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Abstract. Max-plus analogues of linear spaces, convex sets, and poly-
hedra have appeared in several works. We survey their main geometrical
properties, including max-plus versions of the separation theorem, ex-
istence of linear and non-linear projectors, max-plus analogues of the
Minkowski-Weyl theorem, and the characterization of the analogues of
“simplicial” cones in terms of distributive lattices.

1 Introduction

The max-plus semiring, Rpax, is the set R U {—oo} equipped with the addition
(a,b) — max(a,b) and the multiplication (a,b) — a + b. To emphasize the
semiring structure, we write a®b := max(a,b), ab:= a+b, 0 := —oco and 1 := 0.

Many classical notions have interesting max-plus analogues. In particular,
semimodules over the max-plus semiring can be defined essentially like linear
spaces over a field. The most basic examples consist of subsemimodules of func-
tions from a set X to Ryax, which are subsets ¥ of Rgax that are stable by
max-plus linear combinations, meaning that:

A ®pv eV (1)

for all u,v € ¥ and for all A\, u € Ry,.x. Here, for all scalars A and functions
u, Au denotes the function sending = to the max-plus product Au(z), and the
max-plus sum of two functions is defined entrywise. Max-plus semimodules have
many common features with convex cones. This analogy leads to define max-plus
conver subsets ¥ of RX, by the requirement that (I) holds for all u,v € ¥ and
for all A\, u € Ryax such that A @ u = 1. The finite dimensional case, in which
X ={1,...,n}, is already interesting.

Semimodules over the max-plus semiring have received much attention [I],
121, B, [, [5]. They are of an intrinsic interest, due to their relation with lattice
and Boolean matrix theory, and also with abstract convex analysis [6]. They
arise in the geometric approach to discrete event systems [7], and in the study
of solutions of Hamilton-Jacobi equations associated with deterministic optimal
control problems [S49IT0]. Recently, relations with phylogenetic analysis have
been pointed out [11].
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In this paper, we survey the basic properties of max-plus linear spaces, convex
sets, and polyhedra, emphasizing the analogies with classical convex geometry.
We shall present a synopsis of the results of [BJI2], including separation theo-
rems, as well as new results, mostly taken from the recent works [I3I14]. Some
motivations are sketched in the next section. The reader interested specifically
in applications to computer science might look at the work on fixed points prob-
lems in static analysis of programs by abstract interpretation [28], which is briefly
discussed at the end of Section

2 Motivations

2.1 Preliminary Definitions

Before pointing out some motivations, we give preliminary definitions. We re-
fer the reader to [5] for background on semirings with an idempotent addition
(idempotent semirings) and semimodules over idempotent semirings. In partic-
ular, the standard notions concerning modules, like linear maps, are naturally
adapted to the setting of semimodules.

Although the results of [5] are developed in a more general setting, we shall
here only consider semimodules of functions. A semimodule of functions from a
set X to a semiring # is a subset ¥ C .# X satisfying (), for all u,v € ¥ and
M\ € . When X = {1,...,n}, we write #™ instead of # X, and we denote
by w; the i-th coordinate of a vector u € Z™.

We shall mostly restrict our attention to the case where J¢ is the maz-plus
semiring, Ryax, already defined in the introduction, or the completed maz-plus
semiring, Ry ax, which is obtained by adjoining to Ry,.x a +00 element, with the
convention that (—oo) + (+00) = —oo. Some of the results can be stated in a
simpler way in the completed max-plus semiring.

The semirings Ryax and Ry are equipped with the usual order relation.
Semimodules of functions with values in one of these semirings are equipped
with the product order.

We say that a set of functions with values in Ry, is complete if the supremum
of an arbitrary family of elements of this set belongs to it. A convez subset ¥ of
RX is defined like a convex subset of Ryay, by requiring that () holds for all
u,v € ¥ and A\, € Ryax such that A @ p = 1.

If 2 is a set of functions from X to Ryax, we define the semimodule that
it generates, span Z’, to be the set of max-plus linear combinations of a finite
number of functions of 2 . In other words, every function f of span 2" can be
written as

flz) = max A; + gi(z) , (2)

where T is a finite set, g; belongs to 2", and \; belongs to R U {—o0}.

If Z is a set of functions from X to Ry,ax, we define the complete semimodule
that it generates, span 2, to be the set of arbitrary max-plus linear combinations
of functions of £, or equivalently, the set of arbitrary suprema of elements of
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span Z . Thus, every function of span 2" can be written in the form (@), if we
allow I to be infinite, with \; € RU{%o00}, and if replace the “max” by a “sup”.
Then, we say that f is an infinite linear combination of the functions g;.

2.2 Solution Spaces of Max-Plus Linear Equations

An obvious motivation to introduce semimodules over Ry, or Ry ax is to study
the spaces of solutions of max-plus linear equations. Such equations arise natu-
rally in relation with discrete event systems and dynamic programming.
For instance, let A = (A;;) denote a p x ¢ matrix with entries in Rpyax, and
consider the relation
y= Az .

Here, Az denotes the max-plus product, so that y; = maxi<k<q Aix + 5. This
can be interpreted as follows. Imagine a system with ¢ initial events (arrival of
a part in a workshop, entrance of a customer in a network, etc.), and p terminal
events (completion of a task, exit of a customer, etc.). Assume that the terminal
event ¢ cannot be completed earlier than A;; time units after the initial event j
has occurred. Then, the vector y = Ax represents the earliest completion times of
the terminal events, as a function of the vector x of occurrence times of the initial
events. The image of the max-plus linear operator A, ¥ := {Az |z € RY .} is a
semimodule representing all the possible completion times. More sophisticated
examples, relative to the dynamical behavior of discrete event systems, can be
found in [7I15].

Other interesting semimodules arise as eigenspaces. Consider the eigenproblem

Ar = \x

that is, maxi<;<q Aij +x; = A + ;. We assume here that A is square. We look
for the eigenvectors x € R% . and the eigenvalues A € Ryax. The eigenspace of
A, which is the set of all  such that Ax = Az, is obviously a semimodule. In
dynamic programming, A;; represents the reward received when moving from
state i to state j. If Ax = Ax for some vector x with finite entries, it can
be checked that the eigenvalue A gives the maximal mean reward per move,
taken over all infinite trajectories. The eigenvector x can be interpreted as a fair
relative price vector for the different states. See [I6/I0/T7] for more details on
the eigenproblem. The extreme generators of the eigenspace (to be defined in
Section[dl) correspond to optimal stationary strategies or infinite “geodesics” [10].

The infinite dimensional version of the equation y = Az and of the spectral
equation Az = A\x respectively arise in large deviations theory [18] and in optimal
control [T0]. When the state space is non compact, the representation of max-
plus eigenvectors is intimately related with the compactification of metric spaces
in terms of horofunctions [T0JI9].

2.3 From Classical Convexity to Max-Plus Convexity

The most familiar examples of semimodules over the max-plus semiring arise
in classical convex analysis. In this section, unlike in the rest of the paper, the
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words “convex”, “linear”, “affine”, and “polyhedra”, and the notation “” for
the scalar product of R", have their usual meaning.

Recall that the Legendre-Fenchel transform of a map f from R"™ to RU{£o0}
is the map f* from R™ to R U {£o0} defined by:

f*(p) = sup p-x— f(z) . (3)
xER™

Legendre-Fenchel duality [20, Cor. 12.2.1] tells that (f*)* = f if f is convex,
lower semicontinuous and if f(z) € RU {400} for all z € R™. Making explicit
the identity (f*)* = f, we get f(z) = sup,cgn p- = — f*(p). This classical result
can be restated as follows, in max-plus terms.

Property 1 (Semimodule of convex functions). The set of convex lower semicon-
tinuous convex functions from R™ to R U {+oo} is precisely the set of infinite
max-plus linear combinations of (conventional) linear forms on R™.

The numbers — f*(p), for p € R™, may be thought of as the “coefficients”, in the
max-plus sense, of f with respect to the “basis” of linear forms z +— p-x. These
coefficients are not unique, since there may be several functions g such that
f = g*. However, the map ¢ giving the “coefficients” is unique if it is required
to be lower semicontinuous and if f is essentially smooth, see [21, Cor. 6.4]. The
semimodule of finite max-plus linear combinations of linear forms is also familiar:
it consists of the convex functions from R™ to R that are polyhedral [20], together
with the identically —oo map.

By changing the set of generating functions, one obtains other spaces of func-
tions. In particular, an useful space consists of the maps f from R™ to R that
are order preserving, meaning that x <y = f(x) < f(y), where < denotes
the standard product ordering of R™, and commute with the addition with a
constant, meaning that f(A+ z1,..., A+ x,) = A+ f(z1,...,2,). These maps
play a fundamental role in the theory of Markov decision processes and games:
they arise as the coordinate maps of dynamic programming operators. They are
sometimes called topical maps [22]. Topical maps include min-plus linear maps
sending R™ to R, which can be written as

. , 4 4
leglgnaJ—t—x] ) (4)
where a1, ...,a, are numbers in R U {400} that are not all equal to +oo. Of

course, topical maps also include max-plus linear maps sending R” to R, which
can be represented in a dual way. The following observation was made by Rubi-
nov and Singer [23], and, independently by Gunawardena and Sparrow (personal
communication).

Property 2 (Semimodule of topical functions). The set of order preserving maps
from R™ to R that commute with the addition of a constant coincides, up to
the functions identically equal to —oco or 400, with the set of infinite max-plus
linear combinations of the maps of the form ().
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A map from R” to R" is called a min-maz function if each of its coordinates is a
finite max-plus linear combination of maps of the form (). Min-max functions
arise as dynamic operators of zero-sum deterministic two player games with finite
state and action spaces, and also, in the performance analysis of discrete event
systems [24l25]. The decomposition of a min-max function as a supremum of
min-plus linear maps (or dually, as an infimum of max-plus linear maps) is used
in [26127/25] to design policy iteration algorithms, allowing one to solve fixed
points problems related to min-max functions. These techniques are applied
in [28] to the static analysis of programs by abstract interpretation.

Another application of semimodules of functions, to the discretization of
Hamilton-Jacobi equations associated with optimal control problems, can be
found in [29].

3 Projection on Complete Semimodules

We now survey some of the main properties of the max-plus analogues of modules
(or cones) and convex sets. In the case of Hilbert spaces, a possible approach
is to define first the projection on a closed convex set, and then to show the
separation theorem. We shall follow here a similar path.

Definition 1 (Projector on a complete semimodule). If ¥ is a complete
semimodule of functions from X to Ryax, for all functions u from X to Ryax,
we define:

Py (u):=sup{fv e ¥ |v<u} .

Since ¥ is complete, Py (u) € ¥, and obviously, Py has all elements of ¥ as
fixed points. It follows that
P«;/ o P«;/ = P«// .

The projector Py can be computed from a generating family of ¥". Assume first
that ¥ is generated only by one function v € RX, | meaning that ¥ = Ryayv =
{\ | X € Rypay }- Define, for u € R

u/v :=sup{A € Ryax | u > Av} .
One can easily check that
u/v = inf{u(z) —v(z) |z € X} ,

with the convention that (+o00) — (+00) = (—00) — (—00) = 400. Of course,
Py (u) = (u/v)v. More generally, we have the following elementary result.

Proposition 1 ([5]). If ¥ is a complete subsemimodule of R, generated by
a subset 2 C R, we have

max’

Py (u) = sup (u/v)v .
veX



Max-Plus Convex Geometry 197

When £ is finite and X = {1,...,n}, this provides an algorithm to decide
whether a function u belongs to #: it suffices to check whether Py (u) = u.

Ezample 1. We use here the notation of Section When ¥ is the complete
semimodule generated by the set of conventional linear maps « — p - z, Py (u)
can be written as

[Pr(](r) = sup (inf uly) —p-y) +p-o= @) @)

where u* is the Legendre-Fenchel transform of u. Hence, Py (u) is the lower-
semicontinuous convex hull of  ([20, Th. 12.2]).

When ¥ is the complete semimodule generated by the set of functions of the
form z — —||z — al|so, With @ € R™, it can be checked that

[Py (w))(a) = sup ((inf u) + ]y —all)~ 2 —all) = inf u(@)~[la—all
This is the “1-Lipschitz regularization” of u. More generally, one may consider
semimodules of maps with a prescribed continuity modulus, like Holder contin-
uous maps, see [21].

The projection of a vector of a Hilbert space on a (conventional) closed convex
set minimizes the Euclidean distance of this vector to it. A similar property
holds in the max-plus case, but the Euclidean norm must be replaced by the

Hilbert seminorm (the additive version of Hilbert’s projective metric). For any
X

scalar A € Ryax, define A\~ := —A. For all vectors u,v € R;._ ., we define
6n(u,v) == ((u/v)(v/u))™ ,
where the product is understood in the max-plus sense. When X = {1,...,n}

and u, v take finite values, 8§y (u,v) can be written as

O (u,v) = sup (u;—v;+v; —uy) ,
1<i,j<n

with the usual notation.

Theorem 1 (The projection minimizes Hilbert’s seminorm, [5]). If ¥ is
a complete semimodule of functions from a set X to Ryax, then, for all functions
u from X to Ryax, and for allv € ¥,

Om (u, Py (u)) < 6g(u,v) .

This property does not uniquely define Py (u), even up to an additive constant,
because the balls in Hilbert’s projective metric are not “strictly convex”.

Example 2. Consider

00 0-0005 1
A=1[1-20 0 15| , wu=]|0 (5)
0320 3 0.5
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The semimodule ¥ generated by the columns of the matrix A is represented in
Figure [ (left). A non-zero vector v € R3 __ is represented by the point that is
the barycenter with weights (exp(8v;))1<i<3 of the vertices of the simplex, where
G > 0 is a fixed scaling parameter. Observe that vectors that are proportional
in the max-plus sense are represented by the same point. Every vertex of the
simplex represents one basis vector e;. The point p; corresponds to the i-th
column of A. The semimodule ¥ is represented by the closed region in dark grey
and by the bold segments joining the points pi, p2, p4 to it.
We deduce from Proposition [I] that

0 0 0 —o0 0.5
Py(u) = (=1) |1| @ (=2.5) |=2| @ (=1.5) [0] @ (0) | 0 | ®(~2.5) |1.5
0 3 2 0 3

-1

=10

0.5

Since Py (u) < u, u does not belong to ¥". The vector u and its projection Py (u)
are represented in Figure[I] (right). The ball in Hilbert’s metric centered at point
u the boundary of which contains Py (u) is represented in light grey. The fact
that Py (u) is one of the points of ¥ that are the closest to u (Theorem [I) is
clear from the figure.

€3 €3
P2
b3
P4 P“// ( "
D1

el ex el €2

Fig. 1. A max-plus semimodule (left). A point u, its projection Py (u), and the corre-
sponding ball in Hilbert’s projective metric (right).

4 Separation Theorems

We first state separation theorems for complete subsemimodules and complete
convex subsets of R, since the results are simpler in this setting. Then, we
shall see how the completeness assumptions can be dispensed with.

Several max-plus separation theorems have appeared in the literature: the

first one is due to Zimmermann [2]. Other separation theorems appeared in [30],
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in [BI12], and, in the polyhedral case, in [I1I31]. We follow here the approach
of [5I12], in which the geometrical interpretation is apparent.
We call half-space of RX__ a set of the form

max
H={veRX |a-v<b-v}, (6)
where a,b € R, and - denotes here the max-plus scalar product:

a-v:=sup a(x) +v(x) .
reX

We extend the notation -~ to functions v € RX_ . so that v~ denotes the function

sending z € X to —v(z). The following theorem is proved using residuation
(or Galois correspondence) techniques.

Theorem 2 (Universal Separation Theorem, [5, Th. 8]). Let ¥ C R

max

denote a complete subsemimodule, and let u € Ryx,. \ . Then, the half-space

H ={v € Riay | (Pr(u)” v <u” v} (7)

m
contains ¥V and not u.

Since Py (u) < u, the inequality can be replaced by an equality in [@). A way to
remember Theorem [2is to interpret the equality

(Py(u))” - v=u"-v

as the “orthogonality” of v to the direction (u, Py (u)). This is analogous to the
Hilbert space case, where the difference between a vector and its projection gives
the direction of a separating hyperplane.

Example 3. Let ¥, A, and u be as in Example Pl The half-space separating u
from ¥ is readily obtained from the value of u and Py (u):

3
H={veR .| lv1 ®va @ (—0.5)v3 < (=1)vy D ve B (—0.5)vs} .
This half-space is represented by the zone in medium gray in Figure 2l

An affine half-space of RX . is by definition a set of the form

H={weRr lavec<b-vad} , (8)

X

max

where a,b € R, and ¢,d € Ryax. For any complete convex subset € of R

and u € R, we define
ve(u) = sup(u/v A1), Q% (u) :==sup(u/vAl)v ,
vEF vEF

where A denotes the pointwise minimum of vectors.
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Fig. 2. Separating half-space

Corollary 1 ([5, Cor. 15]). If € is a complete conver subset of R, . and if
u € RX,\E, then the affine half-space

H={veRy, | (Qe(w)” - v® (vg(u)” <u™ -vel} 9)
contains € and not u.

This corollary is obtained by projecting the vector (u,1) on the complete sub-
semimodule of Riax X Rpax generated by the vectors (vA, A), where v € € and
A € Ryax. The projection of this vector is precisely (Q«(u), v¢(u)). The opera-
tor u — (v (u))” Qe (u) defines a projection on the convex set ¢ [12]. (We note
that the scalar v (u) is invertible, except in the degenerate case where v cannot
be bounded from below by a non-zero scalar multiple of an element of %.)

We deduce as an immediate corollary of Theorem [21 and Corollary [l

Corollary 2. A complete subsemimodule (resp. complete convex subset) of R

is the intersection of the half-spaces (resp. affine half-spaces) of RX . in which
it 1s contained. O

We now consider subsemimodules and convex subsets arising from the max-plus
semiring Ry, .x, rather than from the completed max-plus semiring R,,.x. Results
of the best generality are perhaps still missing, so we shall restrict our attention
to subsemimodules and convex subsets of R, .. By analogy with convex analysis,
we call cone a subsemimodule of R?

max*

We equip R? . with the usual topology, which can be defined by the metric

max

d(u,v) := max |exp(u;) — exp(v;)], Vu,v € (RU{—oco})" .

1<i<n

A half-space of RZ,, . is a set of the form .22 = {v € R2,_ | a-v < b- v},

max max

where a,b € R} .. An affine half-space of R} . is a set of the form 2 = {v €

R la-v®e<b-vdd}, where a,b € R?. . and ¢,d € Ryax. Note that
the restriction to R™, of an (affine) half-space of R, need not be an (affine)
half-space of R

" > because the vectors a, b in (@) and (8) can have entries equal
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to 400, and the scalars ¢,d in ([8) can be equal to +o00. However, we have the
following refinement of Theorem [2 in the case of closed cones of R} ., which is

slightly more precise than the result stated in [12], and can be proved along the
same lines.

Theorem 3. Let ¥ be a closed cone of RY . and let w € RY, \ V. Then, there
exist a € RY . and disjoint subsets I and J of {1,...,n} such that the half-space
of R

max
H = {v € R | icraivi < Bjesajv;} (10)
contains ¥ and not u.

Further information on half-spaces can be found in [31].
3

max

Ezample 4. The restriction to R
Example [3 can be rewritten as:

of the separating half-space constructed in

H={veR, |1vy <va @ (—0.5)v3} ,

which is clearly of the form (I0). To illustrate the technical difficulty concerning
supports, which is solved in [I2] and in Theorem [3 above, let us separate the
point u = [—00,1,0]% from the semimodule ¥ of Example 2l We have Py (u) =

[~00,0,0]T, and the half-space of anax defined in Theorem [ is

3
{U € IRma,x | (+OO)U1 © v2 ©vs < ("’OO)'Ul S (_1)’02 (&) 1}3} .

Note that due to the presence of the 400 coefficient, the restriction of this half-
space to R is not closed. The proof of [I2] and of Theorem [J introduces a
finite perturbation of u, for instance, w = [, 1,0], where € is a finite number
sufficiently close to —oo (here, any € < 0 will do), and shows that the restriction
to R} .. of the half-space of R;ax constructed in the universal separation theorem

(Theorem [2]), which is a half-space of R”,,, separates u from ¥. For instance,

when € = —1, we obtain Py (w) = [~1,0,0]7, which gives the half-space of R3

max

%:{UER?’ | lvy @ vz > v2}

max
containing ¥ and not w.

Corollary 3. Let € C R, be a closed conver set and let uw € R\ €. Then,

max
there exist a € R] .., disjoint subsets I and J of {1,...,n} and ¢,d € Ryax,

with cd = 0, such that the affine half-space of R

max
I ={v e R}, | Bicraiv; ® ¢ < Bjesa;v; O d}
contains € and not u.

This is proved by applying the previous theorem to the point (u,1) € R%! and
to the following closed cone:

¥ = clo({(vA\,\) | v € €\ € Ry }) C REEL

max

We deduce as an immediate corollary of Theorem Bl and Corollary Bl
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n

Corollary 4. A closed cone of R} .

R} .« in which it is contained. A closed convex subset of R

of the affine half-spaces of RY, ... in which it is contained.

max

is the intersection of the half-spaces of

v ax S the intersection

5 Extreme Points of Max-Plus Convex Sets

Definition 2. Let € be a convex subset of R}, . An element v € € is an

extreme point of €, if for all u,w € ¥ and A\, € Ryax such that A& p =1,
the following property is satisfied

V=AM UW = v=uorv=w .
The set of extreme points of € will be denoted by ext(€).

Definition 3. Let ¥ C R}, be a cone. An element v € ¥ is an extreme
generator of ¥ if the following property is satisfied

v=udw, u,w €Y = v=uorv=w .

We define an extreme ray of ¥ to be a set of the form Ruyaxv = {A\v | A € Ripax}
where v is an extreme generator of V. The set of extreme generators of ¥ will
be denoted by ext-g (¥).

Note that extreme generators correspond to join irreducible elements in the
lattice theory literature.

We denote by cone (Z7) the smallest cone containing a subset 2" of R .,
and by co(Z") the smallest convex set containing it. So cone (Z") coincides with
span &, if the operator “span” is interpreted over the semiring R ax.

Theorem 4. Let ¥ C R} ... be a non-empty closed cone. Then ¥ is the cone
generated by the set of its extreme generators, that is,

¥ = cone (ext-g (¥)) .

The proof of Theorem Ml and of Corollary [l and Theorem [ below, can be
found in [I3]. After the submission of the present paper, a preprint of Buktovié,
Schneider, and Sergeev has appeared [32], in which Theorem [ is established
independently. Their approach also yields informations on non-closed cones.

Corollary 5 (Max-Plus Minkowski’s Theorem). Let € be a non-empty
compact convex subset of R, . Then € is the convexr hull of the set of its
extreme points, that is,

€ = co(ext(¥)) .

This is more precise than Helbig’s max-plus analogue of Krein-Milman’s theo-
rem [33], which only shows that a non-empty compact convex subset of R”,__ is
the closure of the convex hull of its set of extreme points. Unlike Helbig’s proof,
our proof of Theorem M and Corollary Bl does not use the separation theorem.
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If v is a point in a convex set ¢, we define the recession cone of € at point v
to be the set:

rec(%¢) ={u e Ry | v® lu € € for all A € Ryax} -

If € is a closed convex subset of R}, it can be checked that the recession cone

is independent of the choice of v € €, and that it is closed.

Theorem 5. Let € C R?

max

€ = co(ext(¥)) @ rec(€) .

be a closed convex set. Then,

Corollary [ suggests the following definition.

Definition 4. A max-plus polyhedron is an intersection of finitely many affine
half-spaces of R

max -

Theorem 6 (Max-Plus Minkowski-Weyl Theorem). The maz-plus poly-
hedra are precisely the sets of the form

co(Z") @ cone (%)

where Z°, % are finite subsets of R”,

max -

Note that our notion of max-plus polyhedra is more general than the notion of
tropical polyhedra which is considered in [I1]: tropical polyhedra can be identi-
fied with sets of the form cone (%) where ¢ is a finite set of vectors with only
finite entries.

Finally, we shall consider the max-plus analogues of simplicial convex cones,
which are related to the important notion of regular matrix. We need to work
again in the completed max-plus semiring, R .x, rather than in Ry,,x. We say
that a matrix A € R..» is reqular if it has a generalized inverse, meaning that

max
there exists a matrix X € Rﬁ:;: such that A = AXA. Regularity is equivalent
to the existence of a linear projector onto the cone generated by the columns (or
the rows) of A, see [34135].

A finitely generated subsemimodule ¥ of R_ .. is a complete lattice, in which
the supremum coincides with the supremum in R, , and the infimum of any
subset of ¥ is the greatest lower bound of this subset that belongs to #". The
following result extends a theorem proved by Zaretski [36] (see [37, Th. 2.1.29]
for a proof in English) in the case of the Boolean semiring.

n

nxp

Theorem 7 ([14]). A matriz A € R, is regular if and only if the subsemi-
module of R:;ax generated by its columns is a completely distributive lattice.

Of course, a dual statement holds for the rows of A. In fact, we know that the
semimodule generated by the rows of A is anti-isomorphic to the semimodule
generated by its columns [5].

As an illustration of Theorem [B consider the closed convex set 4 C R2,.
depicted in Figure Bl We have ext(%) = {a,b,c,d,e}, where a = [5,2]T, b =
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2

i 2 3 4 5 6 w1

Fig. 3. An unbounded max-plus convex set

i i
3 d 3 Recld
L) Y

—— =+ A T T I v =

Fig. 4. The sets co(ext(%)) and rec(%) of Theorem [ for the unbounded convex set
depicted in Figure [

[4,00%, ¢ = [3,2]T, d = [1,3]7, e = [2,5], and rec(%) = cone {[0,1]7,[2,0]"}.
Then,

% = co{a,b,c,d, e} & cone {[0,1]",[2,0]"}

by Theorem[Bl The sets co(ext(%)) and rec(€) are depicted in Figuredl The cone

rec(%) is a distributive lattice, since the infimum and supremum laws coincide
. 2 o . .

with those of R, ... Note that any n x 2 or 2 x n matrix is regular, in particular,

finitely generated cones which are not distributive lattices cannot be found in

dimension smaller than 3, see [34].
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