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Abstract

We show that atypical classof timed concurrent systems can be modeled
as automata with multiplicitiesin the (max,+) semiring. This representation
can be seen as a timed extension of the logica modeling in terms of trace
monoids. We briefly discuss the applications of this algebraic modeling to
performance eval uation.

1 Introduction

Different variations of (stochastic) queuing networks with precedence-based rela-
tions between customers have been studied for quite along timein the performance
evaluation community, see[3, 5, 20]. Inthe combinatorics community on the other
hand, concurrent systems are usually modeled in termsof traces—elementsof free
partially commutative monoids—, see [8, 11]. An equivalent formalism isthat of
heaps of pieces[19].

One of the purposes of thisnoteisto bridge the gap between the two approaches.
In the first part of the paper, we establish the relations between the models. An
important featureisthat execution times of these model scan berepresented asfinite
dimensional (max,+) linear dynamical systems. In an essentially equivalent way,
they are recognized by automata with multiplicities in the (max,+) semiring. The
existence of similar (max,+) models was already noticed in the context of queuing
theory [20, 7]. Their analogue for trace monoids seems to be new.

Inthe second part of the paper, we apply thisa gebraic modeling to performance
evaluation problems. We present asymptotic results on the existence of mean exe-
cution time for random schedules, and for optimal and worst schedules. They are
obtained by appealing to subadditive arguments borrowed from the theory of ran-
dom (max,+) matrices[1].

At last, we apply the machinery of (max,+) rationa seriesto the exact computa-
tion of the asymptotic worst case mean execution time, when the set of admissible
schedulesis given by arational language.



2 S. Gaubert and J. Mairesse

Some generadlizations of Task Resource models will be considered in a forth-
coming paper [16] (heaps of pieces with arbitrary shapes, for which al the results
can beextended). These modelsprovidean algebraic framework to handle schedul -
ing problems.

2 Basic Task Resource M odel

2.1 General Presentation

Definition 2.1 (Task Resource System). A (timed) Task Resource systemis a 4-
uple7 = (A, R, R, h) where:

e A isafinite set whose elements are called tasks.

e R isafinite set whose elements are called resources.

e R : A — P(R) gives the subset of resources required by a task. W\e assume
that each task requires at least oneresource: Va € A, R(a) # 0.

e h: A — R givesthe execution time of a task.

A length n schedule is a sequence of n tasks a4, ... , a,, that we will write as
aword! w = ay...a,. Thefunctioning of the system under the schedule w is as
follows.

1. All the resources becomeinitially available at time zero.

2. Task a; beginsas soon asall therequired resourcesr € R(«;) used by the earlier
tasksa;,j < ¢, becomefree, say, at timet;.

3. Task a; uses each resourcer € R(a;) during ~(«a;) timesunits. Thus, resource
risreleased at timet; + h(a;).

The execution time or makespan of the schedule w = «aj; ... a, iSthe completion
time of the latest task of the schedule (which is not necessarily a,,):

def
y(w) € max (t; + h(as)) - (2.1)
Task Resource systems are intimately related with the classical trace monoids that
we next define.

Definition 2.2. A dependence aphabet is an alphabet A equipped with a reflexive
symmetric relation called dependencerelation, denoted D, and written graphically
—. We denote by 7 the complement of D (called independence relation).

'We recall the following usual notation. Given afinite set (alphabet) .4, we denote by A" the
set of words of length » on .4. We denote by .4 the free monoid on A, that is, the set of finite
words equi pped with concatenation. The unit (empty word) will be denoted e. Wedenoteby A+ =
A* \ {e} thefree semigroup on .A. The length of the word w will be denoted |w|. We shall write
|w]|, for the number of occurrences of agiven letter a in w.
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Definition 2.3. The trace monoid M(.A4, D) is the quotient of the free monoid .A*
by the congruence ~ generated by the relations ab = ba, Va I'b. The elements of
M(A, D) will be called traces.

Let alph(w) denote the set of |etters appearing in word w. Thewordw ~ w is
aCartier-Foata normal formof w [8, 11] if we have afactorizationw = u; . . . u,,
u; € AT, such that:

a,beaph(u;) = alb, a¢€aph(u;)= 3b¢€ aph(u;_1),aDb . (2.2

Such a normal form is unique up to areordering of the letters inside factors. We
shall denote by /(w) = p the length (number of factors) of the normal form of w.

With each Task Resource system is associated a dependence relation over the
aphabet A; tasks are dependent when they share some resource:

aDbe Rla)NR(b)£0 . (2.3)

Conversely, starting from an arbitrary trace monoid M(.A, D), one can build an as-
sociated Task Resource system. For example, onecanconsider 7 = (A, R, R, h =
withR = {{a,b} | aDb}and R(a) ={r e R| a € r}.

Proposition 2.4. (i) When h = 1, y(w) = {(w): the makespan is equal to the
length of the Cartier-Foata normal formof . (ii) For general execution times#,

y(w) = maxz h(ai,) (2.9

where the max is taken over the subwords a;, . .. a;, of w = «a; ... a,,, composed of
consecutive dependent letters (i.e. a;, D a;,,,).

The first assertion is classical [9]. It impliesin particular that the makespan of
Task-Resource systems with 4 = 1 can be represented in a more intrinsic way in
terms of trace monoid. The second one can easily be proved by elementary means,
or deduced from the (max,+)-linear representation given below. It providesan al-
ternative formulafor (2.1).

Example 2.5. For the sequential dependence aphabet « D b, we have y(w) =
h(a)|wl|, + h(b)|w|,. For the purely parallel dependence alphabet « I b, we have
y(w) = max(h(a)|wla, 2(b)|w]s).

Example 2.6 (Ring Network). Consider a ring shaped communication network
withk stationsR = {ry, ... ,r,}. Messagescan be sent between neighbor stations.
The possible messagesare A = {a4, ... , a;} where ¢, corresponds to a commu-
nication between r; and ;4 (with the convention k£ + 1 = 1). Therefore, we have
R(a;) = {ri,riz1 }. Thissystem can also beviewed asavariant of the classical din-
ing philosophers model [12] (replace stations by chopsticks, messages by philoso-
phers). E.g., for k = 5, y(ajazasaras) = max(2h(ar) + h(as) + h(as), h(as) +
h(as)) (direct application of 2.4,(ii) since the maximal dependent subwords taken
froma,asasa,as are ayazaras and agas).
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2.2 Linear Representation over the (max,+) Semiring

Definition 2.7. The (max,+) semiring R,,..x istheset R U {—oc}, equipped with
max, Written additively (i.e. « & b = max(a, b)) and the usual sum, written multi-
plicatively (i.e. « @ b = a + b). Wewritec = —oo for the zero element, and ¢ = 0
for the unit element.

We shall use throughout the paper the matrix and vector operations induced by
the semiring structure’. The identity matrix (I;; = e,l;; = ¢,1 # j) with entries
indexed by X will be denoted by | y. The row vector with entries indexed by X
and all equal to e will be denoted by e¢x. We denote by || M| = P,; M;; (resp.
|lv|l = 6B, v:) the (max,+) norm of amatrix M (vector v).

A (max,+) automaton® of dimension % over the alphabet A isatriple(a, M, 3),
wherea € R1x¢ 3 ¢ R**! and M isamorphism from A* to the multiplicative

max’ max’

monoid of matricesR:**. Amapy : A* — R. iSrecognizable if thereis an

automaton such that y(w) = aM(w)g.
In a spirit closer to discrete event systems theory, automata may be seen as
(max,+) linear systems whose dynamicsisindexed by letters. Indeed, introducing

the “ state vector” x(w) « aM(w) € RXF we get

max’

zle) =a, z(wa) = z(w)M(a), y(w)=a(w)s , or (2.5
ylar...a,) = aMlar)...M(a,)f . (2.6)

Definition 2.8 (Task & Resource Daters). Adater over thealphabet A isascalar
map A* — RU{—oo}. With eachtaska € A isassociated atask dater =, x,(w)
gives the time of completion of the last task of type « in the schedule w. Wth each
resource r € R is associated a resource dater =,: x,(w) gives the last instant of
release of the resource » under the schedule «w. We shall denote by x4 and x the
vectors of task and resource daters.

Note the important duality relations

xa(w) = @ xr(w)v xr(w) = @ xa(w)‘ (27)

reR(a) a€R™1(r)

We identify each subset R(«) with aboolean matrix of size |R| x |.A| denoted
Z(a).

e ifreRa)andb=a
Va € A,I(a)rb:{ c oth(er\)/vise.

?1.e. for matrices A, B of appropriatesizes, (A & B);; = A;; & B;; = max(A4;j, Bij), (A ®
B)i; = @y Air © By; = maxy (A + By;), andforascdar a, (a® A)j; = a® Aj; = a+ Ajj.
We will abbreviate A © B to AB asusual.

3Thisisaspecialization to the R ..., case of the notion of automaton with multiplicitiesover a
semiring (or equivalently, of recognizable series over a semiring). See[13, 6].
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We define the following matrices:
Vae A, Mxz(a) = g @ h(a)I(a)I(a)" , (2.8)
Myula) = 143 h(a) (@ I(b)T> I(a) , (2.9)
b

or more explicitly

e if r=s,s ¢ R(a),

Mr(a),s = § h(a) ifr € R(a),s € R(a), (2.10)
€ otherwise.
e if a # (b= c),
Mu(a)oe = § h(a) ifa=cbDe, (2.12)
€ otherwise.

We extend M 4 (resp. Mz) to amorphism A* — RAXA (resp. A* — REXR),

max max

Theorem 2.9. Thedater functionsof task resource systems admit thefollowinglin-
ear representations over the (max,+) semiring:

rr(wa) = ar(w)Mg(a), zr(e)=ex , (2.12)
ra(wa) = za(w)Mala), zale)=eqa , (2.13)
y(w) = |lea(w)|| = [lar(w)]| = [[Ma(w)]| = [Mzr(w)] . (214

In other words, y is recognized both by the resource automaton (ez, Mg, ek)
and by the task automaton (e.4, M 4, e%}).

Proof. We have

) wa(w) if a # b,
Ta(wh) = {maxreg(a) z.(w) 4+ h(a) ifa=0b, (219
r.(e) = wxle)=¢€ . (2.16)

These relations are a smple trandation of the functioning of the system, as de-
scribed after Definition 2.1 (items 1,2,3). Eliminating =, in (2.15) using (2.7), we
get the task equation

2 (wb) = Za(10) !f a7b (2.17)
max.pq c(w) + h(a) ifa=0.
Dually, it is not difficult to obtain the resource equation
o(wa) = 4 5r(0) it f{a) (2.18)
maX,ep(a) s(w) + h(a) if R(a) > r.
Rewriting (2.17) and (2.18) with the semiring notations, we get (2.12),(2.13). [
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b / \c
ah(a) ah(a)
R(a) =A{r, s}
R(b) = {r}
R(c) = {s} ch(c) @ ah(a) &b

Resource Automaton Task Automaton

Figure 1. Task and Resource Automatafor b—a—c

Example 2.10. We consider a Task Resource model with dependence alphabet
b—a—ec. In Fig. 1, we have represented! the resource automaton (e, Mg, ek)
and the task automaton (e4, M 4, ¢}) associated with the dependence alphabet
b—a—c. The matrices associated with the resource automaton are:

Mato) = | o) o) | M= [ " 7] mi = | © 0]

The makespan y(w) is equal to the maximal weight of a path labeled « between
two arbitrary nodes of the graph. E.g., y(cba) = max(h(c) + h(a), h(b) + h(a)).

2.3 Interpretationin Termsof Heaps of Pieces

There is a useful geometrical interpretation of Task Resource Models in terms of
heaps of pieces. Thisinterpretation wasfirst noticed by Viennot for trace monoids.
The reader isreferred to [19] for amoreformal presentation. Imagine an horizon-
tal axis with as many dlots as resources. With each letter « is associated a piece,
i.e. asolid “rectangle” occupying the slotsr € R(a), with height /(). The heap
associated withtheword w = a; . . . a,, isbuilt by piling up the pieces a, . .. , a,,
inthisorder. The makespan y(w) coincideswith the height of the heap. The vector
rr(w) = e Mz (w) can beinterpreted as the upper contour of the heap. Adding
one piece above the heap amountsto right multiplication by the corresponding ma-
trix.

Example 2.11. Consider the ring model of Example 26 withk = 4 and h = 1.
We have represented in Fig. 2.(1), the heap associated associated with the word

4An automaton (o, M, 3) of dimension k over an alphabet A is usually represented as a graph
withnodes 1, ... , k, and three kinds of labeled and weighted arcs. Thereisan internal arci — j

with label « € A and weight M (a);; whenever M(a);; = t # . Wewill writez 2% y but we

omit the unit valuations (when¢ = ¢). When there are two arcs z — y with respective labels a, b

and weights+, ¢/, we shall write z ot y as a shorthand for the two arcs « Kie Y, oy y. There

isan input arc at node ¢ with weight «;, whenever «; # . Output arcs are obtained in a dual way
from 5.
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a1ao0d30404030207 .
r(er MRz (ww))
_ 7 (ro Mz (ww))
= (84 Mz (wm))
e
0 [ [ (m —--
B e B —~ T .- --
1 2 3 4

mer = w(e.€ e e) w0 = 7(—2,—2,¢,¢) mis = m(e.eee)

Figure 2: Heaps of piecesfor aring model.

3 Performance Evaluation

3.1 Stochastic Case

The simplest® stochastic extension of task resource systems arises when the se-
quence of tasks is given by a sequence of random variables a(n) € A: we
get the random schedule w,, = «(1)...a(n), and consider the asymptotics of
y(w,), x(w,), that we shall shortento y(n), z(n). For stochastic Task Resource
models, we propose two types of asymptotic results.

1. First order limits or mean execution timesz(n); /n.

2. Second order limits or asymptotics of relativedelaysz(n); — x(n); (e.9. differ-
ences of last occupation times of the different resources).

Second order quantities are best defined in terms of (max,+) projective space. The
(max,+) projective space PR” __ isthe quotient of R* by the parallelism relation

r~ysINeER,x = )y. Wewrite : RE — PR* __thecanonica projection.
The relative delays «(n); — x(n); can be computed from 72 (n). Geometrically,
ma(n) correspondsto the upper shape of the heap (the quotient by ~ identifiestwo

heaps with the same upper contour but different heights, cf. Fig. 2,(1)).

°In order to simplify the presentation, we shall not consider more general cases with random
initial conditions, random executionstimes and random arrival times, which can bedealt withaong
the same lines.
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We assume that the random variables «(n ) are defined on acommon probability
space (2, F, P), equipped with astationary and ergodic shift . We consider acon-
nected Task Resource system, i.e. such that the graph of the dependence relation
is connected (if it is not the case, the theorem has to be applied to each connected
sub-system).

Theorem 3.1. Let{a(n),n € N} beastationary and ergodic sequence (i.e. a(n+
l,w) = a(n,d(w))) of integrable random variables, such that Vb € A, P(a(l) =
b) > 0.

1. Thereexistsa constant A, € R (stochastic Lyapunov exponent) such that, Vi
AUR,

i 20 i (M) =Xz P-—as (3.2)

n n

2. Moreover, if the sequence {a(rn),n € N} isi.i.d. then the random variable
mx(n) convergesin total variation to a unique stationary distribution.

Proof. In order to prove point 1, the main tool is the subadditivity of the sequence
{y(w) = |lz(w)||}, more precisely:

YVwy, we € A%, y(wiws) < y(wy) + y(wz) . (3.2

This property enables to apply Kingman's subadditive ergodic theorem, see [1].
More generaly, this result is just a special case of a genera theorem on homoge-
neous and monotone operators, see [20] or [4] in this volume.

We show point 2 for the resource dater zz (w) = ex Mz (w) (the behavior of
x4 can be deduced easily from that of xx by appealing to (2.7)). The following
necessary and sufficient condition of existence and uniqueness of astationary dis-
tribution for Tz (w(n)) isstated in [17]:

Thereisaword w such that the matrix Mg (w) is of rank one,
with non-c entries.

The matrix Mz (w) constitutes a regeneration pattern for the model. Indeed, the
rank one condition is equivalent to aforgetting of the initial condition.

Vg, 25, m(roMp(w)) = m(zgMp(w)). (3.3
This pattern enables us to use regeneration theory to obtain stability of the model.
The existence of the pattern is guaranteed by the following lemma.

Lemma3.2. Let w = a5 ...qa, beapath in the graph of the dependence relation
(i.ea; D a;yq),vidgting all thenodes. Let @ = a,, .. . a; denotethe mirror image of
w. The matrix Mz (ww) is of rank one with non-¢ entries.
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Rather than proving formally the result (which can be done using representation
(2.8), (2.12) and thefact that Z(« ) hasrank one), we provideageometrical justifica-
tion using heaps of pieces. Condition (3.3) isequivalent to thefollowing: the upper
shape of the heap is independent of the shape of the ground (which corresponds to
the initial condition). The property a; D a;, of the word ww means that the heap
is staircase shaped. It implies condition (3.3) as illustrated in the different heaps
(D),(11),(111) shown on Fig. 2 (corresponding to the respective initial conditionsey,
(—=2,-2,e,€),(e,e,¢,¢€)). O

Remark 3.3. A result analog to Theorem 3.1, point 2. was proved by Saheb [18]
for trace monoids, using aMarkovian argument. The advantage of the method pre-
sented here is that it can be applied to the various extensions mentioned in foot-
note 5.

3.2 Optimal Case and Worst Case

Given alanguage . C A* describing the set of admissible schedules, a natural
problem consists in finding an admissible schedule of length » with minimal or
maximal makespan. The following theorem shows the existence of an asymptotic
mean execution time, under optimal or worst case schedules. It can be seen as a
(weak) analogue for optimization problems of thefirst order ergodic theorem 3.1,1.

Theorem 3.4. 1. For alanguage L suchthat ..? C L, thefollowing limit (optimal
Lyapunov exponent) exists

Amin(L) o lim min y(w) = inf w . (3.4

n—o0, APNL£D weA™NL 1N weL |w|

2. For a bifix language . (such that uv € L = wu,v € L), the following limit
(worst Lyapunov exponent) exists
def y(w) y(w)

Amax(L) = lim  max = inf max
n—oo weAPNL N nzlweArnNL n

(3.5)

Proof. Let m,, = infycannry(w). SinceL? C Ly,w € LN A"z € LN AP =
wz € LN A"*P, Using the subadditivity property (3.2), we get m,,, < m,, +m,,
from which (3.4) readily follows. The argument for \,,.. issSimilar. 0

The assumption that L? C L for the optimal case is practically reasonable. For
instance, for usual scheduling problems, it isnatural to impose afixed proportion of
thedifferenttasks,i.e. L = {w | |w|, = ro|w|}, for somefixedr, € RT,>" r, =
1. Suchalanguagesatisfies L? C L. Therestrictionto bifix languagesfor theworst
case behavior is an artefact due to the subadditive argument.

The following theorem shows that the worst case performance can be exactly
computed for the subclass of rational schedule languages. The reader isreferred to
[6] for the notation concerning series.
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Theorem 3.5. Consider the generating series of the worst case behavior, = =
D,en 2nt™ € Ruax[[z]], Where z,, = sup, ¢ 4nqp y(w). If the admissible language
L isrational, the series = isrational.

Proof. Let charl. € R,..x{(A)) denote the characteristic series’ of the language
L. Then, charL isrational. Introduce the morphism ¢ : Roax((AY) — Roaxl[z]]
such that Va, ¢(a) = x. Recall that the Hadamard product of series is defined
by (s ® t)(w) = s(w)t(w). Since rational series are closed under a phabetical
morphisms and Hadamard product, z = ¢(charl © y) € Ryaf[z]] isrationa. O

Corollary 3.6. Let o, i1, 3 denoteatrim linear representation of charZ.. Then,

limsup = = p(A), A= u(a) & Mr(a) , (36)
" n a€A

where p denotesthe (max,+) maximal eigenvalue and ©* the tensor product of ma-

trices.

This is an immediate consequence of the (max,+) spectral theorem, together
with the fact [13, 6] that charl. © y is recognized by the tensor product of the
representations («, i, 3), (er, Mgz, ek ) (see [15, §3.2] for details).

Remark 3.7. More generally, Theorem 3.5 holds for an algebraic (=context-free)
language L and not only for arational one. Indeed, itisan easy extension” of Parikh
theorem [10] that algebraic seriesin several commuting indeter minates, with coef-
ficientsin R ..., arerational. Since algebraic seriesare closed by Hadamard prod-
uct with recognizable series and aphabetical morphism, the above proof shows
that, when L isalgebraic, the series = = p(charl  y) isalgebraic, hencerational.
This shows that the generating series ~ of the worst case behavior of an algebraic
language L isrational. In this case, the effective computation of =, along the lines
of [10, Ch. Xl] islessimmediate, since it requires solving (max,+) commutative
rational equations.

Example 3.8. Consider the dependence alphabet b—a—c, together with the set of
admissible schedules L = (a & bc*b)*. Its characteristic seriesis recognized by

a=fodd=lecl = £ 2] o= 7] =[] 7]
We get from Ex. 2.10 and (3.6),

h(a) h(a) h(b) ¢
A= M = h@ ek )
€ e e h(c)

5The coefficient of charL at w isequal to e if w € L, ¢ otherwise.

"By algebraic series, we mean constructive algebraic series as defined in [14]. The argument
givenin [10, Ch. XI] can be adapted to algebraic seriesin commuting indeterminates with coeffi-
cientsin commutative idempotent semirings.
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where p(A) is obtained from its characterization as maximal mean weight of the
circuitsof A [2]. Note that the different termsin p( A) are attained asymptotically
for the sequences of schedulesa™, n € N, be"b,n € N, b**, n € N (whose periodic
parts correspond to circuits of A).

Remark 3.9. Cérin and Petit [9] study the absolute worst case behavior A,y oo
sup,,¢;, |w|™! x y(w). This can be obtained along the same lines:
Imax = p(A) & P cAD (3.7)
1<i<dim A
wherec = a @' eg,b = 3 @' k. These quantities can be computed in

O((dim A)?) steps (using Karp algorithm [2] for p(A)). Observe that the dual
quantity inf,cz y(w)/|w| treated in [9] cannot be obtained by such simple argu-
ments due to its “min-max” structure.
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