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Abstract A linear system theory is developped for a class of continuous and discrete Systems subject to Synchronization
and Saturations that we call S3. This class provides a generalization of a particular class of timed discrete event systems
which can be modeled as event graphs. The development is based on a linear modeling of S3 in the min-plus algebra. This
allows us to extend elementary notions and a number of results of conventional linear systems to S3. In particular, notions
of causality, time-invariance, impulse response, convolution, transfer function and rationality are considered.

1 Introduction

In the past few decades, linear system theory has been
the main topic of research among system and control
engineers. Linear systems have been so popular not
because there are many physical systems that can be
represented by linear models but simply because they
are easier to analyze. Over these years, an impressive
body of knowledge about these systems has been ac-
cumulated to a point that, today, the first attempt to
analyze any phenomenon is to approximately model
it with a linear system through for example identifi-
cation or linearization. There are of course systems
that exhibit very nonlinear behaviors, such as systems
subject to synchronization or saturation constraints,
and these cannot in any reasonable way be approxi-
mated by linear systems. In this paper, we consider
a special class of such systems and show that despite
there nonlinearity, they can be described exactly by
‘linear’ equations over a different algebraic structure.
Of course, because of the differences in the algebraic
structures, we should not expect that all the classical
results of conventional linear system theory simply
carry over to this new ‘linear’ system theory; it turns
out that some do and some don’t. Our objective in
this paper is to develop this new ‘linear’ system the-
ory using the conventional linear system theory as a
guideline. Even though our theory applies to a wider
class of systems, we shall motivate its development
by considering special examples of S3 and of discrete
event systems.

The outline of the paper is as follows. In § 2, we
present a continuous dynamic system in which sat-
uration and synchronization phenomena appear and
we give an analogous discrete event counterpart. We
introduce the algebraic structure which we shall use
throughout this paper in § 3. The notion of linearity
with respect to this algebraic structure is presented
in § 4. In § 5, we study causal time-invariant ‘lin-
ear’ systems and show that, as for standard linear
systems, we can completely characterize our ‘linear’
systems by their impulse responses. The role of con-
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Stéphane Gaubert, Ramine Nikoukhah, Jean-Pierre Quadrat, all
with INRIA, Rocquencourt, France (Guy Cohen is also with CAS-
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volutions in conventional sytem theory is now played
by inf-convolutions. In § 6, we introduce the notion
of transfer functions which are related to impulse
responses by a transformation close to the Fenchel
transform. In § 7, we address the problem of re-
straining input functions and impulse responses to
nondecreasing functions of time, a constraint which
appears naturally in some realistic applications of the
theory. Finally, in § 8, we discuss rationality in the
min-plus context, and we characterize rational ele-
ments in terms of their periodicity.

2 A Continuous System and its
Discrete Counterpart

In this section, we propose a fundamental example
which aims at illustrating the main ideas of this pa-
per. Let us consider the SISO system S : u �→ y
displayed on the left-hand side of Figure 1. A fluid
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Figure 1: Continuous/discrete analogous systems

is poured through a long pipe into a first reservoir
(empty at time t = 0). The input u(t) denotes the
cumulated flow at the inlet of the pipe up to time
t (hence u(t) is a nondecreasing time function and
u(t) = 0 for t ≤ 0). It is assumed that it takes a
delay d for the fluid to travel in the pipe. From the
first reservoir, the fluid drops into a second reservoir
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through an aperture which limits the instantaneous
flow to a maximum value β > 0. The volume of fluid
at time t in this second reservoir is denoted y(t), and
y(0) = c.

2.1 Dynamic Equations
Because the flow into the second reservoir is limited
to β, we have:

∀t,∀θ ≥ 0, y(t + θ) ≤ y(t) + βθ . (1)

On the other hand, since there is a traveling time d
in the pipe, y(t) should be compared with u(t − d),
and because there is an initial stock c in the second
reservoir, we have:

∀t, y(t) ≤ u(t− d) + c . (2)

Recall that u(t) = 0 for t ≤ 0, so that, for t ≤ d,
we get y(t) ≤ c, an inequality which will become an
equality later on, when taking the maximum solution
of the inequalities (1)–(2). Hence the initial condition
of the second reservoir is taken into account by these
inequalities. We further have that, ∀t and ∀θ ≥ 0,

y(t) ≤ y(t− θ) + βθ

≤ u(t− d− θ) + c + βθ ,

hence, ∀t,

y(t) ≤ inf
θ≥0

[u(t− d− θ) + c + βθ]

= inf
τ≥d

[u(t− τ) + c + β(τ − d)] . (3)

Let

k(t) =
{

c for t ≤ d ;
c + β(t− d) otherwise. (4)

and consider, ∀t,

y(t)
def
= inf

τ∈R
[u(t− τ) + k(τ)] . (5)

Indeed, in (5), the range of τ may be limited to τ ≥ d
since, for τ < d, k(τ) remains equal to c whereas u(t−
τ) ≥ u(t− d) (remember that u(·) is nondecreasing).
Therefore, comparing (5) with (3), it is clear that
y(t) ≤ y(t),∀t.

Moreover, with τ = d on the right-hand side of (5),
we see that y verifies (2). On the other hand, since
obviously, ∀s and ∀θ ≥ 0, k(s + θ) ≤ k(s) + βθ, then,
∀t and ∀θ ≥ 0,

y(t + θ) = inf
τ∈R

[u(t + θ − τ) + k(τ)]

= inf
s∈R

[u(t− s) + k(s + θ)]

≤ inf
s∈R

[u(t− s) + k(s)] + βθ

= y(t) + βθ .

Thus, y verifies (1).
Finally, we have proved that y is the maximum

solution of (1)–(2). It can be checked that (5) yields
y(t) = c, ∀t ≤ d. This solution is the one which will be
realized physically if we assume that, subject to (1)–
(2), the fluid flows as fast as possible. We summarize
this result by the following theorem.

Theorem 1 The output y = S(u) of the system
shown in Figure 1 (left-hand side) is given by the inf-
convolution of the input u with the function k given
by (4).

2.2 Min-Plus Linearity
Theorem 2 The previous system S is min-plus lin-
ear, that is, if yi = S(ui), i = 1, 2, then min(y1, y2) =
S(min(u1, u2)) and yi(·) + λ = S(ui(·) + λ), where
λ ∈ R and yi(·) + λ is a short-hand notation to say
that we add a constant λ to a time function yi(·).

Proof The result is a direct consequence of the fact
that the input-output relation is an inf-convolution.

• inf
τ∈R

{k(τ) + min[u1(t− τ), u2(t− τ)]}

= min
{

inf
τ∈R

[k(τ) + u1(t− τ)],

min
τ∈R

[k(τ) + u2(t− τ)]
}

.

• inf
τ∈R

{k(τ) + [λ + u(t− τ)]}

= λ + inf
τ∈R

[k(τ) + u(t− τ)] .

2.3 Discrete Counterpart
The previous system may be considered as a contin-
uous version of some discrete event system. Let us
consider a lumped version of S:

Sh : sup y s.t.
{

y(t + h)− y(t) ≤ βh ,
y(t) ≤ c + u(t− d) ,

(6)

∀t ∈ hZ, and for h as small as possible but such that
βh ∈ N (that is, h = 1/β). We also assume that
c ∈ N and that d/h ∈ N. The maximum solution y of
(6) is given by the recursive equation:

y(t) = min(y(t− h) + βh, c + u(t− d)) . (7)

An interpretation of this equation in terms of a timed
event graph is shown on the right-hand side of Fig-
ure 1 (see [7] for more detailed explanations). A phys-
ical interpretation in terms of a manufacturing system
is as follows. Parts come into a workshop and reach a
pool of machines after a traveling time d. There are
βh machines working in parallel and each part spends
h units of time on a machine. Initially, machines are
idle (i.e. empty). Parts reaching the machines wait
in a storage upstream the machines until they can be
handled by some machine (which is supposed to oc-
cur as soon as possible; the discipline is FIFO). From
t = 0 on, parts entering the system receive sequen-
tial numbers (say, the first one to enter the system
receives number -10) and u(t) denotes the number of
the last part arrived before or at time t. Likewise,
y(t) denotes the number of the last part arrived at
the storage located downstream the machines before
or at time t. The first to arrive after time 0 is num-
bered c − 10 to take into account that c parts are
already present in the storage at time 0.



2.4 Mixing and Synchronization
Suppose now that we have two continuous systems
similar to the one shown in Figure 1. Say, one of the
fluid is red and the other is white, and we want to
produce a pink fluid 1 by mixing them in equal pro-
portions. If yr(t) and yw(t) are the quantities avail-
able at time t in the downstream reservoirs, and if
the operation of mixing takes no time, half the maxi-
mum quantity yp(t) of pink fluid one can produce up
to time t is

yp(t) = min(yr(t), yw(t)) .

Indeed, we have just combined two SISO systems in
parallel to get a new one with two inputs and one
output. Obviously, this new system is again min-plus
linear.

The discrete event counterpart of this mixing oper-
ation is the assembly of two kinds of parts. The equa-
tions are of course the same for this operation which
would be represented as a join at a transition in the
pictural language of Petri nets. Generally speaking,
joins at transitions express synchronization of events.

We are now going to give a more general account
of min-plus linear systems. However, we need first
recall some basic facts about ‘dioids’ (for a deeper
treatment, see [7]).

3 Dioid Structure

Definition 3 A set endowed with two inner opera-
tions ⊕ (addition) and ⊗ (product) is called a dioid
(denoted D) if

• both ⊕ and ⊗ are associative;

• ⊕ is commutative;

• ⊗ is distributive with respect to ⊕;

• both ⊕ and ⊗ have neutral elements, i.e. there
exist ε and e in D such that

∀a ∈ D,

{
a⊕ ε = a ;
e⊗ a = a⊗ e = a ; (8)

• the null element ε is absorbing for ⊗, i.e.

∀a ∈ D, a⊗ ε = ε⊗ a = ε ; (9)

• ⊕ is idempotent, i.e.

∀a ∈ D, a⊕ a = a . (10)

If ⊗ is commutative, D is called a commutative dioid.

Remark 4 As usual, the multiplicative sign ⊗ may
sometimes be omitted.
There is a natural order relation � associated with
⊕ and defined by:

a � b ⇔ a⊕ b = b .

1or a tooth paste with red and white strips

This relation is compatible with product, that is:

∀c, a � b ⇒
{

ac � bc ,
ca � cb .

(11)

It can easily be checked that a⊕b is equal to the least
upper bound (with respect to �) of a and b. Hence
D is a sup-semilattice. A complete sup-semilattice
is a sup-semilattice for which any (finite or infinite)
subset admits a least upper bound. Therefore, we
adopt the following definition.

Definition 5 A dioid is called complete if it is closed
for all infinite sums and if ⊗ is distributive with re-
spect to infinite sums.

Given a family {ai}∈I ⊂ D, the least upper bound is
denoted ⊕

i∈I

ai

if I is denumerable, and

�
∫

i∈I

ai

if I is continuous. The ‘idempotent integration’ �
∫

shares several features of the usual integration. In
particular, the associativity of addition yields (Fubini
rule):

�
∫

(i,j)∈∪i∈I∪j∈J(i){(i,j)}
aij = �

∫
i∈I

�
∫

j∈J(i)
aij .

The distributivity of product with respect to (infinite)
sum yields:

c⊗
(
�
∫

i∈I

ai

)
= �

∫
i∈I

c⊗ ai ,

and the same for multiplication to the right.
In a complete sup-semilattice with a bottom ele-

ment (here ε), there exists a greatest lower bound of
two elements defined as:

a ∧ b = �
∫

x�a
x�b

x ,

and more generally, there exists a lower bound of any
finite or infinite family {ai}i∈I , denoted

∧
i∈I ai.

Theorem 6 Let R = R ∪ {−∞,+∞}. The set R
endowed with min as ⊕ and + as ⊗ is a complete
commutative dioid (denoted Rmin), in which ε = +∞
and e = 0.

Note that, according to (9), −∞+∞ = −∞⊗ε = ε =
+∞ in Rmin. Moreover, according to (11), the order
� (which is total here) is just reversed with respect of
the usual order ≤ (i.e. a � b ⇔ a ≥ b—for example,
3 � 2 since 3 ⊕ 2 = 2). Therefore, ∧ is indeed the
conventional supremum.

In this paper, we will essentially study linear sys-
tems over Rmin.



4 Linear Systems

4.1 Linearity

The underlying algebraic structure used in conven-
tional (SISO) system theory is R 2 endowed with the
two operations + and ×, i.e. the field (R,+,×). A
signal is defined as a real sequence indexed by time
t; the indexing set is either R (continuous-time sys-
tems) or Z (discrete-time systems). A system is then
a mapping from the set of admissible input signals to
the set of output signals. The set of admissible in-
put signals is subject to some assumptions: it should
be stable by addition, multiplication by a scalar, con-
catenation of pieces of signals, time-shifting; it should
contain constant functions, Dirac functions, etc. . .

A system S is then called linear if for all input
functions u1 and u2,

S(u1 + u2) = S(u1) + S(u2) , (12)

and for all scalars a and all inputs u,

S(au) = aS(u) . (13)

Here linearity is defined with respect to the field
(R,+,×).

Let us now change this underlying algebraic struc-
ture by replacing + by min and × by +, i.e. consider
now the complete commutative dioid Rmin. By anal-
ogy with the classical case, we define signals as time
functions taking their values in Rmin. A system S is
again a mapping from the set of admissible input sig-
nals to the set of output signals. In this paper, we
restrict ourselves to single-input single-output (SISO)
systems. Moreover, to be able to develop a theory
which looks very parallel to the conventional theory,
we assume that the set of admissible input signals is

the whole set R
R

min.
Remark 7 Indeed, the examples of continuous and
discrete event systems presented earlier shows that re-
alistic inputs are nondecreasing time functions (in the
usual sense). The set of nondecreasing time functions
is not stable by concatenation and does not contain
naive counterparts to Dirac functions. It could have
been possible to develop a theory which restricts the
admissible input signal set to special classes of func-
tions. In this paper, we prefer to keep the theory
simple and we defer a more sophisticated treatment
to a forthcoming paper. The question of nondecreas-
ing input functions will be further addressed in § 7.

Definition 8 A system S is called linear over Rmin,
or min-plus linear, if

S(min(u1, u2)) = min(S(u1), S(u2)) , (14)

and, ∀a ∈ R,

S(a + u(·)) = a + S(u(·)) . (15)

2sometimes C

To better see the analogy with conventional linear
systems, and to emphasize that we are dealing with
a dioid, we will keep on denoting min by ⊕, addition
by ⊗, −∞ by ε and 0 by e. With this notation,
Equation (5) can be expressed as follows

y(t) = �
∫

θ∈R
u(t− θ)⊗ k(θ) ,

showing that inf-convolutions are simply convolutions
of our algebra.

4.2 Continuity
In classical developments of linear system theory, an
additional continuity assumption is made (sometimes
implicitly):

S

( ∞∑
i=1

ui

)
=

∞∑
i=1

S(ui). (16)

Again, as in the standard case, we make the assump-
tion that S is sufficiently smooth. Namely, we require
that for any infinite collection {ui}i∈I

S

(
inf
i∈I

ui

)
= inf

i∈I
S(ui) .

Translated into the notation of Rmin this leads to the
following definition.

Definition 9 The system S is said to be continuous
if it satisfies:

S

(
�
∫

i∈I

ui

)
= �

∫
i∈I

S(ui) . (17)

This definition is meaningful as long as Rmin is a com-
plete dioid (see Definition 5). Linearity (Definition 8)
does not imply continuity as shown by the following
example.
Example 10 Consider the following non continuous
time-invariant min-plus linear system:

u ∈ RR �→ S(u) ∈ RR with [S(u)](t) = lim inf
s→t

u(s) .

This system verifies (14)–(15). It is obviously time-
invariant, but it is not continuous. Indeed, for all
n ≥ 1, let

un(t) =


0 if t ≤ 0 ;
−nt if 0 < t < 1

n ;
−1 if 1

n ≤ t .

We have, for all n ≥ 1, [S(un)](0) = 0, and⊕
n≥1

un(t) =
{

0 if t ≤ 0 ;
−1 otherwise.

This yields [S(
⊕

n un)](0) = −1, which is different
from

⊕
n[S(un)](0) = 0.

In the sequel, continuity is always assumed.



4.3 Algebra of Systems
An important feature of conventional linear systems
is that we can cascade them in series, in parallel or
put them in feedback, and always get a linear system.
This way, from simple elementary blocks, we can con-
struct (realize) complex linear systems. This idea can
also be extended to linear systems over Rmin.

Parallel cascade: S = S1⊕S2 denotes the parallel
cascade of S1 and S2 defined as follows:

[S(u)](t) = [S1(u)](t)⊕ [S2(u)](t) . (18)

Serial cascade: S = S1⊗S2, or more briefly S1S2,
denotes the serial cascade of S1 and S2 defined as
follows:

[S(u)](t) = [S1(S2(u))](t) . (19)

Feedback: The situation with feedback is slightly
more complicated. The difficulty arises from the
fact that the implicit equation so obtained does not
uniquely characterize the solution. Let us consider

Iu S(u) u S(u)
S1

I S2

Figure 2: Feedback systems

the simple example of putting I, the identity sys-
tem 3, in feedback around another identity system
(see Figure 2, left-hand side). Let us call the result-
ing system S. One has

S(u) = S(u)⊕ u . (20)

This equation has clearly no unique solution since
every S(u) � u is a solution to (20) (only if u(t) =
−∞,∀t, then [S(u)](t) = −∞,∀t is the unique solu-
tion). This means that, in order to have a well defined
feedback system, we need to impose additional con-
straints in order to determine a unique solution to
(20). A choice which in practice makes a lot of sense
(as already seen in § 2) and which results in a lin-
ear system is the least solution of (20) with respect
to � (or otherwise stated, the greatest solution with
respect to ≤).

Let us state then the feedback operation in the gen-
eral case: we define S as the result of putting S2 in
feedback around S1 (see Figure 2, right-hand side) if

∀t, [S(u)](t) =
∧

y(t)=[S1(S2(y)⊕u)](t)

y(t) , (21)

where ∧ denotes the greatest lower bound in the com-
plete dioid Rmin (which corresponds indeed to the
supremum).

3For all u, I(u) = u.

Theorem 11 Any system obtained by cascading
min-plus linear systems in series, in parallel, and by
putting them in feedback is also min-plus linear.

Linearity of cascaded linear systems in Rmin is
straightforward to show and the proof is omitted. In
fact, thanks to continuity (see (17)), cascading linear
systems in parallel infinitely many times also yields
linear systems. Thus, we shall only prove linearity
for the feedback case. For this, we need the following
classical theorem which is given here for the sake of
completeness.

Theorem 12 Let D be a complete dioid and let H
be a continuous mapping from D to D. For b ∈ D,
consider the implicit equation

x = H(x)⊕ b . (22)

Let H0 = I (identity),

Hn(x) = H(H(. . . (H(x))))︸ ︷︷ ︸
n times

,

and

H∗(x)
def
=

⊕
n∈N

Hn(x), ∀x . (23)

Then x = H∗(b) is the least solution of (22).

Proof For any solution x of (22), by successive sub-
stitutions and continuity, we obtain, ∀n ∈ N:

x = Hn(x)⊕
(
I ⊕ · · · ⊕ Hn−1) (b)

�
(
I ⊕ · · · ⊕ Hn−1) (b) .

It follows that x
def
= H∗(b) � x. But, using continuity,

H(x)⊕ b = H
(⊕

n∈N
Hn(b)

)
⊕ b

=
⊕
n≥1

Hn(b)⊕ b

= x ,

which shows that x itself verifies (22).

Proof of Theorem 11 continued Note that we can
rewrite the constraint on y in (21) as follows:

y = H(y)⊕ S1(u) ,

whereH def
= S1⊗S2. Hence, according to Theorem 12,

the particular solution defined by (21) can explicitly
be expressed as H∗(S1(u)). Therefore, thanks to (23),
the feedback system is obtained by cascading systems
S1 and S2 an infinite number of times, and it is thus
linear.

The two operators ⊕ (parallel cascade) and ⊗ (se-
rial cascade) define a structure of complete dioid over
the set Σ of continuous linear systems over Rmin.



4.4 Some Elementary Systems
We have discussed how we can combine systems using
cascades and feedbacks. Here, we describe three ele-
mentary but fundamental systems from which more
complex systems can be built. The examples con-
sidered in § 2 (the continuous as well as the discrete
versions) were made of these three systems cascaded
in series.

Stock Γc: This is the system y = Γc(u) which maps
inputs to outputs according to the equation:

y(t) = c⊗ u(t), ∀t .

A physical interpretation is given by our previous ex-
amples: an initial stock of c units (cubic meters in a
reservoir, or parts in a storage if c ∈ N) introduces
such a shift in ‘counting’ or ‘numbering’ between in-
puts and ouputs. Notice that, in our algebra, this
‘initial condition’ behaves like a ‘gain’ .

The notation Γc is justified by the following rule of
serial cascade which should be obvious to the reader:

Γc ⊗ Γc′ = Γc+c′ = Γc⊗c′ .

Therefore Γ1 can be denoted Γ. Also, parallel cascade
obeys the following rule:

Γc ⊕ Γc′ = Γmin(c,c′) = Γc⊕c′ .

Delay ∆d: This is the system y = ∆d(u) which
maps inputs to outputs according to the equation:

y(t) = u(t− d), ∀t .

Physically, any traveling or holding time (for filter-
ing, heating, manufacturing etc. . . ) causes such a de-
lay. In the context of timed event graphs, this is the
general input-output relation induced by places with
holding time d.

Again, the notation ∆d is justified by the following
rule of serial cascade:

∆d ⊗∆d′ = ∆d+d′ = ∆d⊗d′ .

Therefore ∆1 can be denoted ∆. For parallel cascade,
there is no obvious simplifying rule in general, unless
we restrict ourselves to signals that are nondecreasing
time functions (in the usual sense), in which case one
has

∆d ⊕∆d′ = ∆max(d,d′) = ∆d∧d′ .

Flow limiter Ωβ: The system shown in Figure 1
(left-hand side) was made of three elementary systems
in series. We have already discussed two of them,
namely the ‘stock’ and the ‘delay’. Therefore, we
consider this example again but we assume that c = 0
(no initial stock) and d = 0 (no delay). Then, the
‘flow limiter’ is the system y = Ωβ(u) which, with
an input u(·), associates the output y(·) which is the
maximum—in the conventional sense—solution of the
system of inequalities (1)–(2) with c = d = 0 (and
β ≥ 0). In § 2, it has been shown that y = Ωβ(u)
is explicitely given by the right-hand side of (3) (in
which c = d = 0). But at this point, since we are

now considering general input signals, 4 the rest of
our previous reasoning should be adapted. Indeed, if
we keep the definition (4) of k (with c = d = 0), and
if we consider (5), this is still a solution of (1)–(2),
but not the maximum solution. To go from the right-
hand side of (3) to an expression similar to (5), we
must replace k by ωβ defined by:

ωβ(t) =
{+∞ for t < 0 ;

βt otherwise. (24)

As a matter of fact, with this ωβ replacing k, it is
obvious that the range of τ in (5) can again be limited
to τ ≥ 0 as in (3) (with c = d = 0), whatever u(·)
may be.

As discussed in § 2, the flow limiter behaves like a
loop of an event graph with a place having β × h to-
kens in its initial marking (we assume that β×h ∈ N),
and a holding time h (looking only at time instants
which are multiples of h). That is, Ωβ is analogous to
the system obtained by putting a ‘stock-delay’ system
Γβ×h ⊗∆h in feedback around the identity.

Unlike Γc and ∆d, we denote Ωβ with β as a
subscript, because β does not behave like an expo-
nent: indeed, the following serial cascade rule can be
checked by direct calculation:

Ωβ ⊗ Ωβ′ = Ωmin(β,β′) = Ωβ⊕β′ . (25)

Physically, two flow limiters in series behave like the
single most constraining one. Therefore ⊗, when
restricted to flow limiters, is also idempotent; e.g.
(Ωβ)2 = Ωβ . The following parallel cascade rule is
easy to establish:

Ωβ ⊕ Ωβ′ = Ωmin(β,β′) = Ωβ⊕β′ . (26)

Physically, two flow limiters in parallel obey the most
constraining flow limit (remember that parallel cas-
cade means mixing flows in equal proportions, not
adding them in the usual sense).

5 Time-domain Representation
of Linear Systems

In this section, we extend some fundamental notions
of conventional linear system theory to linear systems
over Rmin. From now on, for the sake of brievity, by
‘linear systems’ we mean ‘continuous linear systems
over Rmin’.

We recall that our admissible input signal set is
R
R

min. If we come back to Definition 8 of linearity, it
is realized that this set has been endowed with two
operations, namely:

• pointwise minimum (i.e. addition in Rmin) of
time functions, which plays the role of addition
of signals:

∀t, (u⊕ v)(t)
def
= u(t)⊕ v(t) = min(u(t), v(t)) ;

4not only nondecreasing time functions, that is, we can also
withdraw some fluid from the reservoir (without any limitation of
flow)



• addition of (i.e. product in Rmin by) a constant,
which plays the role of external product of a sig-
nal with a scalar:

∀t, (a · u)(t)
def
= a⊗ u(t) = a + u(t) .

Then, the set of signals is endowed with a kind of
vector space structure on which we shall not further
elaborate here.

The next step is to introduce a sort of ‘canonical
basis’ for this algebraic structure. Classically, for time
functions, this basis is provided by the Dirac function
at 0, and all its shifted versions at other time instants.
Therefore, we now introduce:

e(·) : t �→ e(t)
def
=

{
e if t = 0 ;
ε otherwise, (27)

and

δs(·) def
= ∆s(e(·)) i.e. δs(t) = e(t− s), ∀t . (28)

The justification of the notation e(·) will come from
the fact that this particular signal is the identity el-
ement for inf-convolution which will soon be consid-
ered as the internal product in the signal set. Indeed,
it can be checked by direct calculation that:

∀u, ∀t, u(t) = �
∫

s

u(s)⊗ e(t− s) , (29)

or otherwise stated

u = �
∫

s

u(s) · δs . (30)

This is the decomposition of signals on the canonical
basis. It is unique since, if there exist numbers vs such
that u = �

∫
svs · δs, because of identity (29) applied to

the family {vs}, we conclude that vt = u(t),∀t. Then
we can state the following theorem which introduces
the notion of impulse response.

Theorem 13 Let S be a linear system, then there
exists a unique function k(t, s) (called impulse re-
sponse) such that y = S(u) can be obtained by:

∀t, y(t) = inf
s

[k(t, s) + u(s)] = �
∫

s

k(t, s)⊗ u(s) ,

(31)
for all input-output pairs (u,y).

Proof From (29) and (28), it follows that

y(t) = [S(u)](t) = S

(
�
∫

s

u(s)⊗ δs(t)
)

,

which, thanks to the linearity and continuity assump-
tions, implies

y(t) = �
∫

s

u(s)⊗ [S(δs)](t) = �
∫

s

k(t, s)⊗ u(s) ,

where we have set

k(t, s)
def
= [S(δs)](t) .

To prove uniqueness, suppose that there exists an-
other function κ(·, ·) which verifies (31). Using inputs
u = δs, ∀s and ∀t, we get:

k(t, s)
def
= [S(δs)](t)

= �
∫

τ

κ(t, τ)⊗ δs(τ)

= κ(t, s) ,

where the last equality is an application of (29) to the
function κ(t, ·).

Definition 14 A linear system S is called time-
invariant if it commutes with all delay operators, that
is:

S(∆d(u)) = ∆d(S(u)), ∀u, ∀d .

Theorem 15 A system S is time-invariant if and
only if its impulse response k(t, s) depends only on
the difference t − s, i.e., with the usual abuse of no-
tation:

k(t, s) = k(t− s) ,

with k(·) = [S(e)](·).

Proof

k(t, s)
def
= [S(δs)](t) = [S(∆s(e))](t)
= [∆s(S(e))](t) = [S(e)](t− s) .

Consequently, in the time-invariant case, the input-
output relation can be expressed as follows

y(t) = (k ⊗ u)(t)
def
= �

∫
s

k(t− s)⊗ u(s) .

This new operation, also denoted ⊗, is nothing but
the inf-convolution [19] which plays the role of con-
volution in our theory. The impulse response associ-
ated with a time-invariant linear system and a signal
are both time functions. Serial cascade of systems
corresponds to inf-convolution, the mulptiplication of
the dioid of time functions. Parallel cascade corre-
sponds to pointwise minimum of functions, the ad-
dition of the dioid. The null element is the function
ε(·) : t �→ ε,∀t which is absorbing for multiplication
(i.e. such an input yields an output equal to the in-
put through any linear system), whereas the identity
element has been described by (27). This dioid of
time functions is denoted S. It is commutative and
complete.
Remark 16 So far, three different complete and
commutative dioids have been considered, and conse-
quently three different meanings of ⊕ and ⊗ have
been used. As usual, the context should indicate
which one is meant, according to the nature of ele-
ments on which these binary operations operate. The
following table recalls these three dioids. If we restrict
ourselves to time-invariant linear systems which con-
stitute a subdioid of the dioid in the second row, there
is a one-to-one correspondence between this and the
dioid S. This correspondence is compatible with the
dioid structure (we say it is a dioid isomorphism).



Dioid ⊕ ⊗
Scalars Rmin min +

Systems Σ parallel
cascade

serial
cascade

Impulse
responses
Signals

S
pointwise

min
inf-

convolution

Table 1: Three dioids

Definition 17 A linear system S is called causal if,
for all inputs u1 and u2 with corresponding outputs
y1 and y2,

u1(t) = u2(t) for t ≤ τ ⇒ y1(t) = y2(t) for t ≤ τ .

Theorem 18 A system S is causal if its impulse re-
sponse k(t, s) = ε for s > t.

Proof It suffices to recall that k(t, s) = [S(es)](t)
and that, for t < s, es(·) coincides with ε(·).
In the time-invariant case, the condition is simply:

k(t) = ε for t < 0.
Example 19 We consider the three elementary sys-
tems introduced at § 4.4: they are time-invariant lin-
ear systems. Let us give their impulse responses.

γc(t)
def
= [Γc(e)](t) =

{
c if t = 0 ;
ε otherwise.

(32)

δd(t)
def
= [∆d(e)](t) =

{
e if t = d ;
ε otherwise.

(33)

ωβ(t)
def
= [Ωβ(e)](t) =

{
ε if t < 0 ;
βt otherwise. (34)

Of course, (33) is the same as (28), and (34) is the
same as (24) but stated in the notation of Rmin. No-
tice also that γ0 = δ0 = e and that ωβ

pointwise−→ e when
β → ε = +∞.

6 Transfer Functions

6.1 Evaluation Homomorphism

In this section, we discuss the notion of transfer func-
tion associated with time-invariant min-plus linear
systems. Transfer functions are related to impulse
responses by a transformation which plays the role
of the Fourier transform in conventional system the-
ory, and which is, in our case, close to the Fenchel
transform of convex analysis [19]. The main discrep-
ancy with the usual case is that transfer functions are
not in a one-to-one correspondence with impulse re-
sponses: only a subclass of impulse responses, namely
those which are convex lower semi-continuous (l.s.c.)
time functions are fully characterized by their trans-
fer functions.

For all signals or impulse responses, we recall the
formula (30) in S. Notice that, in general, c · f where

c ∈ Rmin and f ∈ S can also be written γc⊗f . There-
fore, (30) can also be written:

u = �
∫

s∈R
γu(s) ⊗ δs ,

which is closer to the notation used in [7] in discrete
time and for integer-valued functions. The dioid S
endowed with the external multiplication by scalars
is called the ‘algebra of impulse responses’ and δ may
be viewed as the ‘algebraic generator’ of the algebra.

With an impulse response f , we associate a trans-
fer function g which will be a numerical function from
Rmin to Rmin: this function is evaluated essentially
by formally substituting a numerical variable in Rmin
for the generator δ, and by evaluating the resulting
expression using the calculation rules of Rmin. This
substitution of a numerical variable for the genera-
tor should be compared with what one does in con-
ventional system theory when substituting numeri-
cal values in C for the formal operator of derivation
(denoted s) in continuous time, or the shift operator
(denoted z) in discrete time.

Definition 20 For f ∈ S (written as in (30), namely
f = �

∫
tf(t) · δt), let

g : x ∈ Rmin �→ �
∫

t

f(t)⊗ xt ∈ Rmin . (35)

Then g is called the transfer function associated with
f . The mapping

F : f �→ g

is called the evaluation homomorphism.

The term ‘homomorphism’ is justified if we endow

the set of numerical functions R
Rmin
min with the following

algebraic structure denoted Cv(Rmin) (this adds a new
row to Table 1):

Dioid ⊕ ⊗
Transfer
functions Cv(Rmin)

pointwise
min

pointwise
+

Table 2: Another dioid

We let the reader check that F is a continu-
ous 5 homomorphism from the dioid S onto the dioid
Cv(Rmin).
Example 21 The following formulæ (in conventional
notation) can also be established:

F (γc) (x) = c, ∀x ;

F
(
δd

)
(x) = d× x, ∀x ;

F (ωβ) (x) =
{−∞ if x ≤ −β ;

0 otherwise.

5in the sense of Definition 9



Let us examine how F can be interpreted by going
back to conventional notation. We have:

g(x) = inf
t

[tx + f(t)] (36)

= − sup
t

[t(−x)− f(t)] ,

which shows that [F(f)](x) = −[Fe(f)](−x), if Fe

denotes the classical Fenchel transform. From (36),
it is seen that all transfer functions are concave u.s.c.
(upper-semi-continuous) (as the lower hull of a family
of affine functions). We recall that the Fenchel trans-
form converts inf-convolutions into pointwise (con-
ventional) addition: this is consistent with the choice
made for multiplication in Cv(Rmin).

6.2 Convex l.s.c. Impulse Responses
It is well known that the Fenchel transform only char-
acterizes convex l.s.c. functions, or otherwise stated,
all functions having the same convex l.s.c. hull have
the same Fenchel transform.
Example 22 δ ⊕ δ2 has the same transfer function
as �

∫ 2
1 δt, namely x⊕ x2.

Therefore, F cannot be an isomorphism; it is only an
epimorphism (surjective homomorphism). Otherwise
stated, the equation

F(f) = g , (37)

where the right-hand side g ∈ Cv(Rmin) is given (f ∈ S
is the unknown), always has solutions, but the solu-
tions are in general not unique. Residuation theory
[1] addresses such an issue and provides a notion of
pseudoinverse for F denoted F +. Such a mapping
from Cv(Rmin) to S does exist because F is continu-
ous. Then

fc = F +(g) (38)

is the greatest solution 6 of (37) (that is, the least
solution with respect to conventional order).

Let us give an explicit expression for (38). A sub-
solution f(·) of (37) is defined by:

�
∫

t

f(t)⊗ xt � g(x), ∀x

⇔ f(t) � g(x)⊗ x−t, ∀x,∀t .

Therefore, the greatest subsolution fc is given by:

fc(t) =
∧
x

g(x)⊗ x−t . (39)

In conventional notation, this reads

fc(t) = sup
x

[g(x)− xt] ,

from which it is clear that fc is convex l.s.c. (as the
upper hull of a family of affine functions). This is
indeed the convex hull of all f in the subset F−1(g)
(the convex hull is less that all such f with respect
to ≤, hence it is the greatest such f with respect to
�). We summarize the above considerations in the
following theorem.

6indeed ‘subsolution’ in the general theory, but here ‘solution’
since F is surjective

Theorem 23 The subset F−1(g) admits a maximum
element 7 fc which is given by (39) and which is the
convex hull of all f in the same subset.

Remark 24 The expression xt (power function of
x) appearing in (35), where x and t are both in Rmin
means x×t in conventional notation and it can also be
written tx in Rmin (exponential function of x). Writ-
ing it tx in (35) shows that concave u.s.c. functions
(of x) may be considered as integrals of ‘weighted’—
by f(t)—exponentials. The analogy of F with the
Fourier or Laplace transform is then more explicit.
However, in the expression of the ‘inverse’ transform
F + (see (39)), for symmetry reasons, the notation x−t

should be kept, and convex l.s.c. functions appear as
lower bounds of ‘weighted’ exponentials.

Indeed, the symmetry with respect to the pair of
dual variables t and x—the latter being denoted jω
or s for Fourier or Laplace transform—is preserved
in the usual case by the notation exp(t × x). An
analogous notation here would be 1t×x which is the
same as xt or tx in Rmin.

Remark 25 Observe that the subset of convex l.s.c.
impulse responses (let us denote it Scx) is stable by
multiplication (inf-convolutions of convex l.s.c. func-
tions yield convex l.s.c. functions), but not by addi-
tion (the lower hull of convex functions is not in gen-
eral a convex function; it is rather stable by ∧, that
is pointwise supremum). Therefore, this subset is not
a subdioid of S. However, since F is a ⊗-morphism,
and since Scx is in a one-to-one correspondence with
Cv(Rmin), we have

∀fc, hc ∈ Scx, fc ⊗ hc = F + (F(fc)⊗F(hc)) ,

in which we recall that the sign ⊗ on the left-hand
side means ‘inf-convolution’, whereas it means point-
wise + on the right-hand side. Using the explicit
expression of F and F +, the formula above may be
rewritten:

∀t, [fc ⊗ hc](t) =
∧
x

�
∫

θ

�
∫

τ

fc(θ)⊗ hc(τ)⊗ xθ+τ−t .

Remark 26 From residuation theory, it is known
that since F is surjective,

F◦F +(g) = g, ∀g ∈ Cv(Rmin) . (40)

It means that, ∀g ∈ Cv(Rmin) and ∀y ∈ Rmin,

�
∫

t

(∧
x

g(x)⊗ x−t

)
⊗ yt = g(y) . (41)

From the point of view of convexity, this can be
proved by using a saddle-point argument (interchange
of sup with inf for convex-concave functions).

7i.e. a least upper bound which belongs to the subset



6.3 Concave u.s.c. Impulse Re-
sponses

Unlike Scx which is stable for multiplication but not
for addition, the subset of concave u.s.c. impulse
responses—let us denote it Scv—is stable for addi-
tion and multiplication. Unfortunately, it does not
contain the identity element e(·) which belongs to Scx

but not to Scv. Therefore, Scv is not a subdioid of S
either.

The intersection of Scx and Scv is the subset
of linear—in the conventional sense—functions of t
{,a(·) | a ∈ R, ,a : t �→ a × t}. Referring back to
Remark 24, ,a is an exponential in S (,a(t) = at). As
already observed, concave functions are integrals of
weighted exponentials, that is, ∀fv ∈ Scv, there exist
‘coordinates’ {f̃v(a)}a∈R such that:

∀t, fv(t) = �
∫

a

f̃v(a)⊗ at . (42)

This is a ‘spectral’ decomposition of concave func-
tions on the ‘basis’ of exponentials. As a matter of
fact, we are going to prove that exponentials, used as
input signals, are ‘eigenfunctions’ for time-invariant
linear systems, in the same way as sine functions are
eigenfunctions in conventional system theory.

Theorem 27 For all impulse responses h ∈ S and
all scalars a, we have

h⊗ ,a = λ · ,a with λ = [F(h)](−a) .

Proof In conventional notation,

inf
s

[h(s) + a(t− s)] = inf
s

[h(s) + (−a)s] + at .

To complete the proof, it suffices to go back to dioid
notation and to remember (36).

Remark 28 Concentrating our attention on the ‘vec-
tor space’ structure, that is forgetting the internal
product ⊗, the identity mapping I : Scv → Cv(Rmin)
is an homomorphism for this structure. Then using
identity (41) for g = I(fv), for any fv ∈ Scv, we ob-
tain an explicit formula for the ‘coordinates’ f̃v(a)
involved in (42), namely

f̃v(a) =
∧
t

fv(t)⊗ a−t .

Observe that a �→ f̃v(a) is convex l.s.c.

Remark 29 Using distributivity of ⊗ (inf-
convolution in S) with respect to �

∫
, we have, ∀fv ∈

Scv, and ∀h ∈ S,

h⊗ fv = h⊗
(
�
∫

a

f̃v(a) · ,a

)
= �

∫
a

f̃v(a) · (h⊗ ,a)

= �
∫

a

(
f̃v(a)⊗ [F(h)](−a)

)
· ,a ,

which also belongs to Scv.
In conclusion, the subset Scv of concave u.s.c. func-

tions correspond to functions of L2 in conventional
system theory, which admit a decomposition over the
basis of sine functions (here exponentials).

7 About monotone input time
functions

In the examples considered in § 2 and serving as a
motivation for this theory, it has been realized that
meaningful inputs u(·) are nondecreasing—in the con-
ventional sense—time functions, i.e., with the order
of Rmin,

u(t) � u(t + θ), ∀t,∀θ ≥ 0 . (43)

To avoid ambiguity, we say ‘monotone’ to mean prop-
erty (43) throughout this section. We are going to
show that the subset of S of monotone functions is
a kind of ‘ideal’ which is also a dioid, and that out-
puts and impulse responses of time-invariant linear
systems can also naturally be constrained to lie in
this ideal.

Let
e = �

∫
θ≥0

δ−θ .

Lemma 30

1. One has that
e⊗ e = e ; (44)

2. an element u ∈ S is monotone if and only if it
satisfies

u = e⊗ u ; (45)

3. given u ∈ S, then u
def
= e⊗u is the least monotone

element of S which is larger than u (in the sense
of �);

4. the following defines an equivalence relation

u ≡ v ⇐⇒ e⊗ u = e⊗ v , (46)

which is compatible with the dioid structure of S
(and the external product · with scalars). There-
fore, the quotient of S by this equivalence rela-
tion has the same algebraic structure as S and it
is isomorphic to

e⊗ S
def
= {e⊗ u | u ∈ S} . (47)

Proof

1. e⊗ e = �
∫

θ≥0
�
∫

τ≥0δ
−(θ+τ) = �

∫
t≥0δ

−t = e;

2. the condition (43) is equivalent to

u � δ−θ ⊗ u, ∀θ ≥ 0 ⇔ u =
(
�
∫

θ≥0
δ−θ

)
⊗ u ;

3. if u = e⊗u, then u � u since e � δ0 = e, and u is
monotone since it verifies (45) thanks of (44). On
the other hand, for any v such that v � u and v
monotone, one must have v = e⊗ v � e⊗u = u;



4. this part of the proof is left to the reader who
may refer to [7] in which similar results are
proved.

Indeed, it can be checked that point 4 of the lemma,
and the following considerations, extend to any sit-
uation when some e (not necessarily that related to
nondecreasing functions) satisfies (44).

With this lemma at hand, it is realized that if we
restrict ourselves to monotone inputs, then outputs
are automatically monotone and impulse responses
can also be restricted to be monotone, that is the
‘world’ can be restricted to the ‘ideal’ (47). As a
matter of fact, considering any time-invariant linear
system characterized by its impulse response h, and
a monotone input u, we have

y = h⊗ u = h⊗ e⊗ u = (e⊗ h)⊗ u = e⊗ y ,

which shows that y is monotone and that h can be
replaced by its monotone version e⊗ h.

We end this section by giving the monotone ver-
sions of (32), (33) and (34).

γc(t) =
{

c if t ≤ 0 ;
ε otherwise.

δd(t) =
{

e if t ≤ d ;
ε otherwise.

ωβ(t) =
{

e if t ≤ 0 ;
βt otherwise.

(recall that β ≥ 0).
Remark 31 Observe that, in e ⊗ S, impulse re-
sponses h(·) of causal time-invariant linear systems
are no longer characterized by the condition h(t) = ε,
∀t < 0.

8 Rational Systems
In this section, we are interested in subsets of func-
tions in S which can be ‘finitely generated’. More
precisely, we consider a subset of S, say K, contain-
ing ε and e and some other ‘generating’ elements, and
we define its dioid closure and its rational closure.
We give ‘realizations’ of rational elements which are
particular representations of these rational systems
by elementary (or ‘generating’) systems cascaded in
parallel, series and feedback. In particular cases, ra-
tional systems are characterized by periodic impulse
responses.

Definition 32 The dioid closure K◦ of K relative to
S is the least subdioid of S containing K.

This definition is well-posed since the set of subdioids
containing K is nonempty (it contains S itself) and
this set has a minimum element (for the order relation
⊂) since the intersection (greatest lower bound) of a
collection of subdioids is a subdioid. The terminology
‘closure’ is justified because (K◦)◦ = K◦. Clearly, K◦

consists of all elements of S which can be obtained
by a finite number of operations ⊕ and ⊗ involving
elements of K only.

The idea now is to consider affine equations of the
type

y = h⊗ y ⊕ b , (48)
with data h and b in K◦. The least solution h∗ ⊗ b
(see Theorem 12) does not necessarily belong to K◦

since the star operation involves an infinite sum. So
doing, one may produce elements out of K◦ from data
in K◦. One can then use these new elements as data
of other affine equations, and so on and so forth. The
‘rational closure’ of K, hereafter defined, is essentially
the stable structure that contains all elements one can
produce by repeating these operations a finite number
of times.

Definition 33 The rational closure K∗ of K ⊂ S, is
the least subdioid of S containing K and all finite
sums, products and star operations over its elements.

This definition is well-posed for the same reason as
before. Moreover, it is clear that (K◦)∗ = (K∗)∗ = K∗.

Before proceeding futher let us give some examples.
Example 34 Let K = {ε} ∪ {γc}c∈R ∪ {δ}. Then
K◦ may be considered as the subdioid of polynomials
in δ with coefficients in Rmin since γc ⊗ δn = c · δn,
and K∗ is the subdioid of ‘rational’ power series. As
functions of time, they can take any value in R on N
and the value +∞ elsewhere.

Example 35 Here, we limit ourselves to the sub-
dioid e ⊗ S of monotone functions. We take K =
{ε}∪{γc}c∈R∪{δ}. The subdioid K∗ of rational power
series in δ includes time functions wich are nonde-
creasing, piecewise constant, continuous to the left,
with values in R and discontinuities on N.

Example 36 Here we restrict K to be {ε, e, γ, δ} ⊂
e⊗S. The main difference with the previous example
is that functions are now integer valued.

Example 37 We take K = {ε}∪{γc}c∈R∪{ωβi
}i∈I ⊂

e ⊗ S, where I is a finite set and βi ≥ 0,∀i ∈ I.
According to the forthcoming theorem 40, the corre-
sponding functions of time t are nondecreasing, they
take the value e = 0 for t ≤ 0, they are piecewise
linear and concave on t ≥ 0, with slopes belonging to
the set {βi}∈I .

Example 38 We take K = {ε, e, γ, δ} ∪ {ωβi
}i∈I ⊂

e ⊗ S. We get nondecreasing functions, with jumps
located on N, piecewise linear elsewhere, with slopes
belonging to {βi}∈I .

The following realization theorem is Theorem 19 of
[7]. It states that, to obtain elements of K∗, it suffices
to arrange a finite number of systems with impulse
responses in K◦ in parallel and serial cascades, and
with a single level of feedback loops (algebraically, a
single level of star operations).

Theorem 39 For all h ∈ K∗, there exist n ∈ N and
{(ai, bi)}i=1,...,n ⊂ K◦ such that:

h =
n⊕

i=1

ai ⊗ (bi)∗ . (49)



The problem of ‘minimal realization’ is yet unsolved.
The following theorem deals with the case of Ex-

ample 37.

Theorem 40 With the choice of K made in Exam-
ple 37, any h ∈ K∗ can be written:

h =
⊕
i∈I

ci · ωβi
with ci ∈ Rmin,∀i ∈ I . (50)

Proof This is indeed a corollary of Theorem 39.
First, remember that γc ⊗ u = c · u. Second, recall
the rules (25)–(26) which also apply to the ωβi

. It is
then immediate to see that expressions such as (49)
reduce to (50). Moreover, K∗ is the same as K◦ in
this case.

The following theorem is Theorem 21 of [7]. It deals
with Example 36.

Theorem 41 With the choice of K made at Exam-
ple 36, any h ∈ K∗ can be written:

h = p(γ, δ)⊕
[
γν ⊗ δ

τ ⊗
(
γr ⊗ δ

s
)∗
⊗ q(γ, δ)

]
,

where ν, τ, r, s ∈ N, p(γ, δ) is a polynomial of maxi-
mum degree ν−1 in γ and τ −1 in δ with coefficients
in {ε, e}, and q(γ, δ) is a similar polynomial of maxi-
mum degree r − 1 in γ and s− 1 in δ.

The above form expresses a periodic behavior of the
impulse response h: p represents the transient part
and q represents a pattern of ‘width’ s and ‘height’
r which is reproduced indefinitely after the transient
part of the response.

Finally, the following theorem is just the synthesis
of the last two theorems and it deals with Example 38.

Theorem 42 With the choice of K made at Exam-
ple 38, any h ∈ K∗ can be written as in Theorem 41,
with polynomials p and q of the same degrees in γ
and δ, but with coefficients linear in the ωβi

.

9 Conclusion
In this paper, a ‘min-plus linear system’ theory has
been developped as an extension of that presented in
[7], and it has been shown that its scope is not limited
to discrete event systems. Continuous or mixed sys-
tems subject to synchronization and saturation con-
straints are also encompassed. Such systems can be
characterized by their impulse responses, and, in the
case of time-invariant systems, the responses to gen-
eral input functions are obtained by inf-convolutions.
A notion of transfer function has also been associated
with the impulse response by a transform closely re-
lated to the Fenchel transform. However, only im-
pulse responses which are convex l.s.c. time func-
tions are unambiguously characterized by their asso-
ciated transfer functions. Another class of impulse
responses, namely concave u.s.c. time functions, can
be decomposed on a basis of eigenfunctions which are
exponential functions of our algebra, and which play
the role played by sine functions in conventional linear
system theory. Finally, issues pertaining to rational-
ity of some subclasses of systems have been addressed.
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