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Performance Evaluation of (max,+) Automata
Stéphane Gaubert

Abstract—Automata with multiplicities over the (max,+) semiring can be
used to represent the behavior of timed discrete event systems. This formalism
which extends both conventional automata and (max,+) linear representations
covers a class of systems with synchronization phenomena and variable sched-
ules. Performance evaluation is considered in the worst, mean, and optimal
cases. A simple algebraic reduction is provided for the worst case. The last two
cases are solved for the subclass of deterministic series (recognized by deter-
ministic automata). Deterministic series frequently arise due to the finiteness
properties of (max,+) linear projective semigroups. The mean performance is
given by the Kolmogorov equation of a Markov chain. The optimal perfor-
mance is given by a Hamilton-Jacobi-Bellman equation.

Keywords—Discrete Event Systems, (max,+) algebra, Automata, Rational
Series, Performance Evaluation

I. INTRODUCTION

UTOMATA with multiplicities [10] over the (max,+) or the
dual (min,+) semiring (or equivalently, rational & recog-

nizable series [5] over the (max,+) semiring) are much studied
objects in language theory and combinatorics. Their applica-
tions to linguistic problems are well known (Simon, Hashiguchi,
Mascle, Leung, Krob, Weber, see [17], [24], [18], [25] and the
references therein). The purpose of this paper is to show that
these series are also useful to model and to analyze certain timed
discrete event systems (DES) which exhibit both synchroniza-
tion features (when some task has to wait for the completion of
several other tasks) and some particular forms of concurrency
(when two events may occur alternatively at the same logical
epoch).

The results presented here are an attempt to fill the gap be-
tween the two following popular algebraic approaches to DES.
1. The modeling of DES by conventional automata, initiated
by Ramadge and Wonham [23]. In this theory (abbreviated RW
in the sequel), events are represented by letters and DES are
seen as finite state machines. The main results concern the log-
ical behavior of DES under some appropriate supervision. 2.
The (max,+) school (see [4], [8]) considers a much more special
class of systems (which essentially coincides with timed event
graphs). Contrarily to automata in which the controls (letters) al-
low the selection between different trajectories, (max,+)-linear
stationary systems are well adapted to DES whose behavior is
made deterministic by fixing the schedules. The spirit is also
different since the theory basically considers certain quantitative
measures (asymptotic performance, size of the stocks, earliest or
latest behavior).

It is very natural to try to incorporate some time modeling in
the RW framework and dually, to try to model with the (max,+)
algebra the forms of undeterminism and concurrency which are
easily handled with automata. Indeed, several temporal exten-
sions of the RW modeling have already been proposed under
the name of timed automata (Alur, Coucourbetis, Dill [2], Won-
ham and Brandin [7], Nicollin, Sifakis, Yovine ...[21]). Timed
automata essentially represent the logical behavior of systems

S. Gaubert is with INRIA, Domaine de Voluceau, BP 105, 78153 Le Chesnay
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whose transitions are constrained by some clock inequalities.
The logical verification results extend to the timed case —up to
an increase of complexity.

In this paper, we propose a different extension based on
(max,+) automata, which generalize both conventional automata
and finite dimensional causal stationary recurrent (max,+)-linear
systems. Then, we extend the usual (max,+) performance eval-
uation results to the automata case.

In II, we recall the basic results about automata with mul-
tiplicities and rational/recognizable series. In III, we show
that several interesting subclasses of DES are modelizable by
(max,+) automata. Typically, the words can be used to repre-
sent some finite sequences of tasks (schedules) and the (max,+)
automaton computes the completion time as a function of the
schedule. In loose terms, the concurrency features are modeled
by the possible choices between the letters, and the synchroniza-
tion features are implemented by the (max,+) algebra. In IV, we
state the three basic performance evaluation problems to which
the paper is mainly devoted. The worst case performance over
a horizon consists in finding the sequence of events with the
latest time of completion (worst makespan). The much more in-
teresting optimal case performance consists in selecting a sched-
ule with minimal makespan. The mean case performance eval-
uates the average time of completion of events when these
events are selected with a simple (say Bernouilli) law. The worst
case evaluation problem is solved in V and VI by appealing
to the (max,+) spectral theory. Up to detail technical points, we
show that the worst case performance over a horizon is asymp-
totically of the form , where (interpreted as the inverse of
the worst case throughput) is equal to the (max,+) eigenvalue of
a certain matrix. Since the optimal case and the mean case be-
havior turn out to be much more complex, we are led to intro-
duce in VII the tractable subclass of (max,+) deterministic se-
ries. Deterministic series admit a representation as an additive
cost of the trajectory of a finite dynamical system. Thus, the op-
timal and mean case evaluation reduce to some classical Marko-
vian techniques. In VIII, we give some determinizability condi-
tions based on finiteness properties of (max,+) linear projective
semigroups. We provide an algorithm to build an additive-cost
representation from a non deterministic linear representation sat-
isfying a projective finiteness condition. In IX, we apply this
reduction to the mean case performance which is given by the
Kolmogorov equation of an induced Markov Chain. This shows
that for deterministic series, the mean case performance over
steps is asymptotically linear in , where the rate is obtained by
elementary means. In X, the optimal performance is obtained
along the same lines. The Kolmogorov equation is replaced by a
Hamilton-Jacobi-Bellman equation, and the Markov chain is re-
placed by a Bellman Chain [1]. The optimal performance also
exhibits a linear growth.

It is important to notice that stochastic (max,+) automata are a
finite algebraic version of random products of (max,+) matrices
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for which a precise general ergodic theory is available [3], [4],
[19]. The mean case measure of performance considered here
coincides with Baccelli’s Lyapunov exponent (analogous to the
Lyapunov exponents of stochastic conventional dynamical sys-
tems). The determinization procedure that we use can be seen as
a finite version of the construction of 1-cocycles over the pro-
jective space on which the study à la Furstenberg of random
products of matrices is based [6]. The possibility of using such
Markovian reduction in the DES context seems to have been
first noted by Olsder, Resing, de Vries, Keane and Hooghiemstra
[22] [4, chap8]. Moreover, the idea of optimizing some similar
finitely valued nonstationary products of (max,+) matrices is due
to Olsder [4, chap9].

To conclude, let us mention that there are other important ap-
plications of (max,+) and (min,+) rational series to DES and
Bellman processes. Namely: 1. as Fliess generating series
for (min,+) bilinear systems (which correspond to a subclass of
Timed Petri nets in which resources —tokens— can be dynam-
ically added to the system) [11], [13], 2. as generating series
of Markovian optimization problems, 3. as devices for count-
ing the occurrences of some distinguished events in DES mod-
eled in the conventional RW way [13], 4. as models for certain
timed systems with shared resources (some variants of the dining
philosophers) [13]. Note also that a similar representation has
been used by Gaujal and Mairesse [15] to compare two commu-
nication protocols.

II. (MAX,+) AUTOMATA, RECOGNIZABLE DATERS AND

RATIONAL SERIES

Let us recall two classical ways of modeling DES.
1. In the Ramadge-Wonham (RW) theory [23], a DES is rep-

resented by a language, i.e as a subset of , where
denotes a finite alphabet whose letters are interpreted as el-
ementary events and denotes the monoid of words on

. Usually, means that the sequence of elementary
events given by the successive letters of corresponds to
an admissible behavior of the system.

2. In the (max,+) theory [4], [8], a system is represented by a
vector of dater functions. I.e., the -entry of is a map

, and is usually interpreted as
the time of the -th occurrence of the event labeled (say
the time of production of the -th part of type ).

We naturally merge the two notions as follows:
Definition 1 (Dater Function) A dater is a map

.
We shall write —instead of — for the value of at
the word . This scalar product notation which is standard in
the rational series literature [5] will soon appear to be useful. We
shall interpret as the time of completion of the sequence
of events , with the convention that if does
not occur. By specialization to the case of boolean daters (with
values in ), we obtain the Ramadge-Wonham modeling.
By specialization to a single letter alphabet , we obtain
the usual dater functions of the (max,+) theory. In the RW theory,
the languages of interest are recognized by some finite devices
(typically finite automata). Similarly, in the (max,+) theory, the
daters satisfy some finite dimensional linear recurrent systems in
the (max,+) algebra. Here, we shall consider the class of dater

functions which are recognized by (max,+) automata.
Definition 2 ((max,+) Automaton)

A (finite) (max,+) automaton over an alphabet is a quadruple
where is a (finite) set of states and

are maps , ,
(called respectively initial delays,

final delays, transition times).
The “functioning” of the automaton is as follows. A path of
length is a sequence of states .
We say that the word is accepted or recognized
by the path if:

weight
def

(1)

We shall also write in a self explanatory way

weight weight

The multiplicity of the word is the maximum of
the weights of the paths accepting , namely

def weight

(2)

We say that the automaton recognizes the dater . A
dater is called recognizable if there exists
an automaton such that .

There is a useful graphical representation of a (max,+) au-
tomaton , which can be identified to a valued multigraph, with

as set of vertices and 3 kinds of arcs:
1. the internal arcs, , for all and such

that . The arc is valuated by the
scalar .

2. the input arcs , valuated by , for all in such that
.

3. the output arcs , valuated by , for all in such
that .

Then, reads graphically as the max of all the additive
weights of the paths labeled from the input to the output of the
graph associated with .

Example 1: Let . The automaton with set of states
, transition times , ,
, , , ,

, , final and initial delays ,
(the other values of are ) is represented

on Fig. 1. The valuations equal to will be omitted (e.g. the
non valuated input arc stands for ). We have for
instance:

weight weight

(3)

The term multiplicity is standard [10]. It is used by extension from the
case: if we replace respectively by , by , by , in

(1),(2), and if we assume that are valued, then the multiplicity
counts the number of paths accepting .
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Fig. 1. A (max,+) automaton

A concrete interpretation of this automaton will be given in III-
C.2.

Remark 1 (Underlying Conventional Automaton) There

is a natural conventional non deterministic automaton def

—state , initial states , transition map
, final states — underlying the (max,+) automa-

ton . Namely:

This conventional automaton can be visualized by forgetting
the time valuations on the graph of . The language recognized
by coincides with . We shall say
that a (max,+) automaton is deterministic if the underlying con-
ventional automaton is deterministic (i.e. if —a sin-
gle initial state— and if , has at most one element).
There is a simple algebraic formulation of (2) that we next intro-
duce. The (max,+) algebra [20], [4], [9], [16] is by definition the
set equipped with the laws (denoted by ) and
+ (denoted by ). E.g. , . The element

def satisfies and ( acts as a zero).

The element def satisfies ( is the unit). The main
discrepancy with conventional algebra is that . We

shall denote def this structure.
is a special instance of dioid (semiring whose addition is idem-
potent). The (max,+) matrix product is defined in the ordinary
way:

def

where are matrices with compatible sizes. We shall write
instead of , as usual. We define the map

def

Then, identifying with a row vector and with a column
vector, we get Since

can be extended in a unique way to a morphism of multi-
plicative monoids by setting

, we get

(4)

Thus, a (max,+) automaton is equivalently defined by a triple
, where , and is a morphism

. We will call such a triple a linear representation

of the dater (4). We shall also write equivalently a dater function
as a formal series:

E.g, stands for the dater
( denotes the empty word) ,

, and for the other words .
The set of formal series with coefficients in and noncom-
mutative indeterminates , denoted , is naturally
equipped with a number of interesting classical operations. We
shall only use here the following

Sum
def

Hadamard Product
def

Cauchy Product
def

Scalar Product
def

Star
def

(5)
(in the definition of , stands for , i.e. the -
th power for the Cauchy product). It is important to note that the
two latest operations are only partially defined (e.g. is well
defined iff ). As it is well known [5], recognizable se-
ries are stable by the operations . In particular (and
this is the Kleene-Schützenberger theorem [5]), the dioid of ra-
tional series (defined as the closure of the dioid of polynomials
by the operations ) coincides with the dioid of recogniz-
able series, so that our object of study is nothing but rational se-
ries in several non commuting indeterminates over the (max,+)
semiring.

III. EXAMPLES OF DES MODELIZABLE BY (MAX,+)
AUTOMATA

We give here a few examples of DES modelizable by (max,+)
automata. Some other applications are sketched in [11], [13].
The purpose of these examples is to illustrate the typical features
of (max,+) automata and to discuss their relations with some ex-
isting formalisms.

A. Several Tasks on a Sequential Machine

Let us consider a sequential machine processing some parts
of type with time . The time of completion of
the sequence of tasks is , where
denotes the number of occurrences of the letter in . The dater

is rational. Indeed, .

B. Several Machines Working In Parallel

We now assume that the parts of type are processed on
a dedicated machine with time . Then, the time of comple-
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tion of the sequence becomes .
is again rational, since .

C. Storage Resource with Finite Capacity

C.1 Deterministic Case

We consider a storage with a capacity of two units. The two
following events are possible:

a part is added to the stock
a part is taken out.

This system is represented by the automaton of Figure 2 over the
alphabet . Node 0 represents the state “0 parts in
stock”, node 1 “1 part in stock”, etc. First, the storage is empty.
We consider the situation where the transitions of the automaton
take some given times. For instance, we assume that the transi-
tion takes 4 units of time and we set . The
other values of are displayed on Fig. 2. We have also taken

into account some initial and final delay (e.g. the arc in the
Figure represents a final delay of 2 units). Now, the time of com-

Fig. 2. Storage with Capacity of Two Units

pletion of the admissible sequence of tasks
is equal to the weight of the unique path ac-
cepting :

The dater admits the following linear
representation

(6)

(7)

E.g. . The above example is in-
deed generic of deterministic (max,+) automata (defined in Re-
mark 1). More generally, any DES whose logical behavior is rep-
resented by a conventional deterministic automaton and whose
non-instantaneous actions correspond to the usage of a single
resource is modelizable by a deterministic (max,+) automaton.
In such cases, the max structure is not really used since there is
at most one path accepting a given word. The max structure be-
comes helpful to represent some undeterminism, as follows.

C.2 Non Deterministic Case

The automaton first shown on Fig. 1 is a non deterministic ver-
sion of the preceding storage resource, in which the events and

still represent arrivals and withdrawals of parts, but where the
quantities are not specified in a deterministic way. E.g., at state

, the event may represent the arrival of either one or two parts,
with respective storage times and as shown on Fig. 1. In a

similar way, the event represents either the delivery of a part as
before, either the simultaneous delivery of 2 parts ( time units),
either an unsuccessful attempt of delivery (e.g. if the customer
refuses the part) which takes 1 unit of times and leaves the re-
source at the same state. We have the linear representation

(same as in (6)). The time can now be interpreted
as the maximal duration of a successful sequence of tasks com-
patible with the sequence of informations . More generally:
(max,+) automata naturally compute the worst case behavior of
non deterministic automata with timed transitions.

D. Nonstationary (max,+) Linear Systems with Finitely Valued
Dynamics

The (max,+) theory [4] deals with linear recurrent systems of
the form

(8)

where
. We claim that (max,+) automata represent the case where

the dynamics of the system only takes a finite number
of values . Indeed, if the dater is recognized by

, can be computed recursively by introducing a

“state vector”
def

and setting

(9)

which is similar to (8), up to the transposition and to the fact that
the dynamic depends on the last letter of the word (in-
stead of the logical time ). More formally, we introduce an al-
phabet , we set . We represent
the information by the word

and we denote by the corresponding output
of (8). We denote by the mirror image of

. Then,

i.e. nonstationary (max,+) linear systems with finitely valued dy-
namics are represented by (max,+) automata with reverse inter-
pretation. We observe that when the matrices are
random variables, systems of the form (8) belong to the much
studied class of Stochastic timed event graphs. We refer the
reader to [3], [22], [4] for the important applications of these sys-
tems. We shall mention here a different one, where the word
represents a schedule.

E. Workshop with Variable Schedule

We consider a workshop with two machines processing three
types of parts. We assume that there are two working regimes

and and that the workshop follows an open loop schedule
. E.g. stands for “3 working periods of type

a followed by 1 period of type b”. The working regimes are de-
scribed as follows.

(a) At the -th working regime , the -th part of type 2 is
processed by machine 2 during 5 units of time. Then it is
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sent to machine 1 (transportation time: unit). Machine 1
processes the -th type 1 part (during 3 units of time), then
it is assembled with the -th type 2 part received from ma-
chine 2.

(b) At the -th working regime , the -th part of type 3 is pro-
cessed during 10 units of time on machine 1. No additional
task is imposed to Machine 2.

We assume that the workshop is initially empty, starts working
at time , and then operates at maximal speed provided that the
precedence constraints of the schedule are satisfied. Let
(resp. ) denote the earliest time at which all the opera-
tions on Machine 1 (resp. 2) required by the schedule are com-
pleted. Due to the initial conditions, we set .
We are interested in computing . This is the time
when the last part exits the workshop under the schedule . We
claim that is recognized by the following linear representation
(displayed in Figure 3).

Fig. 3. Workshop with Two Working Regimes

For instance, means exactly that

(10)

i.e that (i) machine has to wait for the current type 2 part to
arrive from machine 2 (5 +1 time units) and (ii) that machine
takes 3 time units to produce the current type 1 part. The other
columns of are obtained by writing similar equations
for .

Some interesting features appear when considering sub-
behaviors of the system, that is when we assume that the sched-
ule belongs to a legal language . Assume for instance a peri-
odic behavior of the form (that is, 1 period of type b
occurs every periods of type a). is equal to the maxi-
mal weight of the successful paths with label . It is not too
difficult to see that there are only three possible successful paths
with maximal weight

weight (11)

weight (12)

weight (13)

Hence,

weight weight weight

(14)

Let us introduce the time of completion of the first events:

def

We get immediately from (14) that for sufficiently large,

(15)

with and

(16)

can be interpreted as the inverse of the periodic throughput. It
is worth noting that the maximal term in (16) identifies the bot-
tleneck machine. This is because can be in-
terpreted as the performance of machine 1 in isolation subject to
the same schedule (and similarly, corresponds to the
performance of machine 2 in isolation). One of the purposes of
this paper is to study such measures of performance. In particu-
lar, we shall see that periodicity properties of type (15) proceed
from general properties of (max,+) rational series, which allow
a direct computation of such throughputs.

IV. PERFORMANCE EVALUATION OF (MAX,+) AUTOMATA

We next state the three basic performance evaluation problems
to which the remaining part of the paper is devoted. In the fol-
lowing, will denote a dater function.

A. Worst case

For all , we consider the latest time of completion of a
sequence of elementary events:

worst def
(17)

where we have identified to its characteris-
tic series in order to use the scalar product notation
(5). With a more conventional notation, this reads:

worst def

(18)

B. Optimal case

opt def
(19)

With the usual notation:

opt def

(20)
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This min-max problem consists in finding a schedule minimizing
the completion time of the -th event. Note that the non admis-
sible sequences such that have to be ex-
plicitly omitted in (20) since they would give a trivial infimum
equal to .

C. Mean case

mean (21)

where is a convenient probability law on . Typically, in the
Bernouilli case

mean

(22)

where the are given probabilities. This is the aver-
age completion time of the -th event under a random schedule

with probability .
As we already noticed in Example III-E, we may consider

some refinements of these measures by restricting the evaluation
to a language representing a subset of admissible events. For
instance, we have the following refinement of (17):

(23)

identifying as usual languages and characteristic series.

V. WORST CASE ANALYSIS VIA (MAX,+) SPECTRAL

THEORY

We shall use the (max,+) spectral theory (analogous to the
Perron-Frobenius theory) [16], [4], [9], [20]. We first recall the
definition and basic properties of the spectral radius.

Lemma 1 (Spectral Radius) Let . The following
quantities are equal:

(i)
(ii) tr

(iii)
where

def
(24)

This common value will be denoted by (spectral radius or
“Perron root” of ).
We have the following (max,+) version of the Perron-Frobenius
asymptotics.

Theorem 1 (Cyclicity [20], [4])
If is irreducible (i.e. ), then the following
cyclicity property holds :

(25)
The least value of is called the cyclicity of .

Let be the dater recognized by the automaton
. Then,

(26)

where

Recall that the representation is trim if

(i.e. if each state is both accessible and co-accessible). Then, an
immediate application of (25) and of Lemma 1,(iii) to (26) gives

Theorem 2 (Worst Case Evaluation) (i) If is
irreducible with cyclicity , for large enough, we have

(ii) If is trim (but not necessarily irreducible), we
have

VI. A REFINEMENT: WORST CASE EVALUATION

CONSTRAINED IN A SUBLANGUAGE

The rational machinery allows us to compute some more re-
fined performance measures along the same lines. Let us con-
sider the performance restricted to an admissible sublanguage
(see Formula (23)). We assume that is recognizable (rational,
regular), i.e. that there exists a linear representation
with entries in the boolean semiring such that, identifying

to its characteristic series ,

The evaluation of (23) is equivalent to the worst case evaluation
of

def (27)

since for all , . The
Hadamard product is recognized by the “tensor product”
of the linear representations of and , namely, by the triple

:

where denotes the tensor product of matrices. We recall here
that the tensor product of the -matrix by the -matrix

is the -matrix .
Proposition 1: Let . Assume

that is irreducible with cyclicity . Then we have for large
enough:

(28)
Proof: Immediate from Theorem 2,(i).

Example 2: This allows to compute the throughput obtained
by elementary means in Example III-E. For instance, let us con-
sider which is recognized by the automaton de-
picted in Fig. 4A, with boolean linear representation:

(29)
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(A) (B)

Fig. 4. (A) Automaton recognizing , (B) Tensor product.

The automaton recognizing is depicted in Fig. 4B. We
have

Since the matrix is reducible, we can-
not apply directly Proposition 1 and we just get from Theorem
2,(ii) that (this value can
be obtained by applying Lemma 1,(ii)). This is consistent with
Formula (16) when . Note that (28) holds in this particular
case without the irreducibility assumption.

VII. REDUCTION TO DETERMINISTIC SERIES

We next consider the asymptotic evaluation of the Optimal
Case performance opt and of the Mean Case performance mean.
There is a simple important case in which this evaluation reduces
to some standard Markovian techniques. We say that a series
is deterministic if it is recognized by a deterministic (max,+) au-
tomaton (see Remark 1), i.e. if there exists a deterministic repre-
sentation of (such that there is at most one non entry
in and in each row of ). The following simple ob-
servation will play a crucial role in the sequel.

Proposition 2: A series is deterministic iff there exists
a complete deterministic conventional automaton
(with unspecified final states), a transition cost

, and a final cost such that for all
,

def

where (30)
Remark 2: Note that (30) is nothing but the discrete counter-

part of the usual integral cost

def
d

given. (31)
Proof: Let be a deterministic dimensional au-

tomaton recognizing . Set , let be the unique

By complete, we mean that is defined for all .

index such that , let

the unique such that
arbitrary if .

This provides a representation as an additive cost of the form
(30). Conversely, passing from (30) to a deterministic represen-
tation is immediate.
For deterministic automata, the evaluation of the mean case
performance mean is nothing but the computation of the mean
additive cost along the trajectories of the dynami-
cal system (30) driven by some random inputs . The op-
timal case performance opt coincides with the value function

for a conventional deterministic optimal control
problem. These are ordinary Markovian problems which can be
solved by using some Kolmogorov and Bellman equations.

In the next section, we will show that under boundedness and
integrity conditions for the linear representation, a recognizable
series is deterministic. Thus, the above mentioned Markovian
techniques apply to an important class of systems. In the non
deterministic case, more pathological behaviors may occur. Si-
mon [24] has exhibited a family of automata (with nonpositive
(max,+) representation) which show a sublinear decrease, i.e.
such that opt —this is the usual -th root— for

, , and . We refer the reader to [24] and
to Weber [25] for the existing results concerning the behavior of

opt in the non deterministic case.

VIII. PROJECTIVE FINITENESS OF (MAX,+) LINEAR

SEMIGROUPS

We next give some sufficient conditions of determinizabil-
ity based on (max,+) linear projective semigroups. These prop-
erties can be seen as natural partial extensions of the (max,+)
Perron-Frobenius theory surveyed above. We define the -
dimensional (max,+) projective space as the quotient of by
the parallelism relation

We denote by the canonical map. The linear
projective monoid is defined similarly (as the quotient of
the multiplicative monoid of matrices by the congruence

). We say that a subset is projectively finite if
is finite, i.e. iff there are only finitely many pairwise non propor-
tional elements in . As an immediate corollary of the cyclicity
result (25), we can state

Corollary 1: If is irreducible, then the semigroup
generated by , , is projectively finite.
Since a rational dater writes , it is natural to re-
place the semigroup by the finitely generated
semigroup of matrices —where denotes the semi-
group of nonempty words. We first introduce some notation.
Given , we shall denote by
the semigroup generated by these matrices. We introduce a set of

letters . Let be the unique
morphism such that (i.e.
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). Then and we say that
and are obtained in the canonical way from the generators

. We say that the semigroup is
primitive if there is an integer such that for all words ,

(32)

where denotes the length of the word . This notion is inde-
pendent of the finite set of generators. When
admits a unique generator, this reduces to the primitivity of

in the Perron-Frobenius sense. We set def

. The following theorem extends (partially)
Corollary 1 to semigroups.

Theorem 3: Let . If is a
primitive semigroup, then it is projectively finite.

This theorem does not hold in the irrational case. See [14] for
some extensions.

Proof: Let be the lcm of the denominators of the entries
of the matrices. Since ( with classical no-
tations) is an automorphism of which maps all the entries
to integers, we shall assume that . We intro-
duce the following “norms” for a vector .

(33)

with . The “norms” of a matrix are defined in
the same way (e.g. ). These are not norms
stricto sensu (in particular, they can take negative values); how-
ever, they will play essentially the role of usual norms. We note
that for matrices with compatible sizes, we have

, . We introduce the “projective
width”

def
(34)

(i.e. in the usual algebra). The proof relies on the
following Lemma.

Lemma 2: Let . The set of matrices such
that is projectively finite.
Indeed, after normalization, we may assume that

and . Since there are at most
non matrices of size with entries in

, the Lemma is proven.
Let

The primitivity assumption implies that for , ,
we have a factorization with and

( is the “primitivity index” satisfying
(32)). Then

(35)

for some indices belonging to the argmax in
. Moreover

This implies that

It remains to apply Lemma 2 to conclude.
We shall need the following characterization of deterministic

series. Another characterization in terms of Hankel matrix (in-
volving only the values of and not a particular linear represen-
tation) is given in [13].

Theorem 4: The series is deterministic iff there exists a lin-
ear representation of such that is finite.

Proof: For a deterministic dimensional represen-
tation, all the vectors have at most one non- en-
try. Hence is trivially finite (with cardinal at most

). Conversely, we assume that has finite car-
dinal and we build a -dimensional representation of the
form (30). Let us take such that

. Since for
some , such that

(36)

The same argument shows that , there exists
and such that

(37)

We set ,

def def def

(38)
Then,

(39)

This implies that yields a representation of of
the form (30). Indeed, we just prove that coincides with
(30) for a word of length , the general case being
similar. We have

by (36)

by (37),
with

by (37),
with

As an immediate application of Theorem 3 and Theorem 4, we
get

Corollary 2 (Sufficient Determinizability Condition) Let be
the series recognized by the linear representation over

. If the semigroup is primitive, then is determin-
istic.
The proof of Theorem 4 allows to build effectively a repre-
sentation of as an additive cost (30) under the assumption
that is finite. It is enough to find a finite set
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such that any is proportional to
some . This can be done in the following way. Let de-
note the strict military order on (i.e.

). We set and we define
inductively

(40)
When is finite, for some . It remains to set

. We illustrate this procedure on a generic exam-
ple.

Example 3: Let us consider the series in the indeterminates
recognized by the linear representation

and

Since have no entries, the semigroup is triv-
ially primitive, hence, by Corollary 2 is deterministic. Let

. We have

Since all these vectors are non proportional, we have
. Moreover

(41)

hence, and . According to the
proof of Theorem 4, a deterministic representation of the form
(30) is obtained by setting and by taking the complete
automaton displayed on Figure 5, whose transition costs
are directly obtained from (41). The final cost is shown on the
output arcs (e.g. ). It is worth noting that these rela-

Fig. 5. Deterministic Representation

tions allow (in particular) to compute without multiplying
the matrices. It is enough to take the additive weight of the cor-
responding path. For instance,

(42)
Remark 3: The assumptions of Theorem 3 are satisfied for a

class of stochastic irreducible timed event graphs. Precisely, we
consider the timed event graphs with dater vector
given by (cf. [4]) where the are
i.i.d. random matrices taking only a finite number of values

(cf. Ex. III-D). Since dater functions are nonde-
creasing, we may assume that the only take values greater

than Id (identity matrix), i.e. Id. Moreover, we as-
sume that all the have the same pattern (i.e. the same set of
positions of the non entries) which is assumed irreducible (in
other words, the durations are random but the structure of the
graph is fixed and it is strongly connected). Then, the semigroup

is primitive (because a matrix with non zero diag-
onal entries is irreducible iff it is primitive).

Example 4: Although the semigroup associated with the rep-
resentation of Ex. III-C.2 is nonprimitive, the algorithm (40) ter-
minates and shows that the corresponding dater is deterministic.

Example 5: It can be shown that the series
(two machines working in parallel independently with re-

spective times and as in Ex. III-B) is not deterministic, even
if it is the sum of two deterministic series.

IX. KOLMOGOROV EQUATION OF DETERMINISTIC

AUTOMATA

In this section, we will deal with conventional Markov chains,
and we will thus use the conventional notation ( will denote
the usual product and not ). Let denote a random
word of length . We apply the above results to the computation
of the first order asymptotics

mean def
mean

(43)

We assume that is selected with the Bernouilli measure:

(44)

where . We consider a deterministic
series with a representation of the form (30). We associate with
the deterministic representation a Markov chain.

Induced Markov Chain defined by (30) is a finite Markov
chain with states and transition matrix:

with the convention . For instance, this Markov
chain can be visualized in Figure 5 by forgetting the costs and
equipping the arcs labeled with the probability and the
arcs labeled with the probability . It remains to define the
mean cost at state :

def

and to set

(45)

for the Markov chain .
Theorem 5: For a deterministic series with representation

(30),
mean (46)

where is given by the Kolmogorov equation

(47)
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Note that and can take the value . Formulæ(46),(47)
remain valid even in this case with the convention .
Of course, if a state such that is reachable in
steps or if a trajectory of length contains an intermediate state

such that then is equal to with a non
zero probability, and trivially mean .

The Kolmogorov equation implies that

Id (48)

Let be the spectral projector of for the eigenvalue 1 (i.e.
the unique matrix such that ). Then,
the ergodic theorem for Markov chains gives:

Corollary 3 (Lyapunov Exponent) For a deterministic series
with finite costs (see (30)), we have

mean def
(49)

The finiteness assumption for is mentioned here for simplic-
ity. A more precise study along the lines of [11] is possible.

Remark 4: The name “Lyapunov exponent” is introduced by
Baccelli [3], [4] in the more general context of the first order
asymptotics of random products of matrices. Given a stationary
ergodic sequence of (max,+) random matrices ,
Baccelli shows —under some irreducibility and integrability
assumptions— the existence of the following limit called Lya-
punov exponent mean a.s.

.
Example 6: We consider the rational series of Ex. 3. We

take . We obtain the following Markov ma-
trix

(50)

with

(for instance, the value is obtained as ).
The unique invariant measure is the row vector .
Therefore, the spectral projector is , where denotes the
constant column vector with entries 1. Finally, the Lyapunov ex-
ponent is equal to

mean

X. APPLICATION TO THE OPTIMAL CASE PERFORMANCE:
HAMILTON-JACOBI-BELLMAN EQUATION OF (MAX,+)

CONTROLLED AUTOMATA

The word is now seen as a control, and we consider

opt

were is a deterministic series represented by (30). Let us define

def if
otherwise.

We shall denote and the laws of the (min,+) semiring
def . Trivially, If is de-

terministic, then is (min,+) rational. The optimal case evalua-
tion can now be directly obtained by appealing to the dual
version of Theorem 2.

Theorem 6: We have in the (min,+) semiring
opt , where

if
if ,

if
otherwise.

The matrix can be seen as the transition matrix of
an induced “Bellman Chain” [1] which plays a role analogous to
the Markov chain of the preceding section. We shall denote by

the spectral radius of in the (min,+) algebra (this is
the dual of the spectral radius given in Lemma 1).

Corollary 4: For a deterministic series (with
trim deterministic representation), we have

opt
opt

Example 7: For the semigroup of the example 3, we have

We get . Indeed, is the unique critical
circuit (see e.g. [4] for the graphical interpretation of ) i.e.

is the unique term attaining the bound in
the dual sense, in 1,((ii)), which implies that the optimal policy
which minimizes for consists in playing .

Concluding remarks

In this paper, we have used automata over the (max,+) semir-
ing as an algebraic formalism for modeling timed DES. As a by-
product of this algebraic modeling, we obtained some charac-
terizations of the worst case, optimal case and mean case per-
formance. From the practical point of view, the most useful re-
sult is perhaps the simplest mathematically, i.e. Proposition 2
which provides an algorithm for the worst case analysis.
The determinization procedure introduced in order to compute
the optimal case and mean case performance suffers of a greater
complexity, and only works for a subclass of series. This nat-
uraly suggests some open problems. Firstly, characterizations
of deterministic series more effective than Theorem 4 should be
found. Indeed, it should be noted that the algorithmic translation
of Theorem 4 (Eq. (40)) only yields a partial decision procedure:
if the algorithm terminates, this proves that the series is deter-
ministic, but it is not immediate to bound a priori the number of
iterations of the algorithm for a deterministic series. Secondly,
some more efficient alternative techniques (not using determin-
istic reductions) should be found.
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