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Abstract

We show that Continuous Timed Petri Nets (CTPN) can be modeled by
generalized polynomial recurrent equations in the (min,+) semiring. We es-
tablish a correspondence between CTPN and Markov decision processes.
We survey the basic system theoretical results available: behaviora (input-
output) properties, algebraic representations, asymptotic regime. A particu-
lar attention is paid to the subclass of stable systems (with asymptotic linear
growth).

1 Introduction

The fact that a subclass of Discrete Event Systems equations write linearly in the
(min,+) or in the (max,+) semiringis now almost classical [9, 2]. The (min,+) lin-
earity allows the presence of synchronization and saturation features but unfortu-
nately prohibits the modeling of many interesting phenomena such as “birth” and
“death” processes (multiplication of tokens) and concurrency. The purpose of this
paper is to show that after some ssimplifications, these additional features can be
represented by polynomial recurrencesin the (min,+) semiring.

We introduce a fluid analogue of general Timed Petri Nets (in which the quanti-
ties of tokens are real numbers), called Continuous Timed Petri Nets (CTPN). We
show that, assuming a stationary routing policy, the counter variables of a CTPN
satisfy recurrent equationsinvolving the operators min, +, x. We interpret CTPN
eguations as dynamic programming equations of classical Markov Decision Prob-
lems: CTPN can be seen as the dedicated hardware executing the value iteration.

We set up a hierarchy of CTPN which mirrorsthe natural hierarchy of optimiza-
tion problems (deterministicvs. stochastic, discounted vs. ergodic). For each level
and sublevel of thishierarchy, werecall or introduce the required algebraic and an-
aytic tools, we provide input-output characterizations and give asymptotic results.

The paper isorganized asfollows. In§2, wegive thedynamic equations satisfied
by general Petri Netsunder theearliest firingrule. The counter equationsgiven here
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are much more tractable than the dater equations obtained previously [1]. Similar
equations have been introduced by Baccelli et al. [3] in astochastic context.

In §3, we introduce the continuous analogue of Timed Petri Nets. We discuss
various natural routing policies, and show that they lead to Ssimple recurrent equa-
tions.

In §4, we present the first level of the hierarchy: Continuous Timed Event
Graphs with Multipliers (CTEGM), characterized by the absence of routing de-
cisons. We single out severa interesting subclasses. 1. Ordinary Timed Event
Graphs (TEG) are probably the smplest and best understood class of Timed Dis-
crete Event Systems. TEG are exactly causal finite dimensional recurrent linear
systems over the (min,+) semiring. They correspond to deterministic decision
problems with finite state and additive undiscounted cost. Their asymptotic theory
is mere trandation of the (min,+) spectral theory. Their input-output relations are
inf-convolutionswith (min,+) rationa sequences. 2. We introduce the subclass of
CTEGM with potential, which reduceto TEG after a change of units (they arelin-
earized by anon linear change of variablein the (min,+) semiring). Theimportance
and tractability of the (non continuous) version of these systems, called expansible
[23] was first recognized by Munier. 3. a-discounted TEG are the TEG-analogue
of uniformly discounted deterministic optimization problems. They represent sys-
tems with constant birth (or death) rate «.. 4. We consider general CTEGM. Their
input-output relations are affine convolutions (minima of affine functions of the
delayed input). The transfer operators are rational series with coefficients in the
semiring of piecewise affine concave monotone maps. To CTEGM correspond de-
terministic decision problemswhere the actualization rate (and not only the transi-
tion cost) iscontrolled. Last, certainrouting policies, calledinjective, reduce CTPN
to CTEGM. Related resource optimization problems (optimizing the alocation of
theinitial marking) are discussed in §4.7.

In §5, we examine the second level of the hierarchy: genera CTPN, which cor-
respond to stochastic decision problems. Algebraically, CTPN are (min,+) polyno-
mial systems whose outputs admit Volterra series expansions. They are character-
ized by ssimple behavioral properties (essentially monotonicity and concavity). We
focuson thefollowing tractable subclasses. 1. Undiscounted TPN are the Petri Net
analogueof stochastic control problemswith undiscounted (ergodic) cost. They are
characterized by a structural condition (as many input as output arcs at each place)
plus acompatibility condition on routings. Undiscounted TPN admit an asymptot-
icaly linear growth. The asymptotic behavior can be obtained by transferring the
results known for the value iteration: we give a “critical circuit” formulasimilar
to the TEG case (the circuits have to be replaced by recurrent classes of station-
ary policies). 2. Similar resultsexist for TPN with potential (obtained from undis-
counted TPN by diagonal change of variable). 3. CTPN with fixed birth/death rate
« correspond to the well studied class of discounted Dynamic Programming recur-
rences.
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2 Recurrent Equationsof Timed Petri Nets

Figure 1: Notation for Petri Nets. P = {p1,p2}, @ = {q1,... . g}, P2 =
{a a1 P = {a, @23}, 3" = {45, 46}, Mysp, = 2, Mpyq, = 3, my, = 3,

mp, = 1.

Definition 2.1 (TPNM). A Timed Petri Net with Multipliers (TPNM) isavalued
bipartite graph given by a5-tuple V" = (P, Q, M, m, 7).

1. The finite set P is called the set of places. A place may contain tokens which
travel from place to place according to a firing process described later on.

2. Thefinite set Q is called the set of transitions. A transition may fire. When it
fires, it consumes and produces tokens.

3. M g NPxeUex? pp  (resp. M,,) gives the number of edges from transition ¢
to place p (resp. from place p to transition ¢). In particular, the zero value for
M corresponds to the absence of edge.

4.m € N”: m, denotes the number of tokens being initially in place p (initial
marking).

5.7 € N”: 7, gives the minimal time a token must spend in place p before be-
coming available for consumption by downstream transitions'. It will be called
holding time of the place throughout this paper.

We denote by °" the set of vertices (places or transitions) downstream a vertex
r-and r'"" the set of vertices upstream r. Formally,

rout:{8| M, # 0}, riﬂ:{5| M,s #£0} .

In order to specify a unique behavior of the system, we equip TPN with routing
policies.

Definition 2.2 (Routing Policy). A routing policy a place p is a family
{mqp, HSq’}qEPOUt,q/Epm’ Whel’e,

1.m, = > My iSan integer partition of the initial marking. m,, tellsthe
number of tokens of theinitial marking reserved for transition q.

IWithout loss of modeling power, the firing of transitions is supposed to be instantaneous (i.e.
it involves no delay in consuming and producing tokens).
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2. {I1}  }4epn is @ partition of the flow from ¢. That is, II7 ,(n) tells the number
of tokens routed from ¢’ to ¢ via p among the first n ones. More formally, Hf; o

are nondecreasing maps N — N such that Vi, 3 o I} (1) = n.

A routing policy for the net is a collection of routing policies for places.

Then, the earliest behavior of the system is defined as follows. As soon as a
token enters aplace, it isreserved for the firing of a given downstream transition
according to the routing policy. A transition ¢ must fire as soon as all the places p
upstream ¢ contain enough tokens (,,,) reserved for transition ¢ and having spent
at least 7, units of time in place p (by convention, the tokens of the initial mark-
ing are present since time —oo, so that they are immediately available at time0).
When the trangition fires, it consumes the corresponding upstream tokens and im-
mediately produces an amount of tokensequal to M,,, in each place p downstream
q.

We next give the dynamic equations satisfied by the Timed Petri Net. We as-
sociate counter functionsto nodes and arcs of the graph: 7,(¢) denotes the cumu-
lated number of tokens which have entered place p up to time¢, including the ini-
tial marking; Z,(¢) denotesthe number of firingsof transition ¢ having occurred up
totimet; W,,(¢) denotes the cumulated number of tokens arrived at place p from
transition ¢ uptotime¢; W,,(t) denotes the cumulated number of tokens arrived at
place p up totimet (including the initial marking) reserved for the firing of transi-
tion ¢. We introduce the notation

def def 1
tog = Mpg, Hep = qu )

andweset |z| =sup{n € Z | n < z}.

Assertion 2.3. Thecounter variables of a Timed Petri Net under the earliest firing
rule satisfy the following equations’

Zy(t) = errel}ﬁ LapWap(t = 7)) (2.13)
Woa(t) = ppa Z(1) (2.1b)
Zp(t) =my + Z Wi(1) (2.1c)
qepin
Wop =mgp + Y 10 (Wyy) (2.1d)
q'Epin

We deduce from (2.1) the transition-to-transition equation

Zy(t) = min L/lqp <mqp + Z qu/</~‘pq’Zq’(t - Tp)))J : (2.2)

in
peq qlepin

*We adopt the convention > qeo() = 0, sothat (2.1c) becomes 7, (t) = m, when P = 0.
The transitions ¢ such that ¢ = § will be considered as input transitions whose behavior is given
externaly. Thus, Eq. (2.1a8) should beignored whenever ¢ has no predecessors.
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If 7, = 0 for some places, this equation becomes implicit and we may have diffi-
cultiesin proving the existence of afinite solution. We say that the TPN is explicit
if thereis no circuits containing only places with zero holding times. This ensures
the unigueness of the solution of (2.1) and (2.2) under any routing policy II.

Input-Output Partition We partitiontheset of transitions Q@ = A/ UX U) where
U isthe set of transitions with no predecessors (input transitions), ) is the set of
transitions with no successors (output transitions) and X' = Q \ (U U Y). We de-
note by « (resp. z, y) the vector of input (resp. state, output) counters 7,, ¢ € U
(resp. X, Y). Throughout the paper, we will study the input-output behavior of the
system. That is, we look for the minimal trgjectory («, y) generated by the input
history «(¢),t € Z. This encompasses the autonomous regime traditionally con-
sidered in the Petri Net literature, when the system isfrozen at an initial condition
Z,(t) = v, € R for negative ¢, and evolves freely according to the dynamics (2.1)
for ¢ > 0. This can be obtained as a specialization of the input-output case by ad-
joining aninput transition ¢’ upstream each original transition ¢, setting u,(t) = v,
fort < 0, uy(t) = +oo otherwise.

3 Modeling of Continuous Timed Petri Nets

We shall addressthe continuousversion of TPN (in which the number of tokensare
real numbers instead of integers). Such continuous models occur naturally when
fluids rather than tokens flow in networks (see [2, §1.2.7],[24] for an elementary
example). They also arise as approximation of (discrete) Petri Nets since they pro-
vide an upper bound for the real behavior.

A continuous TPN (CTPN) is defined as a TPN, but the marking m, the mul-
tipliers M and the counter functions are real-valued (the multipliers must be non-
negative: M,, € R™T). This alows one to define some simple stationary routing
policies. We shall single out three classes of policies.

General Stationary Routing A dtationary routing policy is of the form
I’ (n) = pb, x n for some congtants p! , > 0 such that for al ¢ € p",
Y ey Py = 1 That is, the flow from ¢ at place p goesto ¢ with proportion o ..
The counter functions of a CTPN satisfy the following equations

Zy(t) = Zr)relzﬂﬂquq (t—m) (3.19)
Wip(t) = mg + Z qu/qu’(t) ) (3.1b)

q/€pin
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together with (2.1c), (2.1b). Eliminating W, we get atransition-to-transition equa-
tion

Zy(t) = ;rel}ﬁ HapMigp + Z qupzq//lpq’zq’(t —7) | - (3.2
q'Epin

Dually, an equation involving only the variables W, can be obtained:

Wop =mgp+ 3 Jmin (bt try Wt (1 = 730)) (33)
q/€pin

The following special cases of stationary routing are worth mentioning.

Origin Independent Routing When the routing at place p does not take into ac-
count the origin of the token but only its numbering, we get the condition

Vp.q, Y. q" € P phy = plan phamy =mg, . (34)

We shorten p; , to p?. The dynamics of the system (3.1) can be rewritten with the
aggregated variables 7, (instead of W,,):

Z,(t) = ]r)rel(ilirnl/,cqppsZp(t—Tp), (3.58)
Zy(t) = my+ Y e, (3.5b)
qepin

Such routing policies depending only on the numbering of tokens (and leading to
similar equations) have been studied by Baccelli et al. in a stochastic context [3].
We note that when 7, = 1, (3.5) reads as the coupling of a conventional linear
system with a (min, x ) linear system, namely®

Zo(t) = pop@ Zp(t—1) , (36)
Zp(t) = m+ ppeZalt) | (37)

where (A @ z); = @, Ai; @ ¥; = min; A;;z; is the matrix product of the dioid’
Ruinx = (RT*U {+o0}, min, x).

Example 3.1. The origin independent routing p?> = pf* = 1/2 reduces the CTPN
in Fig 2ato that of Fig 2d.

3We denote by Zo (resp. Zp) restriction of Z to transitions (resp. to places). The convention
for pu,4 issimilar. We have set (pgp)gp = P f1gp-
*A dioid[9, 2] isasemiring whose additionisidempotent: ¢ & a = a.
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Figure 2: A Balanced Petri Net under various Routing Policies

Injective Routing We say that the routing function p* at place p is injective if
thereisamap /7 : p® — p'" such that

Vg, poy 0 =4¢ = ["(q) . (3.8)

That is, all the tokensrouted to ¢ at place p comefor asingletransition f(¢). Such
routings occur frequently when tokens correspond to resources (e.g. pallets) which
follow some well defined physical routes. An injective routing exists iff> [p°"| >
|p"™|. Indeed, the following stronger condition is often satisfied in practice (e.g. in
Fig. 2a).

Definition 3.2 (Balanced TPN). A TPN isbalanced if Vp, |p[®" = [p|™.

In this particular case, we shall speak of bijective routing policies (since f7 be-
comes a bijection p®t — p"). We shall see later on that injective and bijective
routing policies lead to tractable classes of systems.

4 Timed Event Graphsand (min,+) Linear Systems

4.1 Ordinary and Generalized Timed Event Graphs

Definition 4.1 (Timed Event Graphs). A Continuous Timed Event Graph with
Multipliers (CTEGM) isa CTPN such that thereis exactly one transition upstream
and one transition downstream each place. An (ordinary) Continuous Timed Event

>We denote by | X | the cardinal of aset X.
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Graph (CTEG) isa CTEGM such that all arcs have multiplier one: M,,, M,, €
{0,1}. More generally, we define the place multipliers®

def
Oép = /,Lpoutp/,Lppin . (41)

A (rate a)-CTEG isaCTEGM with unit holding times and constant place multipli-
ers. A CTEGM admitsapotential if thereexistsavector v € (R+*)<4” (potential)
such that

Vros € QUP, res™M= v, =0, . (4.2
We set
def

Vp = flyot,My, (4.3
Assertion 4.2. The dynamics of a CTEGM writes

Z,(t) = errelén (vp + apZyn(t — 7)) . (4.49)

We have the following specializations:
Z,(t) = H€1iirnl (Vo 4+ Zyin(t — 7)) (TEG case), (4.4b)
Z,(t) = ;el;:n (vp + aZyn(t — 1)) (rate o case), (4.4c)

Z,() = v, min (Up—lmp ot Zynlt — Tp)> (Potential case).  (4.4d)
peqln
The last equation shows that CTEGM with potential reducesto ordinary CTEG
after the diagona change of variable 7, = v, 7. This change of variables should
beinterpreted asachangeof units(v, firingsof transition ¢ being counted asasingle
one).

Example 4.3. If one mixes white and red paints in equal proportions to produce
pink paint, the main concern is to say that with 3 liters of red for asingle liter of
white, there is 2 liters of red which are useless (that is, the min is the appropriate
operator) but then 2 liters of pink can be produced, hence theright thing to doisto
count pink paint by pairs of liters.

Theorem 4.4. CTPN under injectiverouting policiesreduceto CTEGM. Balanced
CTPN with unit multipliersreduce to (ordinary) TEG.

Proof. Definethe new set of places’P’ = Q x P, with theincidence relation q" =
{(gp) | p €™}, (gp)™ = fP(q). Then, the dynamics (3.2) reduce to (4.4a), with
Qgp = [gpllpfr(q), 1HE SPEcialization to the TEG case isimmediate. O

Example 4.5. The Petri Net of Figure2aadmitstwo possible bijectiverouting poli-
ciesat place ps which lead to the two Timed Event Graphsof Fig. 2b and 2c respec-
tively.

6Since p° and p™ are singletons, the notation will be used to designate their single members.
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4.2 Dynamic Programming I nterpretation of CTEGM

We exhibit a correspondence between the above classes of Event Graphs and clas-
sical deterministic decision problems.

Given a CTEGM, we consider the discrete time controlled process ¢, over an
horizon ¢ with

1. finite state space Q;
2. set of admissible control histories Pag = {p1,... ,p: | Yo, p, € ¢"};
3. backward dynamics ¢,_, = p'" wherep, € ¢".
In other words, the controlled process follows the edges of the net with the reverse
orientation, backward in time. The control a state (transition) ¢ consists in choos-
ing aplace p upstream ¢, which leads to the (unique) transition ¢’ upstream p.

We shall consider the following 3 deterministic cost structures.

Additive
t
T p ) = Z(0)g + > Vo - (4.5)
n=1

Notethat theinitial cost Z(0) coincideswiththeinitial value of the counter function
of the CTEGM.

Additivewith Constant Discount Rate

t

JU(p, 1) = o' Z(0),, + Z "y, (4.6)

n=1

Additivewith Controlled Discount Rate
. t t t
Jc-dlsc(p7t) = (H ozpj> Z(0)4 + Z ( H ozpj> Vp, - 4.7
7=1 n=1 \j=n+1
The value function associated with any of the above cost functions ./ is the map

Z,(t)= min J(p,t) .

P€Pa, qt=9
Theorem 4.6. When 7, =1,

1. The counter of a CTEG coincides with the value function for the additive cost
Jad

2. The counter of a (rate «)-CTEG coincides with the value function for the dis-
counted cost J 4,
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3. Thecounter of a CTEGM coincideswith the value function for the cost with con-
trolled discount rate .J&disc,

Remark 4.7. Minimizing J¢9< js known as a problem of shortest path with gains.
See[17, Chap. 3, §7] and the references therein.

4.3 Operatorial Representation of CTEGM

We introduce the set of signals S i (R U {+00})? to represent counter functions
(although this will be the case in most applications, we do not require the signals
to be either positive valued or nondecreasing).

Definition 4.8. Anoperator f : S — S'is

1. additiveif it satisfies the min—superposition property
f(min(z, ) = min(f(x), f(z)) ; (4.8)
2. linear if it is additive and satisfies the homogeneity property
fA+a)=2+f(z) .

Of course, “linear” refers to the (min,+) dioid Ry = (R U {+oco}, min, +).

Throughout the paper, we shall freely use the dioid notation « & b for min(«, b),
a®@bfora+b,c = +oo for the zero element, e = 0 for the unit.

The following 3 families of operators play a central rolein CTEGM:

v oyva(t) € 2(t)+ v (shiftincounting)
5 5x(t) € x(t—r) (shiftindating) (4.9)
po pa(t) i p x x(t) (scaling),

wherer € R,7 € N, € Rt We notethat v and ¢ are linear while 1 is only
additive. We have the commutation rules;

YT =46y, (4.10a)
o’ =46, (4.10b)
" =" (4.10c)

Additive operators equi pped with pointwise min and composition form an idempo-
tent semiring, that we denote by O. The following subsemirings of O are central.

1. The semiring generated by v*; v € Risisomorphicto R ,,;, viatheidentification
of v to~”.

2. The semiring generated by 7, 67; v € R, 7 € R isisomorphic to the semiring
of polynomialsin theindeterminate ¢, R ..in[0] (via the same identification).
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3. The semiring generated by ~+”; v € R* and by the powers of ad, where a isa
givenand fixed valueof 1, will bedenoted by R .,i,[d]. Itisaparticular instance
of aclassical structurein difference algebra: Ore polynomials’ [26, 19, 13].

4. The semiring generated by 7", 1; v € R, 1 € R™ isisomorphic to the semiring
of nondecreasing concave piecewise affinemaps R U {+oo} — R U {+o0},
that we denote by A.i,. A generic element in A, isamap p = P, iy,

pl) = min (vi + piw) -

5. Finally, the semiring generated by v, 6", ;v € R, 7 € N, € R** isisomor-
phic to the semiring of polynomials A,,;.[4] -

We extend the operatorial notation to matricesby settingfor A € O™*? andx € S?,

Notethat for operator matrices A, A’, B and vectorsof countersz, =’ of appropriate
sizes

(AB)x = A(Bx), (A® A)ax = Aa & A'z, Az @) = Az g A" .,

More formally, vectors of counter functions are aleft ssmimodule under the action
of additive matrix operators.

Theorem 4.9. The counter equations of a CTEGM write
r=Ax& Bu, y=Cz & Du (4.12)
where A, B, C, D are matrices with entriesin O. More precisely,

1. theentriesof A, B, C, D belong to R ;4[] for an ordinary CTEG;
2. the entries belong to R ,.ix[ad] for a (rate «)-CTEG;
3. the entries belong to A...i»[¢] for a general CTEGM.

"We recall that given a semiring S equipped with an automorphisma : § — S, the semiring
of Ore polynomialsin the indeterminate X, denoted by S[X; ], is the set of finite formal sums

>, sn X7 (al but afinite number of s,, are zero), equipped with the usual componentwise sum

(s ® s )n Y s @ st and the skew Cauchy product (s @ s'), « D, g=n S» @ af(sg). This

product is determined by therule X = a(a)X foral a € S. Identifying X with a6 and setting

a(v) © o xvfory € B, weseethat Xv = a(v)X isnothing but the rule adv” = y** ad
which follows from (4.10).



12 G. Cohen, S. Gaubert and J. P Quadrat

Theorem 4.10 (Convolution Representation). An explicit 3S0° CTEGM ad-
mits an input output relation of the form

y(t) = ing;[ (1) +u(t — 7)) (Ordinary CTEG) (4.13)
y(t) = v, inf [h(r) + v u(t —7)] (CTEG with potential) ~ (4.14)
y(t) = [ (1) + a"u(t — 7)] (CTEG with rate a) (4.15)
y(t) = mf [1/2 + piu(t — )] (Genera Case) (4.16)

where hisamap N — R U {+o0}, v,,v, € R** and where the family {v; €
R, u; € Rt 7, € N} issuch that there is only finitely many i such that 7, = 7 for
any T € N.

We postponethe proof: these representation resultswill appear as consequences
of the more general behavioral propertiesof CTEGM operators given in §4.4.

Theorem 4.9 established a connection between various algebras of polynomial
type and various classes of Event Graphs. Theorem 4.10 now establishes a simi-
lar connection between input-output representations and certain formal seriesalge-
bras. Let us recall that given asemiring K and an indeterminate 4, we denote by
K[[6]] the semiring of series with coefficientsin K (set of formal sums P, 7:6"
with /, € K, equipped with pointwise sum and Cauchy product). The generic se-
ries of Ain[[0]] writes

h=Eho" =P (@ M’y) §

TEN T €1,

wherefor all 7, I isfinite. Such series act naturally on S by interpreting the inde-
terminate ¢ as the shift operator

@h (t—7)) = inf min (v;r + piru(t — 7)) .

TGN ZGIT
TEN

Theorem 4.10 asserts that (i)- CTEGM operators correspond to the action of
Aumin[[6]] on counter functions, (ii)- CTEG operators correspond to the action of
R min[[0]], (iii)- a-CTEG operators correspond to the action of the dioid of Ore se-
ries R in[[ad]] (defined as Ore polynomials, without the finiteness condition).

4.4 Behavioral Characterizationsof CTEGM

Theorem 4.11. The input-output map H : v — y of a S0 explicit CTEGM sat-
isfies the following properties.

8Single Input-Single Output. The extension to the Multiple Inputs Multiple Outputs (MIMO)
case isimmediate.
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1. Sationarity. Ho™ = 7 H.

2. Causality. u(t) = v(t),Vt < 7=Vt <7, Hu(t) = Ho(t).

3. Additivity. H(min(u,v)) = min(Hu, Hv).

4. Scott continuity. For any filtered® family {uw; }ier, H(infier w;) = infie; Hu,.
5. Concavity. (S, Aws) > 30, AHu, VA > 0,57 = 1.

A CTEG with rate o satisfies the additional property

6. a-homogeneity. For all constant A\, H(Aa! + u) = Aa’ + Hu, with an obvious
convention'®.

A CTEGM with potential satisfies the alternative additional property!
7. (vy, v, )-homogeneity. For all A € R, H( v, 4+ u) = Av, + H(u).

Note that the specialization of the o-homogeneity to o = 1 gives the standard
homogeneity property A + © — A + y. So does the specialization of the (v,, v, )-
homogeneity to the case of constant potential v.

Proof. The additivity of H is an immediate consequence of the additivity of
A, B, C, D and the uniqueness of the solutionof x = Ax & Bu,y = Cx & Du.
The other properties can be proved along the same lines by transferring to H the
propertiesvalidfor A, B, C', D. O

The following converse theorem shows that the properties|listed are accurate.

Theorem 4.12. A map H which satisfies properties 1-5 in Theorem 4.11 isa non-
increasing limit of CTEGM operators'?. An operator which satisfies 1-6 (resp. 1—
5,7) isa nonincreasing limit of rate « CTEG operators (resp. with potential v).

The main point of the proof consistsin thefollowing general “convolution” rep-
resentation lemmafor additive continuous stationary operators.

Lemma 4.13. Let D denote a complete'® dioid, H : D* — DZ. Thefollowing as-
sertionsare equivalent. 1. H isstationary, causal, additive, and Scott continuous,

9A family is filtered if any finite subfamily admits a lower bound in the family. Note that
the Scott continuity together with additivity is equivalent to the preservation of arbitrary inf:
H(inf; ;) = inf; Hu,; for an arbitrary family. The Scott topology is presented in detailsin [16].
What we call here Scott continuity isin fact Scott continuity with respect to the algebraic order <
of the (min,+) semiring, defined by « < b <= a & b = b (which isreversed with respect to
natural order).

104t denotesthemap ¢ +— a.

X + u denotesthesignal ¢ — A + u(t).

12].e. there exists a nonincreasing sequence H; > H,;11,¢ € N of input-output operators of
CTEGM suchthat # = inf;c1 H;.

13A dioid D is complete if an arbitrary subset admits a least upper bound (for the order ¢ <
b < a® b=1"b)andif the product is Scott continuous.
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2. there exists a family of additive Scott continuous maps /.., D — D, € N such
that

=P r-(ut—7)) . (4.17)
TEN

Proof. Clearly, 2=-1. Conversely. We introduce the Dirac function

ift=0
e:Z — D, e(t):{e _
¢ otherwise.

We have the decomposition of an arbitrary signal « € D” on the basis of shifted
Dirac functions:

U= @ u(r)d’e .

TEL

The additivity, stationarity and Scott continuity assumptionsyield

Hu =5 5 H(u(r)e) . (4.18)

TEL

Now, let us decompose the output corresponding to u = xe (withz € D) on the
basis {67e} ez

=P h-(x)d7e

TEL

This together with (4.18) gives

Hu = @ ho(u())87t e

7,7 €L

@h (t—1))

TEL

The sum can be obvioudly restricted to 7 € N due to causality. The additivity and
continuity of /., areimmediate. O

To complete the proof of Theorem 4.12, it suffices to observe that the additivity,
concavity, and potential properties, validfor #, transfer to each /... Then, the con-
cave monotone real valued map /.. admits a representation as a denumerabl e infi-
mum of increasing affine functions:

ho(z) = mf(z/m + pinr), Where v, € RU{+o0}, iy >0 . (4.19)

neN
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The operator H" = P, p<, 7" 16" arises from a CTEGM operator (since
it obtained by a finite number of parallel/series composition of elementary v, 11, &
operators). It followsfrom (4.17)—«4.19) that lim,, | H,u = Hu. Thisprovesthe
first assertion of Theorem 4.12. The «-rate and potential special cases are imme-
diate. O

Finally, we note that the construction of the above proof explicitly yields the
convolution representations stated in Theorem 4.10, with the exception of the ad-
ditional finiteness condition that ., is afinite sum of v ;. This last result stems
from the rationality features that we next introduce.

45 Rational Operators

A natural problemisto characterizethe subclassof seriesof A,,i,[[d]] whichariseas
transfer operators of CTEGM (called transfer series). We recall that given asemir-
ing of formal series K'[[4]], the semiring of rational series[4] denoted by K™[[§]] is
the least subsemiring containing polynomials and stable by the operation &, ®, ,
where ¢ & D,.ca" isdefined only on series with zero constant coefficient. An
immediate fixed-point argument!* shows that the input and output counters given
by (4.12) satisfy y = hu, whereh = CA*B @& D isthetransfer series of the sys-
tem. Therefore, rephrasing the Kleene-Schiitzenberger theorem [4], we claim that
transfer series and rational series coincide.

Assertion 4.14. The transfer series of explicit S0 CTEGM (resp. o-CTEG,
CTEGQG) are precisely the elements of A™ [[4]] (resp. R™ [[«d]], R™ [[5]])-

One important problem is to characterize these particular classes of rational se-
ries. The answer is known in the case of R ,in[[¢]] and Rin|[ed]]. We say that a
seriesis ultimately periodic with rate « if there exists a constant A and a positive
integer ¢ (cyclicity) such that for ¢ large enough

1 —af

]l -«

ht—l—c =A

+ahy . (4.20)

When o < 1, thisperiodicity property means that /., convergestowards A/ (1 — «)
with rate o and that the rate is attained exactly after afinite time. The specializa-
tiontoa = 1 (infact, « = 17) yiedsh,.. = Ac + h,. The merge of k series
KO ... K= jsthe serieswith coefficients ;.. = AY) for0 <i <k —1,n €
N.

Theorem 4.15. A seriesin R ,;,[[«d]] isrational iff it is a merge of ultimately a-
periodic series.

1“The uniquesolutionof z = Az @ Bu isz = A* Bu. Theexistence of A* and the uniqueness
of the solution follow from the assumption that there are no circuitswith zero holding times.
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The CTEG case (i.e. o = 1) isproved in[9, 2] for the subclass of monotone'®
seriesh,1 > h,. It wasaready noticed by Moller [22] in the non monotone case.
It is essentially known to the tropical community [20]. The a-generalization was
announced in [13]. The proof will appear in a paper in preparation [15].

No such simple characterization seemsto exist for A [[§]]: the coefficient /.,

of 57 in A isan element of A,.;,, but its complexity'® growsin general ast — oc.

4.6 Asymptotic Behavior of CTEGM

We consider the autonomous case # = AZ with boundary condition Vi <
0, 7(t) = v € R, where A belongsto one of the above matrix operator algebras.
We associate several additive weights with the circuit C = (q1, p1, g2, - - -, Gk, Pk ),

ICl, = D Vaps Total normalized marking
ICl. = > 7 Total holding time
cl = > 1= Length

IClyw = >o;mypu, Total weighted marking

wherethe latest quantity will be used only when the graph admits potential v. The
following periodicity theorem is central. The CTEG case is a consequence of the
(max,+)-Perron Frobeniustheorem [25, 8, 2, 10]. Another proof has been given by
Chretienne [7]. The inequality variant below (4.24) can be found in [12, Ch. 1V,
Lemma 1.3.8],[14]. The «-discounted case is due to Braker and Resing [5, 6].

Theorem 4.16. Consider a strongly connected CTEG. There exists N > 0 and
¢ > 1 (cyclicity) such that, for all initial condition v,

t>N=Z(t+c)= I+ Z(1) , (4.22)
where
—
A= min cl. (4.22)

(the minimum s taken over the elementary circuits of the graph). Alternatively, A
isthe unique scalar for which there exists a finite vector v solution of the spectral
problem*”

v, = min (qu — A7, + vpm> ) (4.23)

peqlﬂ

15Theresultsare stated in the so called M ([, ]] dioid whichisisomorphicto thedioid of series

in oneindeterminate § with coefficients in R, ) (RU{+oco}, min, +) suchthat hyp 1 > hy,.
15The minimal number of monomialsinasumh, = €, v ;.
17With the (min,+) notation, when 7, = 1, (4.23) rewritesas Av = X\ @ v where A,y =

@qui”ﬂ(q’)w‘ Vgp-
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or it isthe solution of the LP problem
A — max, Vpe g™ Vg S Vgp — ATy + Upin . (4.24)

For a strongly connected CTEG with potential, the periodicity property (4.21) be-
comes Z,.(t + ¢) = A.e+ Z.(t), where

Aot = mm Clim.o

o C]
R

(4.25)

For a strongly connected CTEG with rate «, the periodicity property (4.21) be-
comes

C

t>N:>Z(t—|—c)_)\q1_ +aZ,(1) (4.26)

where \, € R (the dependencein ¢ is essential).

The asymptotic behavior of general CTEGM is more subtle. We shall not at-
tempt to treat it here.

Remark 4.17. When o < 1, from (4.26) we get lim;_,, Z,(t) = A,/(1 — ). Itis
well known that one obtains the average cost value as the limit of the discounted
case, i.e. Vg, lim, ;- A\, = A

Remark 4.18. Whenthe graph hasapotential v, for al circuitC, thequantity |C|,,..
used in the periodic throughput formulais an invariant of the net (the firing of one
transition leads to anew marking m’ with the same weight).

4.7 Resource Optimization Problems

Asaby product of the above characterizations of the throughput J, it ispossibleto
address resource optimization problems. Themost classical problem|[8, 18, 21, 12]
relative to TEG consistsin optimizing alinear cost function J () associated with
the initial marking, under the constraint A > )\,. Physically, the initial marking
represents resources (number of machines, pallets, processor, storage capacities),
and the problem consists in minimizing the cost of the resourcesin order to guar-
antee agiven throughput \,. By appealing to (4.24), this class of problemsreduces
to linear programming, with integer and real variables.

We will discuss here new resource optimization problemswhich arisesfor more
general TPN dueto the presence of routing decisions. Werestrainto balanced TPN
with unit multipliers. When abijective routing f isfixed, the only remaining deci-
sion consists in the assignment of the initial marking 2, to the downstream tran-
stions: m, =} c oy, We thus consider the problem of finding the alloca-
tion of the initial marking which maximizes the performance of the system. We
only consider internally stable systemsin the sense of [2] (such that tokens do not
accumulate indefinitely in places). Then, there is a single periodic throughput A,
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associated with every simply connected component r of the graph (characterized
by (4.22)). We denote by R the set of smply connected components. The most
natural performance measure to be optimized will be alinear combination of these

throughputs, cA o Eren ¢, A, Wherec, > 0 are given weights.

Theorem 4.19. The resource assignment problem for a balanced CTPN with unit
multipliers under the bijective policy f reduces to the following Linear Program-
ming problem. Given {m,, 7, },ep, c and f, denoting by r(¢) the simply connected
component of transition ¢ under policy f, solve

max ch ,

VgsAr,Map

{ mp = Equom mqp 9 \V/p 9 ]
vy S Mgy — )‘r(q)Tp + Vfr(g) Vg, Vpe ¢" ,

where {v, },e0, {mgp teepon per, and { A, },cr arereal (finitely) valued variables.
Proof. Easy consequence of the characterization (4.24). O

The same resource assignment problem for discrete (non continuous) TEG leadsto
asimilar LP problem with mixed integer and real variables.

Example 4.20. For therouting policy of Fig. 2b, we obtain two strongly connected
components with rates

N = m(u> where x, = " T 07

Tps T Tpg Tpy T Tpg

)\2 = min <7mq4p5 —I_ mp4 5 /iz) 5 Whel’e Ko = 7mp2 + mp4 . (428)

Tps T Tpy Tpy T Tpy

Maximizing the throughput in place ps reducesto
max (M +A2) . (4.29)

Mgsps Mgy ps ="ps

Thebijectivepolicy shown of Fig. 2c givesauniquestrongly connected component
and a throughput

. m,. +m,, +m
)\ — min </£17 Ka, pP3 P4 p5>

Tps T Tps T 27y,

(4.30)

independent of the allocation of m,, .

5 Time Behavior of Continuous Timed Petri Nets

5.1 Stochastic Control Interpretation

Weinterpret the evolution equations of aCTPN asthe dynamic programming equa-
tion of the following stochastic extension of the deterministic decision process de-
scribed in §4.2. The control at state (transition) ¢ selects an upstream placep € ¢".
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Then,_q moves randomly (in backward time) to one of the upstream transitions
¢ € p'". More precisdly,

1. thedynamicsisgiven by acontrolled Markov chain in backward time: the prob-
ability P, of thetrangitiong — ¢' fromtimen totimer — 1 under the decision
p isgiven by
Pqpq/ = a;plﬂqp/ozq/ﬂpq’
where o, > 0 isanormaization factor'® (chosensuchthat ) ;.. Py = 1).
2. The set P of admissible control historiesisthe set of sequencesp, ... , p; such
that p,, € ¢'" and the decision p,, isafeedback of g,,.

3. We consider a mean cost at state ¢ of theform

t t
J(p,t,q) = < Haquj (0)go +Z< H O‘quj>’/qnpn

n=1 j=n+1

QtZQ> .

Assertion 5.1. For a CTPN such that 7, = 1, the counter function coincides with
the value function:

Z,(t) = inf J(p,t,q) . (5.1

PEPa

As in the case of Event Graphs, we shall pay a particular attention to smple cost
functions.

Definition 5.2. A CTPN isundiscounted if a,, = 1. It isa-discounted if 7, = 1
and o, = . Itadmitsapotential if there exists avector v € (R**)< such that the
change of variable 7, = v, 7, makes the CTPN undiscounted.

Clearly, the cost function of an undiscounted (resp. «-discounted) CTPN writes

t
J(p,t,0) = E(Z(0)0y + Y Vo,
n=1

w=q) . (52)

t
resp. J(p,t,q) = E(oth(O)qO + Z ATy |G = q> : (5.3
n=1

Theorem 5.3. 1. A CTPN becomes undiscounted under a stationary routing iff it
satisfies the following equilibrium condition:

Vp, Z M,, = Z My, (5.4)

qepot q€p"

'®Note that in the CTEGM case, for ¢ = p, we have agp = pipoup j1,,m SO that vy, coincides
with o, as defined in (4.1).
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Then, the only origin independent routing policy which makes the net undiscounted
is given by'?:

M,,
Eq”Epom Mq”p

2. ACTPN with 7, = 1 becomes a-discounted under a stationary routing iff

vp, Y M, = a< 3 Mpq> . (5.6)

qepin qepout

Vg ep,  ph = (5.5)

3. There exists a stationary routing under potential v iff
Vp, Z vg Mgy = Z Mpqv, (5.7)
gEp™M gepin

4. A CTEGM with routing p admits a potential v iff for all ¢ € Q, p € ¢™,

Vg = Z qupsq//lpq’vq’ : (5.8)

q'Epin

Proof. We proveitem 3 (which containsitem 1 as a specia case). The CTPN has
potential v iff for all p, the matrix

Pqpq/ — Uq_qu_plpsq/Mpqlvq/

is stochastic. Summingup asq’ € p'", we get v, My, = 3 ¢ in Py Mpgrvgs. SUM-
ming up as ¢ € p°®" and using the fact that the transpose of p?. isstochastic, we get
the necessary condition (5.7). Then, the origin independent routing policy

o, = v My,
, =
qq9 Eq”epom Uq//Mq//p

Vg e ph (5.9)

turns out to be admissible, which shows that the condition is also sufficient. The
other points are left to the reader. O

5.2 Input-Output Representation of CTPN

Pursuing the program previoudly illustrated with additive systems (CTEGM), we
provide an algebraic input-output representation for CTPN. In view of the dynam-
ics of CTPN (see (3.2)), we introduce (min,+) polynomials and formal series in
several commutative indeterminates. Given a family of indeterminates {z; }icz
(not necessarily finite), we denote by (R+)@) the set of almost zero sequences

19Thisisafairness condition which states that tokens are routed equally to the downstream arcs,
counted with their multiplicities.
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a; € R*,i € T(suchthat I(a) € {i € T | a; # 0} isfinite). A generalized®
formal series in the commutative indeterminates z; with coefficients in R,,,;,, IS a
sum

s = @ Sq ® 28, S € Rupin - (5.10

ac(R+)(D) €l(a)

Itisapolynomia whenever s, = ¢ for all but afinite number of «. The numerical
function associated with aseries s isthemap S : R — R U {400},

S(z) = igf(sa + Z oziz:i) ) (5.11)

€l(a)

When s is a nonzero polynomial, the infimum in (5.11) is finite. This defines a
proper notion of finitely valued (min,+) polynomial function. Polynomial functions
are stable by pointwise min, pointwise sum and composition. It is clear that (3.2)
is nothing but a polynomial induction of the form

x(t) = A(x(t),...,x(t —=7T)ult),...,u(t —7)), (5.12)
y(t) = Clax(t),...,a(t =7),ult),... ,u(t —=7)) , (5.13)

where A, C' are polynomial functionsand 7 & max, 7,. Thus, CTPNand (min, +)
recurrent stationary polynomial systems coincide. For simplicity, we shall limit
ourselvesto SISO systems (the MIMO case is not more difficult, athough the no-
tationismoreintricate). We introduce the family of indeterminatesu,, 7 € N. The
series s given by (5.10) isa\olterra series[11] if for al 7, the seriesis a polyno-
mial intheindeterminateu.. (equivalently, if theindeterminate u, appearsin (5.10)
with afinite number of exponents). The evaluation su of the Volterraseries s at the
input v is obtained by substituting «(¢ — 7) for the indeterminate u...

Theorem 5.4 (Volterra Expansion). The output of an explicit SSO CTPN is ob-
tained as the evaluation of a \Olterra series:

y(t) = su(t) = igf(aa + Z aru(t — T)> : (5.19)

Tel(a)

A case of particular interest arises for inputs with finite past: u(7) = ¢ for 7 <
To. Then, for al ¢, the Volterraexpansion of y(¢) is obviously finite.

5.3 Behavioral Propertiesof CTPN
Theorem 5.5. Theinput-output map # of a MIMO CTPN is

1. dtationary,

20We allow nonnegative real valued exponents o;, not only integer ones.
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2. causal,

3. monotone: © < v = Hu < Hu,

4. Scott continuous,

5. concave (see Theorem 4.11 for the definitions).

Undiscounted CTPN satisfy the following property.
6. Homogeneity: H(A 4+ u) = A + H(u).

CTPN with potential v satisfy the following.

7. (vy,vy)-homogeneity: H(Av, + u) = Av, + Hu.

All these properties are immediate consequences of the (MIMO extension) of
the Volterra expansion (5.14). Again, these properties are accurate: it could be
shown that an map satisfying the above propertiesis a limit of CTPN operators,
but we shall not attempt to detail this statement here.

5.4 Asymptotic Propertiesof Undiscounted Petri Nets

Theorem 5.6. For a strongly connected undiscounted CTPN, we have

1
lim =Z,(1) = A, Yq ,
where ) is a constant. The periodic throughput A is characterized as the unique
value for which a finite vector v is solution of

v =min (v, — At, + PPv) . (5.15)

p

Indeed, the asymptotic behavior of Z(¢) is known in much more details [27].
Note that the effective computation of A from (5.15) proceeds from standard algo-
rithms (Policy Improvement [28], Linear Programming).

Proof. Thisis an adaptation of standard stochastic control results [28, Chap. 33,
Th. 4.1]. The growth rate X isindependent of the initial point ¢ for the subclass of
communicating systems?!. Thisassumption isequivalent to thestrong connectivity
of the net. O

Thereisan equivalent characterization of A which exhibitsthe analogy with the
CTEG case in a better way. A feedback policy (or policy??, for short) isamap u :
Q — P. Thepolicy isadmissibleif «(q) € ¢'", that is, if setting p,, = u(g,) yields

21 The system is communicating if for al ¢, ¢/, there is a policy « and an integer £ such that
,)¥ >0 —i.e. ¢ hasaccesstogq'.

(P
éIgThls feedback policy has nothing to do with the routing policy introduced in §3.
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and admissible policy for the stochastic control problem presented in §5.1. With a
policy u are associated the following vectors and matrices

def def def u(g)
u O€ u YS o
Vg = Vau(q) > Tg = Tu(g) » qu’ - qu’ :

We denote by R (u) the set of final classes*® of the matrix P“. For each classr €
R(u), we have a unique invariant measure =”* with support r (i.e. 7"“P* = 7",
adrm* =0ifqggr.)

Theorem 5.7. For a strongly connected undiscounted CTPN, we have

ﬂ.T’UV’U,

(5.16)

A = min min
u reR(u)y THTY
Thus, X isthe minimal ratio of the mean marking over the mean holding timein
the placesvisited following astationary policy. Inthe CTEG case, thefinal classes
are precisely circuits and the invariant measures are uniform on the final classes,
so that (5.16) reduces to the well known (4.22).

The proof of Theorem 5.7 usesthe fact that therate A is obtained asymptotically
for stationary policies, together with the following lemma.

Lemma 5.8. Let « denote a policy such that P* admits a positive invariant mea-
sure 7. The unigue A such that there exists a finite vector v:

v=rv" = A"+ P (5.17)
isgiven by
=" (5.18)
T

Proof. Left multiplying (5.17) by the row vector =, we get that ) is necessarily
equal to (5.18). Conversely, we are reduced to prove the existence of a solution
(A, v) when P*isirreducible. Then 1 isasimpleeigenvalueof P*, hence, Im( P* —
I)is|Q|—1dimensional. Moreover, 7 ¢ Im(P*—I) (forr* = P'v—v = 77" =
m(P*v —v) = 0, acontradiction). Hence, R7* + Im(P* — I) = R<. O

It isnot surprising that the terms at the right-hand side of (5.16) are indeed invari-
ants of the net.

Theorem 5.9 (Invariants). Given an undiscounted CTPN, for all policy « and for
all final class r associated with w,

Jur e Z ™ (5.19

ger

isinvariant by firing of transitions.

23The classes of amatrix A are by definition the strongly connected components of the graph of
A. A classisfinal if thereisno other class downstream.



24 G. Cohen, S. Gaubert and J. P Quadrat

Proof. After firing once transition ¢ € r (the case when ¢ ¢ r istrivid), I in-

creases by
ur ur u
—Ty t Z Ty Lyrg
g’ €(gout)youtny
which is zero because 7*" is an invariant measure of P* with support r-. O

Example 5.10. The CTPN shown in Fig. 2ais equivaent to that of Fig. 2d un-
der afair routing policy independent of the origin of the tokens. In this particular
case, we obtain the same periodic throughput A asin the case of the bijective rout-
ing shown in Fig. 2c (see (4.30)). This can be seen from the following table and
Formula (5.16).

Policy Final classes Invariant measures Invariants
U1(Q3) =D ™ = {qlaq?)}- T = [ 0, %,O] e = %(mpl + mpa)
Ul(‘]4) = P2 s = {an Q4} ﬂ-UIr2 = [Oa %aoa %] IUIT2 = f(mp2 + mp4)
Uz(QS) =P - TUIT Juiry
Uz((M) =D5
U3((]3) i Ds - U2 Juira
U3((J4) = P2
u =
Uiggi; — iz "3 = {(ha 42,43, (]4} ﬂ-u“a = [% % %a %] IU4T3 = %(mpa + mp2 + mPS)

Finally, weindicate how the above results can be extended to CTPN with potential.
With af&dback policy u we associate the matrix R*: Ry, = fiqu(, )pq; )Mu o If
q' € u(q)" (1, = 0 otherwise); we denote by R(u) the set of final classes of R“
which each final classr we associate a left eigenvector of R*: »* = 7™ R" with
support r; andwedefiner*, 7* asin Theorem 5.7. We denote by diag v thediagonal
matrix with diagonal entries (diagv),, = v,. Then, the folllowing formulais an
immediate consequence of Theorem 5.7.

Corollary 5.11. For a strongly connected CTPN with potential v, we have

1 U, U
lim Z():)\q, where v’ '\, = min min T

t—sco 1 % T’ER ru(dlagv) (520)

Theterms 7" which determine the throughput are of courseinvariants of the
net. More generaly, it follows from standard dynamic programming results that
the counter functions of a-discounted CTPN exhibit a geometric growth (or con-
vergence) with rate «. The geometric growth of other classes of CTPN could be
obtained by transferring existing results about non normalized dynamic program-
ming inductions [29].
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