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Abstract

Tropical polyhedra have been recently used to represent disjunctive invariants in static analysis.
To handle larger instances, the tropical analogues of classical linear programming results need to
be developed. This motivation leads us to study a general tropical linear programming problem.
We construct an associated parametric mean payoff game problem, and show that the optimality of
a given point, or the unboundedness of the problem, can be certified by exhibiting a strategy for
one of the players having certain infinitesimal properties (involving the value of the game and its
derivative) that we characterize combinatorialy. In other words, strategies play in tropical linear
programming the role of Lagrange multipliers in classical linear programming. We use this idea to
design a Newton-like algorithm to solve tropical linear programming problems, by reduction to a
sequence of auxiliary mean payoff game problems.

1 Introduction

Motivation from static analysis Tropical algebra is the structure in which the set of real numbers,
completed with −∞, is equipped with the “additive” law “a+ b” := max(a,b) and the “multiplicative”
law “ab” := a+b. The max-plus or tropical analogues of convex sets have been studied by a number of
authors [Zim77, CG79, GP97, LMS01, CGQ04, DS04, BH04, Jos05], under various names (idempotent
spaces, semimodules, B-convexity, extremal convexity), with different degrees of generality, and various
motivations.

In a recent work [AGG08], Allamigeon, Gaubert and Goubault have used tropical polyhedra to com-
pute disjunctive invariants in static analysis. A general (affine) tropical polyhedron can be represented
as

P := {x ∈ (R∪{−∞})n |max
(

max
j∈[n]

(ai j + x j),bi
)
≤max

(
max
j∈[n]

(ci j + x j),di
)
, ∀i ∈ [m]} . (1)

Here, we use the notation [n] := {1, . . . ,n}, and the parameters ai j, ci j, bi, di are given, with values
in R∪{−∞}. The analogy with classical polyhedra becomes clearer with the tropical notation, which
allows us to write the constraints as “Ax+b≤Cx+d”, to be compared with classical systems of linear
inequalities, Ax ≤ d (in the tropical setting, we need to put affine maps on both sides of the inequality
due to the absence of opposite law of the addition). The previous representation of P is the analogue
of the external representation of polyhedra, as the intersection of half-spaces. As in the classical case,
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tropical polyhedra have a dual (internal) representation, which involves extreme points and extreme rays.
The tropical analogue of Motzkin double description method allows one to pass from one representation
to the other [AGG10b].

Disjunctive invariants arise naturally when analyzing sorting algorithms or in the verification of
string manipulation programs. The well known memcpy function of C is discussed in [AGG08] as a
simple illustration: when copying the first n characters of a string buffer src to a string buffer dst,
the length len dst of the latter buffer may differ from the length len src of the former, for if n is
smaller than len src, the null terminal character of the buffer src is not copied. However, the relation
min(len src,n) = min(len dst,n) is valid. This can be expressed geometrically by saying that the
vector (−len src,−len dst,−n) belongs to a tropical polyhedron. Examples of this nature motivated
the development in [AGG08, All09] of an abstract interpretation method in which tropical polyhedra are
efficiently handled by the double description algorithm. However, as in the case of usual polyhedra, the
scalability of the approach is inherently limited by the exponential blow up of the size of representations
of polyhedra [AGK10a, AGK10b].

The complexity of earlier polyhedral approaches led Sankaranarayanan, Colon, Sipma and Manna
to introduce the method of templates [SCSM06]. In a nutshell, a template consists of a finite set T =
{h1, . . . ,hm} of linear forms on Rn. The latter define a parametric family of polyhedra with precisely m
degrees of freedom α1, . . . ,αm ∈ R∪{+∞},

Pα = {x ∈ Rn | hk(x)≤ αk, k ∈ [m]} .

The classical domains of boxes or the domain of zones (potential constraints) [Min04] are recovered
by incorporating in the template the linear forms h(x) = ±xi or h(x) = xi− x j, respectively. Fixing the
template, or changing it dynamically while keeping m bounded, avoids the exponential blow up.

The method of [SCSM06] relies critically on linear programming, which allows one to evaluate
quickly the fixed point functional of abstract interpretation. However, the precision of the invariants
remains limited by the linear nature of templates, and it is natural to ask whether the machinery of
templates carries over to the non-linear case. A framework based on quadratic templates has been intro-
duced by Assale, Gaubert and Goubault [AGG10a]: then, linear programming is replaced by semidefinite
programming, thanks to Shor’s relaxation. More generally, every tractable subclass of optimization prob-
lems yields a tractable template. Thus, in order to compute disjunctive invariants, it is natural to ask for
a different generalization, relying on tropical polyhedra. To this end, the relevant results of linear pro-
gramming must be tropicalized first, which is what we do here. In particular, comparing the expressions
of P and Pα , we see that the linear forms of [SCSM06] must now be replaced by

h(x) = max
(

max
j∈[n]

(p j + x j),r
)
−max

(
max
j∈[n]

(q j + x j),s
)

(2)

where p j, r, q j, s are given parameters with values in R∪{−∞}.

The problem In this paper, we study the following general tropical linear programming problem:

minimize h(x) subject to x ∈ P , (3)

where P is given by (1) and h is given by (2). This is the tropical analogue of the classical problem

minimize (px+ r)/(qx+ s) subject to Ax+b≤Cx+d , x≥ 0 ,

where p, q are nonnegative vectors, r, s are nonnegative scalars, and A, C, b, d are matrices and vectors.
The constraint “x≥ 0” is implicit in (3), since any number is “positive” (i.e.≥−∞) in the tropical world.
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Problem (3) includes as special cases

h(x) = max
(

max
j∈[n]

(p j + x j),r
)

and h(x) =−max
(

max
j∈[n]

(q j + x j),s
)

(4)

(take q j ≡ −∞ and s = 0, or p j ≡ −∞ and r = 0). Minimizing the ratio of affine forms is not so usual
in linear programming, however, in the tropical context, this turns out to be needed both in applications
and for theoretical purposes. In particular, in static analysis, we need typically to compute the tightest
inequality of the form xi ≤ K+x j satisfied by the elements of P. This fits in the general form (2), but not
in the special cases (4).

Contribution A basic question in linear programming is to certify the optimality of a given point.
This is classically done by exhibiting a feasible solution (i.e. a vector of Lagrange multipliers) of the
dual problem with the same value. There is no such a simple result in the tropical setting, because as
remarked in [GK09], there are (tropically linear) inequalities which can be logically deduced from some
finite system of inequalities but which cannot be obtained by taking (positive) linear combinations of the
inequalities of this system. In other words, the usual statement of Farkas lemma is not valid in the tropical
setting. However, in a recent work, building on [AGG09], Allamigeon, Gaubert, and Katz [AGK10b]
have established a tropical analogue of Farkas lemma, in which Lagrange multipliers are replaced by
strategies of an associated mean payoff game. We use the same idea here, and show (Theorem 8 below)
that the optimality of a solution can be (concisely) certified by exhibiting a strategy of a game, having
certain combinatorial properties. Similarly, whether the value of the linear programming problem is
unbounded can also be certified in terms of strategies.

The second ingredient is to think of the tropical linear programming problem as a parametric mean
payoff game problem. Then, the tropical linear programming problem reduces to the computation of the
minimal parameter for which the value of the game is nonnegative.

The main contribution of this paper is a Newton-like method, in which at each iteration we select
a strategy (whose existence is implied by the fact that the current feasible point is not optimal). This
defines a one player parametric game problem, and we show that the smallest value of the parameter
making the value zero can be computed in polynomial time for this subgame. The master algorithm
requires solving at each step one or two auxiliary mean payoff games (which can be done either by value
iteration, which is pseudo-polynomial, or by policy iteration, for which exponential time instances have
been recently constructed by Friedmann [Fri09], although the algorithm is fast on typical examples). The
number of Newton type iterations of the present algorithm has a trivial exponential bound (the number of
strategies). Although the algorithm seems to behave well on typical examples, some further work would
be needed to assess its worst case complexity (its behavior is likely to be similar to the one of policy
iteration).

Related work Butkovič and Aminu [BA08] studied the special cases (4). At each step, they solve a fea-
sibility problem (whether a tropical polyhedron is non-empty), which is equivalent to checking whether
a mean payoff game is winning. However, their algorithm does not involve a Newton-like iteration, but
rather a dichotomy argument. This leads to a worst case complexity bound which is incomparable with
the one of the present algorithm: the number of calls to a mean payoff oracle in [BA08] depends on the
size of the integers in the input, whereas the number of calls in the present algorithm can be bounded
independently of these, just in terms of strategies.

Further motivation Tropical polyhedra have been used in [Kat07] to determine invariants of dis-
crete event systems. Systems of constraints equivalent to the ones defining tropical polyhedra have
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also appeared in the analysis of delays in digital circuits, and in the study of scheduling problems with
both “and” and “or” constraints [MSS04]. Such systems have been studied by Bezem, Nieuwenhuis,
and Rodrı́guez-Carbonell [BNgC08, BNgC10], under the name of “max-atom problem”. The latter
is motivated by SAT Modulo theory solving, since conjunctions of max-atoms determine a remark-
able fragment of linear arithmetic. Tropical polyhedra also turn out to be interesting mathematical ob-
jects in their own right [DS04, Jos05]. A final motivation arises from mean payoff games, the com-
plexity of which is a well known open problem: a series of works show that a number of problems
which can be expressed in terms of tropical polyhedra are polynomial time equivalent to mean payoff
games problems [MSS04, DG06, AGG09, BNgC10, AGK10b]. The results of the present paper rely
on [AGG09, AGK10b]. Most proofs are omitted here due to the lack of space.

Acknowledgments The authors thank Peter Butkovič for many useful discussions concerning tropical
linear programming and tropical linear algebra. The first author thanks Xavier Allamigeon and Éric
Goubault for having shared with him their insights on disjunctive invariants and static analysis.

2 Preliminaries

2.1 Mean-payoff games and min-max functions

Consider a two-player deterministic game, where the players “Max” and “Min” make alternate moves
of a pawn on a weighted bipartite digraph G . The set of nodes of G is the disjoint union of the nodes
[m] := {1, . . . ,m} where Max is active, and the nodes [n] := {1, . . . ,n} where Min is active. When the
pawn is in node k ∈ [m] of Max, he must choose an arc in G connecting node k with some node l ∈ [n] of
Min, and while moving the pawn along this arc, he receives payment bkl from Min, which is the weight of
the selected arc. When the pawn is in node j ∈ [n] of Min, she must choose an arc in G connecting node
j with some node i∈ [m] of Max, and pays−ai j to Max, where−ai j is the weight of the selected arc. We
assume that bkl,ai j ∈ R. Moreover, certain moves may be prohibited, meaning that the corresponding
arcs are not present in G . Then, we set bkl = −∞ and ai j = −∞. Thus, the whole game is equivalently
defined by two m×n matrices A = (ai j) and B = (bkl) with entries in R∪{−∞}. We make the following
assumptions, which mean that both players have at least one move allowed in each node.

Assumption 1. For all k ∈ [m] there exists l ∈ [n] such that bkl 6=−∞.
Assumption 2. For all j ∈ [n] there exists i ∈ [m] such that ai j 6=−∞.
Consider the infinite horizon game, which starts in a certain node j of Min, and assume the players

are interested in the value of average payment of Min per turn:

limsup
N→∞

(
N

∑
t=1
−ait jt +bit jt+1

)
/N , j1 = j . (5)

Here, j1 ∈ [n], i1 ∈ [m], j2 ∈ [n], i2 ∈ [m], . . . is the infinite sequence of positions of the pawn. The ambition
of Max is to maximize (5) while Min is seeking the opposite. In other words, we are considering a mean
payoff game in which the payment of an infinite trajectory is given by (5). We next recall why this game
has a value (meaning that the payment thought of as a function of the strategies of both players has a
saddle point).

To compute this value, we define the dynamic operator f : Rn 7→ Rn,

f j(x) = min
k∈[m]

(−ak j +max
l∈[n]

(bkl + xl)) . (6)

This is known as a min-max function [CTGG99]. Min-max functions are isotone (x≤ y⇒ f (x)≤ f (y))
and additively homogeneous ( f (λ + x) = λ + f (x)). Hence, they are nonexpansive in the sup-norm.
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Moreover, they are piecewise affine (Rn can be covered by a finite number of polyhedra on which f is
affine). We are interested in the following limit (cycle-time vector):

χ( f ) = lim
k→∞

f k(x)/k . (7)

The jth entry of the vector χ( f ) can be interpreted as the limit of a game with finite horizon k with initial
state j, as k tends to infinity The existence of χ( f ) follows from a theorem of Kohlberg.

Theorem 1 (Kohlberg [Koh80]). Let f : Rn 7→ Rn be a nonexpansive and piecewise affine map. Then,
there exist v ∈ Rn and χ ∈ Rn such that

f (v+ tχ) = v+(t +1)χ , ∀t ≥ T , (8)

where T is a large enough real number.

The map t 7→ v+tχ is known as an invariant half-line. Using the nonexpansiveness of f , one deduces
that the limit (7) exists, is the same for all x ∈ Rn and is equal to the growth rate χ of any invariant half-
line.

A positional (stationary) strategy of Min is a map τ : [n]→ [m] such that aτ( j) j is finite for all j ∈ [n]
(in other words, it is a selection rule, requiring to move the pawn to node τ( j) when in node j). Similarly,
a positional (stationary) strategy of Max is a map σ : [m]→ [n] such that biσ(i) is finite, for all i ∈ [m].
The corresponding dynamic operators are max-only and min-only:

f τ
j (x) =−aτ( j) j +max

l∈[n]
bτ( j)l + xl , f σ

j (x) = min
i∈[m]

(−ai j +biσ(i)+ xσ(i)) . (9)

The following result can be derived as a standard corollary of Kohlberg’s theorem. Indeed, we define
a positional strategy τ of Min and a positional strategy σ of Max by the condition that f (v+ tχ) =
f σ (v+ tχ) = fτ(v+ tχ) for t large enough, where t 7→ v+ tχ is an invariant half-line. These strategies
are easily seen to be optimal for the mean payoff game.

Theorem 2 (Coro. of [Koh80]). For f (x) given by (6), the jth coordinate of χ( f ) is the value of the
mean payoff game which starts in j.

We shall use repeatedly the following duality result, proved in [GG98], as a corollary of the termi-
nation of the policy iteration algorithm of [CTGG99, GG98]. It can also be derived from Kohlberg’s
theorem. (See [DG06] for a more recent presentation). A closely related result is [LL69].

Theorem 3 (Coro. of [Koh80], see also [LL69] and [GG98]). Let A,B∈ (R∪{−∞})m×n satisfy Assump-
tions 1 and 2, and let S and T be the sets of all positional strategies of Max and Min, respectively. Then,

max
σ∈S

χ( f σ ) = χ( f ) = min
τ∈T

χ( f τ) . (10)

2.2 Tropical linear systems and mean payoff games

Max-only and min-only maps of the form (9) belong to tropical linear algebra. Max-only maps are linear
in the max-plus semiring Rmax, which is the set R∪{−∞} equipped with the operations of “addition”
“a+b” := a∨b = max(a,b) and “multiplication” “ab” := a+b. For min-only maps, we use the min-plus
semiring Rmin :=R∪{+∞} equipped with the operations of “addition” “a+b” := a∧b = min(a,b) and
the same “additive” multiplication. The setting in which both structures are considered simultaneously
has been called minimax algebra by Cuninghame-Green [CG79]. Then, we need to allow the scalars to

5



Tropical linear programming and parametric mean payoff games Gaubert, Katz and Sergeev

belong to the enlarged set R := R∪{−∞}∪ {+∞}. Note that in R, (−∞)+ (+∞) = −∞ if the max-
plus convention is understood, and (−∞)+ (+∞) = +∞ if the min-plus convention is understood. The
tropical operations are extended to matrices and vectors in the usual way. In particular,

(Bx)i =∨
j

bi j + x j (max-plus). (11)

Here, and in the sequel, the action of matrices on vectors (by tropical multiplication) is denoted by
concatenation, whereas we shall use the notation ∨ and + with its standard sense for scalars, the law +
having priority over ∨. In tropical algebra, there is no obvious subtraction. However, for any A ∈ Rn×n

we can define the Kleene star

A∗ := “(I−A)−1” = I∨A∨A2∨·· · (max-plus), (12)

and analogously with ∧ in the min-plus case. Here I is the max-plus identity matrix with 0 entries on the
main diagonal and−∞ off the diagonal. The powers are understood in the tropical (max-plus) sense. Due
to the order completeness of R, series (12) is well-defined for all matrices. We shall need the following
result.

Proposition 4 (See e.g. [BCOQ92, Th. 3.17]). Let A ∈ Rn×n
and b ∈ Rn

. Then, A∗b is the least solution
of z≥ Az∨b.

The maximal (minimal) circuit mean is another important object of tropical algebra. For A = (ai j) ∈
Rn×n

max (A = (ai j) ∈ Rn×n
min ), it is defined as

µ
max(A) =

n
∨

p=1
∨

i1,...,ip

ai1i2 + · · ·+aipi1

p
(max-plus), µ

min(A) =
n
∧

p=1
∧

i1,...,ip

ai1i2 + · · ·+aipi1

p
(min-plus).

(13)
For A ∈ Rn×n

define the associated digraph D(A) = {[n],E} so that (i, j) ∈ E whenever ai j is finite.
We will say that i accesses j if there exists a path from i to j in D(A). Denote by µmax

i (A) (µmin
i (A)) the

maximal (minimal) circuit mean of the component of D(A) to which i belongs. These numbers are given
by the same expressions as in (13), but with i1, . . . , ip restricted to that component.

Using µmax
i (A) (µmin

i (A)), we can write explicit expressions for the cycle-time vector of a max-plus
linear (min-plus linear) map x 7→ Ax:

χ
max
i (A) = max{µmax

j (A), i accesses j} (max-plus), χ
min
i (A) = min{µmin

j (A), i accesses j} (min-plus).
(14)

See [CTCG+98] or [HOvdW05] for a proof. Note that these cycle-time vectors of max-plus and min-
plus maps appear in (10). Computing A∗b is equivalent to solving a single destination shortest path
problem, which can be done in O(n3) time (for instance by the Bellman-Ford algorithm). Moreover,
χmax and χmin can also be computed in O(n3) time (decompose first the digraph D(A) in strongly con-
nected components, and apply Karp’s algorithm to compute the maximal or minimal circuit mean of each
component).

Max-plus and min-plus linear maps are mutually adjoint, or residuated. Recall that for a max-plus
linear map A from Rn

to Rm
, the residuated operator A] from Rm

to Rn
is defined by

(A]y) j :=
m
∧
i=1

(−ai j + yi) , (15)

with the convention (−∞)+ (+∞) = +∞. Note that this operator, also known as Cuninghame-Green
inverse, sends Rm

max to Rn
max whenever A does not have columns identically equal to −∞. The term

“residuated” refers to the property
Ax≤ y⇔ x≤ A]y , (16)
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where ≤ is the partial order on Rm
max or Rn

max. This residuated operator is crucial for max-plus two-sided
systems of inequalities, since

Ax≤ Bx⇔ x≤ A]Bx . (17)

Writing the last inequality explicitly, we have

x j ≤ ∧
k∈[m]

(−ak j + ∨
l∈[n]

(bkl + xl)) , ∀ j ∈ [n] . (18)

Thus we obtain the same min-max function as in (6).
Moreover, positional strategies σ : [m] 7→ [n] and τ : [n] 7→ [m] correspond to affine mappings Bσ and

Aτ defined by

(Aτ)i j =

{
ai j if i = τ( j),
−∞ otherwise,

(Bσ )i j =

{
bi j if j = σ(i),
−∞ otherwise.

(19)

Recasting (10) in max(min)-plus algebra, we obtain

max
σ∈S

χ(A]Bσ ) = χ(A]B) = min
τ∈T

χ(A]
τB) . (20)

The following result obtained by Akian, Gaubert and Guterman relates the solutions of Ax≤ Bx and
the nonnegative coordinates of χ(A]B). These coordinates correspond to winning nodes of the game: if
the game starts in these nodes, then Max can ensure nonnegative profit with any positional strategy of
Min.

Theorem 5 ([AGG09, Th. 3.2]). Let A,B ∈Rm×n
max . Then, χ j(A]B)≥ 0 if and only if there exists x ∈Rn

max
such that Ax≤ Bx and x j 6=−∞.

This is derived in [AGG09] from Kohlberg’s theorem. The vector x is constructed by taking an
invariant half-line, t 7→ v+ tχ , setting xi = vi + tχi if χi ≥ 0, and xi =−∞ otherwise, and t large enough.

Theorem 5 shows that to decide whether Ax ≤ Bx can be satisfied by a vector x such that xi 6= −∞,
we can call a mean-payoff oracle. This oracle will decide whether i is a winning node of the associated
mean payoff game and give a winning strategy of Max. This oracle can be implemented either by using
the value iteration method, which is pseudo-polynomial [ZP96], by the approach of Puri (solving an
associated discounted game for a discount factor close enough to 1 by policy iteration [Pur95]), by using
the policy iteration algorithm for mean payoff games of [CTGG99, GG98, DG06] or the one of [BV07].

3 Tropical linear programming

3.1 The spectral function

The tropical linear programming problem (3) can be recast as:

minimize λ subject to px∨ r ≤ λ +(qx∨ s) , Ax∨ c≤ Bx∨d , x ∈ Rn
max , (21)

where r,s∈Rmax, p,q∈Rn
max, c,d ∈Rm

max, and A,B∈Rm×n
max . Every problem concerning affine polyhedra

has a “homogeneous” analogue concerning cones, which is equivalent to it. The homogeneous version
of (3) reads:

minimize λ subject to uy≤ λ + vy , Cy≤ Dy , yn+1 6=−∞ , y ∈ Rn+1
max , (22)

where u,v ∈ Rn+1
max and C,D ∈ Rm×(n+1)

max . Problem (22) is equivalent to (21) if we set u = [p,r], v = [q,s],
C = [A,c] and D= [B,d]. We may drop the constraint yn+1 6=−∞ in (22), but then it may be not equivalent
to (21).
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We can still reformulate (22) in a more compact way:

min{λ |Uy≤V (λ )y , yn+1 6=−∞ is solvable} , (23)

where

U =

(
C
u

)
and V (λ ) =

(
D

λ + v

)
(24)

have dimensions (m+1)× (n+1). Thus, we consider the original programming problem as a family of
two-sided tropical linear systems where the right hand side depends on λ .

Using (16), we write
Uy≤V (λ )y⇔ y≤U ]V (λ )y , (25)

where U ]V (λ ) is a min-max function from Rn
max to Rn

max for each λ , if U does not have identically −∞

columns. We next reformulate the tropical linear programming problem in terms of a spectral function,
which gives the value of a parametric mean payoff game: the payments are given by the matrices U and
V (λ ), and the initial state is n+1.

Proposition-Definition 6 (Spectral function). The tropical linear programming problem (22) is equiva-
lent to

min{λ | φ(λ )≥ 0} (26)

where the spectral function φ is given by φ(λ ) := χn+1(U ]V (λ )).

Proof. By Theorem 5, Uy≤V (λ )y is solvable with finite yn+1 if, and only if, χn+1(U ]V (λ ))≥ 0.

Given a strategy σ ∈ S of Max and a strategy τ ∈ T of Min, we define the min-plus matrix U ]V σ (λ )
and the max-plus matrix U ]

τV (λ ), respectively, see (19) and (20). We introduce partial spectral functions,
φ σ (λ ) := χn+1(U ]V σ (λ )) and φτ(λ ) := χn+1(U

]
τV (λ )). With this notation, (20) reads

φ(λ ) = max
σ∈S

φ
σ (λ ) = min

τ∈T
φτ(λ ) . (27)

All spectral functions introduced above are non-decreasing, due to the monotonicity of V (λ ) and of the
map f 7→ χn+1( f ).

We have a finite number of strategies σ and τ , and hence a finite number of functions φ σ (λ ) and
φτ(λ ) in (27). Further, U ]

τV (λ ) is a max-plus linear operator. It is expressed by a max-plus matrix,
where some entries are of the form α +λ and the other entries are constant. Using Expression (14) for
the components of the cycle-time vector of a max-plus matrix, we obtain that φτ(λ ) is a piecewise-linear
convex function. It is also 1-Lipschitz since the modulus of any slope does not exceed 1. It consists
of no more than O(n2) linear pieces, since each possible slope cannot appear more than once. Indeed,
each linear piece must be of the form (α +βλ )/k, where α +βλ can be interpreted as the weight of
an elementary circuit in the digraph of U ]

τV (λ ) and k is the length of this circuit. It is easily seen that
0 ≤ β ≤ n+ 1 and 1 ≤ k ≤ n+ 1, which gives O(n2) possible values for the slope. Similarly, it can be
shown that φ σ (λ ) is a piecewise-linear concave 1-Lipschitz function, this time with only O(n) linear
pieces (because now β ∈ {0,1}). Then, (27) implies that φ(λ ) is piecewise-linear and 1-Lipschitz.

3.2 Strategies as certificates

In the classical simplex method, the optimality of a feasible solution is certified by the sign of Lagrange
multipliers. In our case, the certificate is of a different nature: it is a strategy. We shall also use such
strategies to guide the next iteration of the algorithm, when the current feasible solution is not optimal.

8
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Definition 7 (Left and right optimal strategies). A strategy σ− of Max (resp. τ− of Min) is left-optimal
at point λ ∈ R if there exists ε > 0 such that

φ(µ) = φ
σ−(µ) = φτ−(µ) ∀µ ∈ [λ − ε,λ ] .

Right optimal strategies σ+ and τ+ are defined in a similar way, by replacing [λ − ε,λ ] by [λ ,λ + ε].

The existence of left and right optimal strategies at each point follows readily from (27), together
with the finiteness of the number of strategies and the piecewise affine character of each map φ σ (λ ) and
φτ(λ ).

Let Gλ be the bipartite digraph of the mean payoff game associated with the matrices U and V (λ ).
Observe that in this digraph, only the weights of the arcs connecting node m+1 of Max with some nodes
l ∈ [n+ 1] of Min depend on λ . Given any strategy σ of Max (resp. τ of Min), denote by G σ

λ
(resp.

G τ

λ
) the bipartite subgraph of Gλ obtained by deleting from Gλ all the arcs (i, j) such that i ∈ [m+1] and

j 6= σ(i) (resp. the arcs ( j, i) such that j ∈ [n+1] and i 6= τ( j)). Then, it can be checked that circuits in
D(U ]V σ (λ )) (resp. D(U ]

τV (λ ))) correspond to circuits in G σ

λ
(resp. G τ

λ
).

A left-optimal strategy τ of Min at point λ ∗ is such that φ(λ ) = φτ(λ ) for all λ ≤ λ ∗ close enough
to λ ∗. Hence, by (26), we can certify that λ ∗ is the optimal value of the tropical linear program by
checking that φτ(λ

∗) = 0 and that the left derivative of the function φτ at point λ ∗ is positive. This can
be reformulated in purely combinatorial terms, leading to the following certificate.

Theorem 8. The tropical linear programming problem (22) has the optimal value λ ∗ ∈R if, and only if,
φ(λ ∗)≥ 0 and there exists a strategy τ of Min such that the digraph G τ

λ ∗ satisfies the following conditions:
(i) all circuits accessible from node n+1 of Min have nonpositive weight, (ii) there is a circuit accessible
from node n+ 1 of Min with zero weight, (iii) each circuit of zero weight accessible from node n+ 1
of Min passes through node m+ 1 of Max. Moreover, these conditions are always satisfied when τ is
left-optimal at point λ ∗.

The proof is inspired by the one of the tropical Farkas lemma in [AGK10b]. Pictures illustrating
the game can be found there. In the same way, we can certify when the tropical linear programming
problem (22) is unbounded.

Theorem 9. The tropical linear programming problem (22) is unbounded if, and only if, there exists a
strategy σ of Max such that all circuits in the digraph G σ

0 accessed from node n+1 of Min do not contain
node m+1 of Max and have nonnegative weight.

Remark 1. If the strategies σ or τ and the scalar λ ∗ are fixed (considered as inputs) the conditions in
Theorems 8 and 9, i.e., the validity of the certificates, can be checked in polynomial time. We leave
details to the reader.

3.3 Newton iterations

In (26), we need to find the least λ such that φ(λ ) ≥ 0, where φ(λ ) is non-decreasing and Lipschitz
continuous. Thus, we can consider certain classical methods for finding zeroes of a “good enough”
function of one variable. In particular, the bisection method for φ(λ ) corresponds to the approach of
Butkovič and Aminu [BA08]. For this method it is not important to know the actual value of φ(λ ), but
just whether φ(λ )≥ 0, i.e., whether Uy≤V (λ )y is solvable with yn+1 6=−∞. Here, we adopt a different
approach: the concept of (left-, right-) optimal strategy yields an analogue of (left-, right-) derivative,
and leads to an analogue of Newton iteration.

9
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Algorithm 1 (Positive Newton iteration). Start. A point λ0 at which φ(λ0)≥ 0.
Iteration k. Find a left-optimal strategy σ ∈ S at λk−1 and compute λk = min{λ : φ σ (λ )≥ 0}.
Stop. Verify λk = λk−1 or λk =−∞.

Proposition 10. The number of iterations of Algorithm 1 does not exceed the number |S| of strategies of
Player Max.

We next explain how each step of the algorithm can be implemented.

3.4 Newton iterations by means of Kleene star

We shall see that each Newton iteration in Algorithm 1 reduces to solving a shortest path problem. We
start with a technical observation.

Lemma 11. The minimization problems

min{λ |Uy≤V (λ )y , y1 6=−∞ is solvable} (28)

min{λ |Uy≤V (λ )y , y2 6=−∞ is solvable} (29)

have equal solutions if the following conditions are satisfied: (i) for any solution y of Uy ≤ V (λ )y,
y1 6= −∞ implies y2 6= −∞, (ii) the variable y2 appears (with a real coefficient) on the r.h.s. of the last
inequality of Uy≤V (λ )y (i.e., in uy≤ λ + vy), (iii) there exists a solution ỹ of the first m inequalities of
Uy≤V (λ )y such that ỹ1 6=−∞.

If we set V σ (λ ) instead of V (λ ) in Uy≤V (λ )y, the least possible value of λ is exactly the minimal
zero of φ σ (λ ). The main idea is to compute this minimal zero by considering the system Uy≤V σ (λ )y
directly. Denote l := σ(m+1). Then the last equation of Uy≤V σ (λ )y reads

n+1
∨
i=1

ui + yi ≤ λ + vl + yl , (30)

and we require yn+1 6=−∞ (instead of yl 6=−∞). Since we have φ σ (λ )≥ 0, we know by Theorem 5 that
the rest of the inequalities are satisfied by certain z ∈ Rn+1

max with zn+1 6=−∞.
Assume now that for each λ and each solution y of Uy≤V σ (λ )y, yn+1 6=−∞ implies yl 6=−∞. This

case will be referred to as non-degenerate in the sequel (we shall see that the degenerate case is not more
difficult). Then, the conditions of Lemma 11 are satisfied with n+1 for 1, l for 2 and z for ỹ, and we can
switch to the formulation with yl 6=−∞ and further, set yl = 0. Hence, our problem can be rewritten as

minimize px∨ r subject to Ax∨ c≤ Bσ x∨dσ , x ∈ Rn
max , (31)

where p ∈ Rn
max, r ∈ Rmax, c,dσ ∈ Rm

max and A,Bσ ∈ Rm×n
max are such that

U =

(
A c

p+ vl r+ vl

)
, V σ (λ ) =

(
Bσ dσ

−∞ λ + vl

)
. (32)

Here, column l is in the place of column n+1 just for the simplicity of the presentation. First note that
there are two subsystems:

(Ax)i∨ ci ≤ biσ(i)+ xσ(i) , i ∈ I ,

(Ax)i∨ ci ≤ di , i /∈ I ,
(33)

where I ⊆ [m]. The second subsystem can be dispensed with. Indeed, let x be a solution of both sub-
systems. If the first subsystem has the least solution x, then x ≤ x and it is also a solution to the second

10
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subsystem. Computing x is easily seen to reduce to finding the least solution t of a system t ≥ Ft ∨ h,
where the vector t collects the variables x j arising at the right-hand side of the first system in (33). By
Proposition 4, t = F∗h, from which we determine x. The following proposition summarizes the previous
analysis of the nondegenerate case.

Proposition 12. Checking the existence of a feasible solution x ∈ Rn
max of the auxiliary problem (31),

and computing the least feasible solution x, reduces to solving a shortest path problem (including the
detection of circuits of negative weights), which can be done in O(mn)+O(n3) time. The value of the
problem is px∨ r (or +∞ if there is no feasible solution).

Now we consider the degenerate case where for Uy ≤ V σ (λ )y, there may be solutions with yn+1 6=
−∞ but yl =−∞. This may happen only if: (i) n+1 /∈ supp(u), and (ii) there exists a solution of the first
m inequalities with yi =−∞ for all i ∈ supp(u), but yn+1 6=−∞.

Conditions (i) and (ii) imply that the “ratio” uy− vy with yn+1 6=−∞ is unbounded from below.
To check Condition (ii), we set yi =−∞ for i ∈ supp(u), and yn+1 = 0. We arrive at two subsystems

like in (33), where the free terms correspond to the last coordinate n+1. Next, we find the least solution
of the first subsystem as described above, and we check whether it belongs to Rn

max and satisfies the
second subsystem. The overall complexity of this step does not exceed O(mn)+O(n3).

At each step of Algorithm 1 we need to verify conditions (i) and (ii) above, and if these conditions
do not hold, we solve the auxiliary problem (31) by Proposition 12.

We now summarize the worst-case complexity of solving tropical linear programming problems by
this method. Denote by MPG(m,n,M) the worst-case complexity of an oracle which yields a left-optimal
strategy at a point λ . Here the constant M measures the greatest absolute size of entries of U and V (λ ),
over all λ computed by Newton iterations. To eliminate this dependence on λ , we notice that all values
λk, except for the initial value λ1, are found by means of computations with Kleene star and are sums
of no more than n entries of V (0) and n entries of U (with minus sign). For the choice of λ1 see
Subsection 3.5, it depends on the choice of a vector x that satisfies Ax∨b≤Cx∨d. We can assume that
this vector can be chosen concisely, in terms of A, b, C and d. Summarizing all worst-time complexities,
we obtain the following result.

Proposition 13. Let A,C ∈ Rm×n
max , b,d ∈ Rm

max, p,q ∈ Rn
max, r,s ∈ Rmax, and |S| be the number of strate-

gies of Player Max. Algorithm 1 solves a tropical linear programming problem (3) in no more than
(MPG(m,n,M)+O(mn)+O(n3))×|S| operations.

3.5 Remaining ingredients of the positive Newton iteration

Computing a left-optimal strategy This is not more difficult than solving a mean payoff game prob-
lem. Actually, assume that the entries ai j,bi j,c j,d j, p j,q j,r,s are either infinite or belong to Z, and let M
denote the maximal absolute value of these finite entries. Then, every linear piece of the spectral function
φ σ (λ ) must be of the form (α +βλ )/k, and it can be checked that 1≤ k ≤ n+1, |α| ≤ 2M(n+1), and
β ∈ {0,1}. It follows that every nondifferentiability point of φ σ , which is the intersection of two linear
pieces, is a rational with numerator O(Mn) and denominator O(n). Given λ ∗ ∈ R, it suffices to evaluate
the greatest rational λ of this form smaller than λ ∗, and to evaluate φ(µ), for any µ ∈]λ ,λ ∗[, to get
a left-optimal strategy. Indeed, computing φ(µ) is the same as solving a non-parametric mean payoff
game, and any strategy of Max that is optimal in this non-parametric game is left-optimal at point λ ∗.

Phase I: Computing an initial λ0 First, we shall always assume that the system Cy≤Dy, yn+1 >−∞ is
feasible, which can be checked by computing χn+1(C]D) (i.e. solving a mean payoff game). Otherwise,
the tropical linear programming problem (22) is infeasible and its value is +∞.

We shall need the following elementary result, which follows readily from Theorem 5.
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Proposition 14. There is a feasible solution x of Cy≤ Dy such that vx and xn+1 are finite if, and only if,
χi(C]D)≥ 0 for i = n+1 and for some i such that vi is finite.

Thus, such a vector x can be obtained (or shown not to exist) by computing the vector χ(C]D), which
is the same as computing the value, for all initial states i, of the mean payoff game whose rewards are
given by the matrices C and D.

If such an x exists, since vx is finite, we can find a finite λ such that ux≤ λ +vx, and since Cx≤Dx,
we deduce that φ(λ )≥ 0, which gives an initial λ0 for Algorithm 1.

If there is no such x, we know that vx is −∞ for all x satisfying Cx ≤ Dx and xn+1 finite. Now we
need to determine whether there exists x such that Cx ≤ Dx, xn+1 finite and xi = −∞ for all i ∈ suppu,
because if this holds the tropical linear programming problem (22) is clearly unbounded. With this
aim, we eliminate the variables xi, for i ∈ suppu, from the system Cx ≤ Dx and consider the resulting
reduced system (in fewer variables). Here we assume that n+1 6∈ suppu because otherwise our problem
is infeasible. As above, by solving a mean payoff game we can determine whether this reduced system,
together with the condition that xn+1 is finite, is feasible. If it is, as we already said our original problem
is unbounded. However, if it is not, then any solution of the system Cx ≤ Dx with xn+1 finite satisfies
that vx is −∞ and that xi is finite for some i ∈ suppu. Therefore, in the latter case we conclude that the
tropical linear programming problem (22) is infeasible and its value is +∞.

4 Examples

Minimization Let us minimize the max-linear combination max(2 + x1,−4 + x2) over the tropical
polyhedron in R2

max defined by the system of inequalities Ax∨ c≤ Bx∨d, where

(A | c) =



−∞ −∞ 0
−∞ −∞ 0
−∞ −∞ 0
−∞ −3 0
−∞ −4 −∞

−∞ −5 −∞

−∞ −6 −∞


, (B | d) =



−2 0 −∞

0 −1 −∞

1 −2 −∞

2 −∞ −∞

0 −∞ 0
−2 −∞ 0
−4 −∞ 0


. (34)

This polyhedron is displayed on the left hand side of Figure 1. The direction of minimization of
max(2+ x1,−4+ x2) is shown there by a dotted line above the polyhedron, together with the optimal
hyperplane max(2+ x1,−4+ x2) = 0.

We start the algorithm with λ1 = 15, where φ(λ1) = 5.5. The map σ1(1) = 1, σ1(2) = 1, . . . ,σ1(7) =
1 and σ1(8) = 3 is an optimal strategy of Max. To perform the first step of the Newton iteration, we find
the minimal solution of the system

0≤ x1−2 , 0≤ x1 , 0≤ 1+ x1 , max(x2−3,0)≤ x1 +2 , x2−4≤ x1 , x2−3≤ x1 , x2−2≤ x1 ,

which is (x1, x2) = (2, −∞). The next value is λ2 = x1 + 2 = 4. Then, φ(λ2) = 1.5 and σ2(1) = 2,
σ2(2) = 2, σ2(3) = 1, σ2(4) = 1, σ2(5) = 1, σ2(6) = 3, σ2(7) = 3 and σ2(8) = 3 is a new optimal
strategy of Max. For the next Newton iteration, we find the minimal solution of the system

0≤ x2 , 0≤ x2−1 , 0≤ 1+ x1 , max(x2−3,0)≤ x1 +2 , x2−4≤ x1 , x2−5≤ 0 , x2−6≤ 0 ,

which is (x1, x2) = (−1, 1). The next value is λ3 = x1 + 2 = 1. Now φ(λ3) = 0.5 and σ3(1) = 2,
σ3(2) = 2, σ3(3) = 2, σ3(4) = 1, σ3(5) = 3, σ3(6) = 3, σ3(7) = 3 and σ3(8) = 3 is the optimal strategy
of Max. For the next Newton iteration, we find the minimal solution of the system

0≤ x2 , 0≤ x2−1 , 0≤ x2−2 , max(x2−3,0)≤ x1 +2 , x2−4≤ 0 , x2−5≤ 0 , x2−6≤ 0 ,
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Figure 1: Minimization example: the tropical polyhedron and the spectral function
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Figure 2: Maximization example: the tropical polyhedron and the spectral function

which is (x1, x2) = (−2, 2). This gives the optimal value λ4 = 0. Vectors (2, −∞), (−1, 1) and (−2, 2)
found by the Newton iterations are indicated on the left hand side of Figure 1 as “1”, “2” and “3”.

The right hand side of Figure 1 displays the graph of φ(λ ), together with the Newton iterations. The
graphs of partial spectral functions φ σ (λ ) are given by red dashed lines.

Maximization We maximize max(1+x1,3+x2) over the subset of R3
max defined by the system Ax∨c≤

Bx∨d, where

(A | c) =


−∞ −1 −∞

−2 −2 −∞

−1 −∞ −∞

0 −∞ −∞

 , (B | d) =


0 −∞ 0
−∞ −∞ 0
−∞ 0 0
−∞ 2 0

 . (35)

This maximization problem is equivalent to finding a minimal λ such that 0 ≤ λ +max(1+ x1, 3+ x2)
is consistent with Ax∨c≤ Bx∨d. Indeed, the maximum of max(1+x1, 3+x2) is given by the opposite
(tropical inverse) of that minimal λ .

Let us take λ1 = 3 for the first time, then we obtain that σ1(1) = 3, σ1(2) = 3, σ1(3) = 3, σ1(4) = 3
and σ1(5) = 2 is an optimal strategy of Max. To perform the Newton iteration we first notice that
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σ1(5) = 2, which means that the second columns of (A | c) and (Bσ | dσ ) will correspond to free terms
in (31). We have to find the minimal solution of the following system:

y3 ≥−1 , y3 ≥max(−2+ y1,−2) , y3 ≥−1+ y1 , y3 ≥ y1 ,

which is (y1,y3) = (−∞,−1). The full vector y = [−∞; 0; −1] is a translate of y+1 = [x1; x2; 0], where
(x1,x2) = (−∞,1) is marked as “1” at the left of Figure 2. Meanwhile we obtain λ2 = y3−3 =−4, and
σ2(1) = 1, σ2(2) = 3, σ2(3) = 2, σ2(4) = 2 and σ2(5) = 2 is now a new optimal strategy of Max. Here
again σ(5) = 2 and the second columns of (A | c) and (Bσ | dσ ) are again free coefficients. We have to
find the minimal solution of the following system:

y1 ≥−1 , y3 ≥max(−2+ y1,−2) , 0≥−1+ y1 , 2≥ y1 ,

which is (y1,y3) = (−1,−2). We obtain λ3 = y3−3 = −5, which is the optimal value. The full vector
y = [−1; 0; −2] is a translate of y+2 = [x1; x2; 0], where (x1,x2) = (1,2) is marked as “2” at the left of
Figure 2.

As in the case of Figure 1, the right hand side of Figure 2 displays the graph of φ(λ ), together with
the Newton iterations. The graphs of partial spectral functions φ σ (λ ) are given by red dashed lines.
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[AGG10b] X. Allamigeon, S. Gaubert, and É. Goubault. The tropical double description method. In Proceedings
of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS’2010,
March 4-6, Nancy, France). Leibniz Center in Informatics, 2010.

[AGK10a] X. Allamigeon, S. Gaubert, and R. D. Katz. The number of extreme points of tropical polyhedra. J.
Comb. Theory Series A, 2010. Published on line, doi:10.1016/j.jcta.2010.04.003.

[AGK10b] X. Allamigeon, S. Gaubert, and R. D. Katz. Tropical polars, hypergraph transversals, and mean
payoff games. Eprint arXiv:1004.2778, 2010.

[All09] X. Allamigeon. Static analysis of memory manipulations by abstract interpretation — Algorith-
mics of tropical polyhedra, and application to abstract interpretation. PhD thesis, École Poly-
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[BA08] P. Butkovič and A. Aminu. Introduction to max-linear programming. IMA Journal of Management

Mathematics, 2008.
[BCOQ92] F. L. Baccelli, G. Cohen, G.-J. Olsder, and J.-P. Quadrat. Synchronization and Linearity: an Algebra

for Discrete Event Systems. Wiley, 1992.
[BH04] W. Briec and C. Horvath. B-convexity. Optimization, 53:103–127, 2004.
[BNgC08] M. Bezem, R. Nieuwenhuis, and E. Rodrı́guez Carbonell. The max-atom problem and its relevance.

In Proceedings of the 15th International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR’08), volume 5330 of LNCS, Doha (Qatar), November 2008. Springer.

[BNgC10] M. Bezem, R. Nieuwenhuis, and E. Rodrı́guez Carbonell. Hard problems in max-algebra, control
theory, hypergraphs and other areas. Information processing letters, 110:113–138, 2010.

14

http://www.arXiv.org/abs/0912.2462
http://www.arXiv.org/abs/1004.2778
http://www.lix.polytechnique.fr/Labo/Xavier.Allamigeon/papers/thesis.pdf
http://www.lix.polytechnique.fr/Labo/Xavier.Allamigeon/papers/thesis.pdf


Tropical linear programming and parametric mean payoff games Gaubert, Katz and Sergeev

[BV07] H. Bjorklund and S. Vorobyov. A combinatorial strongly subexponential strategy improvement al-
gorithm for mean payoff games. Discrete Appl. Math., 155:210–229, 2007.

[CG79] R. A. Cuninghame-Green. Minimax Algebra, volume 166 of Lecture Notes in Economics and Math-
ematical Systems. Springer, Berlin, 1979.

[CGQ04] G. Cohen, S. Gaubert, and J. P. Quadrat. Duality and separation theorems in idempotent semimod-
ules. Linear Algebra Appl., 379:395–422, 2004.

[CTCG+98] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. M. Gettrick, and J. P. Quadrat. Numerical compu-
tation of spectral elements in max-plus algebra. In Proceedings of the IFAC conference on systems
structure and control, pages 699–706, IRCT, Nantes, France, 1998.

[CTGG99] J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. A constructive fixed-point theorem for min-
max functions. Dynamics and Stability of Systems, 14(4):407–433, 1999.

[DG06] V. Dhingra and S. Gaubert. How to solve large scale deterministic games with mean payoff by policy
iteration. In Proceedings of the 1st international conference on Performance evaluation methodolgies
and tools (VALUETOOLS), volume 180, Pisa, Italy, 2006. article No. 12.

[DS04] M. Develin and B. Sturmfels. Tropical convexity. Documenta Math., 9:1–27, 2004.
[Fri09] O. Friedmann. An exponential lower bound for the parity game strategy improvement algorithm as

we know it. In Proceedings of the Twenty-Fourth Annual IEEE Symposium on Logic in Computer
Science (LICS 2009), pages 145–156. IEEE Computer Society Press, August 2009.

[GG98] S. Gaubert and J. Gunawardena. The duality theorem for min-max functions. C. R. Acad. Sci. Paris.,
326, Série I:43–48, 1998.

[GK09] S. Gaubert and R. D. Katz. The tropical analogue of polar cones. Linear Algebra Appl., 431(5-
7):608–625, 2009. E-print arXiv:0805.3688.

[GP97] S. Gaubert and M. Plus. Methods and applications of (max,+) linear algebra. In R. Reischuk and
M. Morvan, editors, Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’97), number 1200 in Lecture Notes in Comput. Sci., Lübeck, March 1997. Springer.
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