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Abstract— Automata with multiplicities over the (max,+) semiring can be
used to represent the behavior of timed discrete event systems. Thisformalism
which extendsboth conventional automata and (max,+) linear representations
coversa classof systemswith synchronization phenomena and variable sched-
ules. Performance evaluation is considered in the worst, mean, and optimal
cases. A simplealgebraicreduction isprovided for theworst case. Thelast two
cases are solved for the subclass of deterministic series (recognized by deter-
ministic automata). Deterministic series frequently arise dueto the finiteness
properties of (max,+) linear projective semigroups. The mean performanceis
given by the Kolmogorov equation of a Markov chain. The optimal perfor-
manceis given by a Hamilton-Jacobi-Bellman equation.
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|. INTRODUCTION

UTOMATA with multiplicities[10] over the (max,+) or the

dual (min,+) semiring (or equivalently, rational & recog-
nizable series [5] over the (max,+) semiring) are much studied
objects in language theory and combinatorics. Their applica-
tionsto linguistic problemsarewell known (Simon, Hashiguchi,
Mascle, Leung, Krob, Weber, see [17], [24], [18], [25] and the
references therein). The purpose of this paper is to show that
these series are also useful to model and to analyze certain timed
discrete event systems (DES) which exhibit both synchroniza-
tion features (when some task has to wait for the completion of
several other tasks) and some particular forms of concurrency
(when two events may occur aternatively at the same logical
epoch).

The results presented here are an attempt to fill the gap be-
tween the two following popular algebraic approaches to DES.
1. The modeling of DES by conventional automata, initiated
by Ramadge and Wonham [23]. In this theory (abbreviated RW
in the sequel), events are represented by letters and DES are
seen asfinite state machines. The main results concern the log-
ical behavior of DES under some appropriate supervision. 2.
The (max,+) school (see[4], [8]) considers a much more special
class of systems (which essentialy coincides with timed event
graphs). Contrarily to automatain which the controls (letters) al -
low the selection between different trgjectories, (max,+)-linear
stationary systems are well adapted to DES whose behavior is
made deterministic by fixing the schedules. The spirit is also
different sincethe theory basically considers certain quantitative
measures (asymptotic performance, size of the stocks, earliest or
latest behavior).

Itisvery natural to try to incorporate some time modeling in
the RW framework and dually, to try to model with the (max,+)
algebrathe forms of undeterminism and concurrency which are
easily handled with automata. Indeed, several temporal exten-
sions of the RW modeling have already been proposed under
the name of timed automata (Alur, Coucourbetis, Dill [2], Won-
ham and Brandin [7], Nicollin, Sifakis, Yovine...[21]). Timed
automata essentially represent the logical behavior of systems
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whose transitions are constrained by some clock inequalities.
The logical verification results extend to the timed case —up to
an increase of complexity.

In this paper, we propose a different extension based on
(max,+) automata, which generalize both conventional automata
and finite dimensional causal stationary recurrent (max,+)-linear
systems. Then, we extend the usual (max,+) performance eval-
uation results to the automata case.

In §l1, we recall the basic results about automata with mul-
tiplicities and rational/recognizable series. In §llI, we show
that several interesting subclasses of DES are modelizable by
(max,+) automata. Typicaly, the words can be used to repre-
sent some finite sequences of tasks (schedules) and the (max,+)
automaton computes the completion time as a function of the
schedule. In loose terms, the concurrency features are modeled
by the possible choices between the letters, and the synchroniza-
tion featuresareimplemented by the (max,+) algebra. In§1V, we
state the three basic performance evaluation problemsto which
the paper is mainly devoted. The worst case performance over
ahorizon & consistsin finding the sequence of k eventswith the
latest time of completion (worst makespan). The much morein-
teresting optimal case performance consistsin selecting asched-
ule with minimal makespan. The mean case performance eval-
uates the average time of completion of k£ events when these
eventsare selected with asimple (say Bernouilli) law. Theworst
case evaluation problem is solved in §V and §VI by appealing
to the (max,+) spectral theory. Up to detail technical points, we
show that the worst case performance over ahorizon & isasymp-
totically of the form pk, where p (interpreted as the inverse of
the worst case throughput) is equal to the (max,+) eigenvalue of
a certain matrix. Since the optimal case and the mean case be-
havior turn out to be much more complex, we are led to intro-
ducein §VII the tractable subclass of (max,+) deterministic se-
ries. Deterministic series admit a representation as an additive
cost of the trgjectory of afinite dynamical system. Thus, the op-
timal and mean case eval uation reduce to some classical Marko-
viantechniques. In§V1I1, we givesome determinizability condi-
tions based on finiteness properties of (max,+) linear projective
semigroups. We provide an algorithm to build an additive-cost
representati on from anon deterministic linear representation sat-
isfying a projective finiteness condition. In §1X, we apply this
reduction to the mean case performance which is given by the
Kolmogorov equation of an induced Markov Chain. This shows
that for deterministic series, the mean case performance over &
stepsis asymptotically linear in &, where the rate is obtained by
elementary means. In §X, the optimal performance is obtained
along the samelines. The Kolmogorov equationis replaced by a
Hamilton-Jacobi-Bellman equation, and the Markov chainisre-
placed by a Bellman Chain [1]. The optimal performance also
exhibitsalinear growth.

It isimportant to notice that stochastic (max,+) automataarea
finite algebraic version of random products of (max,+) matrices



for which a precise general ergodic theory is available [3], [4],
[19]. The mean case measure of performance considered here
coincides with Baccelli’s Lyapunov exponent (analogous to the
Lyapunov exponents of stochastic conventional dynamical sys-
tems). The determinization procedure that we use can be seen as
a finite version of the construction of 1-cocycles over the pro-
jective space on which the study a la Furstenberg of random
products of matricesis based [6]. The possibility of using such
Markovian reduction in the DES context seems to have been
first noted by Olsder, Resing, de Vries, Keane and Hooghiemstra
[22] [4, chap8]. Moreover, the idea of optimizing some similar
finitely valued nonstationary products of (max,+) matricesisdue
to Olsder [4, chap9].

To conclude, let us mention that there are other important ap-
plications of (max,+) and (min,+) rational series to DES and
Bellman processes. Namely: 1. as Fliess generating series
for (min,+) bilinear systems (which correspond to a subclass of
Timed Petri nets in which resources —tokens— can be dynam-
ically added to the system) [11], [13], 2. as generating series
of Markovian optimization problems, 3. as devices for count-
ing the occurrences of some distinguished eventsin DES mod-
eled in the conventional RW way [13], 4. as models for certain
timed systemswith shared resources (somevariants of thedining
philosophers) [13]. Note also that a similar representation has
been used by Gaujal and Mairesse [15] to compare two commu-
nication protocols.

1. (MAX,+) AUTOMATA, RECOGNIZABLE DATERS AND
RATIONAL SERIES

Let us recall two classical ways of modeling DES.

1. Inthe Ramadge-Wonham (RW) theory [23], aDESisrep-
resented by a language, i.e as a subset L of X*, where X
denotes a finite al phabet whose letters are interpreted as el -
ementary events and X* denotes the monoid of words on
Y. Usualy, w € L means that the sequence of elementary
events given by the successive letters of w corresponds to
an admissible behavior of the system.

2. Inthe (max,+) theory [4], [8], asystemis represented by a
vector z of dater functions. |.e., the i-entry of z isamap
z; N = RU{—oc}, and z;(n) isusualy interpreted as
the time of the n-th occurrence of the event labeled i (say
the time of production of the n-th part of type 7).

We naturally merge the two notions as follows:

Definition 1 (Dater Function) A daterisamapy : ¥* — RU
{—oc}.
We shall write (y|w) —instead of y(w)— for the value of y at
the word w. This scalar product notation which is standard in
therational seriesliterature[5] will soon appear to be useful. We
shall interpret (y|w) asthe time of completion of the sequence
of events w, with the convention that (y|w) = —oc if w does
not occur. By specialization to the case of boolean daters (with
valuesin{—oc, 0}), weobtain the Ramadge-Wonham modeling.
By specidlization to asingle letter alphabet ¥ = {a}, we obtain
theusual dater functionsof the (max,+) theory. Inthe RW theory,
the languages of interest are recognized by some finite devices
(typically finite automata). Similarly, in the (max,+) theory, the
daters satisfy somefinite dimensional linear recurrent systemsin
the (max,+) algebra. Here, we shall consider the class of dater

functions which are recognized by (max,+) automata.
Definition 2 ((max,+) Automaton)

A (finite) (max,+) automaton over an alphabet X is a quadruple
= (Q,a.T. ) where @ isa(finite) set of statesand o, T", 5

aemapsa : Q@ - RU{-x},8 : Q@ - RU{—c},

T:QxXx@Q — RU{—oc} (caledrespectively initial delays,

final delays, transition times).

The “functioning” of the automaton is as follows. A path of

length n is a sequence of statesp = (q1,...,qn41) € Q"L

We say that theword w = a; ...a, is accepted or recognized

by the path p if:

weight(p. w) € a(g1) + 11, a1.q2) + -
+T(Qn:an:Qn+1) +6(Qn+1) 75 —0oC .
We shall also writein a self explanatory way

oy

weight(p, w) = weight(q; = g2 3 g3 = - ¢n 3 ¢nug1) -

The multiplicity! of theword w = a; . . . a,, isthe maximum of
the weights of the paths accepting w, namely

(Alw) ®  max | weight(p, w)
peQ™t
= max [a(q1)+T(q1,a1,92) + -
q1---Gnt1

+T(Qn:an;Qn+1) +ﬁ(Qn+1)] . (2)

We say that the automaton recognizes the dater w — (A|w). A
dater y : ¥* - R U {—oc} iscalled recognizableif there exists
an automaton A such that (y|w) = (Alw).

There is a useful graphical representation of a (max,+) au-
tomaton .4, which can beidentified to avalued multigraph, with
@ as set of verticesand 3 kinds of arcs:

1. theinternal arcs, i — j, forall i.j € Q anda € X such
that 7'(i,a,j) # —oc. Thearci = j isvaluated by the
scalar T'(i, a, j).

2. theinput arcs— ¢, valuated by «.(4), for all i in @ suchthat
a(t) # —oc.

3. the output arcs ¢ —, valuated by (i), for al i in @ such
that 5(¢) # —oc.

Then, (A|w) reads graphically as the max of all the additive
weights of the pathslabeled w from the input to the output of the
graph associated with .A.

Examplel: Let ¥ = {a, b}. The automaton with set of states

= {0, 1,2}, transitiontimes 7'(0,a, 1) = 1, 7(0,a,2) = 3,

(1 .2) =4,T(2,0,2) = 1,T(2,b,1) = 5,T(2,5,0) = 7,

T(1,b,1)=1,7(1,b,0) = 2, fina and initial delays 5(0) =

a(0) = 0 (the other values of a, T, ae —oc)is represented

on Fig. 1. The vauations equal to 0 will be omitted (e.g. the
non vauated input arc — 0 stands for a(0) = 0). We have for
instance:

(Alab) = max(weight(0 1 N 0), weight(0 = 2 N 0))
max(a(0) +7(0,a, 1)+ T(1,5,0) 4+ 5(0),
a(0)+7(0.a,2)+7(2.b.0) + 3(0))

= max(5,12) =12 .

3

IThe term multiplicity is standard [10]. It is used by extension from the
(N,+, x) case: if we replace respectively max by +, + by x, —oc by 0, in
(1),(2), andif weassumethat o, T', 3 are0, 1 valued, thenthemultiplicity (A|w)
counts the number of paths accepting w.



Fig. 1. A (max,+) automaton

A concrete interpretation of thisautomaton will be givenin §l11-
c.2

Remark 1 (Underlying Conventional Automaton) There
is a natural conventional non deterministic automaton A &
(Q.Q;.6. Q) —State Q, initial states @Q;, transition map J
Q x X — 29 final states () ;— underlying the (max,+) automa-

ton. A = (Q,a, T, 3). Namely:
6(g.a) = {¢'] T(q.a.q') # —cc},
Qi = {q| atﬁ# —oct,
Qy = Hq| Blg) # —o<} .

This conventional automaton .4 can be visualized by forgetting
the time valuations on the graph of .4. The language recognized
by A coincideswith {w € ¥* | (AJw) # —oc}. We shall say
that a (max,+) automaton is deterministic if the underlying con-
ventional automaton is deterministic (i.e. if @; = {q0} —asin-
gleinitial state— and if V¢, a, d(¢, a) has at most one element).
Thereisasimplealgebraic formulation of (2) that we next intro-
duce. The (max,+) algebra[20], [4], [9], [16] isby definition the
set R U {—oc} equipped with the laws max (denoted by &) and

+ (denoted by ®). Eg. 2® 1 = 3,2& —1 = 2. Theeement

e ¥ _stiiescar=zadecz = ¢ (¢ actsas a zero).

The element ¢ & 0 satisfiese @ z = z (e isthe unit). The main
discrepancy with conventional algebraisthat z € 2 = z. We
shall denote B oy = (RU{—cc}, &, @) thisstructure. Ryax
isa specia instance of dioid (semiring whose addition is idem-
potent). The (max,+) matrix product is defined in the ordinary
way:

(A & B zy — @Azk & Bk] — mkaX[Azk + Bk]]

where A, B are matrices with compatible sizes. We shall write
AB instead of A ® B, asusua. We define the map

def
po X %Rg;xQ p(a)gq = T(Q7arq/) :

Then, identifying o« with a row vector and 3 with a column
vector, we get (Alay...a,) = ap(ai)...u(a,)3 . Since
4 can be extended in a unique way to a morphism of multi-
plicative monoids X* — RYXQ by setting u(ay ...a,) =
play) ... .p(an), we get

(Alw) = ap(w)s . (4)

Thus, a (max,+) automaton is equivalently defined by a triple
(o, 1, B), wherea € R1X2. 3 € RYX!, and p isamorphism

max @ _max A A
¥ — RYXEL. Wewill call such atriplealinear representation

of the dater (4). We shall also write equivalently adater function
y asaformal series.

y= @ ) w

WwEL*

Eg, y=2¢4b€ 3a ¢ 3a® ¢ 3a® ¢ ... stands for the dater
(yle) = 2 (e denotes the empty word) (y|b) = 4, (yla) =
(yla®) = ... =3, and (y|w) = ¢ = —oc for the other words w.
The set of formal series with coefficients in IR, and noncom-
mutative indeterminates a € X, denoted R max{ L)), is naturally
equipped with a number of interesting classical operations. We
shall only use here the following

Sum
(y @ 2|w) “ <y|wz(e|<z)|t§-)| ;
= max((y|lw), (z|w
Hadamard Product
55”@?1'“% - E () € (2lw) = (ylw) + (z]w)
auchy Produc
(y@ zlu) £ Dumull) © (1)
— = maxge=u[(ylu) + (2]0)]
ar Product
gz) C P lylv) @ (zlw)
ar
(y*w) € D, w) o
(in the definition of y*, y" standsfory@ y® - - - ® y, i.e. then-

th power for the Cauchy product). It isimportant to note that the
two latest operations are only partially defined (e.g. y* iswell
defined iff (yle) < e). Asitiswell known [5], recognizable se-
ries are stable by the operations ¢, ¢, ®, *. In particular (and
thisis the Kleene-Schiitzenberger theorem [5]), the dioid of ra-
tional series (defined as the closure of the dioid of polynomials
by the operations ¢, &, ) coincides with the dioid of recogniz-
able series, so that our object of study is nothing but rational se-
riesin several non commuting indeterminates over the (max,+)
semiring.

[1l. EXAMPLES OF DES MODELIZABLE BY (MAX,+)
AUTOMATA

We give here afew examples of DES modelizable by (max,+)
automata. Some other applications are sketched in [11], [13].
The purpose of theseexamplesistoillustrate thetypical features
of (max,+) automataand to discuss their relations with some ex-
isting formalisms.

A. Several Tasks on a Sequential Machine

Let us consider a sequential machine processing some parts
of typea € X withtimet, € R,,x. Thetime of completion of
the sequence of tasksw is(y|w) = ) o ta X |w]q, Where |wl,
denotesthe number of occurrencesof theletter a in w. The dater
yisrationa. Indeed, y = (P, cx taa)*.

B. Several Machines Working In Parallel

We now assume that the parts of type a € Y. are processed on
adedicated machine M, withtimet,. Then, thetime of comple-



tion of the sequence w becomes (y|w) = maxgex(tq X |w]q).
yisagainrationa, sincey = P ,cx(taa € Py, 00).

C. Storage Resource with Finite Capacity
C.1 Deterministic Case

We consider a storage with a capacity of two units. The two
following events are possible:

a apartisadded to the stock
b apartistaken out.

Thissystem isrepresented by the automaton of Figure2 over the
aphabet ¥ = {a,b}. Node O represents the state “0 parts in
stock”, node 1 “1 part in stock”, etc. First, the storage is empty.
We consider the situation where the transitions of the automaton
take some given times. For instance, we assume that the transi-
tion 1 = 2 takes 4 units of time and we set T(1,a,2) =4.The
other values of " are displayed on Fig. 2. We have aso taken

into account someinitial and final delay (e.g. thearc 0 2 inthe
Figurerepresentsafina delay of 2 units). Now, thetime of com-

la 4a
o g o
20 9 5

Fig. 2. Storage with Capacity of Two Units

pletion of the admissible sequence of tasks w = wy ... wy, € XF
isequal to theweight of theuniquepath0 <3 iy . . .ix_1 =5 0 ac-
Ceptlng w. (y|ll/1 .. lbk) = T(O w, 21) —|—T(21 Wa, 22) +---+
T(tk-1, wg,0) 4+ 5(0) . Thedater y admitsthefollowing linear

representation
2
e |. (6)
g

E € €
),y(b):(? e ¢
€ 5 ¢

E.g. (ylab) = au(a)u(b)s = 5. The above exampleisin-
deed generic of deterministic (max,+) automata (defined in Re-
mark 1). Moregenerally, any DESwhoselogical behavior isrep-
resented by a conventional deterministic automaton and whose
non-instantaneous actions correspond to the usage of a single
resource is modelizable by a deterministic (max,+) automaton.
In such cases, the max structure is not really used since there is
at most one path accepting a given word. The max structure be-
comes helpful to represent some undeterminism, asfollows.

C.2 Non Deterministic Case

Theautomatonfirst shown onFig. 1isanon deterministicver-
sion of the preceding storage resource, in which the eventsa and
b still represent arrivals and withdrawals of parts, but where the
quantities are not specified in a deterministic way. E.g., at state
0, theevent a may represent the arrival of either one or two parts,
with respective storage times 1 and 3 as shown on Fig. 1. Ina

similar way, the event b represents either the delivery of apart as
before, either the simultaneous delivery of 2 parts (7 time units),
either an unsuccessful attempt of delivery (e.g. if the customer
refuses the part) which takes 1 unit of times and leaves the re-
source at the same state. We have the linear representation

e 1 3 €
(664),;1(1)):( 6)
E € ¢ 1

(same a, 8 asin (6)). Thetime (y|w) can now be interpreted
as the maximal duration of a successful sequence of tasks com-
patible with the sequence of informations w. More generally:
(max,+) automata naturally compute the wor st case behavior of
non deterministic automata with timed transitions.

ESECIGY
ST

D. Nonstationary (max,+) Linear Systems with Finitely Valued
Dynamics

The (max,+) theory [4] dealswith linear recurrent systems of
theform
z(k) = A(k)z(k — 1), z(0) = b, y(k) = cz(k)  (8)
where A(k) € RIR z(k).b € RE%L ¢ € RyR y(k) €
R max. We claim that (max,+) automata represent the case where
the dynamics of the system A(k) only takes a finite number
of values A4, ..., A,. Indeed, if the dater y is recognized by

(a, pt, ), (y|w) can be computed recursively by introducing a
“state vector” (z|w) o au(w) and setting

(zle) = . (ylw) = (z]w)B  (9)

whichissimilar to (8), up to the transposition and to the fact that
the dynamic p(a) depends on the last letter of the word wa (in-
stead of the logical time k). More formally, we introduce an al-
phebet ¥ = {ai,....ap}, weset u(a;) = A;. We represent
theinformation A(1) = u(w1), ..., A(k) = p(w) by theword
w = wy ...w, and we denote by y,, the corresponding output
y(k) of (8). Wedenoteby @ = wy .. .w; the mirror image of
w. Then,

(zwa) = (2|w)p(a),

Yo = cp(w)b

i.e. nonstationary (max,+) linear systemswith finitely valued dy-
namics are represented by (max,+) automata with reverse inter-
pretation. Weobservethat whenthematrices A(1), A(2), .. .are
random variables, systems of the form (8) belong to the much
studied class of Stochastic timed event graphs. We refer the
reader to[3], [22], [4] for theimportant applicationsof these sys-
tems. We shall mention here a different one, where the word w
represents a schedule.

E. Workshop with Variable Schedule

We consider aworkshop with two machines processing three
types of parts. We assume that there are two working regimes
a and b and that the workshop follows an open loop schedule
w € ¥*. E.g. w = aaab stands for “ 3 working periods of type
afollowed by 1 period of type b”. The working regimes are de-
scribed as follows.

(a) At the n-th working regime a, the n-th part of type 2 is

processed by machine 2 during 5 units of time. Then it is



sent to machine 1 (transportation time: 1 unit). Machine 1

processes the n-th type 1 part (during 3 units of time), then

it is assembled with the n-th type 2 part received from ma-

chine 2.

(b) Atthep-thworking regimeb, thep-th part of type3ispro-

cessed during 10 units of time on machine 1. No additional

task isimposed to Machine 2.
We assume that the workshop isinitially empty, starts working
at time 0, and then operates at maximal speed provided that the
precedence constraints of the schedule are satisfied. Let (z;|w)
(resp. (z2|w)) denote the earliest time at which all the opera-
tionsonMachine 1 (resp. 2) required by the schedule w; are com-
pleted. Dueto the initial conditions, we set (z|e) = [e €] = a.
Weareinterestedin computing (y|w) = (z1|w). Thisisthetime
when the last part exits the workshop under the schedule w. We
claim that y is recognized by the following linear representation
(displayedin Figure 3).

6a

Ja Ha
106

Fig. 3. Workshop with Two Working Regimes

u(a)=<2 §> u(b)=<160 i)
a=(e e),ﬁz(j)

For instance, ((z|wa))1 = ((z|w)p(a)); means exactly that

(z1|wa) = max(6 + (z2|w), 3+ (21|w)) (20
i.e that (i) machine 1 has to wait for the current type 2 part to
arrive from machine 2 (5 +1 time units) and (ii) that machine 1
takes 3 time units to produce the current type 1 part. The other
columns of u(a), u(b) are obtained by writing similar equations
for (zo|wa), (#;|wbh).

Some interesting features appear when considering sub-
behaviors of the system, that is when we assume that the sched-
ule w belongsto alegal language L. Assumefor instance a peri-
odic behavior of theform L; = (a'b)* (that is, 1 period of typeb
occursevery [ periodsof typea). (y|(a'b)?) isequal to the maxi-
mal weight of the successful pathswith label (a'b)*. Itisnot too
difficult to seethat there are only three possible successful paths
with maximal weight

p=25 94
weight(p) = 5({ — 1) +6 + 10+ (3/ +10)(: — 1) (11)

1 1—1_1—1
p=2 " sy
weight(p') = 5l(i — 1) + 5 — 1) + 6+ 10  (12)
a'b)? .
P = 1Y 1 weight(p”) = (3 + 10)i . (13)

Hence,
(yl(a'b)’) = max(weight(p). weight(p'), weight(p"))

max(20 + 1+ (30 4+ 10)7,5li 4+ 11) .

(14)
Let usintroduce the time of completion of thefirst £ events:
def "
e = (yl(a'd) N XF) .

We get immediately from (14) that for & sufficiently large,

Ykte = AR uUr =X A+ yi (15)
withe =141 and
3l4+10 5l
A= —) . 16
max(Z 9 ) (16)

A can beinterpreted as the inverse of the periodic throughput. It
is worth noting that the maximal term in (16) identifies the bot-
tleneck machine. Thisis because (3/ + 10)/(! + 1) can bein-
terpreted as the performance of machine 1 in isolation subject to
the same schedule (and similarly, 5//({ + 1) correspondsto the
performance of machine 2 in isolation). One of the purposes of
this paper isto study such measures of performance. In particu-
lar, we shall see that periodicity properties of type (15) proceed
from general properties of (max,+) rational series, which allow
adirect computation of such throughputs.

V. PERFORMANCE EVALUATION OF (MAX,+) AUTOMATA

We next statethethree basic performance eval uation problems
to which the remaining part of the paper is devoted. In the fol-
lowing, y will denote adater function.

A. Worst case

For al k > 0, we consider the latest time of completion of a
sequence of k& elementary events:

def
G (y) = sup (ylw) = (y|x*)
weLk
where we have identified ¥* to its characteris
tic series (B, s+ w in order to use the scalar product notation
(5). With amore conventional notation, this reads:

(17)

def
Gy = P (ylw)
wETk
= max _ max [a;, + #(Wk)igie_, + -
Wh,...,W1EX tk,...,00
Fu(wi)iyio + Bio) - (18)
B. Optimal case
) E nf w) . 19
e ) weE%(ylw)#s(yl ) 19)
With the usual notation:
Fy) € min (ylw)
wexk,
(y|w)#s
= min _ max [a;, + p(Wk)igie_, +
Wee W1 €X5 L lg
(y|w)#e
+p(wi)iyio + Bio] - (20)



Thismin-max problem consistsin finding ascheduleminimizing
the completion time of the k-th event. Note that the non admis-
sible sequences w such that (y|w) = ¢ = —oc haveto be ex-
plicitly omitted in (20) since they would give a trivial infimum
equal to —oc.

C. Mean case

=(y) = > (ylw) x pr(w)
weXk

where p;, isaconvenient probability law on X%, Typically, inthe
Bernouilli case

N (y) =

(21)

Z (\max [ag, + p(wk)igie_, + -

Thyoens ig

+u(w1)iyio + Bio])p(wi) - plws)  (22)

wherethe p(a), a € X are given probabilities. Thisis the aver-
age compl etion time of the k-th event under a random schedule
w with probability p(w).

As we aready noticed in Example I11-E, we may consider
some refinements of these measures by restricting the evaluation
to alanguage L representing a subset of admissible events. For
instance, we have the following refinement of (17):

sup (ylw) = (y|L NTF)

welLNXk

(23)

identifying as usual languages and characteristic series.

V. WORST CASE ANALYSIS VIA (MAX,+) SPECTRAL
THEORY

We shall use the (max,+) spectral theory (analogous to the
Perron-Frobenius theory) [16], [4], [9], [20]. Wefirst recall the
definition and basic properties of the spectral radius.

Lemma 1 (Spectral Radius) Let A € RZ2X?. The following
guantities are equal:

(i) sup{r € Rpax | Jue RL_ \{e}, Au=ru}

(i) @131«371(”14]6)% = @1§k§n@i1...ik (Aiyi, - Alkll)%

= maxi<p<n Maxg, g, (Aia, + -+ Ay ) /k
(ifi) Tim supy, || A%[|*
where
14 = sup A (24)
L7
This common value will be denoted by p(A) (spectral radius or
“Perron root” of A).
We have the following (max,+) version of the Perron-Frobenius
asymptotics.

Theorem 1 (Cyclicity [20], [4])

If M isirreducible (i.e. Vij, EIk,Mi’} # ¢), then the following
cyclicity property holds:

AN, Je> 1, ¥n > N, Mt = (p(M))*M" .
The least value of ¢ is called the cyclicity of M.
Lety : X* — R .5 bethe dater recognized by the automaton
(a, pt, 8). Then,

(wIx*) =

(25)

ll
o
gi
S
=y

(26)

where
M = @y(m) .
TEX
Recall that the representation (a, p, 3) istrimif

Vi, j, 3k, 1, (aM*); £, (M'B); #£¢

(i.e. if each state isboth accessible and co-accessible). Then, an

immediate application of (25) and of Lemma,(iii) to/s/2]6) gives

Theorem 2 (Worst Case Evaluation) (i) If is
irreducible with cyclicity ¢, for k£ large enough, we have

(yIZF+e) = p(M)° (y|XF)

(i) If (e, u, B) istrim (but M not necessarily irreducible), we
have .
p(M) = lim sup(y|X*)* .
k

VI. A REFINEMENT: WORST CASE EVALUATION
CONSTRAINED IN A SUBLANGUAGE

The rational machinery alows us to compute some more re-
fined performance measures along the same lines. Let us con-
sider the performance restricted to an admissible sublanguage L
(see Formula (23)). We assumethat L is recognizable (rational,
regular), i.e. that there exists alinear representation (o', u', ')
with entriesin the boolean semiring {¢, ¢} such that, identifying
L toits characteristic seriesP,, ., w,

L= EB o'y (w)f w .

WwEL*

The evauation of (23) isequivalent to the worst case evaluation

of
ve L E Plulw)w= @ (vlw)(Lw)w
weL wWEL*
since for al A, sup,,c;q4(ylw) = sup,ca(y @ Llw). The
Hadamard product y @ L isrecognized by the “tensor product”
of the linear representations of y and L, namely, by the triple

(a//7/1//76//):
p'(a) = p(a) & ' (a), B'=pctp

where ¢! denotes the tensor product of matrices. Werecall here
that the tensor product of the p x r-matrix A by the ¢ x s-matrix
Bisthepg x rs-matrix (A ®! B)(ij)(kl) = Aikle-

Proposition1: Let M" = @,y p(a) & p'(a). Assume
that M" isirreduciblewith cyclicity ¢. Then we havefor k large
enough:

(27)

" !
o :a@ta,

(WIL NEEFe) = (M) (y] L N 5F) (28)

Proof: Immediatefrom Theorem 2,(i). ]

Example 2: This alowsto compute the throughput obtained

by elementary meansin Examplelll-E. For instance, let us con-

sider Ly = (a?b)* which is recognized by the automaton de-
picted in Fig. 4A, with boolean linear representation:

€ e €
e ¢ e |,
€ € ¢
€ €
e |,/ =1 ¢ . (29)
€ €



(A)

Fig. 4. (A) Automaton recognizing L, (B) Tensor product.

The automaton recognizing L, © y is depicted in Fig. 4B. We
have

e € 3 € € €
e € 6 b5 € €
"_ ¢ oy e € € € 3 ¢
M" =P pla) @' f(a) = c s s s 6 5
agx
10 ¢ ¢ ¢ ¢ ¢
E € & € & ¢
Since the matrix AM"” is reducible, we can-

not apply directly Proposition 1 and we just get from Theorem
2,(ii) that lim sup, (y|L N ZF) ¥ = p(M") = 18 (thisvalue can
be obtained by applying Lemma 1,(ii)). Thisis consistent with
Formula (16) when! = 2. Note that (28) holdsin this particular
case without the irreducibility assumption.

VII. REDUCTION TO DETERMINISTIC SERIES

We next consider the asymptotic evaluation of the Optimal
Case performance (™" and of the Mean Case performance (1",
Thereisasimpleimportant caseinwhich thiseval uation reduces
to some standard Markovian techniques. We say that a series y
isdeterministicif it isrecognized by a deterministic (max,+) au-
tomaton (see Remark 1), i.e. if there existsadeterministic repre-
sentation o, ., 3 of y (such that there is at most one non ¢ entry
ina andineach row of p(a), a € X). Thefollowing simple ob-
servation will play a crucial role in the sequel.

Proposition 2: A series y is deterministic iff there exists
a complete’ deterministic conventional automaton (@, go, §)
(with unspecified final states), atransitioncosto : @ x ¥ —
Ruax, and afinal cost ¢ : Q@ — Rpax Such that for all w =
wy ... w, € XF,

g

k

(ylws ... wk) = Ji(w. q0) > olgn-1.wn) + 6(ax).
n=1

whereq, = §(gn_1,wn) . (30)

Remark 2: Note that (30) is nothing but the discrete counter-

part of the usual integral cost

def r
& /0 L(z(t), u(t))dt + ¢(z(T)).

& = f(z,u), =(0) = o given. (3D
Proof: Let (o, 1, 8) be adeterministic n dimensional au-
tomatonrecognizingy. Set@ = {1,. .., n}, let o betheunique

Jr (u, zg)

2By complete, we mean that 5(q, a) isdefined for al g, a.

index such that oy, # ¢, let

oi,a) = @#(a)zj; 6(1) = gy i
J

5(i.a) = theunique j suchthat  u(a)i; # ¢
“ = arbitrary if Vi, u(a)ij = e.

This provides a representation as an additive cost of the form
(30). Conversely, passing from (30) to a deterministic represen-
tation isimmediate. ]
For deterministic automata, the evaluation of the mean case
performance £7*" is nothing but the computation of the mean
additive cost £ Ji (-, go) along the trajectories of the dynami-
cal system (30) driven by some random inputs w,. The op-
timal case performance ¢, coincides with the value function
infy, Ji (w, go) for a conventional deterministic optimal control
problem. These are ordinary Markovian problems which can be
solved by using some Kolmogorov and Bellman equations.

In the next section, we will show that under boundedness and
integrity conditions for the linear representation, arecognizable
series is deterministic. Thus, the above mentioned Markovian
techniques apply to an important class of systems. In the non
deterministic case, more pathological behaviors may occur. Si-
mon [24] has exhibited a family of automata (with nonpositive
(max,+) representation) which show a sublinear decrease, i.e.
suchthat 7 ~ —K x ¢/k, —thisis the usual p-th root— for
p>2,K >0,andk, — oc. Werefer the reader to [24] and
to Weber [25] for the existing results concerning the behavior of
£ in the non deterministic case.

VIII. PROJECTIVE FINITENESS OF (MAX,+) LINEAR
SEMIGROUPS

We next give some sufficient conditions of determinizabil-
ity based on (max,+) linear projective semigroups. These prop-
erties can be seen as natural partial extensions of the (max,+)
Perron-Frobeniustheory surveyed above. Wedefinethe (n —1)-
dimensional (max,+) projective space asthe quotient of R7 .. by
the parallelism relation

Ut <= IANERpax, AF e, u=2Av .

Wedenoteby g : R2 . — PR . thecanonical map. Thelinear

projectivemonoid PR %" isdefined similarly (asthe quotient of

max

the multiplicative monoid of matrices R %" by the congruence

~). Wesay that asubset S C R2 X7 is projectively finite if S
isfinite, i.e. iff there areonly finitely many pairwise non propor-
tional elementsin S. Asanimmediate corollary of the cyclicity
result (25), we can state

Corollary 1: If M € R7X” isirreducible, then the semigroup
generated by M, S = {M, M? M3, ...}, isprojectively finite.
Sincearational dater writes (y|w) = apu(w)g, itisnatural tore-
placethesemigroup S = {M, M2, ...} by thefinitely generated
semigroup of matrices u(X+) —where ©* denotes the semi-
group of nonempty words. We first introduce some notation.
Given A,,..., A, € R2X" weshal denote by (A4:..... 4,)
the semigroup generated by these matrices. Weintroduceaset of
plettersy = {ay.....a,}. Let g : Tt — R2X" be the unique

morphism such that Vi, u(a;) = A; (e plai, ... .a5,) =



Y. and u are obtained in the canonical way from the generators
Aq, ... A, We say that the semigroup S = (A4;,..., Ay) is

primitiveif thereis an integer NV such that for all words w,

Ay o A, Then (Aq, ... Ay)) = p(ET) and we say that

wl > N = Vij p(w)i; >e . (32)

where |w| denotesthe length of theword w. Thisnotionisinde-
pendent of thefinite set of generators. When S = {M, M2, ...}
admits a unique generator, this reduces to the primitivity of

M in the Perron-Frobenius sense. We set Qmax o (Qu
{—oc}, max, +). The following theorem extends (partially)
Corollary 1 to semigroups.

Theorem3: Let A;,.... A, € QX2 If(A;,... . A,)isa
primitive semigroup, then it is projectively finite.

Thistheorem does not hold in theirrational case. See [14] for
some extensions.

Proof: Let ¢ bethe lcm of the denominators of the entries
of the matrices. Sincez — ¢ (2¢ = z x ¢ with classical no-
tations) is an automorphism of @ ,.x Which maps all the entries
to integers, we shall assumethat A, ..., A, € Z}5%. Weintro-
duce thefollowing “norms’ for avector u € R”

max"*

llull = sup ui, |ufs = inf w; (33)
with inf() = +4oc. The “norms’ of a matrix are defined in
the same way (e.9. [|A]| = sup;; A;;). These are not norms

stricto sensu (in particular, they can take negative values); how-
ever, they will play essentially the role of usual norms. We note
that for matrices A, B with compatible sizes, we have || AB|| <
[|A[|l|Bll, |AB|a > |A|s|B|a. We introduce the “projective
width”
oo [ull
|ula

(i.e. [|u|| = |ul|a inthe usual algebra). The proof relies on the
following Lemma.

Lemma2: Let K € N. Theset .S of matricesm € Z7 X7 such
that Am < K isprojectively finite.
Indeed, after normalization, we may assume that Ym € S\
{e}. |mjx = eand|m|| < K. Since there are at most
(K + 2)"" — 1 non & matrices of size n x n with entries in
{e.e,1,..., K}, theLemmais proven.

Let

Au (34

= Hlll’l( |A1|/\ ..... . |Ap|/\ ):

= max ([l [l Al

Q|

The primitivity assumptionimpliesthat for w € %, |w| > 3N,
we have a factorization w = sur with |s| = |r| = N and
wu(s), pu(r), p(u) > e (N isthe “primitivity index” satisfying
(32)). Then

[l ()] ll(sur)ll < llu(s) ()]

@ p(u)i

IN

(35)

for some indices ij belonging to the argmax in ||p(u)|| =
sup;; pt(u)ij. Moreover

plsur)pe > p(s)rip(u)ijpu(r) > @ p(u)ij .

Thisimplies that

It remains to apply Lemma 2 to conclude. |
We shall need the following characterization of deterministic
series. Another characterization in terms of Hankel matrix (in-
volving only the values of y and not a particular linear represen-
tation) isgivenin [13].
Theorem4: Theseriesy isdeterministic iff there existsalin-
ear representation o, p, 3 of y such that papu(X*) isfinite.
Proof: For a deterministic n dimensional represen-
tation, all the vectors au(w) have at most one non-¢ en-
try. Hence pap(X*) is trivialy finite (with cardinal a most
n + 1). Conversely, we assume that pau(X*) has finite car-
dina k& and we build a k-dimensional representation of the
form (30). Let us take wy, ..., wg such that pap(X*) =
{pap(wr). . ... pap(wg)}. Since pau(e) = pap(w;,) for
some ig, 3y € Ruax\{e} such that
a = ap(e) = yapu(wi,) - (36)
The same argument showsthat Va € X, V1 < i < k, thereexists
/\z]a € Rimax {E} and jz}a such that

ap(wia) = Ajqop(wj,,) - 37)

C S(wia) B, b(wi) Eyap(w)s .
(38)
Then,

Vg€ Q.a€X. oap(ga) =o(q.a)u(é(g.a)) . (39
Thisimpliesthat (Q, g0, 9, o, ¢) yields a representation of y of
the form (30). Indeed, wejust prove that (y|w) coincides with
(30) for aword w = ajas of length 2, the general case being

similar. We have

(ylaraz) = oaple)pl(ar)u(az)p
= ~yau(qo)u(ar)p(az)B by (36)
= 70(go0. a1)apu(g1)pu(az)B by (37),
with g1 = (g0, a1)
= 70(qo0,a1)o(q1. az)apu(g2) by (37),
with g> = d(q1, a2)
= U(Qo;al)U(fh:azW(%)-
|
Asanimmediate application of Theorem 3 and Theorem4, we
get

Corollary 2 (Sufficient Determinizability Condition) Lety be
the series recognized by the linear representation «, i, 3 over
Qmax- If the semigroup (X 71) is primitive, then y is determin-
istic.

The proof of Theorem 4 alows to build effectively a repre-
sentation of y as an additive cost (30) under the assumption
that pap(X*) isfinite. It is enough to find a finite set @ =



{wy, ..., wi} such that any au(w), w € X* is proportional to
some apu(w;). Thiscan bedoneinthefollowing way. Let < de-
note the strict military order on X* (i.e. e < a < b < aa <
ab < ba < bb < aaa < ...). Weset @y = {e} and we define
inductively

Qiy1={w € QX | Vz €Y, 2 <w = pap(w) £ pap(z)} .

(40)
When papu(X*) isfinite, @; = () for somes. It remains to set
Q= Uj<i @;. We illustrate this procedure on a generic exam-
ple.
Example 3: Let us consider the series y in the indeterminates
a, b recognized by the linear representation

—01 —11] a”d“(b):[g g]
a=[00],8=aT .

Since u(a), pu(b) have no e entries, the semigroup u(Xt) istriv-
ialy primitive, hence, by Corollary 2 y is deterministic. Let
Qo = {e}. Wehave

pla) = [

o = apu(e) = [00]. ap(a) = [0 1], an(s)=[02] .

Since all these vectors are non proportional, we have @; =
{a, b}. Moreover

ap(a®) = ap(a), ap(ab) = lau(a),
ap(ba) = lap(e). ap(b®) = 2apu(e) .

hence, @> = P and Q = Qo U @1 = {e, a, b}. According to the
proof of Theorem 4, a deterministic representation of the form
(30) is obtained by setting go = e and by taking the complete
automaton displayed on Figure 5, whosetransition costs o (w, a)
aredirectly obtained from (41). Thefinal cost ¢ is shown on the
output arcs (e.g. ¢(b) = 2). It isworth noting that these rela-

(41)

Fig. 5. Deterministic Representation

tionsallow (in particular) to compute (y|w) without multiplying
the matrices. It is enough to take the additive weight of the cor-
responding path. For instance,

(s (babb)") = ap((babb)")
= al"2"F=1xn+2xn+d(e)
3n . (42)

Remark 3: The assumptions of Theorem 3 are satisfied for a
class of stochastic irreducible timed event graphs. Precisely, we
consider the timed event graphs with dater vector z(k) € RZ .
given by (cf. [4]) z(k + 1) = A(k)x(k) where the A(k) are
i.i.d. random matrices taking only a finite number of values
Ay, ..., Ay (cf. Ex. 111-D). Since dater functions are nonde-

creasing, we may assume that the A(k) only take values greater

than Id (identity matrix), i.e. Vi, A; > ld. Moreover, we as-
sume that all the A; have the same pattern (i.e. the same set of
positions of the non ¢ entries) which is assumed irreducible (in
other words, the durations are random but the structure of the
graphisfixed andit isstrongly connected). Then, the semigroup
(A1, ..., A,) isprimitive (because a matrix with non zero diag-
onal entriesisirreducibleiff it is primitive).

Example 4: Although the semigroup associated with the rep-
resentation of Ex. I11-C.2isnonprimitive, the algorithm (40) ter-
minates and shows that the corresponding dater is deterministic.

Example5: It can be shown that the series (la € b)* & (a &
2b)* (two machines working in parallel independently with re-
spectivetimes 1 and 2 asin Ex. 111-B) is not deterministic, even
if it isthe sum of two deterministic series.

IX. KOLMOGOROV EQUATION OF DETERMINISTIC
AUTOMATA

Inthissection, wewill deal with conventional Markov chains,
and we will thus use the conventional notation (zy will denote
theusual product and not z @ y). Let w'*) € X* denotearandom
word of length £. We apply the above results to the computation
of thefirst order asymptotics

k—oc k k—oc k '

(43)

We assume that «(*) is selected with the Bernouilli measure:

pr(ay...ag) = plai)---p(ag) (44)

where p(a;) > 0,5, p(a;) = 1. We consider a deterministic
seriesy with arepresentation of theform (30). We associate with
the deterministic representation a Markov chain.

Induced Markov Chain ¢, defined by (30) is afinite Markov
chain with states () and transition matrix:

)3

a€x, §(q.a)=q’

M Moy = p(a)

with the convention ) © _, p(a) = 0. For instance, this Markov
chain can be visualized in Figure 5 by forgetting the costs and
equipping the arcs labeled a with the probability p(«) and the
arcs labeled b with the probability p(b). It remainsto define the
mean cost at state g:

g 2> o(g.a)p(a)
aex

and to set

ve = Elegy + -+ g, +(ar)lao=4q]  (45)
for the Markov chain (¢x).

Theorem5: For a deterministic series with representation
(30),

(0 (y) = Eylw®) = v, (46)
where v* is given by the Kolmogorov equation
=t MFTI 0 =4 (47)



Notethat ¢ and ¢ cantakethevaluee = —oc. Formulag46),(47)
remain valid evenin this case with the convention 0 x —oc = 0.
Of course, if astate m such that ¢(m) = —oc isreachablein k&
stepsor if atrajectory of length &£ contains an intermediate state
m suchthat ¢,, = —oc then (y|w*)) isequal to —oc with anon
zero probability, and trivialy £7%" = —oc.
The Kolmogorov equation implies that
F = (ld+ ..+ M e+ MEG (48)
Let P be the spectral projector of M for the eigenvalue 1 (i.e.
the unique matrix P suchthat » = MP = PM = P?). Then,
the ergodic theorem for Markov chains gives:
Corallary 3 (Lyapunov Exponent) For a deterministic series
with finite costs o, ¢ (see (30)), we have
al ()
e £ i Ly';:( ) _ (pe),, . (49)
Thefinitenessassumptionfor o, ¢ ismentioned herefor simplic-
ity. A more precise study along the lines of [11] is possible.
Remark 4: The name “Lyapunov exponent” is introduced by
Baccelli [3], [4] in the more general context of the first order
asymptotics of random products of matrices. Given a stationary
ergodic sequence of (max,+) random matrices A(1), A(2), ...,
Baccelli shows —under some irreducibility and integrability
assumptions— the existence of the following limit called Lya-
punov exponent (M = as.  limpuec(A(l) € - @
A(n))ij/n = limp o E(A(L) € -+ € A(n))ij/n.
Example 6: We consider the rational series y of Ex. 3. We
take p(a) = u, p(b) = v. We obtain the following Markov ma-

trix
e a b
e {0 u v
M==al0 1 0 (50)
b (1 0 0)
with

e a b

c= (0 v ‘u—}—Qv)

(for instance, the value ¢, isobtained asc¢, = Ou + 1v = v).
The unique invariant measure is the row vector z = [0 1 0].
Therefore, the spectral projector isP = 1z, where 1 denotesthe
constant column vector with entries 1. Finally, the Lyapunov ex-
ponent is equal to

(M — (Pe)y =ze=ca=v .

X. APPLICATION TO THE OPTIMAL CASE PERFORMANCE:
HAMILTON-JACOBI-BELLMAN EQUATION OF (MAX,+)
CONTROLLED AUTOMATA

Theword w € X* isnow seen as acontrol, and we consider

GHy) = inf o (yw)

= 1
lw|=k.(y|w)#e

werey isadeterministic series represented by (30). Let usdefine

(o |w) & { (ylw) if (ylw) # e

+oc  otherwise.

We shall denote ¢’ and &’ the laws of the (min,+) semiring
Ronin & (RU{+oc}, min, +). Trividly, If y € Rpax(Z) isde-
terministic, then y’ is(min,+) rational. The optimal case evalua-
tion can now be directly obtained by appealing to the dua R,
version of Theorem 2.

Theorem6: We have in
6P = o' (M')* B, where

the (min+)  semiring

!

P o9

aex
8(q.a)=q’

if g #qo
0 if ¢ = qo,

7 = { 8(q) ifd(g) # —oc
4 +oc  otherwise.

Thematrix M’ € R9*? can be seen as the transition matrix of
aninduced “Bellman Chain” [1] which playsarole anal ogousto
the Markov chain of the preceding section. We shall denote by
p' (M) the spectral radius of M’ in the (min,+) algebra (thisis
the dual of the spectral radius given in Lemma1).

Corollary 4: For adeterministic seriesy € Ry (X)) (with

trim deterministic representation), we have

M, = inf
qq’ aes
8(q.a)=q’

o(q.a) =

, {6':—|—oc

aq—

@ 1 éom(y)
lim inf(£” (y))® % = liminf 2222 = p/(M') |
k—oc k—oc k

Example 7: For the semigroup of the example 3, we have
a b

e e e
M = a €
b e €

We get p'(M’') = e. Indeed, ¢ — a isthe unique critical
circuit (see e.g. [4] for the graphicad interpretation of ') i.e.
Moo = (Maa)% is the unique term attaining the bound in
the dual sense, in 1,((ii)), which implies that the optimal policy
which minimizes (y|w) for w € ©* consistsin playing w = a*.

—ooe o
)

Concluding remarks

In this paper, we have used automata over the (max,+) semir-
ing as an algebraic formalism for modeling timed DES. Asaby-
product of this algebraic modeling, we obtained some charac-
terizations of the worst case, optimal case and mean case per-
formance. From the practical point of view, the most useful re-
sult is perhaps the simplest mathematically, i.e. Proposition 2
which provides an O(n?) agorithm for the worst case analysis.
The determinization procedure introduced in order to compute
the optimal case and mean case performance suffers of agreater
complexity, and only works for a subclass of series. This nat-
uraly suggests some open problems. Firstly, characterizations
of deterministic series more effective than Theorem 4 should be
found. Indeed, it should be noted that the algorithmic trandlation
of Theorem 4 (Eq. (40)) only yieldsapartial decision procedure:
if the algorithm terminates, this proves that the series is deter-
ministic, but it is not immediate to bound a priori the number of
iterations of the algorithm for a deterministic series. Secondly,
some more efficient alternative techniques (not using determin-
istic reductions) should be found.
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