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GuY COHEN'?

STEPHANE GAUBERTH

JEAN-PIERRE QUADRATH

7 Centre Automatique et Systemes, Ecole des Mines de Paris,
35 rue Saint-Honoré, 77305 Fontainebleau Cedex, France. e-mail: cohen@as. ensnp. fr

I INRIA, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France.
* email: {St ephane. Gaubert, Jean-Pi erre. Quadrat }@nria.fr

Abstract

We set up aconnection between Continuous Timed Petri
Nets (the fluid version of usua Timed Petri Nets) and
Markov decision processes. We characterize the subclass
of Continuous Timed Petri Nets corresponding to undis-
counted average cost structure. Thissubclass satisfies con-
servation laws and shows a linear growth: one obtains
as mere application of existing results for Dynamic Pro-
gramming the existence of an asymptoticthroughput. This
rate can be computed using Howard-type agorithms, or
by an extension of the well known cycle time formulafor
timed event graphs. We present an illustrating example
and briefly sketch the relation with the discrete case.

Keywords— Petri Nets, Dynamic Programming,
Markov Decision Processes, Discrete Event Systems,
Max plus agebra.

|. Introduction

The fact that a subclass of Discrete Event Systems can
be represented by linear equationsin the (min,+) or in the
(max,+) semiring is now amost classical [7], [2]. The
(min,+) linearity alows the presence of synchronization
and saturation features but prohibitsthe modeling of many
interesting phenomena such as “birth” and “death” pro-
cesses (multiplication of tokens) and concurrency. More
recently [3], [8], it was realized that under some assump-
tions on the routing policies, these additiona features
could be represented by more general recurrences, involv-
ing both conventiona linear systems and (min,+) linear
systems. From the control theoretical point of view, these
are polynomial systems over the (min,+) algebra, that is,
the exact (min,+) counterpart of conventional polynomial
discrete time systems. This approach was outlined in [8],
wherein particular the (min,+) anal ogueof Volterraexpan-
sionwas given.

Another (smpler) point of view isbased on Markov de-
cision processes. As shown in [8], the “polynomial” Petri
Net equations can be interpreted as the dynamic program-
ming equations of acanonical Markov decision process as-
sociated withthe net, equi pped with an additivediscounted
cost. Moreexplicitdy, the counter function (number of fir-
ings) of trangition ¢ at time ¢ is equa to the value func-
tionat state ¢ for theassociated Markov decision processin
horizont. Of particularinterest isthe case of undiscounted
costs: then the value function growslinearly as afunction

of the horizon, and for the corresponding Petri Nets (that
we call undiscounted), there exists an asymptotic through-
put (mean number of firings of agiven transition per time
unit). Undiscounted Petri Nets are characterized by the
followingsimplestructural property: thereare as many in-
put as output arcs at each place. Then, the routing policy
isuniquely defined (one has to routethetokensequally to-
wardsdownstream arcs). We show that undiscounted Petri
Nets admit P-invariants (linear combination of markings
invariant by firing of transitions). They aso admit 7*-
invariants (sequences of firings preserving the marking)
which are best interpreted as an i nput-output homogeneity
property: if we distinguish between input transitions (rep-
resenting e.g. the availability of raw materials) and output
transitions (representing finished parts) and if we add one
unit of each input material, then one obtains one more unit
of each finished part. Finally, we introduce the class of
Petri Netswith potential, obtai ned from undi scounted Petri
Nets viarescalings (changes of units). Thisclassis suited
to the modeling of production systems in which parts are
produced according to different ratios.

A more complete presentation in a system theoretical
spirit will be found in [8], to which the reader is referred
for omitted proofs. Here, we focus on the main computa-
tional consegquence of thisapproach, that is, theasymptotic
throughput formula.

[1. Continuous Timed Petri Nets under Stationary
Routing Policies
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Fig. 1. A Timed Petri Net.

The definition of Continuous Timed Petri Nets is syn-
taxically very similar to that of conventional Timed Petri
Nets: one hasto specify the topology of thegraph, theini-
tial marking and the durations. The main differenceliesin



the functioning and the interpretation of the system, since
fluidsinstead of tokens circulate in the net.

Definition 11.1 (CTPN). A Continuous Timed Petri Net
with Multipliers (CTPN) is avalued bipartite graph given
by a 5-tuple ' = (P, Q, M, m, ) with the following
characteristics.

1. P isafinite set whose elements are called places.
Places should be seen as reservoirs, with input and output
pipes, in which aliquid flows according to a dynamics de-
scribed later on.

2. Q@ isafiniteset whose dlementsarecalledtransitions.
Transitionsmix the flows coming from the placesimmedi-
ately upstream in given proportionsand instantaneously,
and pour theresulting liquid in downstream places also in
given proportions.

3. M € (RT)PxQUexP  The multiplier M,, (resp.
M) givesthe number of edges from transition ¢ to place
p (resp. from place p to transition ¢). We alow noninteger
number of edges. The zero valuefor M codesthe absence
of edge. We say that vertex (place or transition) » is up-
streamvertex s if M;, # 0. Equivdently, s isdownstream
. We denote by »° the set of vertices downstream vertex
7 and by " the set of upstream vertices. Multipliersdeter-
mine the mixing and dispatching proportions as follows:
transition ¢ takes M, molecules’ of fluid from each up-
stream place p, and produces M,,,, molecules® of fluidin
each downstream place p’. The mixing process &t transi-
tion ¢ continuesas long as all the upstream places are non
empty. When a place is upstream several transitions, we
assumethat thereisarouting mechani sm fixing which pro-
portionsof the flow should be sent to the concurrent down-
stream transitions. Keeping the discrete terminol ogy, we
will still cal firing of transition ¢ the consumption of A,
molecules in each upstream place p and the production of
M1, molecules in each downstream place, but now, tran-
sition firings are counted with real numbers.

4. m € (R*)” representstheinitial marking: m,, gives
the amount of fluid initially availablein place p.

5 7 € (RT)” (holding times): 7, gives the sojourn
timein place p, i.e. the minimal time from the entry of a
moleculein place p to itsavaibility for the firing of down-
stream transitions. This delay may be caused for example
by a preparation time required for heating or homogeniz-
ing the fluid.

I Thereisno loss of modelling power in assuming the mixing operation
to be instantaneous, since mixing delays can be incorporated in sojourn
timesin reservoirs, possibly after adding places and trangtions.

2 Continuous Petri netsdiffer from discrete (conventional) onesin that
the fluid quantities are infinitely divisible. E.g. consider a transition g
with two upstream places p;, p2, one downstream place ps, and mix-
ingratiosMgp, = 1, Mgp, = 2, Mp,q = 1. Assumethat thereis 1
molecule of fluid in each upstream place. Then the continuous approxi-
mation consumes 1/2 moleculein p; and 1 moleculein py to produce
1/2 molecule in ps, while in the discrete —more realistic— case, the
transition is blocked (no chemical reaction can occur) .

3 Quantities of fluid are measured in number of molecules rather than
involumeor mass. Notethat in general, fluid measures are not preserved
by mixing operations, i.e. qupm Mpq # Eq,epm Myip.

Definition 11.2 (Routing Policy). A (stationary, origin
independent*) routing policyisamap p : Q x P — R T,

suchthat Vp € P, 3 c o Pgp = 1. pgp determines the
proportion of fluid routed to the downstream transition ¢
by place p. Theinitial stock of fluid m,, isrouted with the
same proportions.

We next give the dynamic equations satisfied by the
Timed Petri Net. Counter functions are associated with
nodes of the graph:

1. Z,(t) denotesthe cumulated quantity of fluid® which
hasentered placep uptotimet, includingtheinitial stock;

2. Z,(t) denotes the cumulated number of firings of
transition ¢ up to timez.

All these cumul ated quantitiesare of course nondecreasing
functions.

We focus here on the autonomousregime, that iswe as-
sume that the counter trgjectories 7, (t), r,s € QU P are
frozen for ¢ < 0 a agiven initia condition, and we let
the system evolvefreely for¢ > 0. A more general input-
output approach (the set of transitionsbeing partionned in
input/state/output transitions) is detailed in [8], [9].

We introduce the notation

def def n,—1 , def
Poqg = Mpq, prap = My, pgp = HapPap -

Proposition I1.3. The counter variables of a CTPN sat-
isfy the following equations®

Zg(t) = féiﬁ“qu p(t—7p) (1a)
Zp(t) = my+ Y pipgZyll) . (1b)
(]Epin

Remark I1.4. From (1), we deduce the transition-to-
transition equation:

Z4(t) _feléﬂ“q” mp+ D g Ly (t—Tp))} -
¢’ epn

Dually, the place-to-place equation can be obtained:
Zy(t) = mp + Z Hpg! mm ,p,Zp/(t — 7)) .

p'€lq
q'€p in
©)

Remark 11.5. If 7, = 0 for some places, system (1) be-
comesimplicit and we may havedifficultiesin proving the
existence of afinite solution. We say that the CTPN isex-
plicitif thereisno circuitscontainingonly placeswith zero
holding times. Then, (1) becomes explicitin time, that is,
if one knows the past values Z,. (), 7 < t, the counter
functionsZ; (¢), s € P U Q, can be computed sequentially
from (1) (using an appropriate order of the vertices).

4Moregeneral routing policieswereconsideredin [8]. Itispossible, up
to aminor increase of complexity, to consider origin dependent routings,
that is to assume that the routing of a given quantity of fluid at place p
depends of the transition from which it comes. Initial stocks may also
admit a particular routing (distinct from the stationary one). We shall not
enter in these details here.

5Measured in number of molecules.

SWe adopt the convention 3 4ee() = 0, sothat (1b) becomes

Zp(t) = my When pi” = 0.



Remark I1.6. We note that (1) reads as the coupling of a
conventiond linear system with a (min, x) linear system.
Let usassume 7, = 1, Vp, for simplicity. Then’,

Zo(t) = pop®Zp(t—1), (43)

Zp(t) = m+ppoZol(t) , (4b)
where (A ® l‘)Z = @j Aij ® x; = minj Aijl‘j is
the matrix product of the dioid® R yin « oo (RT* U
{+o0}, min, x).
Examplell.7. The Timed Petri Net depicted in Fig. 1 has
four places? = {p1, - ,pa} and six transitions Q@ =
{q1,---,qs}. The coefficients M, and M, are visual-

ized onthe pictureby thenumber of arcsgoing fromatran-
sitionto aplace or from a place to atransition. The initial
stocks are not indicated. In order to simplify the notation,
we shall write p;; instead of p,,,,;, m; instead of m,, etc.
Therouting policy isdisplayedinthefigurewith greek | et-
ters, i€ p11 =7, pa =96, psa2 =, paa =0,
ps3 = 1, pra = 1m,  pea = ¢, Witha + 3 =
1, v4+6 =1, n+ ¢ = 1. Therefore, the dynam-
icsof the system (see (4)) isdescribed by thefour matrices
m = (mi)izl...4a7— = (Ti)izl..A:

01 01 0 0
1 0 2 0 0 O
FPe =11 00 0 0 0 ]
000 0 11
S VR S/
© f/2 oo
;] o a oo
PoPr =1 § o oo o

o oo 1 oo
© oo oo (

The behavior of the system can be easily simulated by
computing the matrix products (4), starting from an initial
condition Zg (t),t < 0.

We refer the reader to [3] for the study of similar equa-
tionswhen the delays are random variables.

[11. Stochastic Control Interpretation of Continuous
Timed Petri Nets

We associate with a CTPN the following canonical
Markov Decision Process.

1. Thetime evolves backward.

2. Theset of Markov chain statesis Q. The probability
PP of thetransitiong — ¢’ fromtimen totimen — 1
under the decision p isgiven by

Pl = o) Wbt With gy € 37 sl g
q,epin
It is essentia to note that the process moves backward in
the graph, i.e. if the Petri Net hasanarc ¢’ — p — g,
then the move ¢ — ¢’ for the associated Markov chainis
allowed.

"We denoteby Z ¢ (resp. Zp) therestriction of Z to transitions (resp.
to places). The conventionfor wpq issimilar.
8 A dioid[7],[2] isasemiringwhoseadditionisidempotent: e Ba = a.

3. Theset Py of admissiblecontrol historiesistheset of
sequences p1, . . . , pr such that p, € ¢\" and the decision
pn isafeedback over g¢,,.

4. The discounted cost to be minimized knowing that
we start a timet from state ¢ is

t
J(p,t, (]) = E{un (O)BOt + Z anpnﬁnth]t = (J} )

n=1

where we have used v, « Hq,mp and denoted the state
trajectory and control dependent actualization by

¢
def
Bt = H Agsp; -

Jj=s+1

Proposition 111.1. For a CTPN such that 7, = 1, the
counter function coincides with the val ue function:

Zq(t) :piEIgad J(pataQ) . (5)

Proof. If wewritedown the dynamic programming recur-

sion for V(t) « infpep,, J(p,t,¢), we obtain precisely
Eq. (2). O

The case of integer but non identically 1 delays could
be interpreted along the same lines, athough writing pre-
cisely the resulting Markov Decision Process would be
dightly more involved.

Definition 111.2. We say that a CTPN

1. isbalancedifVp, 3 oo Myp = D s pin Mg, that
isif thereare as many arcs upstream and downstream each
place;

2. isundiscountedif argp = 1;

3. admitsapotential if thereexistsavectorv € (R**)<
(called potential) such that the change of varisble Z, =
vq 7, makesthe CTPN undiscounted.

Theorem 111.3. 1. A CTPN becomes undiscounted un-
der a (stationary, origin independent) routing policy iff it
is balanced.

2. A CTPN admits a potential v for some (stationary,
originindependent) routing iff

Vp, Z vgMgp = Z Mpgrvg . (6)
gepot qlepin
Then,
VeeQ. peq™ va= > phtpgvy - (7)
qlepin

Proof. Since the speciaization of item 2 to unit potentia
yieldsitem 1, we only proveitem 2. The CTPN has poten-
tia v iff for al p, the matrix

11
qu' = vy My, pop Mpqrvg:
isstochastic. Summingup as¢’ € p™, we get

vgMgp = Z Pap Mpqrvg: 8
qlepin



that is (7). Summing up (8) as ¢ € p° and using
E L, Pgp = 1 We get the necessary condition (6). Con-
versely when (6) istrue, the routing policy

Doy = vgMgp
ap =
>_qrepos Vg Myrp

turns vyt Mzt pgy Myqivg 10 @ stochastic matrix which
showsthat (6) isaso asufficient condition. O

Examplelll.4. The Petri Net shown in Fig 1 is balanced
since at each place the same number of arcs arrives and
leaves. Therefore the Petri Net admits an undiscounted
stochastic control interpretation as soon as therouting pol -
icy assignsthe flow equally to the outgoing arcs, that is

a=1/3, f=2/3,y=6=1/2,n=C=1/2. (10)

(9)

Indeed, in this case the potential isv, = 1, and the only
compatible routing is given by (9). The non-zero rows of
the matrices PP are given as follows:

PL/0O 1/2 0 1/2 0 0
PO 0 0 0 1/2 1/2
P2l1/3 0 2/3 0 0 0
P3l1/3 0 2/3 0 0 0 (11)
Pl o 12 0o 1/2 0 0
PPl 1 0 0 0 0 0
PENO 0 0 0 1/2 1/2

Examplelll.5. Usinga+ f=1,y+d=1,n+¢ =1
together with (7), some elementary elimination showsthat
the CTPN admits a potential assoonasa = 1/3. Then:

v=(1 11 (I=-y/v 1 (I=n)/n). (12
V. Asymptotic Properties of Undiscounted Petri Nets

In this section we use the stochastic control interpreta
tion to obtain explicit formulas for the throughput of bal-
anced CTPN and CTPN with potentidl .

Theorem 1V.1. For a strongly connected undiscounted
CTPN, we have

1
lim 72,00 =2, ¥y
where A is a constant. The periodic throughput X is char-
acterized asthe uniquevalue for which a finite vector w is
solution of

w= H;Hl( — A1, + PPuw) . (13)
Proof. Thisisan adaptation of standard stochastic control
results[12, Chap. 33, Th. 4.1]. The growthrate A isin-
dependent of the initia point ¢ for the subclass of com-
municating systems’. Thisassumption isequivaent tothe
strong connectedness of the net. O

? The systemiscommunicatingif for all ¢, ¢, thereisapolicy « and an
integer k such that (P;q, )* > 0, that is, there is a policy such that there

exists apath from g to ¢’ with non zero probability.

A feedback policy (or policy!?, for short)isamapu : @ —
P. Thepolicy isadmissibleif u(g) € ¢', that is, if setting
pn = u(gn) yields and admissible policy for the corre-
sponding stochastic control problem. The following vec-
torsand matrices are associated with a policy w.

u def u def

u def Su
Te = Tulq) » Peg = P @

Vg = Vqu(q) » q aq

Remark IV.2. Equation (13) can be solved efficiently us-
ing Howard agorithm (policy iteration).

1. Initidization: select a policy w such that P* is
strongly connected (irreducible).
2. Givenapolicy u™ solve

n n n

where the unknownsare (A”, w™). Thisisalinear system

which has aunique solution if weimpose wj = 0 (for ex-

ample) and if the policy matrix P*" isstrongly connected.
3. Given (A", w™) improvethe policy by

u"t(g) = arg min, [v., — A", + PPw"], Vg € Q.

This agorithm defines a positive decreasing sequence of
A" converging in afinite number of steps to the searched
throughput A. The algorithmis properly defined if at each
step we get astrongly connected policy matrix. Thisisnot
always possible (in particular, for the example dealt with
here, the only two policy matrices are not strongly con-
nected, see Ex.IV.4 infra). We will not discuss here the
extension of the algorithm to the non strongly connected
case.

There is an equivalent characterization of A which ex-
hibitsthe analogy with the Timed Event Graphs casein a
better way. We denote by R (u) the set of final classes of
thematrix P*. For each classr € R(u), we haveaunique
invariant measure =" with support r (i.e. 7" P% = 74",
andry"=0ifg&r)

Theorem 1V.3 (Asymptotic Throughput Formula).
For an undiscounted CTPN, we have
A = min min —— . (14)
u reR(u) urru

Thus, A isthe minimal ratio of the mean marking over
the mean holding time in the places visited while fol-
lowing a stationary policy. This result should be com-
pared with the well know periodicity theorem (see e.g.
[2]) which states that a (strongly connected) Timed Event
Graph reaches a periodic regime after a finite time, with
throughput

m
A = min Z:Z’Eic ’
¢ ZpEc TP

wherethe minimum istaken over the (elementary) circuits
of thegraph. Sincein the case of Timed Event Graphs, the
final classes are precisely circuits and the invariant mea-
suresare uniformon thefinal classes, (14) reducesto (15).

(15)

10This feedback policy has nothing to do with the routing policy intro-
ducedin section I1.



Example IV.4. For the current example, it is easy to com-
pute the throughput introduced in Th. IV.1, which isinter-
preted in stochastic control terms as:

. . 1
A= t:oyr.r.l.lynT_l Th_>H;o TE Z Vgipe -
pt€{p1,pa} 0,7-1
Indeed, they are only two policies. If we use the strategy
uy: “choose p; when we arein ¢,” (see Fig 2), we obtain
the matrix

0 1/2 0 1/2 0 0

/3 0 2/3 0 0 0

pu_ | 13 0 253 0 0 0
=1 0 12 0 1/2 0 0

1 0 0 0 0 0

0 0 0 0 1/2 1/2

If we use the strategy 4. “choose p, whenwearein ¢,”

Fig. 2. Markov chain associated with P“1.

(see Fig 3),, we get the matrix,

0o 0 0 0 1/2 1/2

1/3 0 2/3 0 0 0

pua_ | /3 0 23 0 0 0
=1 0 1/2 0 1/2 0 0
1 0 0 0 0 0

0 0 0 0 1/2 1/2

Theinstantaneous cost at each step isgiven by thefirst row

Fig. 3. Markov chain associated with P“+.

of thefollowing matrix if the decision p; istaken, and by
the second one if the decision p, istaken:

m4/2 m2/3 m2/3 m1/2 ms m4/2

The only final class of the Markov chain for the first strat-
egy is{q1, 92, 93, ¢4} and we get the invariant measure of
probability

a=(1/5 1/5 2/5 1/5 0 0) .

/ mi/2 me/3 maf3 mi/2 my ma/2 0\
( )

For the second strategy, the only final class of the Markov
chainis {q1, g5, ¢s} and we get the invariant measure of
probability

™=(1/3 00 0 1/3 1/3).

Therefore the throughput of the system is given by:

. mi+ma ms+my
A= . 16
i <2T1—|—3T2’ T3—|—2T4) ( )

A simulation of the systemform = (0 3 10 10 )
andr=(1 1 2 2 )isshowninFig4. Wenotethat
the minimum in (16) is equal to 0.6 and that it is attained
for the first term corresponding to the “critical” final class
{91, 92,93, qa}. Thetransentregimefor 75, Zs can beex-
plained easily by the fact that the non critica transitions
g5, g¢ first consume the initia stock ms = my4 = 10 &
their own regime, before being delayed by the critical fi-
nal class.

40,
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Fig. 4. Continuous behavior

It is not surprising that the terms appearing in (14) are
indeed invariantsof the net.

Theorem V.5 (Invariants). Given an undiscounted
CTPN, for all policy v and for all final classr associated
with u,

def
= gt = Zﬂ'urljg an
qer

isinvariant by firing transitions.

Theorem V.6 (Homogeneity). If Z(¢),¢ € R,isan
admissible trajectory of an undiscounted CTPN, then'!
Z(t) 4+ 1,t € R, isalso an admissibletrajectory.

This theorem should be interpreted as follows: if some
transitions can be regarded as input ports of raw material
(with no upstream arcs), then an increase of 1 unit of all
inputsinduce the same increase of al the other quantities.

These results can be extended to the case of CTPN with
potential. With a feedback policy « we associate the ma-
trix R*: Ry, = u;u(q)uu(q)q/ if ¢ € u(g)" (Ry, =0
otherwise); we denote by R (u) the set of final classes of
R*; which eachfinal classr weassociate aleft elgenvector
of R¥: 7%" = 7%" R* with support r; and we define v*, 7
as in Theorem 1V.3. We denote by diagv the diagona

1 we denoteby Z(t) + 1 thevector (Z-(t) + 1),epuo



matrix with diagonal entries (diagv),; = v,. Then, the
following formulais an immediate consequence of Theo-
remIV.3.

Coroallary IV.7. For astrongly connected CTPN with po-
tential v, we havelim; o +74(t) = A, , where

—1/\ — & ) 1

H}}nrer?zl(n mur(diagv) T (18)
Example IV.8. When « = 1/3, the Petri Net of Fig 1 ad-
mitsthe potential (12). An immediate application of (18)
yields:

\ = mi ((m1+m2)’7 (m3+m4)n)
= min )
T+ 3v7m T4+ 173

V. Discrete vs. Continuous Behavior

To conclude, wewould liketo indicate how these results
may help the analysis of conventional (discrete) Timed
Petri Nets.

Firstly, let us recal how the dynamics (1) has to be
modified in the discrete case. We now call routing pol-
icy a place p afamily {IL,, }4epot, Where II,, is anon-
decreasing map IN — N: Il (n) tells the number of to-
kens routed to ¢ from p among the first » ones. Since
{I14p }gepon isapartition of theflow from p, we have: Vn,
Ygepon Llgp(n) = m. Itisnot difficult to see that the
transition-to-transition equation (2) becomes

Z4(t) = mm{ qp( Z qu mp + pipg Zo (t — p)))J

pEGN
q Ep'"

(19)

where |#] = sup{n € N | n < z}. See[8] for more
details.

Thediscrete counterpart of astationary routingwith (ra
tional) retio p,, is obtained for a periodic function 11,
with slope p,,. i.e. we assume that there is an integer ¢
(periodicity) such that I1, (n + ¢) = Igp(n) + pgpe.
ExampleV.1. A possible discrete version of the routing
used in Ex. 10 at place p- isthefollowing:

N Ry

In simpler terms, the tokens numbered 3% are routed to
transition ¢, whilethe tokens numbered 3%k + 1 or 3k + 2
are routed to transition ¢,. Other choices of congruence
are of course possible. Similarly, we take:

II1(n) =ha(n) = {gJ ;
Tar (n) = Tga(n) = {” ; 1J

A simulation for the same values as in Ex 1V.4 is shown
inFig 5. The asymptotic throughput (obtai ned experimen-
tally) isA = 0.5, to be compared with the continuous
throughput 0.6.

37.0,

Z

3l number of events 6
29.6] s
259] -
22.2] —
185] — . >
14.8] f/ Lz
ny / e ZlaZ4aZ3aZ2
Iz ]
2‘;* — time

0 4 8 12 16 20 24 8 7 % 40

Fig. 5. Discrete behavior

More generally, the following results can be stated.
Firstly, we can obviously bound I1,,(n) by affine func-
tions, i.e. pgp % (n—|—m ) < Hgp(n) < pgp X (n+71,)
for some m Then a comparison of (2) and (19)
shows that tﬁle di screte system is bounded from above by
the associated CTPN with marking m;, = m,, + m;,,, and
from below by the associated CTPN with marking m;; =
m, + m, — 1. Secondly, consider a strongly connected
balanced TPN such that p,, is uniform (i.e. it routes to-
kensto dl the downstream arcs in the same proportions),

and assume the existence of a periodic throughput A, ot
limy_, 0o 717, () for al ¢. Then, some reworking of the
proof of Theorem 1V.1 showsthat al thetransitionsadmit
thesamerate: A, = A, Vg, ¢'.
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