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Abstract: More than sixteen years after the beginning of a linear theory for certain discrete event systems in which
max-plus algebra and similar algebraic tools play a central role, this paper attempts to summarize some of the main
achievements in an informal style based on examples. By comparison with classical linear system theory, there are
areas which are practically untouched, mostly because the corresponding mathematical tools are yet to be fabricated.
This is the case of the geometric approach of systems which is known, in the classical theory, to provide another
important insight to system-theoretic and control-synthesis problems, beside the algebraic machinery. A preliminary
discussion of geometric aspects in the max-plus algebra and their use for system theory is proposed in the last part
of the paper.

Résuné: Plus de seize ans &grle ébut d'une tiorie lintaire de certains syshesa évenements discrets dans
laquelle I'algebre max-plus et autres outils algriques assiméls jouent undle central, ce papier cherchecrire
quelques uns des principawgsultats obtenus de fagon informelle, en s’appuyant sur des exemples. Par comparaison
avec la tieorie classique des sgstes lirgaires, il existe des domaines pratiguement vierges, surtout en raison du fait
que les outils ma#matiques correspondants restiiorger. C'est en particulier le cas de I'approcle®getrique

des systmes qui, dans la #orie classique, est connue pour apporter un autre regard important sur les questions
de theorie des sysimes et de synéise de lois de commandas®dtée de la machinerie purement alyique. Une
discussion peliminaire sur les aspectégnetriques de I'algbre max-plus et leur utiBtpour la tieorie des sysimes

est propo8e dans la derare partie du papier.

Keywords: Discrete event systems, max-plus algebra, dioids, algebraic system theory

1. INTRODUCTION the number of researchers involved in this new area

. of system theory for DES has remained rather small
For what later became the Max-Plus working group at \he compared with the hundreds of their colleagues

INRIA, the story about discrete event systems (DES) hq contributed to the classical theory. In addition,
and max-plus algebra began in August 1981, that iS\yhje this classical theory was based on relatively
more than sixteen and a half years ago, at the time,q|| established mathematical tools, and in particular
this paper is written. Actually, speaking of ‘discrete |ingar aigebra and vector spaces, the situation is quite
event systems’ is somewhat anachronistic for that time different with max-plus algebra: this algebra, and sim-

when this terminology was not even in use. Sixt€en ji5 gther algebraic structures sometimes referred to as
years is not a short period of time compared with that ‘semirings’ or ‘dioids’, were already studied by sev-

it took for classical linear system theory to emerge as o4 researchers when we started to base our system-
a solid piece of _scignce. Qn the one hand,_those WhOheoretic work upon such tools; vet, today, a very
have been working in the field of max-plus linear sys- paqjc understanding of some fundamental mathemati-
tems have benefitted from the guidelines and concepts g jssyes in this area is still lacking, which certainly
provided by that classical theory. On the other hand, .qntribute to slow down the progress in system theory
itself. This is why an account of the present situation

1 This work has been partially supported by a TMR contract 1N the field can hardly separate the system-theoretic

No. ERB-FMRX-CT-96-0074 of the European Community in the iSsues from the purely mathematical questions.
framework of the ALAPEDES network.




Indeed, the models and equations involved are notgest new directions of developments. This essentially
restricted to DES: connections with other fields (opti- concerns the understanding géometricaspects of
mization and optimal decision processes, asymptoticssystem theory in the max-plus algebra. Investigations
in probability theory, to quote but a few) have been are currently undertaken in this area, so we will just
established since then, and this has contributed tosketch the kind of questions we try to address by
create a fruitful synergy in this area of mathematics. discussing examples.

Yet, this paper will concentrate on DES applications.
To be more specific, while classical system theory
deals with systems which evolve in time according to
various physical, chemical, biological. phenomena
which are described by ordinary or partial differential

equations (or their discrete-time counterparts), DES A common tool to describe discrete event systems is
refer to ‘man-made’ systems, the importance of which the petri net formalism of which a basic knowledge
has been constantly increasing with the emergences expected from the reader (see e.g. (Murata, 1989)).
of new technologies. Computers, computer networks, since we are interested in performance related is-
telecommunication networks, modern manufacturing sues, we consideimed Petri nets. The subclass of
systems and transportation systems are typical examtimed event graph¢TEG) is the class in which all
ples. Among the basic phenomena that characterizep|aces have a single transition upstream and a single
their dynamics, one may quosynchronizatiorand  gne downstrearh. A single downstream transition for
competitionin the use of common resources. Com- each place practically means that all potential conflicts
petition basically calls fodecisionsin order to solve  jn ysing tokens in places have been already arbitrated
the conflicts (whether at the design stage or on line, by some predefined policy. A single upstream tran-
through priority and scheduling policies). Through sjtion means that there is a single source of token
‘classical’ glasses, synchronization looks like a very gypply for each place (hence there is no competition
nonlinear and nonsmooth phenomenon. This is prob-in either consumption or supply of tokens in TEG).
ably why DES have been, for a long time, left apart These limitations are certainly restrictive for most
by classical system and control theory; they were con- applications, and they can generally be satisfied by
sidered rather in the realm of operations research O'making some design and scheduling decisions at an
computer science, although they are truly dynamical ypper hierarchical level (the purpose may then be to
systems. evaluate these decisions and to try to improve them).

Linear models are the simplest abstraction (or ideal But this is the price to pay for dealing witnear
model) upon which a large part of classical system and Systems. Attempts to deal Wlth more general Petri nets
control theory have been based until the late sixties.¢an be found e.g. in (Baccelit al, 199 Gaubert

To handle more complex models, say, with smooth @nd Mairesse, 1997; Cohest al, 1998). Yet, there
nonlinearities, it was necessary to adapt the mathe-ar¢ many interesting real systems which can be fairly

matical tools while keeping most of the concepts pro- Well described by TEG.

vided by earlier developments: differential geometry, TEG correspond exactly to the class of timed Petri nets
power series in noncommutative variables, differen- which are described by max-plus or min-plus linear
tial algebra have been used to develop such modelsquations. Consider for example the TEG depicted
for which essential questions such as controllability jn Fig. 1. While dots represent tokens as usual, bars
and observability, stabilization and feedback synthe- yepresent the holding times of places measured in a
sis, etc., have been revisited. Max-plus, min-plus and common time unit, that is, the minimum time a token
other idempotent semiring structures turn out to be the yyyst stay in a place before it can be used to fire
right mathematical tools to bring back linearity, in the the downstream transition (with no loss of generality,
best case, or at least a certain suitability with the natureng|ding times can be put in places only, the firing of
of phenomena to be described, in this field of DES.  transitions being instantaneous).

The purpose of this paper is twofold. On the one The convention is that transitions have names (indi-
hand, it tries to summarize some of the most basic cated in the figure) which are also the names of vari-
achievements in the last sixteen years in this new areggp|es attached to them. The first variables considered
of system theory turned towards DES performance re-are daters x; (k) denotes the earliest time at which
lated issues (as opposed to logical aspects consideregtansitionx; can fire for the(k + 1)-st time (because

in the theory of Ramadge and Wonham (1989)). Be- the first event is numbered 0 for some tricky reason).
cause of the space limitation, we will mostly proceed The following recursive equations can be established

by way of examples and the treatment will be neces- (Cohenet al, 1985; Coheret al, 198%; Baccelli et
sarily sketchy. We will rely upon several surveys al- 3| 199):

ready devoted to the subject (Cohetral,, 198%; Co-

hen, 1994; Quadrat and Max Plus, 1995; Gaubert and
Max Plus, 1997) in addition to the book (BfaCth 2 Hence, in event graphs, places can be considered as ‘arcs’ and
al., 199d). On the other hand, the paper tries to SUQ- transitons as ‘nodes:.

2. LINEAR EQUATIONS OF TEG

2.1 State space equations




X1(K) = x3(k —2) @ u(k) , (1a)
Xk =(10x1((k)® (1exk-2), (1b)
x3(k) = (B xikk—1)® (1®xk), (1lc)
y(K) = x3(k) , (1d)

where@® stands for max an@ for 4. The occurrence

of max is a direct consequence of synchronization:

a Vv b. Hence, a dioid is in particular a sup-semilattice
(this is sometimes the most important structure to con-
sider, which is obviously extended to ‘vectors’). If, in
addition, the sup-semilattice mmplete(i.e. infinite
sets have a least upper bound for the natural order,
and multiplication is left and right distributive with
respect to least upper bounds — this is the case in
particular for the max-plus semiring, completed with

one must wait for the presence of at least one token+o0), then the greatest lower bound of two elements
in all upstream places of any transition, hence, for the (denoteca A b) automatically exists.

lastsuch condition to be satisfied before the transition
firing can occur.
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Fig. 1. ATEG Fig. 2. Its reduced form

2.2 Idempotent semirings (‘dioids’): a few line digest

The max-plus semirings the setR of real numbers
(plus —o0), endowed with max as ‘addition’ ang
as ‘multiplication’. It is anidempotent semiringalso
calleddioid, i.e. a set equipped with a commutative,
associative and idempotent suax® a = a), a ‘zero’
denotece and equal te-oo, an associative product, a
‘unit’ element denotee and equal to 0, in which prod-

2.3 Canonical equations

Equations (1) can be written matrixform (‘missing’
entries are sette = —o0). Generally speaking, for
any timed event graph, one obtains the following kind
of equations:

M

x(k) =P (Aixk—i) ® Buk—i). (2a)
i=0
M

y(k) = P Cixk —i) (2b)
i=0

wherex, u, y are vectors of dimensions equal to the
numbers of internal, input and output transitidns
resp., A, Bi, Ci are matrices of appropriate dimen-
sions with entries in the max-plus algebra, avidis
the maximal number of tokens in the initial marking.

In transforming these equations towards a canonical
form, the first stage aims at removing the implicit
part Agx(K) in (2a), if any. The nonzero entries 8b
correspond to holding times of places with no tokens
in the initial marking. In principle, in the correspond-

uct distributes over sum (guess what would happen if ing subgraph, there should be no circuits; otherwise,

we interchange the roles of max ang. Of course,

all transitions in those circuits are frozen for ever since

the product is also commutative, but this is a feature the numbers of tokens in circuits are preserved during

which will be lost, for example, when considering

the event graph evolution. Consequently, there is a

square matrices instead of scalars, with the naturalnumbering of internal transitions such thag can be

matrix addition and multiplication derived from scalar
operations. An element # ¢ of the max-plus dioid
has an inverse fop, namely—x, but the existence of
a multiplicative inverse is not part of the minimal set
of axioms used to define ‘dioids’ in general, although
it provides useful additional properties when it holds
true.

Remark 1.By the loose expression ‘max-plus alge-

bra’, we generally mean the max-plus dioid as defined

above, or the similar structure withinstead ofR. In
the max-plus algebra, the ‘unit’ elemesnfequal to 0)
should not be confused with 1;@ a is notequal toa
and 1® 1 = 2). As usual, the multiplication sig® is
often omitted and® has priority over.

Due to the idempotent character of addition, a dioid

cannot be embedded in a ring. But thanks to idempo-
tency, it can be equipped with the natural order rela-

tiona > biff a = adb. Then,adb coincides with the
least upper bound df, b}, which is usually denoted

written in strictly lower triangular form; hencej

becomes zero for a sufficient larggnot greater than

the matrix dimension) and the so-called ‘Kleene star’,

that is, the infinite sum
=D A

neN

is well defined. Generally speaking, in the max-plus

algebra (and in a more general framework indeeih)

is theleastsolution of the implicit equatior = ax®b

wheneveml* can be given a meaning.

3

These considerations help removing the implicit part
of (2a) considered frork = 0 to +oco as an implicit
equation in the state trajectory-). Picking the least

3 Internal transitions are those having both upstream and down-
stream transitions, input transitions have only downstream transi-
tions, and output transitions have only upstream transitions. If there
are arcs directly connecting input to output transitions (through
places of course), then there are additional terms of the form
Dju(k — i) in (2b), which does not fundamentally change the rest
of manipulations to come.



solution in this implicit equation subsumes that transi-

linear equations. There is an alternative definition

tion firings occur as soon as they become possible, butof counters asx’(t) = sup, 4~k and one can

also that the ‘initial conditions{x (k) }k<o are the least
ones, that isg. This amounts to assuming that tokens
of the initial marking are immediately available at the
beginning of the game. Other nonzero initial condi-
tions can be enforced at the price of controlling the
arrival of tokens of the initial marking by additional
auxiliary input transitions (see (Baccedi al., 1992,
§5.4.4.2)).

The next stage in equation manipulation aims at ob-
taining a unit delay in the first term of the right-

hand side of (2a) and a zero delay in the second
term therein, together with a zero delay in the right-
hand side of (2b). This is obtained by increasing the
‘state vector’ dimension which must incorporate de-
layed versions of thg andu; variables. This stage is

prove thatx’(t) = x’(t — 1) + 1. Indeed, these two
definitions pertain to the notions aolual residuation
and of residuationof the dater function, resp. (see
84.2). For some tricky reason, the former definition
is preferable to the latter.

2.4 Transfer functions

In classical system theory, tlzetransform allows one

to represent discrete-time trajectories by formal power

series with positive and negative powers of the formal

variablez. For dater trajectoriesx(k)}, we introduce

the y-transformX(y) = @Dyey x(k)yK, wherey is

an indeterminate which may also be considered as the
backward shift operator (formallyx(k) = x(k —

classical in system theory and need not be describedl)). Starting either from the rough form (1) or from

in details here.

Finally, the canonical form of (2) is (without introduc-
ing a new notation for the possibly augmented state
vector)

x(k) = Ax(k — 1) @ Buk) ; y(k) =CxK) . (4)

The implicit part can be eliminated by successive sub-
stitutions of scalar variable, rather than by a naive ma-
trix star computation (there should be an appropriate

the canonical form (4) and applying thetransform
yields implicit equations inX;j(y) (plus an equation
for Y(y)) which can be solved again by appealing to
the Kleene star (now, of polynomials jnwith max-
plus coefficients). With our example of Fig. 1, it is
easy to eliminate alX; (y) but X3(y), which is also

Y (y), and to obtain

Y(y) =22y @ 3y%* (e 1nU(y) .
The next stage is to realize thé?y? & 3y3)*(e @

order for these substitutions for the same reason whyly) coincides with(1y)* (simply by expanding both

Ao can be written in a strictly lower triangular form).
For example, considering (1) again, one would first
substitute the right-hand side of (1a) for(k) in the

expressions). Hence, we finally obtain

Y(y)=21y)*U(y) . (6)

right-hand side of (1b), then use this new equation to 1S expression allows the calculation of the output
eliminate x,(k) in the right-hand side of (1c). After ~trajectory corresponding to any input history; hence, it
the implicit part has been so eliminated, it is realized COMPpletely summarizes the input-output relationship.
that x, no longer appears at the right-hand side of Generally speaking, from the canonical form (4), it

the dynamics (including the observation (1d)). Con-
sequently,xy is not part of the state vector. On the
other hand, a new state variable must be introduced
to account for the second-order delayxi let us set
Xa(K) = x3(k — 1) (the reader may imagine the cor-
responding manipulation in the event graph). Finally,
from (1), one derives the canonical form (4) with the
following state vector and matrices:

X1 gee e
X=|[|X3]; A=[|3¢2]|; B=12];
X4 ces e

C=(cee). (5)

Remark 2.There is another representation of TEG
in terms of ‘counters’ instead of daters: Iﬁf(t)
denotes the number of the first firing to occur at
transition x; at or after timet (we assume time is
discrete to preserve the symmetry to be explained
later on between daters and counters). In mathematical
terms,xib(t) = infy, 4>t K. Using either the definition
directly or the theory of residuation (note that—
xib(t) is a possible definition for the inverse kfi—

X (k)), one can show that counters obey min-plus

follows that
Y(y) =C(yA*BU(y) . (7

The expressionH (y) C(yA)*B is called the
transfer matrix(or functionin the single-input-single-
output case).

The right-hand side of (7) is the product of two formal
power series, namelyd (y) and U (y). Back in the
event domain (that of indek), y(-) is a ‘convolu-
tion’ of the sequenceb(-) andu(-), of which H(y)
andU (y) are they-transforms: indeed, ‘convolution’
means ‘sup-convolution’ in the max-plus algebra. As
Laplace transform converts convolutions into products
in classical system theory,-transform converts sup-
convolutions into products here. When we restrict in-
putsuj(-) to be nondecreasing control histories, we
can also limit ourselves to consider nondecreasing
functions hjj (-). Such a trajectonyhjj (-) is the im-
pulse responsef system (4) when looking at outpit
And inputj; more precisely, it is the trajectory (-)
caused by an infinity of tokens placed at transitign

at time 0, whereas at all other input transitions, it is
assumed that unlimited numbers of tokens are avail-
able since-oc; the reader may check that in terms of



y-transforms this indeed corresponddip(y) = y* sentation, the transfer function of our example reads
andU,(y) = ¢ forl # j. In fact, for y-transforms H(y, 8) = 82(y8)*.
of nondecreasinglater trajectoriesy* behaves as the
unit elem.ente. The story about nondecreasing se- o A QUICK REVIEW OF SYSTEM-THEORETIC
guences is longer than what we can tell here and is

. . . RESULTS FOR TEG
at the heart of the two-dimensional representation and

the M v, 5] algebra alluded to at Rem. 3 hereafter. 3.1 Asymptotic behavior and eigenvalues

Back o our gxample, it should not F’e difficult to Conventional linear systems have ‘modes’ which are
check that (6,) IS glso the 'tran.sfer f“”?“on of the TEG reached asymptotically when systems are stable; these
represen_ted in Fig. 2 which is described by the one- modes are related to their eigenstructures. Similar no-
state variable system tions exist forautonomoud EG obeying equations of
y(k) = 1y(k — 1) @ 2u(k) . (8) the formx(k) = Ax(k — 1). As usual, an eigenvalue
is a (rational) numben (possibly equal tce) such

By comparing Fig. 2 with Fig. 1, or (1)=(5) with  hat there exists a nontrivial eigenvector(that is,
(8), the reader should convince himself that relatively , £ ¢) satisfying Ax = Ax. In the max-plus alge-

simple algebraic calculations bring simplifications of .5 3 x means that the same scalar valuis added
a given (and already relatively simple) system which (5 a1 coordinates ofx. Hence, ifx(0) is equal to

can hardly be obtained by other means. These simpli-g;;ch an eigenvector, at every stage (that is, every time
fications would be more spectacular if we had started he event countek is incremented by 1), the same

from & more complex system. Of course, then, the time amount. elapses at all transitions. Algebraically,
help of some software (e.g., that of S. Gaubert namedx(k) — 2kx(0). Essential questions are whether such

‘MAX' and based on Maple) would be desirable 0 5 gigenpair exists in general, and whether all initial
achieve the calculations. To convince the reader of the o ditions are eventually absorbed in a similar ‘peri-

interest of transfer function calculation, we invite him  jic’ reqi

. . D ; . ) gime.
to reconsider the slight variation of Fig. 1 in which o _ _ _
the arc from transition goes to transitiox, instead ~ When A is irreducible (that is, the corresponding

of X1. The Corresponding system admits TEG is Strongly connected, or otherwise stated, all
5 . transition firings are dependent on each other in the
H(y)=1®3y(ly) (9 long term), the answer is relatively easy: there exists

as its transfer function which cannot be realized with & Unique eigenvalue but possibly several eigenvectors.
less than 2 state variables (this is, by the way, a The eigenvalue is given by the formula
good exercise to try out!). These changes seem rather n .
unpredictable without appealing to algebra. A= @ (tracgAD))™" (10)

j:l
Remark 3.Since a representation with counters can wheren is the dimension of the square matdxand
also be used (see Rem. 2), there is an associate@ll operations are in the max-plus algebra. In a less
transfer function using th&transform, wheré is the cryptic way, A is thelargest average circuit weiglaf
backward shift operator in the time domain rather than the directed graph canonically associated withor,
in the event domain ag (formally, x(t) = x(t — 1)). equivalently, the largest average weight of a directed
Instead of (6), we would geY(8) = §2(18)*U (8). circuit in the original TEG. When there is exactly
Note that, because of the double delay representedne token in each internal place, the average weight
by the factors?, 3 state variables are now necessary of such a circuit is defined as the number of bars
to realize this transfer function in the canonical form divided by the number of arcs or places along the
with counters, whereas only 1 was required with daters circuit. More generally, when the TEG is not in the
for the same system. This is not surprising since ‘canonical’ form in which a place (an arc) between
delays are related to the initial marking in the dater internal nodes (transitions) corresponds exactly to one
representation, whereas they are related to holdingtoken of the initial marking, the average weight is the
times in the dater representation. This remark showsratio of the number of bars by the number of tokens
however that the notion ahinimal realizationneeds  along the circuit. For the TEG of Fig. 1, this ratio is
some careful elaboration. equal to 1 for all circuits, and this is also the case for

In (Baccelliet al, 199D, Chap. 5), a two-dimensional that of Fig. 2.

representation of input-output maps withand s as The structure of the ‘eigenspace’ is related to the
commutative formal variables of power series with structure of thecritical graph, which is the subgraph
boolean coefficients is explained, and its advantagessuch that all nodes and arcs belong to at least a crit-
over the one-dimensional representationg ifwith ical circuit (that is, a circuit for which the extremal
coefficients in max-plus) or id (with coefficients in  average weighk is reached). More precisely, lef
min-plus) are enumerated. There is no room to de-be a transition belonging to a critical circuit and con-
velop the corresponding theory and to introduce the sider the ‘normalized’ matrixA, = A~1A (which
so-calledM®]y, 6] algebra here. In this new repre- means subtracting, assumed finite here, from ev-



ery entry of A). An eigenvector is obtained as the However, since new circuits are created by closing
i-th column of (A))T = A, (A))*. All columns of the feedback loops, there is a risk that the eigenvalue
this matrix corresponding to transitions in the same of the closed-loop system gets larger than that of the
strongly connected component of the critical graph open-loop system, which means a deterioration in per-
provide proportional eigenvectors. In particular, if the formance (that is, of the throughputi, with a clas-
critical graph is strongly connected (which is the case sical interpretation of the inverse here). Therefore, an
with the TEG in Fig. 1), there is aniqueeigenvector  interesting question is how to enforce stability while
(up to a multiplicative constant). We refer the reader to preserving performance, or at least not lowering it
(Baccelliet al, 199; Gaubert and Max Plus, 1997) too much (of course, the system cannot be speeded
and references therein for a complete treatment ofup by adding new circuits, hence new synchroniza-
these questions even in the case whers not irre- tion constraints). This problem can be viewed as the
ducible. equivalent notion opole placementrloop shapingn
classical system theory. For TEG, this means that the
new circuits created by feedback must have an average
weight which remains below a given threshold. Since
all such circuits traverse the feedback arcs, it suffices
to put enough tokens in the initial marking of these
arcs: this yields alynamicfeedback in thau(k) is

Jc>1,K eN: Vk> K, A€ =3°Ak  (11)  made dependent of sonyek — m). Obviously, form
That is to sayK is the duration of a transient part |argeé enough, the ratio (nr. of bars/nr. of tokens) of
beyond which, it = 1, any initial condition has been ~ SUCh circuits ceases to be critical.

absorbed in an eigenvector.df> 1, the behavior is  Nevertheless, from the practical point of view, increas-
‘periodic’ overc steps, with the same average time  jng m means increasing the number of tokens per-
between two successive firings at all transitions. This manent|y present in the System, and sometimes this
c is called thecyclicity and an exact formula for it even requires additional physical resources (parking
is: thel cmover all strongly connected components or storage room, pallets to carry parts in a workshop,
of the critical graph of thgcd of the ‘lengths’ (that  etc.). Hence, the next problem is to ensure the de-
is, token numbers) of all circuits in each strongly sjred level of performance under ‘budget’ constraints.
connected component of that graph. With the TEG of we are here in the realm of resource optimization
Fig. 1, all internal arcs and transitions belong to the (Gaubert, 1995), (Gaubert, 1992, Chap. 9). The prin-

critical graph which is strongly connected. The are two cjple of ‘kanban’ systems is also very akin to the
elementary circuits with 2 tokens and one with 3: the previous considerations (Di Mascolo, 1990).

gcd of 2 and 3 isc = 1. By computing the successive ]
powers ofA in (5), it is discovered thak = 5,¢c = 1 Recently, the problem of feedback synthesis have been

andx = 1. The length of the transient cannot be "€considered by Cottenceau al. (1998) in the fol-
bounded after the dimension &f An effective bound,  lowing form. Consider a systel¥ = HU (say,

a

which involves the numerical values of the entries of Nere,Y.U. H e Mi[y.4]) and the feedback law

A, and in particular the average weight of the ‘second Y = FY @*V' which yields the closed-loop system
critical circuit’ of A, is implicit in the proof of (11). Y = (HF)"HV. Instead of trying to preserve the
open-loop system eigenvalue only, the idea is to find

the greatest causafeedback lawF which preserves
thewhole open-loop transfer function .FCausal’ es-
sentially means thef can be represented by a sum of

A completely observable and controllable (conven- monomials in(y, §) with nonnegative exponents only
tional) linear system can be stabilized by dynamic (this is a ‘quick and dirty’ definition). ‘Greatest feed-
output feedback. With TEG, all trajectories are non- back law’ means that inputs will be delayed as much
decreasing, and stability must be given an adequateds possible, which intuitively aims at minimizing the
meaning: by ‘stability’, we essentially mean that to- number of tokens present in the system. However,
kens do not accumulate indefinitely inside the graph. the authors did not prove that their design enforces
A sufficient condition is that the whole system is syn- stability (in the previous sense) for structurally con-
chronized, that is, it consists of a single strongly con- trollable and observable systems in general. But they
nected component. A TEG sructurally controllable ~ showed that their problem admits a simple analytic
(resp.observabl if every internal transition can be solution based on residuation theory (see §4.2 here-
reached by a directed path from at least one input tran-after), namelyF is the causal part (keep only mono-
sition (resp. is the origin of at least one directed path to Mials with positive exponents) dfl xH¢H, where
some output transition). Structurally controllable and andy are the residuated operations of left, resp. right,
observable TEG can be stabilized by output feedbackmultiplication of power series. The reader may con-
in that the graph can be made strongly connected bysider the exercise of calculating tHisfor system (8),

adding appropriate arcs from output to input transi- represented in Flg 2, the transfer function of which
tions. (in M2y, 8]) is, according to (6)H = 82(y8)*. The

The critical graph also plays a role when considering
the asymptotic behavior of the iterat@§x(0) of the
autonomous system from any initial conditicugO).
Again, in the simplest case of irreducible matrices, it
can be proved that

3.2 Stabilization, feedback synthesis and resource
optimization



stars. This example suggests that such a representation
may be more appropriate in some cases.

answer isF = y2(y8)*. An implementation of this
feedback is represented in Fig. 3.
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Fig. 3. Feedback law (in the grey box) preserving

Fig. 4. Two TEG with the same transfer function (9)
open-loop transfer

This issue of ‘canonical’ representations of elements
in My, s8] in a way which allows one to easily
check the equality of two such elements in this algebra
and which is, at the same time, easy to recover (after
In conventional system theory, a necessary and suffi-various manipulations), efficient in terms of storage,
cient condition for a transfer function to admit a finite of simulation, and of calculation is mostly an open
dimensional time-invariant linear system realization question; it is central for the design of algebraic com-
is that it isrational. For M2y, 8] transfer matrices, ~ putational software tools iV y, 5]

an even stronger result holds true since the following
threeproperties are equivalent:

3.3 Realizability, rationality and periodicity

Remark 4.Instead of speaking of realization of trans-
(1) the transfer matrix can be rgalizgd by a TEG with 1;esr tmh:t;:;stﬁg;' (EyGB;) T:zr? abnes\f\?rgtetgr:oggggll) é’;\bove
constant (nonnegat_lve) hOId'ng times; 5 A2)*B (compare with (7)) for somBooleanmatri-

(2) the transfer matr!x IS ratpnql (and causal); cesC, A1, Ay, B of appropriate dimensions (that is,
(3) the transfer matrix is periodic (and causal). entries are solely equal toor €). Such a definition

In Rem. 4 below, we discuss a more mathematical sSeems a good basis to tackle the problenmafimal
statement of the first property above. The second prop-realization which would be defined as the minimal
erty means that each entry of the matrix belongs to inner dimension in this expression (that 8§ and
the closure ofe, e, y, 8} by finitely many®, ® and* A). This way, neither the dater nor the counter rep-
operations. The third property means that each entryresentation is privileged and the amount of storage

can be written as an expression of the fopre® gr*
in which p andq are polynomials ir{y, §) which rep-

subsumed by the state vector dimension refers now to
the storage of ‘bits’ of information (boolean values).

resent the transient behavior and the repeated patterrf-or the transfer function (6), a possible realization is

resp., whereasis a monomial kst which reproduces
the patterng along the ‘slope’t/k. For TEG with

strongly connected internal transitions, this slope is
nothing but the unique eigenvalue (in the dater rep-
resentation). Additional constraints can be put on the

relative degrees and valuations pfq andr. For ex-

cee gee e
Al=]ecce]l; Ao=|ece]; B=]|¢e];
gee cece I3
C:(ese).

At this moment, we have no non enumerative way to

ample, the transient paptneed not extend beyond the  ¢jaim that this is a minimal realization. This prob-
point where the periodic part starts, that is the degreesiem of minimal realization remains a very challeng-
of pin (y,48) can be strictly less than the valuations jng jssue in the field: it is solved only for special
of g. subclasses of systems, generally in the framework of

For systems with very long transient parts (check for dater representations (see e.g. (Gaubel, 1998)
examples?0(y8)* @ (51119)%), this representation and references therein).

may not be very clever. Consider now the transfer
function (9) again (which may be written &
y283(y8)*). Obviously,p = 8, q = y26% andr =

y$§. The left-hand side of Fig. 4 depicts the TEG In conventional linear system theory, sine functions of
which is immediately suggested by this way of writing any frequency (and starting from timmexo) are eigen-
the transfer function, and which corresponds to a 3- functions of transfer functiond (s), that is, the output
dimensional state system in terms of daters. The right-is equal to the input up to amplification and phase
hand side of the same figure represents a TEG withshift. The amplification gain and the phase shift at
the same transfer function and which corresponds to athe frequency» are computed by replacing the formal
2-dimensional state vector (as was announced earlier)operatois by the numerical valug¢w in the expression
Indeed, the corresponding way of writing the transfer of H(s). For TEG, the analogues of sine functions are
function iS(S(yZSZ(yS)*)*, that is, with two levels of  certain periodic inputs with any rational ‘slope’ in the

3.4 Frequency responses



planeZ? where thex-axis is the event domain and
the y-axis is the time domain (these periodic inputs
are in fact the best approximations from below, on
the discreteZ?-grid, of continuous linear functions

Consider the following scenario: a control histery)
is first used to produce an output trajectoyy-);
this y(-) is then used in (12) to compute sorage)
and a new control input(-) which is of course greater

with corresponding slopes). The outputs caused bythan, or equal tau(-); finally, this newu(-), when

such inputs (‘frequency responses’) are identical to used in (4), produces some new:), but thesame

the inputs, up to the fact that they are shifted along outputy(-) asu(-) does. We get the following kind
the two axes. Shifts can be evaluated using the slopeof state-costate equations:

of the input as a numerical argument of the transfer

function, in some way (see (Bacceéit al, 199D,
85.8) or (Coheret al,, 198d) for more detailed expla-

x(k) = Ax(k — 1) & B(BX&(K)) ;
£(k) = Axg(k— 1) A CK(Cx(K)) .

(14a)
(14b)

nations). These shifts become infinite when the slopeOne can prove the intuitively appealing fact that

of the input gets strictly smaller than the asymptotic
slope of the impulse response: indesthaller slope
meandasterinput rate than what the system is able to

& (k) — xi (k) is nonnegative: this is interpreted as
the ‘spare time’ or the ‘margin’ which is available at
transitionx; for the firing nr.k; in other words, an

process, and thus, tokens will accumulate indefinitely exogenous event may delay this event by this spare
inside the system. In this case, the intrinsic (maximal) time without preventing the future deadlines to be met.
throughput of the system will show up instead at the Differences such ag (k) — xj (k) emerge as diagonal

output: this is a kind of ‘low pass’ effect.

In the evaluation of the event and time domain shifts
at any frequency, it turns out that only the concave hull

of the impulse response is important. For example
the transfer function in (9) has the same frequency re
sponse as the transf&ys)* (when inputs are started
from —oo in order to remove the transient part of the
response).

3.5 Costate equations and second-order theory

In conventional optimal control, Pontryagin’s mini-
mum principle introduces a backward equation for
a vector¢ called ‘co-state’ or ‘adjoint state’. In the

linear theory of TEG, a similar notion arises about the

following problem: given an output (dater) trajectory
{y(»)}, find thelatest (greatest)nput trajectory{u(-)}

which yields an output trajectory less (earlier) than the
given one. This is again a typical problem in the theory
of residuation which is discussed at 8§4.2: indeed, if

H(y) is the transfer function, then the problem is to
find the greatedt) (y) such thatH (»)U (y) < Y(y).
The solution of this problem ¥l (y) = H(y)}Y(y)
(recall thaty denotes the residuation of multiplication
to the left — call it ‘left division’). It can be proved
((Baccelliet al, 199, 85.6)) that, for the system (4),
the solution can be explicitly computed by the back-
ward recursive equations

£(k) = (AxE(k+ D) A (Cry(k)) , (12a)
uk) = By&(k) , (12b)

in which, e.g.,
(13)

(Axb)i = mjin(bj - Aji)

(with a careful handling of infinite values, see (Baccelli
et al, 199D, Example 4.65)). The ‘costaté’ does
not follow the forward dynamics (4) because it corre-

elements of the matri® (k) = £(k)¢x(k). In conven-
tional system theory, for linear-quadratic problems,
the costate vectof is related to the state vector
by ¢ = Px, whereP is a matrix obeying a Riccati

’ equation. For the time being, no recursive equation has

“been found for the ratie(k)#x (k). On this and similar
topics related to what we consider as the analogue of
a ‘second order theory’ (with ‘correlation matrices’
having to do with in-process stocks and times spent in
the system), one may refer to (Baccedtial,, 199D,
86.6), (Max Plus, 1991; Cohe=t al, 1993).

4, TOWARDS GEOMETRIC SYSTEM THEORY
4.1 From algebra to geometry

Vectors and rectangular matrices have already showed
up in the previous developments. Whiéguarema-
trices can be given a dioid structure with twier-

nal operations called ‘addition” and ‘multiplication’,
vectors, for example, can be endowed with an internal
addition, but the multiplication of interest is generally
that of vectors by ‘scalars’ belonging to a dioid. are
sometimes referred to asoduloidsor pseudomodules
orsemimodulesowadays, and they have received (ad-
mittedly limited) attention. It is beyond the scope of
this paper to discuss even the basic (multiple) notions
of linear independence such structures and the as-
sociated notions oflimensions A few authors have
initiated some work with the aim of understanding
the geometry of moduloids (Wagneur, 1991). Com-
pared with usual vector spaces, the situation is more
involved, in that two moduloids with minimal generat-
ing sets with the same cardinality need not be isomor-
phic (Wagneur, 1996). Indeed, elements of minimal
generating families play a role analogous to extremal
rays of usual polyhedral cones.

In linear systems theory, the interest of the geometric
point of view has been shown e.g. by Wonham (1979).

sponds to transition firing dates ‘at the latest’, rather The basic notions of controllability and observability

than ‘at the earliest’ possible time, as it is the rule for
the forward dynamics.

(more general than those sfructural controllabil-
ity and observability referred to at §3.2) amounts to



surjectivity, resp. injectivity, of certain linear opera- Of course, an analogous theorem about dually residu-
tors. Hence images and kernels as geometric objectsated (1sc) mappings and least supersolutions can also
(more than their representatives in terms of matrices)be stated: the dual residual is denotiedand( f#)" =

are central. The notion of decomposition of a ‘space’ f (when f is residuated). So far, we have considered
into a ‘direct sum of subspaces’ is also important. the residuals of the mappings— a®x andx — x®

An attempt to approach this problem in the context a, denotedy — ayy andy — y¢a, resp., including

of moduloids can be found in (Wagneur, 1994). An- the case whean is a matrix (see (13)). Indeed, there
other point of view has been initiated in (Coheh s already a rich calculus associated with residuation
al., 1996; Cohert al, 1997). In this approaciesidu- (see (Baccellet al,, 199D, §84.4)) but much remains
ationtheory plays a central role. Hence a brief account probably to be done in this matter, including software.

of this theory is given in the next subsection. As a specialization of Rem. 5 to the case when

is a (m x n)-dimensional matrixA, AXx = b has a
4.2 Residuation theory in a few words solution iff A(Ayb) = b. In particular, to build a
minimal generating set from a given finite generating
The main purpose of residuation theory is to provide set ofm columns vectors; of dimensionn, we have
an answer to the problem of ‘solving’ equations in to apply the previous test for eath= 1, ..., m, with
x of the form f(x) = b, where f is an isotone b = a and A composed of the rest of vectors (those
(i.e. order-preserving) mapping between two lattice- different froma; and which have not yet been elim-
ordered sets which aromplete(i.e. infinite subsets  inated) and to eliminate thig if the test is satisfied
admit aleast upper bound—l ub, denotedv— and (see e.g. (Gaubert and Max Plus, 1997) and references
agreater lower bound—gl b, denotedr— which of ~ therein on this topic of ‘weak bases’).
course need not belong to the subset). The idea is to
weaken the notion of ‘solution’ to that of ‘subsolu-
tion’ satisfying f (x) < b or to that of supersolution

satisfying f (x) > b and to select thé¢ ub of these  With usual vector spacéds, X, Y, letB : U — X and
subsolutions, resp. thgl b of these supersolutions. C : X — Y be two linear operators. The prolecﬂa%
Which approach is adopted depends upon a ‘continu-onto imB parallel to keC exists and is well defined
ity property of f: the former approach is appropri- iff X is the direct sumof im B and keiC (that is,
ate whenf is lower-semicontinuous (l.s.c.), that is, x = im B+kerC andimBnkerC = {0}); moreover,

f(Dxex X) = Dyex f(X), for any subseX, which  f B is injective andC is surjective®, then
implies that thd ub of subsolutions is itself a subso-

c -1
lution; dually, the latter approach is appropriatd ifs g =B(CBC. 17)
upper-semicontinuousi§ ¢ — guess the definition!).

4.3 Projection on image parallel to kernel

With semimodules, keeping the definition K&r=

o ) ] {x | C(X) = ¢} does not seem to provide a very
Remark 5.1t should be keptin mind that if there exists  jieresting notion. This motivates the following set-
a ‘true’ solution to the problem withquality(possibly theoretic definition.

nonunique), then either approach will also provide a
true solution (if of course the corresponding continuity pefinition 7. (Kernel). LetC : X — Y denote any

assumption is satisfied bf). mapping between moduloids. We cidirnelof C (de-
noted keC), theequivalence relatiomver X defined

The following theorem summarizes an essential partas:

of the story of residuation. x €C v o Cx) =C(x) & x e CLHCX)) .

Theorem 6.Let f be an isotone mapping between (18)

two complete latticesC andY. The following three

statements are equ!valent: (1) qu eveyyhere eX|§ts U — X denote any mappings between moduloids. For
a greatest subsolution df(x) = b; (2) The mapping o .
anyx € X, we callprojection of x ontdm B parallel

fisl sc and f(e) = ¢ (wheree denotes the bottom kerC
element in any complete lattice); (3) There exists an tokerC anyé € im B such thag "~
isotone mapping # from Y to X such that

Definition 8.(Projection). LetC : X — Y andB :

. o The questions of existence and uniqueness of the pro-
o i

fﬁ =l (|-dent|-ty |_n ), (152) jection for given operator8 and C is studied in

ffof =1 (identityiny). (15b)  (Cohenet al, 1996) for residuated (or dually resid-

uated) operators and in (Cohenhal, 1997) for linear

Then f is saidresiduatedand f#, which is uniquely operators, together with explicit expressions for the

defined by (15), and which issc, is called itsresid-
ual. In addition,

4 The subspaces ifd and keiC are important, not the operatos
andC for which a certain flexibility exists.

foflof=1f: flofofli=f", (16)



projection. A brief informal summary is given here- of imC? in which equivalence classes of Kerare
after. Let first assume th& andC are residuated and  singletons, and the horizontal and vertical half-lines

introduce represent other equivalence classes in the rest of the
HcB: —Bo(CoB)oC (19) plane. Hence not all equwglence plasses have the same
topology. Part a of the figure displays a case with
(to be compared with (17)). existence of projection but no uniqueness everywhere

(some classes crosses the grey area in more than one
point): part b represents the case with uniqueness
but no existence everywhere (some classes do not
reach the grey area); part c is the case with existence
and uniqueness everywhéreOne may consider the
last situation as that of ‘direct sum of kérand

im B’, but in an unusual sense (also different from
Wagneur's (1994) meaning): in (Cohenal,, 1997),

the terminology ‘direct factors’ for inB and kerC is

With matrices over, say, the max-plus algebra (they used.

are also residuated operators), when existence anqln the same paper, it is shown that the image or kernel
unigueness are granted, the expression (19) of the Paper, g

rojector (which is easily proved to be linear in this associated with a matriB need not admit a direct
Projec yp factor (unlike in classical linear vector spaces), and
situation) becomes:

that a necessary and sufficient condition for this to
n§ = (B#(CB))C = B((CB) XC).  (20) hold true is thaB is regular, meaning that there exists
ag-inverse B which satisfies, by definitiorB BB =

B. However, dimension 3 at least is required to show
nonregular matrices.

e Existenceof projections for allx is equivalent to
the conditionC = CoII§ (saying that = I1§(x)
is in the same class as mod kerC), and also to
the condition inC = im (C o B).

e Uniquenesss equivalent to the conditioB =
H% o B (saying that anyx € im B remains in-
variant byl‘I%), and also to the condition k& =
ker(C o B).

Note that e.gB¢(C B) is, by definition (residuation in
the matrix algebra), a matrix, and the above expression
is understood as a product of matrices (which them-
selves arise from residuation of multiplication in sets More generally, for residuated mappings, even out of
of matrices). the case of existence and uniqueneﬂ%, as given

, i ) i by (19) has a precise meaning: when appliedkto
Examples are easy to figure out in two-dimensional it provides the greatest elemeatin im B which is

max-plus semimodules but some more general phe"subequivalent’ tox mod kerC. that is, such that

nomena require at least dimension 3 to show up. In Ct < Cx. The projectorT1S can be decomposed in
making drawings for homogeneous residuated opera-.. o moves (see Fig. 5b) or?ce written as

tors (in particular linear operators), one must keep in
mind a few facts. n§=BoBoCoC. (21)

e The image of an operatd such thatB(ax) =
aB(x) for all vectorsx and scalars is invariant
by translation along the first diagonal, sine®

First, z = C® o C(x) is the greatest element in the

equivalence class of mod kerC; then,& = Bo

means adding (in the conventional sense) the sameBﬁ(z) is the greatest element in iBiwhich is less than
Z. Notice that ifx is already in imB, then¢ is truly

constantr to all coordinates. corc valent t d kerC (for th ot .
e Also, for C with the same property, i < X, S?:r?{:de)n ox mod kerC (for thosex, existence is

kerC . .
thenax ‘"~ ax/, that is, equivalence classes can ] o
be derived from each other by translations along When B and C are matrices, it is an open problem
the first diagonal. to give necessary and sufficient conditions m%

e Finally, C is injective over inC* (this is a con- to be linear: a priori, this operator involves a mix of
sequence of (15b)), that is, equivalence classes™@%, Min and+ operations; the case when Bnand

intersect inC* at a single point. kerC are direct factor; has glrgady been jdgntified as
_ o _ o _ a case when this projector is linear, but it is not the
Consider Fig. 5 in which three situations withx 2)-  only situation when linearity is preserved. Obviously,

dimensional matrices are represented. The grey areahjs issue is important for system theory since the
notion of system aggregation and of reduced —not

S Y IR — to say, minimal— state space representation basically
e — involves such projectors: starting from a linear system,
e s it is desirable to get a reduced system which is still
7 u s u linear in the same algebra.
Fig. 5. Existence and uniqueness of projection 5 One can even show a fourth situation when neither existence nor

) ) ) ] ) uniqueness is ensured everywhere: this is the case wh&nand
is that of imB, the dotted area is that of the ‘interior’ imC* are not included in each other.



4.4 Applications in system theory In order to find a concrete representation of elements

. of 2, we consider the (canonical) greatest represen-
We return to systems described by (4). The Statetativeg in each equivalence class af (which we
values which are reachable from the canonical initial suppose to be a reachable statexi.e imR): it is

condition_a are of course_z_those in the image of the given by = l‘[%(x).
reachability (or controllability) matrix® :
R = (B AB KB ) . (22) Theorem 9.If the trajectoryx(-) follows the dynam-

On the other hand, two state values which are equiv-icS (4) and is issued from the initial condition
alent modulo ke©, where0 is theobservability ma- ~ (OF from any reachable initial state), thenk) =

trix H%(x(k)) follows the (a priori nonlinear) dynamics
O=(CTATCT (AT ..)' ., (23 .

(" stands for transposition) can be merged from the 50 = HR(AE(k -bhe Bu(k)) ’ (253)

input-output point of view. According to (Eilenberg, y(k) = Csk) (25b)

1974, Prop. 5.2 and Th. 55) from the module (in and it produces exactly the same output trajecary
fact essentlal!y set-theoretic) point of view, a minimal asx(-). Hence, it is another realization of the input-
state ‘space’ is output transfer matrix.

E =imR/kerO, (24)

that is, the quotient of irfR (which is a semimodule)  The proof of this theorem will appear in a forthcoming
by the compatible equivalence relation (or congru- paper. The advantage of this result is that the state
ence) ke® which preserves the semimodule struc- lives in a minimal set in terms of set inclusion. Its
ture. By comparison with realization theory over a priori drawback is that the dynamics is potentially
fields, the difficulty is that the ‘minimal’ moduloid nonlinear (unlessl‘l% is linear, at least over reach-
E = imR/kerO, which is isomorphic to the image able states) and it is unclear that the dynamics can
of the Hankel matrix of the system (Fliess, 1975), isin be written in a smaller dimensional semimodule (for
general not free. The following questions must then be the time beingé has the same dimension &5 Ex-
addressed regarding this abstract construction which,amples show that it may happen thatives in a set
by construction, retains a completely reachable andwith many ‘extremal points’, which is no good sign
observable state ‘space’. for minimizing the dimension of the representation.
e Can the abstract semimodute be given a more Nevert.heless., for_all examples workeq ou.t, It seems
. . that this set intuitively provides an indication of the
concrete representation (or, otherwise stated, what__.". . . . ;
) : L minimal dimension needed to realize the transfer (in
is the state vector corresponding to this minimal

. - i that, a surface, even with many ridges and corners, is
set-theoretic’ representation)? . ; C s L
T . ., atwo-dimensional variety ilR°, and a broken line is
e When does minimality from the ‘set-theoretic

: o T a one-dimensional one).
point of view imply minimality from the com-
putational point of view (that is, for the number Before showing examples, observe that, agﬁl%
of coordinates of some state vector which allows can be viewed as the compositionaf’ = 0% o ©
one to write down an internal representation of the andIz = R o R*. These two projectors satisfy the

form (4))? following (kind of Lyapunov) implicit equations:

e Is there a way to relate this minimal dimension- o - "
ality with that suggested by the transfer function ¥ =Aocll"oAANCoC, (26a)
computation (although this problem of minimal Mr=Aocllgo A" @ BoB". (26b)

realization of transfers is itself an open problem),
that is, to relate the geometric and the algebraic
points of view?

From these equations, an interpretation of the gtéte
can be given: when applied k), 1€ first looks for

the greatest state value at stdgerhich would gen-

At this stage, there is, to the best of our knowledge, erates future outputs not exceeding those contributed
no definite answers to those questions. Observationsby x(k) (independently of the contribution of future
made on examples suggest that the situation is not asnputs which are yet unknown and whose effects will
simple as in classical linear system theory, but perhapsbe superimposed by linearity); then, since this greatest
not so hopeless. We use the rest of available spacecompatible state value may not be a reachable state,
to give a few unpublished results (without proof) and Il finds its best approximation from below which
discuss some further examples. is reachable. In light of this interpretation, we are not
far from the computation of (12)—(14), except that we
are here in a causal situation when future inputs are
unknown.

6 Unlike in classical linear algebra, it may be necessary to keep all
powers ofA up to infinity to get the whole image of this matrix. The

same remavrk applies to the kernel@fto come. __Again, an important issue is: when 89 a linear
The treatment of (Eilenberg, 1974), which is in the case of rings operator (With the consequence of the dynamics (258.)

and modules, can be readily extended to semirings and semimod-,_ " . . ..
ules. y 9 being then also linear)? Although some sufficient con-
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