one downstream place p3, and mix-
ing ratios Mqp1 = 1;Mqp2 = 2;Mp3q = 1. Assume that there is 1
molecule of fluid in each upstream place. Then the continuous approxi-
mation consumes 1=2 molecule in p1 and 1 molecule in p2 to produce
1=2 molecule in p3, while in the discrete —more realistic— case, the
transition is blocked (no chemical reaction can occur) .
3Quantities of fluid are measured in number of molecules rather than

in volume or mass. Note that in general, fluid measures are not preserved
by mixing operations, i.e.

P
q2pin Mpq 6=

P
q02pout Mq0p.

Definition II.2 (Routing Policy). A (stationary, origin
independent4) routing policy is a map � : Q � P ! R

+,
such that 8p 2 P,

P
q2pout �qp = 1. �qp determines the

proportion of fluid routed to the downstream transition q
by place p. The initial stock of fluid mp is routed with the
same proportions.

We next give the dynamic equations satisfied by the
Timed Petri Net. Counter functions are associated with
nodes of the graph:

1. Zp(t) denotes the cumulated quantity of fluid5 which
has entered place p up to time t, including the initial stock;
2. Zq(t) denotes the cumulated number of firings of

transition q up to time t.

All these cumulated quantitiesare of course nondecreasing
functions.

We focus here on the autonomous regime, that is we as-
sume that the counter trajectories Zr(t), r; s 2 Q [ P are
frozen for t < 0 at a given initial condition, and we let
the system evolve freely for t � 0. A more general input-
output approach (the set of transitions being partionned in
input/state/output transitions) is detailed in [8], [9].

We introduce the notation

�pq
def
= Mpq ; �qp

def
= M�1

qp ; �0qp
def
= �qp�qp :

Proposition II.3. The counter variables of a CTPN sat-
isfy the following equations6

Zq(t) = min
p2qin

�0qpZp(t � �p) ; (1a)

Zp(t) = mp +
X
q2pin

�pqZq(t) : (1b)

Remark II.4. From (1), we deduce the transition-to-
transition equation:

Zq(t) = min
p2qin

h
�0qp
�
mp +

X
q02pin

�pq0Zq0 (t� �p)
�i

: (2)

Dually, the place-to-place equation can be obtained:

Zp(t) = mp +
X
q02pin

�pq0 min
p02(q0)in

�
�0q0p0Zp0 (t� �p0)

�
:

(3)

Remark II.5. If �p = 0 for some places, system (1) be-
comes implicit and we may have difficulties in proving the
existence of a finite solution. We say that the CTPN is ex-
plicit if there is no circuits containingonly places with zero
holding times. Then, (1) becomes explicit in time, that is,
if one knows the past values Zr(� ); � < t, the counter
functionsZs(t); s 2 P[Q; can be computed sequentially
from (1) (using an appropriate order of the vertices).

4More general routing policies were considered in [8]. It is possible, up
to a minor increase of complexity, to consider origin dependent routings,
that is to assume that the routing of a given quantity of fluid at place p
depends of the transition from which it comes. Initial stocks may also
admit a particular routing (distinct from the stationary one). We shall not
enter in these details here.
5Measured in number of molecules.
6We adopt the convention

P
q2;() = 0, so that (1b) becomes

Zp(t) = mp when pin = ;.
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Remark II.6. We note that (1) reads as the coupling of a
conventional linear system with a (min;�) linear system.
Let us assume �p = 1; 8p, for simplicity. Then7,

ZQ(t) = �0QP 
 ZP (t� 1) ; (4a)

ZP(t) = m + �PQZQ(t) ; (4b)

where (A 
 x)i =
L

j Aij 
 xj = minj Aijxj is

the matrix product of the dioid8 Rmin;�
def
= (R+� [

f+1g;min;�).
Example II.7. The Timed Petri Net depicted in Fig. 1 has
four places P = fp1; � � � ; p4g and six transitions Q =
fq1; � � � ; q6g. The coefficients Mpq and Mqp are visual-
ized on the picture by the number of arcs going from a tran-
sition to a place or from a place to a transition. The initial
stocks are not indicated. In order to simplify the notation,
we shall write �ij instead of �qipj , mi instead of mpi , etc.
The routing policy is displayed in the figure with greek let-
ters, i.e. �11 = 
; �41 = �; �32 = �; �22 = � ;
�53 = 1; �14 = �; �64 = � ; with � + � =
1; 
 + � = 1; � + � = 1. Therefore, the dynam-
ics of the system (see (4)) is described by the four matrices
m = (mi)i=1:::4; � = (�i)i=1:::4,

�PQ =

0
B@

0 1 0 1 0 0
1 0 2 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1

1
CA ;

�0QP =

0
BBBBB@


 1 1 �
1 �=2 1 1
1 � 1 1
� 1 1 1
1 1 1 1
1 1 1 �

1
CCCCCA

:

The behavior of the system can be easily simulated by
computing the matrix products (4), starting from an initial
conditionZQ(t); t < 0.

We refer the reader to [3] for the study of similar equa-
tions when the delays are random variables.

III. Stochastic Control Interpretation of Continuous
Timed Petri Nets

We associate with a CTPN the following canonical
Markov Decision Process.

1. The time evolves backward.
2. The set of Markov chain states isQ. The probability
P

p
qq0 of the transition q ! q0 from time n to time n � 1

under the decision p is given by

P
p

qq0 = ��1qp �
0
qp�pq0 with �qp

def
=
X
q02p

in

�0qp�pq0 :

It is essential to note that the process moves backward in
the graph, i.e. if the Petri Net has an arc q0 ! p ! q,
then the move q ! q0 for the associated Markov chain is
allowed.
7We denote by ZQ (resp.ZP ) the restriction ofZ to transitions (resp.

to places). The convention for �pq is similar.
8A dioid [7], [2] is a semiring whose addition is idempotent: a�a = a.

3. The setPad of admissible control histories is the set of
sequences p1; : : : ; pt such that pn 2 qin

n and the decision
pn is a feedback over qn.
4. The discounted cost to be minimized knowing that

we start at time t from state q is

J(p; t; q) = EfZq0 (0)�0t +

tX
n=1

�qnpn�ntjqt = qg ;

where we have used �qp
def
= �0qpmp and denoted the state

trajectory and control dependent actualization by

�st
def
=

tY
j=s+1

�qjpj :

Proposition III.1. For a CTPN such that �p � 1, the
counter function coincides with the value function:

Zq(t) = inf
p2Pad

J(p; t; q) : (5)

Proof. If we write down the dynamic programming recur-

sion for Vq(t)
def
= infp2Pad J(p; t; q), we obtain precisely

Eq. (2).

The case of integer but non identically 1 delays could
be interpreted along the same lines, although writing pre-
cisely the resulting Markov Decision Process would be
slightly more involved.

Definition III.2. We say that a CTPN

1. is balanced if 8p,
P

q2pout Mqp =
P

q02pin Mpq0 , that
is if there are as many arcs upstream and downstream each
place;
2. is undiscounted if �qp � 1;
3. admits a potential if there exists a vector v 2 (R+�)Q

(called potential) such that the change of variable Zq =
vqZ

0
q makes the CTPN undiscounted.

Theorem III.3. 1. A CTPN becomes undiscounted un-
der a (stationary, origin independent) routing policy iff it
is balanced.
2. A CTPN admits a potential v for some (stationary,

origin independent) routing iff

8p;
X
q2pout

vqMqp =
X
q02pin

Mpq0vq0 : (6)

Then,

8q 2 Q; p 2 qin; vq =
X
q02pin

�0qp�pq0vq0 : (7)

Proof. Since the specialization of item 2 to unit potential
yields item 1, we only prove item 2. The CTPN has poten-
tial v iff for all p, the matrix

P p
qq0 = v�1q M�1

qp �qpMpq0vq0

is stochastic. Summing up as q0 2 pin, we get

vqMqp =
X
q02pin

�qpMpq0vq0 ; (8)
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that is (7). Summing up (8) as q 2 pout and usingP
q2p

out �qp = 1 we get the necessary condition (6). Con-
versely, when (6) is true, the routing policy

�qp =
vqMqpP

q02pout vq0Mq0p

(9)

turns v�1q M�1
qp �qpMpq0vq0 to a stochastic matrix which

shows that (6) is also a sufficient condition.

Example III.4. The Petri Net shown in Fig 1 is balanced
since at each place the same number of arcs arrives and
leaves. Therefore the Petri Net admits an undiscounted
stochastic control interpretation as soon as the routing pol-
icy assigns the flow equally to the outgoing arcs, that is

� = 1=3; � = 2=3; 
 = � = 1=2; � = � = 1=2 : (10)

Indeed, in this case the potential is vq � 1, and the only
compatible routing is given by (9). The non-zero rows of
the matrices P p are given as follows:

0
BBBBBBBBBB@

P 1
1� 0 1=2 0 1=2 0 0

P 4
1� 0 0 0 0 1=2 1=2

P 2
2� 1=3 0 2=3 0 0 0

P 2
3� 1=3 0 2=3 0 0 0

P 1
4� 0 1=2 0 1=2 0 0

P 3
5� 1 0 0 0 0 0

P 4
6� 0 0 0 0 1=2 1=2

1
CCCCCCCCCCA

(11)

Example III.5. Using � + � = 1, 
 + � = 1, � + � = 1
together with (7), some elementary elimination shows that
the CTPN admits a potential as soon as � = 1=3. Then:

v =
�
1 1 1 (1� 
)=
 1 (1� �)=�

�
: (12)

IV. Asymptotic Properties of Undiscounted Petri Nets

In this section we use the stochastic control interpreta-
tion to obtain explicit formulas for the throughput of bal-
anced CTPN and CTPN with potential.

Theorem IV.1. For a strongly connected undiscounted
CTPN, we have

lim
t!1

1

t
Zq(t) = �; 8q ;

where � is a constant. The periodic throughput � is char-
acterized as the unique value for which a finite vector w is
solution of

w = min
p

(��p � ��p + P pw) : (13)

Proof. This is an adaptation of standard stochastic control
results [12, Chap. 33, Th. 4.1]. The growth rate � is in-
dependent of the initial point q for the subclass of com-
municating systems9. This assumption is equivalent to the
strong connectedness of the net.

9The system is communicating if for all q; q0, there is a policyu and an
integer k such that (Pu

qq0
)k > 0, that is, there is a policy such that there

exists a path from q to q0 with non zero probability.

A feedback policy (or policy10, for short) is a map u : Q !
P. The policy is admissible if u(q) 2 qin, that is, if setting
pn = u(qn) yields and admissible policy for the corre-
sponding stochastic control problem. The following vec-
tors and matrices are associated with a policy u.

�uq
def
= �qu(q) ; �uq

def
= �u(q) ; Pu

qq0

def
= P

u(q)
qq0 :

Remark IV.2. Equation (13) can be solved efficiently us-
ing Howard algorithm (policy iteration).

1. Initialization: select a policy u such that Pu is
strongly connected (irreducible).
2. Given a policy un solve

wn = �u
n

� �n�u
n

+ Punwn ;

where the unknowns are (�n; wn). This is a linear system
which has a unique solution if we imposewn

0 = 0 (for ex-
ample) and if the policy matrixPun is strongly connected.
3. Given (�n; wn) improve the policy by

un+1(q) = argminp[��p � �n�p + P pwn]q ; 8q 2 Q :

This algorithm defines a positive decreasing sequence of
�n converging in a finite number of steps to the searched
throughput �. The algorithm is properly defined if at each
step we get a strongly connected policy matrix. This is not
always possible (in particular, for the example dealt with
here, the only two policy matrices are not strongly con-
nected, see Ex.IV.4 infra). We will not discuss here the
extension of the algorithm to the non strongly connected
case.

There is an equivalent characterization of � which ex-
hibits the analogy with the Timed Event Graphs case in a
better way. We denote by R(u) the set of final classes of
the matrixPu. For each class r 2 R(u), we have a unique
invariant measure �ur with support r (i.e. �urPu = �ur,
and �ur

q = 0 if q 62 r.)

Theorem IV.3 (Asymptotic Throughput Formula).
For an undiscounted CTPN, we have

� = min
u

min
r2R(u)

�ur�u

�ur�u
: (14)

Thus, � is the minimal ratio of the mean marking over
the mean holding time in the places visited while fol-
lowing a stationary policy. This result should be com-
pared with the well know periodicity theorem (see e.g.
[2]) which states that a (strongly connected) Timed Event
Graph reaches a periodic regime after a finite time, with
throughput

� = min
c

P
p2cmpP
p2c �p

; (15)

where the minimum is taken over the (elementary) circuits
of the graph. Since in the case of Timed Event Graphs, the
final classes are precisely circuits and the invariant mea-
sures are uniform on the final classes, (14) reduces to (15).

10This feedback policy has nothing to do with the routing policy intro-
duced in section II.
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Example IV.4. For the current example, it is easy to com-
pute the throughput introduced in Th. IV.1, which is inter-
preted in stochastic control terms as:

� = min
t=0;��� ;T�1
pt2fp1;p4g

lim
T!1

1

T
E

X
0;T�1

�qtpt :

Indeed, they are only two policies. If we use the strategy
u1: “choose p1 when we are in q1” (see Fig 2), we obtain
the matrix

Pu1 =

0
BBBBB@

0 1=2 0 1=2 0 0
1=3 0 2=3 0 0 0
1=3 0 2=3 0 0 0
0 1=2 0 1=2 0 0
1 0 0 0 0 0
0 0 0 0 1=2 1=2

1
CCCCCA

:

If we use the strategy u4: “choose p4 when we are in q1”

q

q

q
q

q

q
3

1

2

4

5

6
1/2

1/2

1
1/3

1/3
1/2

1/2

1/2

2/3

2/3
1/2

Fig. 2. Markov chain associated with Pu1 .

(see Fig 3),, we get the matrix,

Pu4 =

0
BBBBB@

0 0 0 0 1=2 1=2
1=3 0 2=3 0 0 0
1=3 0 2=3 0 0 0
0 1=2 0 1=2 0 0
1 0 0 0 0 0
0 0 0 0 1=2 1=2

1
CCCCCA

:

The instantaneous cost at each step is given by the first row

q

q

q
q

q

q
3

1

2

4

5

6
1/2

1/2

1
1/3

1/3
1/2

1/22/3

2/3

1/2
1/2

Fig. 3. Markov chain associated with Pu4 .

of the following matrix if the decision p1 is taken, and by
the second one if the decision p4 is taken:

�0 =

�
m1=2 m2=3 m2=3 m1=2 m3 m4=2
m4=2 m2=3 m2=3 m1=2 m3 m4=2

�
:

The only final class of the Markov chain for the first strat-
egy is fq1; q2; q3; q4g and we get the invariant measure of
probability

�1 =
�
1=5 1=5 2=5 1=5 0 0

�
:

For the second strategy, the only final class of the Markov
chain is fq1; q5; q6g and we get the invariant measure of
probability

�4 =
�
1=3 0 0 0 1=3 1=3

�
:

Therefore the throughput of the system is given by:

� = min

�
m1 +m2

2�1 + 3�2
;
m3 +m4

�3 + 2�4

�
: (16)

A simulation of the system for m =
�
0 3 10 10

�
and � =

�
1 1 2 2

�
is shown in Fig 4. We note that

the minimum in (16) is equal to 0:6 and that it is attained
for the first term corresponding to the “critical” final class
fq1; q2; q3; q4g. The transient regime forZ5; Z6 can be ex-
plained easily by the fact that the non critical transitions
q5; q6 first consume the initial stock m3 = m4 = 10 at
their own regime, before being delayed by the critical fi-
nal class.

0 8 12 16 20 24 28 32 36
0

4

8

12

16

20

24

28
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36
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40

40

number of events Z6

Z1 = Z4

Z5

Z2 = Z3

time

Fig. 4. Continuous behavior

It is not surprising that the terms appearing in (14) are
indeed invariants of the net.

Theorem IV.5 (Invariants). Given an undiscounted
CTPN, for all policy u and for all final class r associated
with u,

Iur def
= �ur�u =

X
q2r

�ur�uq (17)

is invariant by firing transitions.

Theorem IV.6 (Homogeneity). If Z(t); t 2 R; is an
admissible trajectory of an undiscounted CTPN, then11

Z(t) + 1; t 2 R; is also an admissible trajectory.

This theorem should be interpreted as follows: if some
transitions can be regarded as input ports of raw material
(with no upstream arcs), then an increase of 1 unit of all
inputs induce the same increase of all the other quantities.

These results can be extended to the case of CTPN with
potential. With a feedback policy u we associate the ma-
trix Ru: Ru

qq0 = �0
qu(q)

�u(q)q0 if q0 2 u(q)in (Ru
qq0 = 0

otherwise); we denote by R(u) the set of final classes of
Ru; which each final class r we associate a left eigenvector
of Ru: �ur = �urRu with support r; and we define �u; �u

as in Theorem IV.3. We denote by diag v the diagonal

11We denote by Z(t) + 1 the vector (Zr(t) + 1)r2P[Q
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matrix with diagonal entries (diag v)qq = vq . Then, the
following formula is an immediate consequence of Theo-
rem IV.3.

Corollary IV.7. For a strongly connected CTPN with po-
tential v, we have limt!1

1
t
Zq(t) = �q ; where

v�1q �q = min
u

min
r2R(u)

�ur�u

�ur(diag v)�u
: (18)

Example IV.8. When � = 1=3, the Petri Net of Fig 1 ad-
mits the potential (12). An immediate application of (18)
yields:

� = min

�
(m1 +m2)


�1 + 3
�2
;
(m3 +m4)�

�4 + ��3

�
:

V. Discrete vs. Continuous Behavior

To conclude, we would like to indicate how these results
may help the analysis of conventional (discrete) Timed
Petri Nets.

Firstly, let us recall how the dynamics (1) has to be
modified in the discrete case. We now call routing pol-
icy at place p a family f�qpgq2pout , where �qp is a non-
decreasing map N ! N: �qp(n) tells the number of to-
kens routed to q from p among the first n ones. Since
f�qpgq2pout is a partition of the flow from p, we have: 8n,P

q2pout �qp(n) = n. It is not difficult to see that the
transition-to-transition equation (2) becomes

Zq(t) = min
p2qin

j
�qp

� X
q02pin

�qp

�
mp + �pq0Zq0 (t� �p)

��k
;

(19)

where bxc = supfn 2 N j n � xg . See [8] for more
details.

The discrete counterpart of a stationary routing with (ra-
tional) ratio �qp is obtained for a periodic function �qp

with slope �qp. i.e. we assume that there is an integer c
(periodicity) such that �qp(n + c) = �qp(n) + �qpc.

Example V.1. A possible discrete version of the routing
used in Ex. 10 at place p2 is the following:

�32(n) =
jn
3

k
; �22(n) =

�
n+ 1

3

�
+

�
n + 2

3

�
:

In simpler terms, the tokens numbered 3k are routed to
transition q3, while the tokens numbered 3k+1 or 3k+ 2
are routed to transition q2. Other choices of congruence
are of course possible. Similarly, we take:

�11(n) = �14(n) =
jn
2

k
;

�41(n) = �64(n) =

�
n+ 1

2

�
:

A simulation for the same values as in Ex IV.4 is shown
in Fig 5. The asymptotic throughput (obtained experimen-
tally) is � = 0:5, to be compared with the continuous
throughput 0.6.
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Fig. 5. Discrete behavior

More generally, the following results can be stated.
Firstly, we can obviously bound �qp(n) by affine func-
tions, i.e. �qp � (n + mp) � �qp(n) � �qp � (n +mp)
for some mp;mp. Then, a comparison of (2) and (19)
shows that the discrete system is bounded from above by
the associated CTPN with marking m0

p = mp + mp, and
from below by the associated CTPN with marking m00

p =
mp + mp � 1. Secondly, consider a strongly connected
balanced TPN such that �qp is uniform (i.e. it routes to-
kens to all the downstream arcs in the same proportions),

and assume the existence of a periodic throughput �q
def
=

limt!1 t�1Zq(t) for all t. Then, some reworking of the
proof of Theorem IV.1 shows that all the transitions admit
the same rate: �q = �q0 ; 8q; q0.
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