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Abstract

We show that a typical class of timed concurrent systems can be modeled
as automata with multiplicities in the (max,+) semiring. This representation
can be seen as a timed extension of the logical modeling in terms of trace
monoids. We briefly discuss the applications of this algebraic modeling to
performance evaluation.

1 Introduction

Different variations of (stochastic) queuing networks with precedence-based rela-
tions between customers have been studied for quite a long time in the performance
evaluation community, see [3, 5, 20]. In the combinatorics community on the other
hand, concurrent systems are usually modeled in terms of traces —elements of free
partially commutative monoids—, see [8, 11]. An equivalent formalism is that of
heaps of pieces [19].

One of the purposes of this note is to bridge the gap between the two approaches.
In the first part of the paper, we establish the relations between the models. An
important feature is that execution times of these models can be represented as finite
dimensional (max,+) linear dynamical systems. In an essentially equivalent way,
they are recognized by automata with multiplicities in the (max,+) semiring. The
existence of similar (max,+) models was already noticed in the context of queuing
theory [20, 7]. Their analogue for trace monoids seems to be new.

In the second part of the paper, we apply this algebraic modeling to performance
evaluation problems. We present asymptotic results on the existence of mean exe-
cution time for random schedules, and for optimal and worst schedules. They are
obtained by appealing to subadditive arguments borrowed from the theory of ran-
dom (max,+) matrices [1].

At last, we apply the machinery of (max,+) rational series to the exact computa-
tion of the asymptotic worst case mean execution time, when the set of admissible
schedules is given by a rational language.
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Some generalizations of Task Resource models will be considered in a forth-
coming paper [16] (heaps of pieces with arbitrary shapes, for which all the results
can be extended). These models provide an algebraic framework to handle schedul-
ing problems.

2 Basic Task Resource Model

2.1 General Presentation

Definition 2.1 (Task Resource System). A (timed) Task Resource system is a 4-
uple T = (A;R; R; h) where:

� A is a finite set whose elements are called tasks.

� R is a finite set whose elements are called resources.

� R : A ! P(R) gives the subset of resources required by a task. We assume
that each task requires at least one resource: 8a 2 A; R(a) 6= ;.

� h : A ! R
+ gives the execution time of a task.

A length n schedule is a sequence of n tasks a1; : : : ; an, that we will write as
a word1 w = a1 : : : an. The functioning of the system under the schedule w is as
follows.

1. All the resources become initially available at time zero.

2. Task ai begins as soon as all the required resources r 2 R(ai) used by the earlier
tasks aj; j < i, become free, say, at time ti.

3. Task ai uses each resource r 2 R(ai) during h(ai) times units. Thus, resource
r is released at time ti + h(ai).

The execution time or makespan of the schedule w = a1 : : : an is the completion
time of the latest task of the schedule (which is not necessarily an):

y(w)
def
= max

16i6n
(ti + h(ai)) : (2.1)

Task Resource systems are intimately related with the classical trace monoids that
we next define.

Definition 2.2. A dependence alphabet is an alphabetA equipped with a reflexive
symmetric relation called dependence relation, denotedD, and written graphically
—. We denote by I the complement of D (called independence relation).

1We recall the following usual notation. Given a finite set (alphabet) A, we denote by An the
set of words of length n on A. We denote by A� the free monoid on A, that is, the set of finite
words equipped with concatenation. The unit (empty word) will be denoted e. We denote byA+ =

A� n feg the free semigroup on A. The length of the word w will be denoted jwj. We shall write
jwja for the number of occurrences of a given letter a in w.
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Definition 2.3. The trace monoid M (A;D) is the quotient of the free monoid A�

by the congruence � generated by the relations ab = ba;8a I b. The elements of
M (A;D) will be called traces.

Let alph(w) denote the set of letters appearing in word w. The word w � w is
a Cartier-Foata normal form of w [8, 11] if we have a factorization w = u1 : : : up,
ui 2 A

+, such that:

a; b 2 alph(ui)) a I b; a 2 alph(ui)) 9b 2 alph(ui�1); aD b : (2.2)

Such a normal form is unique up to a reordering of the letters inside factors. We
shall denote by `(w) = p the length (number of factors) of the normal form of w.

With each Task Resource system is associated a dependence relation over the
alphabetA; tasks are dependent when they share some resource:

aD b, R(a) \R(b) 6= ; : (2.3)

Conversely, starting from an arbitrary trace monoidM (A;D), one can build an as-
sociated Task Resource system. For example, one can considerT = (A;R; R; h �

1) with R = ffa; bg j aD bg and R(a) = fr 2 R j a 2 rg.

Proposition 2.4. (i) When h � 1, y(w) = `(w): the makespan is equal to the
length of the Cartier-Foata normal form of w. (ii) For general execution times h,

y(w) = max

pX
j=1

h(aij) ; (2.4)

where the max is taken over the subwords ai1 : : : aip of w = a1 : : : an, composed of
consecutive dependent letters (i.e. aij D aij+1).

The first assertion is classical [9]. It implies in particular that the makespan of
Task-Resource systems with h � 1 can be represented in a more intrinsic way in
terms of trace monoid. The second one can easily be proved by elementary means,
or deduced from the (max,+)-linear representation given below. It provides an al-
ternative formula for (2.1).

Example 2.5. For the sequential dependence alphabet aD b, we have y(w) =

h(a)jwja + h(b)jwjb. For the purely parallel dependence alphabet a I b, we have
y(w) = max(h(a)jwja; h(b)jwjb).

Example 2.6 (Ring Network). Consider a ring shaped communication network
with k stationsR = fr1; : : : ; rkg. Messages can be sent between neighbor stations.
The possible messages are A = fa1; : : : ; akg where ai corresponds to a commu-
nication between ri and ri+1 (with the convention k + 1 = 1). Therefore, we have
R(ai) = fri; ri+1g. This system can also be viewed as a variant of the classical din-
ing philosophers model [12] (replace stations by chopsticks, messages by philoso-
phers). E.g., for k = 5, y(a1a2a4a1a5) = max(2h(a1) + h(a2) + h(a5); h(a4) +

h(a5)) (direct application of 2.4,(ii) since the maximal dependent subwords taken
from a1a2a4a1a5 are a1a2a1a5 and a4a5).
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2.2 Linear Representation over the (max,+) Semiring

Definition 2.7. The (max,+) semiring Rmax is the set R [ f�1g, equipped with
max, written additively (i.e. a� b = max(a; b)) and the usual sum, written multi-
plicatively (i.e. a
 b = a+ b). We write " = �1 for the zero element, and e = 0

for the unit element.

We shall use throughout the paper the matrix and vector operations induced by
the semiring structure2. The identity matrix (Iii = e; Iij = "; i 6= j) with entries
indexed by X will be denoted by IX . The row vector with entries indexed by X

and all equal to e will be denoted by eX . We denote by kMk =
L

ij Mij (resp.
kvk =

L
i
vi) the (max,+) norm of a matrix M (vector v).

A (max,+) automaton3 of dimension k over the alphabetA is a triple (�;M; �),
where � 2 R1�k

max, � 2 R
k�1
max, and M is a morphism from A� to the multiplicative

monoid of matrices Rk�k
max. A map y : A� ! Rmax is recognizable if there is an

automaton such that y(w) = �M(w)�.

In a spirit closer to discrete event systems theory, automata may be seen as
(max,+) linear systems whose dynamics is indexed by letters. Indeed, introducing

the “state vector” x(w)
def
= �M(w) 2 R1�k

max, we get

x(e) = �; x(wa) = x(w)M(a); y(w) = x(w)� ; or (2.5)

y(a1 : : : an) = �M(a1) : : :M(an)� : (2.6)

Definition 2.8 (Task & Resource Daters). A dater over the alphabetA is a scalar
mapA� ! R[f�1g. With each task a 2 A is associated a task dater xa: xa(w)
gives the time of completion of the last task of type a in the schedule w. With each
resource r 2 R is associated a resource dater xr: xr(w) gives the last instant of
release of the resource r under the schedule w. We shall denote by xA and xR the
vectors of task and resource daters.

Note the important duality relations

xa(w) =
M
r2R(a)

xr(w); xr(w) =
M

a2R�1(r)

xa(w) : (2.7)

We identify each subset R(a) with a boolean matrix of size jRj � jAj denoted
I(a).

8a 2 A;I(a)rb =

�
e if r 2 R(a) and b = a

" otherwise :

2I.e. for matrices A;B of appropriate sizes, (A � B)ij = Aij � Bij = max(Aij; Bij), (A 

B)ij =

L
k Aik 
Bkj = maxk(Aik +Bkj), and for a scalar a, (a
A)ij = a
Aij = a+Aij.

We will abbreviate A
 B to AB as usual.
3This is a specialization to theRmax case of the notion of automaton with multiplicities over a

semiring (or equivalently, of recognizable series over a semiring). See [13, 6].
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We define the following matrices:

8a 2 A; MR(a) = IR � h(a)I(a)I(a)T ; (2.8)

MA(a) = IA � h(a)

 M
b

I(b)T

!
I(a) ; (2.9)

or more explicitly

MR(a)rs =

8><
>:
e if r = s; s 62 R(a),

h(a) if r 2 R(a); s 2 R(a),

" otherwise.

(2.10)

MA(a)bc =

8><
>:
e if a 6= (b = c),

h(a) if a = c; bDc,

" otherwise.

(2.11)

We extend MA (resp. MR) to a morphismA� ! R
A�A
max (resp. A� ! R

R�R
max ).

Theorem 2.9. The dater functions of task resource systems admit the following lin-
ear representations over the (max,+) semiring:

xR(wa) = xR(w)MR(a); xR(e) = eR ; (2.12)

xA(wa) = xA(w)MA(a); xA(e) = eA ; (2.13)

y(w) = kxA(w)k = kxR(w)k = kMA(w)k = kMR(w)k : (2.14)

In other words, y is recognized both by the resource automaton (eR;MR; e
T
R)

and by the task automaton (eA;MA; e
T
A).

Proof. We have

xa(wb) =

(
xa(w) if a 6= b,

maxr2R(a) xr(w) + h(a) if a = b,
(2.15)

xr(e) = xa(e) = e : (2.16)

These relations are a simple translation of the functioning of the system, as de-
scribed after Definition 2.1 (items 1,2,3). Eliminating xr in (2.15) using (2.7), we
get the task equation

xa(wb) =

(
xa(w) if a 6= b

maxcDa xc(w) + h(a) if a = b.
(2.17)

Dually, it is not difficult to obtain the resource equation

xr(wa) =

(
xr(w) if R(a) 63 r

maxs2R(a) xs(w) + h(a) if R(a) 3 r.
(2.18)

Rewriting (2.17) and (2.18) with the semiring notations, we get (2.12),(2.13).
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Task AutomatonResource Automaton

s

ah(a)

R(a) = fr; sg
R(b) = frg
R(c) = fsg

r

ah(a)

a

b c b a c

bh(b)

ah(a)

bh(b)� a� c

ah(a)� b� c

ah(a)

ch(c)

bh(b)� ah(a)� c

ch(c)� ah(a)� b
ch(c)� a� b

Figure 1: Task and Resource Automata for b—a—c

Example 2.10. We consider a Task Resource model with dependence alphabet
b—a—c. In Fig. 1, we have represented4 the resource automaton (eR;MR; e

T
R)

and the task automaton (eA;MA; e
T
A) associated with the dependence alphabet

b—a—c. The matrices associated with the resource automaton are:

MR(a) =

�
h(a) h(a)

h(a) h(a)

�
;MR(b) =

�
h(b) "

" e

�
; MR(c) =

�
e "

" h(c)

�
:

The makespan y(w) is equal to the maximal weight of a path labeled w between
two arbitrary nodes of the graph. E.g., y(cba) = max(h(c) + h(a); h(b) + h(a)).

2.3 Interpretation in Terms of Heaps of Pieces

There is a useful geometrical interpretation of Task Resource Models in terms of
heaps of pieces. This interpretation was first noticed by Viennot for trace monoids.
The reader is referred to [19] for a more formal presentation. Imagine an horizon-
tal axis with as many slots as resources. With each letter a is associated a piece,
i.e. a solid “rectangle” occupying the slots r 2 R(a), with height h(a). The heap
associated with the word w = a1 : : : an is built by piling up the pieces a1; : : : ; an,
in this order. The makespan y(w) coincides with the height of the heap. The vector
xR(w) = eRMR(w) can be interpreted as the upper contour of the heap. Adding
one piece above the heap amounts to right multiplication by the corresponding ma-
trix.

Example 2.11. Consider the ring model of Example 2.6 with k = 4 and h � 1.
We have represented in Fig. 2.(I), the heap associated associated with the word

4An automaton (�;M; �) of dimension k over an alphabet A is usually represented as a graph
with nodes 1; : : : ; k, and three kinds of labeled and weighted arcs. There is an internal arc i ! j

with label a 2 A and weight M(a)ij whenever M(a)ij = t 6= ". We will write x at
! y but we

omit the unit valuations (when t = e). When there are two arcs x ! y with respective labels a; b

and weights t, t0, we shall write x
at�bt0

! y as a shorthand for the two arcs x
at
! y, x

bt0

! y. There
is an input arc at node i with weight �i, whenever �i 6= ". Output arcs are obtained in a dual way
from �.
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a1a2a3a4a4a3a2a1.

(III)

a3

a4

1 2 3 4

�eR = �(e; e; e; e)

a1

a2

(I)

��4 = �("; "; "; e)

�(eRMR(ww))

�(�4MR(ww))

�x0 = �(�2;�2; e; e)

(II)

�(x0MR(ww))

Figure 2: Heaps of pieces for a ring model.

3 Performance Evaluation

3.1 Stochastic Case

The simplest5 stochastic extension of task resource systems arises when the se-
quence of tasks is given by a sequence of random variables a(n) 2 A: we
get the random schedule wn = a(1) : : : a(n), and consider the asymptotics of
y(wn); x(wn), that we shall shorten to y(n); x(n). For stochastic Task Resource
models, we propose two types of asymptotic results.

1. First order limits or mean execution times x(n)i=n.

2. Second order limits or asymptotics of relative delays x(n)i�x(n)j (e.g. differ-
ences of last occupation times of the different resources).

Second order quantities are best defined in terms of (max,+) projective space. The
(max,+) projective space PRk

max is the quotient of Rk by the parallelism relation
x ' y , 9� 2 R, x = �y. We write � : Rk

max! PR
k
max the canonical projection.

The relative delays x(n)i � x(n)j can be computed from �x(n). Geometrically,
�x(n) corresponds to the upper shape of the heap (the quotient by' identifies two
heaps with the same upper contour but different heights, cf. Fig. 2,(I)).

5In order to simplify the presentation, we shall not consider more general cases with random
initial conditions, random executions times and random arrival times, which can be dealt with along
the same lines.
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We assume that the random variables a(n) are defined on a common probability
space (
;F ; P ), equipped with a stationary and ergodic shift �. We consider a con-
nected Task Resource system, i.e. such that the graph of the dependence relation
is connected (if it is not the case, the theorem has to be applied to each connected
sub-system).

Theorem 3.1. Let fa(n); n 2 Ng be a stationary and ergodic sequence (i.e. a(n+
1; !) = a(n; �(!))) of integrable random variables, such that 8b 2 A; P (a(1) =

b) > 0.

1. There exists a constant �E 2 R (stochastic Lyapunov exponent) such that, 8i 2
A [R,

lim
n

x(n)i

n
= lim

n
E

�
x(n)i

n

�
= �E P � a.s. (3.1)

2. Moreover, if the sequence fa(n); n 2 Ng is i.i.d. then the random variable
�x(n) converges in total variation to a unique stationary distribution.

Proof. In order to prove point 1, the main tool is the subadditivity of the sequence
fy(w) = kx(w)kg, more precisely:

8w1; w2 2 A
�; y(w1w2) 6 y(w1) + y(w2) : (3.2)

This property enables to apply Kingman’s subadditive ergodic theorem, see [1].
More generally, this result is just a special case of a general theorem on homoge-
neous and monotone operators, see [20] or [4] in this volume.

We show point 2 for the resource dater xR(w) = eRMR(w) (the behavior of
xA can be deduced easily from that of xR by appealing to (2.7)). The following
necessary and sufficient condition of existence and uniqueness of a stationary dis-
tribution for �xR(w(n)) is stated in [17]:

There is a word w such that the matrix MR(w) is of rank one,
with non-" entries.

The matrix MR(w) constitutes a regeneration pattern for the model. Indeed, the
rank one condition is equivalent to a forgetting of the initial condition.

8x0; x
0
0; �(x0MR(w)) = �(x00MR(w)) : (3.3)

This pattern enables us to use regeneration theory to obtain stability of the model.
The existence of the pattern is guaranteed by the following lemma.

Lemma 3.2. Let w = a1 : : : an be a path in the graph of the dependence relation
(i.e aiD ai+1), visiting all the nodes. Let ~w = an : : : a1 denote the mirror image of
w. The matrix MR(w ~w) is of rank one with non-" entries.
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Rather than proving formally the result (which can be done using representation
(2.8), (2.12) and the fact that I(a) has rank one), we provide a geometrical justifica-
tion using heaps of pieces. Condition (3.3) is equivalent to the following: the upper
shape of the heap is independent of the shape of the ground (which corresponds to
the initial condition). The property aiD ai+1 of the word w ~w means that the heap
is staircase shaped. It implies condition (3.3) as illustrated in the different heaps
(I),(II),(III) shown on Fig. 2 (corresponding to the respective initial conditions eR,
(�2;�2; e; e), ("; "; "; e)).

Remark 3.3. A result analog to Theorem 3.1, point 2. was proved by Saheb [18]
for trace monoids, using a Markovian argument. The advantage of the method pre-
sented here is that it can be applied to the various extensions mentioned in foot-
note 5.

3.2 Optimal Case and Worst Case

Given a language L � A� describing the set of admissible schedules, a natural
problem consists in finding an admissible schedule of length n with minimal or
maximal makespan. The following theorem shows the existence of an asymptotic
mean execution time, under optimal or worst case schedules. It can be seen as a
(weak) analogue for optimization problems of the first order ergodic theorem 3.1,1.

Theorem 3.4. 1. For a languageL such that L2 � L, the following limit (optimal
Lyapunov exponent) exists

�min(L)
def
= lim

n!1; An\L6=;
min

w2An\L

y(w)

n
= inf

w2L

y(w)

jwj
: (3.4)

2. For a bifix language L (such that uv 2 L ) u; v 2 L), the following limit
(worst Lyapunov exponent) exists

�max(L)
def
= lim

n!1
max

w2An\L

y(w)

n
= inf

n>1
max

w2An\L

y(w)

n
: (3.5)

Proof. Let mn = infw2An\L y(w). Since L2 � L, w 2 L \ An; z 2 L \ Ap )

wz 2 L\An+p. Using the subadditivity property (3.2), we get mn+p 6 mn +mp,
from which (3.4) readily follows. The argument for �max is similar.

The assumption that L2 � L for the optimal case is practically reasonable. For
instance, for usual scheduling problems, it is natural to impose a fixed proportion of
the different tasks, i.e. L = fw j jwja = rajwjg, for some fixed ra 2 R+;

P
a
ra =

1. Such a language satisfiesL2 � L. The restriction to bifix languages for the worst
case behavior is an artefact due to the subadditive argument.

The following theorem shows that the worst case performance can be exactly
computed for the subclass of rational schedule languages. The reader is referred to
[6] for the notation concerning series.
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Theorem 3.5. Consider the generating series of the worst case behavior, z =L
n2Nznx

n 2 Rmax[[x]], where zn = supw2An\L y(w). If the admissible language
L is rational, the series z is rational.

Proof. Let charL 2 RmaxhhAii denote the characteristic series6 of the language
L. Then, charL is rational. Introduce the morphism ' : RmaxhhAii ! Rmax[[x]]

such that 8a; '(a) = x. Recall that the Hadamard product of series is defined
by (s � t)(w) = s(w)t(w). Since rational series are closed under alphabetical
morphisms and Hadamard product, z = '(charL� y) 2 Rmax[[x]] is rational.

Corollary 3.6. Let �; �; � denote a trim linear representation of charL. Then,

lim sup
n

zn

n
= �(A); A =

M
a2A

�(a)
tMR(a) ; (3.6)

where � denotes the (max,+) maximal eigenvalue and
t the tensor product of ma-
trices.

This is an immediate consequence of the (max,+) spectral theorem, together
with the fact [13, 6] that charL � y is recognized by the tensor product of the
representations (�; �; �), (eR;MR; e

T
R) (see [15, x3.2] for details).

Remark 3.7. More generally, Theorem 3.5 holds for an algebraic (=context-free)
languageL and not only for a rational one. Indeed, it is an easy extension7 of Parikh
theorem [10] that algebraic series in several commuting indeterminates, with coef-
ficients inRmax, are rational. Since algebraic series are closed by Hadamard prod-
uct with recognizable series and alphabetical morphism, the above proof shows
that, when L is algebraic, the series z = '(charL� y) is algebraic, hence rational.
This shows that the generating series z of the worst case behavior of an algebraic
language L is rational. In this case, the effective computation of z, along the lines
of [10, Ch. XI] is less immediate, since it requires solving (max,+) commutative
rational equations.

Example 3.8. Consider the dependence alphabet b—a—c, together with the set of
admissible schedules L = (a� bc�b)�. Its characteristic series is recognized by

� = [e; "]; � = [e; "]T ; �(a) =

�
e "

" "

�
; �(b) =

�
" e

e "

�
; �(c) =

�
" "

" e

�
:

We get from Ex. 2.10 and (3.6),

A =

2
664

h(a) h(a) h(b) "

h(a) h(a) " e

h(b) " e "

" e " h(c)

3
775 ; �(A) = h(a)� h(c)� h(b) ;

6The coefficient of charL at w is equal to e if w 2 L, " otherwise.
7By algebraic series, we mean constructive algebraic series as defined in [14]. The argument

given in [10, Ch. XI] can be adapted to algebraic series in commuting indeterminates with coeffi-
cients in commutative idempotent semirings.
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where �(A) is obtained from its characterization as maximal mean weight of the
circuits of A [2]. Note that the different terms in �(A) are attained asymptotically
for the sequences of schedules an; n 2 N, bcnb; n 2 N, b2n; n 2 N (whose periodic
parts correspond to circuits of A).

Remark 3.9. Cérin and Petit [9] study the absolute worst case behavior �max
def
=

supw2L jwj
�1 � y(w). This can be obtained along the same lines:

�max = �(A)�
M

1�i�dimA

cAib ; (3.7)

where c = � 
t eR; b = � 
t eTR. These quantities can be computed in
O((dimA)3) steps (using Karp algorithm [2] for �(A)). Observe that the dual
quantity infw2L y(w)=jwj treated in [9] cannot be obtained by such simple argu-
ments due to its “min-max” structure.
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