
Algebraic Techniques for Timed Systems*

Albert Benveniste 1, Claude Jard 2, and St~phane Gauber t 3

1 IRISA/INRIA, Campus de Beaulieu, F-35042 Rennes Cedex, France
Albert. Benvenist e@irisa, fr

IRISA/CNRS, Campus de Beaulieu, F-35042 Rennes Cedex, France
Claude. Jard@irisa. fr

3 INRIA, BP 105, F-78153 Le Chesnay Cedex, France
Stephane. Gaubert @inria. fr

A b s t r a c t . Performance evaluation is a central issue in the design of
complex real-time systems. In this work, we propose an extension of so-
called "Max-Plus" algebraic techniques to handle more realistic types of
real-time systems. In particular, our framework encompasses graph or
partial order automata, and more generally abstract models of real-time
computations (including synchronous programs running over distributed
architectures). To achieve this, we introduce a new dioid of partially
commutative power series (transductions), whose elements encode timed
behaviors. This formalism extends the traditional representation of timed
event graphs by (rational) commutative transfer series with coefficients
in the Max-Plus semiring. We sketch how this framework can be used to
symbolically solve several problems of interest, related to real-time sys-
tems. Then we illustrate the use of this framework to encode a nontrivial
mixed formalism of dataliow diagrams and automata.

1 M o t i v a t i o n s

Performance evaluation is a central issue in the design of complex real-time
systems. The general situation we consider in this paper can be described as
follows : 1 / T h e real-time system in consideration consists of a finite collection
of tasks. Tasks are triggered by events originating from both the environment and
the system itself, depending on its internal state. 2/ Tasks can be concurrent
or serialized, depending on their causality interactions. And this may change
dynamically depending on the s tate of the environment and of the system itself.
3/ Tasks need resources for their completion, and they wait until all resources
needed axe available.

Restrictions axe listed next : 1 / B o t h system and environment states can take
a f in i te number of values. If this is not the case, then some kind of abstract ion
is needed to enforce this situation (e.g., values of integer s tate variables are
abstracted). 2/ State transitions are not triggered by the await ing/reception
of resources, i.e., watchdog/ t imeout mechanisms axe not modelled. Again, if

* This work is supported in part by Esprit LTR-SYRF project (EP 22703).

374

watchdog/timeout are involved, then they need to be abstracted, typically in
the form of a possible nondeterministic exception, prior to enter our framework.

The general term of "real-time computing" refers to the type of comput-
ing that can be embedded on a real-time system with bounded memory and
bounded response time requirements. Here our aim is to model the behaviour
of real-time computing running on a given architecture with a given degree of
available concurrency or parallelism. Basic real-time computations often have
the form of single-clocked machines performing identical computations at each
instant. The more general situation can be abstracted as a finite set of basic real-
time computations having two-sided interaction with some finite state machine
(the computations being performed depend on some discrete state of the system,
and in turn can trigger discrete state transitions) [2, 13]. In this context, ques-
tions of interest include: latency, throughput, bounded time safety properties
(guaranteing that some property will occur within some given bounded period
of time).

These applications motivated us for developing a general algebraic frame-
work. In the modelling of timed discrete event systems, one traditionally uses
dater functions, which give completion times, as a function of numbers of events
(see [6] and [1, Ch. 5]). Dater functions are non-decreasing. We extend this mod-
elling to the case of multiform logical and physical times, which are needed to
model concurrent behaviors. We represent event sequences and time instants by
words. A dater is a map, which associates to a word a word, or a set of words,
and which is non-decreasing for the subword order. The formal series associated
with these generalized dater functions live in a finitely presented semiring, which
is equipped with some remarkable relations, due to the monotone character of
daters.

The systematic study of the underlying algorithmic problems is beyond the
scope of this paper, and the adapted software tools remain (mostly) to be devel-
oped. Our aim here is only to illustrate the interest of the formalism, by showing
how the model fits the above mentioned particular applications. Questions of
effectiveness and complexity are deferred to a subsequent paper.

2 D i s c u s s i n g m o d e l s o f r e a l - t i m e c o m p u t a t i o n

To introduce our model we shall discuss informally the case of real-time com-
putation. Figure 1 depicts a simple example of a "basic computation", in which
the same computation is repeated each cycle indefinitely.

Of course, in more realistic situations, different computations would be per-
formed for different discrete states of the control of the program. Using the same
notations for graph concatenation as in Figure 1, a simple prototype example of
such a model for computation is given in Figure 2, using an order-automaton.

We assume that performing any event (thick bullet) takes an integer number
of cycles (time units). Our aim is to model the timing behaviour of this machine.
Let us first concentrate on action A. Denote by dx and dv some current date
attached to the flows X and Y respectively, and by d~ and d~ corresponding dates

375

Fig. 1. C o m p u t a t i o n : V n yn = y ,~- i + un , m o d e l e d as a graph a u t o m a t o n . The first
diagram depicts the abstraction of the computation Vn : y,~ = y n - 1 + un in the form
of an infinite string of dependence graphs. In this formula, u and y are flows, i.e., infi-
nite sequences of data. In the second diagram, small bullets indicate the switching from
one instant n to the next one. These small bullets are used as "pins" which glue each
instantaneous dependency graph to its predecessor and successor: this yields a notion of
concatenation. This notion of concatenation is usecl in the third diagram to construct the
"language" a ~, where a is the symbol consisting of the graph sitting as label for the unique
transition of the depicted automaton.

A

S l S~ B A B C

c

, Example:

* 9 O = ~2

:Fig. 2. The main example. The top left diagram depicts the automaton. Its action labels
A, B, C are directed graphs connecting flow occurrences. These directed graphs are shown
on the right hand side, they are interpreted as labelled partial orders. Pins are depicted
by small bullets, while actual elementary computations (called "events" in the sequel)
are depicted by thicker bullets. Black and gray events cost one (5) or two (5 2) units
of time respectively. Since concatenation is performed on a flow-by-flow basis, with pins
subsequently erased, the resulting partial order is shown on the bottom left diagram. In
this diagram, symbol 9 denotes the star operator, it applies in a nested way, both to the
innermost event on flow labelled X, as well as to the whole partial order shown.

after completing action A. One has d~ = dx + 2 and d~ = max (dx + 2 , dy + 1).
This equation is linear over the max-plus semiring (see w below). Indeed,
introducing the delay operator 5 : 5x = x + 1, and using the max-plus notation
a q~ b -- max(a, b), we can write: d~ -- 52dx and d~ = 52dx ~ 5dy.

In order to express such relations, we propose to abstract order-automata,
as illustrated in Figure 3, by counting the dates on each flow and taking into
account the inter-flow dependencies due to the obliques in the patterns. Each
pat tern may be represented by the timed-dependence-graphs shown in the left of
Figure 3. The execution times of the events (one or two units) are materialized
by delays operators (5 or 52). Notice that a dependency edge can be of 0-delay
and will only propagate the dependency without increasing the delay. We equip
the name of each involved flow with an at tr ibute consisting of the states of the

376

transition relation of the automaton. We also note on each dependency edge the
name of the pa t te rn from which it is defined.

Merging these graphs, we obtain the timed diagram of Figure 3 (right). As
usual, to each state S we can associate a set of runs (a t rajectory) which can be
executed from the initial s ta te of the au tomaton to s tate S.

x's l ~2A ~ x's2 ~:c

Y, sl Y "s2 ~s

x,S2 ~ - c) x,S~
F y , S 2 ~ ' / , y,St 5C
~c

Fig. 3. A timed diagram. Each pattern A,B and C of the order-automaton of Figure 2 is
abstracted as the left figure. The "union" of these graphs forms the timed diagram of the
right. This diagram defines a family of orders, described by words (trajectories) of patterns
A,B and C. For each trajectory, we want to compute the time at which it is completed at
the earliest. From this diagram, we can infer that action A is completed at the earliest at
the time 2 (max(6,5~)) and that the words AB and AC are completed at the earliest at
time 4 (max(53, 64)).

We think tha t all the useful information about propagat ion of delays along
the sequences of actions is captured in this representation. The question now is
to equip such a graph with a mathemat ica l semantics.

Let us consider an edge of a trajectory. I t is labeled with words of events,
possibly interleaved with the delay symbol 5. For modelling the elapsed time, we
decide tha t delays and events commute. Edges are thus labelled with symbols
(~t w .

What we seek for is tha t symbol 5tw should encode the information

5tw : "w is completed at the earliest at time t ." (1)

This is equivalently rephrazed as

- when w is completed, one cannot have a date s, s < t,
- at t ime s < t, one cannot have performed more than w, where performing

more than w means performing some v such tha t w is a subword of v, writ ten
w E v , i.e., w is obtained by replacing in v some symbols by the empty
word.

Note tha t we consider a subword w, not a prefix:, the reasons for this will become
clear soon.

The next section presents the encoding of the trajectories into an algebraic
framework. This will provide semantics for our t imed diagrams. Its presentation

377

(as usual for automata) consists in writing a system of equations in some suitable
formal power series domain. The central question is to define which domain of
formal power series must be used : 1 / W h a t is the domain of Xs? 2 / W h a t do
addition and multiplication mean?

3 A n e w f o r m a l p o w e r s e r i e s d o m a i n

3.1 A glimpse of dioid algebra

A semiring is a set S, equipped with two laws @, | such that (S, ~) is a
commutative monoid (the zero element will be noted 0), (S, | is a monoid (the
unit element will be noted 1), the law | is right and left distributive over ~,
and 0 is absorbing. A semiring whose addition is idempotent (a ~ a = a) is a
dioid. Dioids are canonically ordered by the relation a ~ b iff b -- a @ b. We will
consider two particular dioids. The max-plus semiring Zmax is the set ZU {-cx~},
equipped with: a @ b = max(a, b), a | b = a + b, 0 = - c~ , 1 = 0, and the order
relation < is the ordinary one. The boolean semiring B can be identified to the
subsemiring {0,1} of Zmax. In any semiring, the matrix product can be defined
as usua l :

(A @ B)ij : d e f ~ Aik | Bkj
k

where A, B are matrices with compatible dimensions. We shall write AB instead
of A | B, as usual.

3.2 Modell ing t ime elapsing

A rough dioid of formal power series. Consider the set A/t (Z, 5) of formal power
series

- with coefficients belonging to the boolean dioid {B, @, | - - in the sequel,
to be consistent with our generic dioid notations, we write {0, 1} instead of
{0, 1};

- with variables 5 to encode the dates, and ~ = {A, B, C} to encode the moves
of the automaton.
Variables A, B, C do not commute, a word built with these variables shall
be denoted by the generic letter w. On the other hand, w and ~ globally
commute: w5 = ~w .

Following the usual notation [19, 5], such formal power series are written

x = o r

fEZ, wEE* fEZ, wE,U*

for convenience, where x~,w denotes the coe1~cient of x at the monomial 5tw. The
set J~ (Z, 5) inherits the following dioid structure from that of its coefficients
domain :

378

- x ~ y is obtained by taking the @ componentwise.
- x| is the Cauchy product defined by (x | Y)t,w = I~r+s=t, uv=w (xr,u | ys,v)

We shall denote again by 0 the element of A/[(,U, 6), which has all its coefficients
equal to 0.

The idea is that formal series x models timed runs, or trajectories i.e., lan-
guages together with the time needed to complete words. For x E A4 (Z, 6),

x,,~ = 1 iff word w is completed at time t for trajectory x. (2)

The zero series 0 E ~4 (Z, 6) represents the trajectory with no event at all. Note
at this point that statement (2) is different from requirement (1), thus J~t (E, 6)
is not our desired domain and further work is needed.

The quotient dioid ,~r (Z , 6). Here we follow the beautiful idea [6, 1] of Cohen,
Moller, Quadrat and Viot to derive symmetric codings for event graphs (the case
considered in [6, 1] corresponds to our situation for the particular case in which
the automaton has a single action label).

We are now ready to formally construct the quotient dioid which provides
the semantics requested in (1). For

x = ~ x t , ~ . g t w we set [x]= (~
fEZ, wEE* , 6 Z , wEE*

6 ' w . (~ x~,v (3)
s > t
y e w

Note that (3) formally encodes statement (1), by attaching a I to 6'w as soon
as some xs,v = 1 for s > t (first rephrazing of (1)) or v E w (second rephrazing
of (1)). Then, the following holds :
T h e o r e m 1 (the JP[i~ (~7, 6) q u o t i e n t d io id) .

1. The following holds :
[= 9 y] = [=] 9 [y], [= | y] = [=] | [y]

which implies that the equivalence relation ,.~ (x ,,, y iff [x] = [y]) is com-
patible with the dioid structure of s~4 (Z , 6). Thus we can consider the dioid
J~4i ax (Z , 6) obtained by taking the quotient of dioid M (Z, 6) by the ,~ equiv-

.

.

alence relation.
The following formula holds :

[6tw] = 6S v .

s<_t
v ~ w

In the quotient dioid }~4ia~ (Z , 6), the monomials obey the following rules :

[a'v] 9 [6'w] = [6' min(v,w)] (5)

if one of the words v, w is a subword of the other one, and min(v, w) denotes
this subword.

379

COMMENT: Points 2 and 3 of theorem 1 enlight that dioid Az[i~ (~ , 5) really
implements specification (1), if one interprets monomials as in]ormations or con-
straints (see (1)), and addition as logical conjunction. Indeed, the rule (4) simply
means that the conjunction of the informations "w occurs at the earliest at time
s" and "w occurs at the earliest at time t" is "w occurs at the earliest at time
max(s, t)". The interpretation of (5) is dual.

Proof: For the first formula, [x • y] = ~ t ,~ ~tw " ~ > t ,r-~ (xs,, @ Y~,v) =
[x] @ [y] just because @ is associative componentwise. Th~swas the easy part.
Now comes the subtle one, as well as the justification for considering "subwords"
instead of "prefixes".

for

t , w r -Jr S = t

U V ~ W

then it holds thai, [x| = ~)t,,,, 5tw. (~ t' _> t (~ r ' + s' = t' [x,.,,,, | y,, ,,,] =
?1) s [~_ W Ut?} s ~ W t

[x] | [y] where the last equality follows from the fact that the following two sets
a reequa l :{ (u ' ,v ') : u ' v ' U w } = {(u' ,v ') : u ' C u , v ' E v , u v = w }

Note that this latter property would be false if we had chosen "is prefix of"
instead of "is a subword of".

We move to points 2 and 3. We have:

[5,w] = @SSv @ (5'w)ro
s~v r ~___ $

u E v

= @ S S v . (i f t > s a n d w E v , then l else 0) = 5Sv,
8~V

@
s < t

v ~ _ w

since (Stw)r,~ = 1 i f f t = r and w = u .
From this, rules (4,5) follow easily. This finishes the proof of this fundamental

theorem. []

Notation. From now on we shall work with quotient dioid .h//i~ (5:, 5) and simply
write x instead of Ix]. With this in mind, for x E Man (Z, 5) a trajectory,

Xt,w = 1 iff word w is completed at the earliest at time t for t rajectory x. (6)

This is in agreement with requirement (1) (compare with (2)).
As a t rajectory of a timed diagram is represented by an element of JVli ax (E, 5),

the next question is : how to encode all the trajectories of this automaton in a
finitary manner ? This is addressed next.

380

Modelling elapsed time for graph automata. This coding is based on the following
simple remarks :

(i) Given x E .h/Ii~nX (E, (i), then y = (ix is the unique element of 21/[~ (2, (i) such
t h a t y t + l , w = l iff xt,w = 1
meaning that (pre- or post-)multiplying an element of .Mi~ (2~, (i) by (i
amounts to delaying time by one unit.

a x (ii) Given x e Mi~ (E:,(i), then y = x.v is the unique element of Min (2,(i)
such t h a t y t , w . = l iff x , ,~o=l
meaning that postmultiplying an element of)vlia~ (Z, (i) by v amounts to
postfixing the trajectory by word v without incrementing the date.

(iii) We denote by 0 the unique element of Mi~ (,U, (i) having all its coefficients
equal to 0, 0 E Mia~ (~, (i) encodes the trajectory with no event at all. Also
we denote by 1 the unique element of Mi~ x (Z, (i) having a coefficient 1 for
its monomial (i0r (~ being the empty word), and 0 otherwise.

With this in mind, we are ready to proceed on our coding. Consider the following
row vector of formal power series in 2PIi~ (~, (i): .~. = [Xs, Ys, Xs2 Ys2] ,

where the entries Xs,, YSl, Xs2, Ys2 E A/[~ (~, (i) encode the trajectories of
flows X and Y when hitting states $1 and $2 respectively, cf. (6).

Keeping points (i), (ii), and (iii) in mind, we get that ~ is solution of the
following fixpoint equation in J~4i~ (~, (i) (the constant vector codes the initial
state of the system) :

0 0
0 0

(i2C 0
[.(i2C (iC

(i2A ~2A]

~2B
0

(~ [1 1 00] (7)

Expanding (7), we obtain:

I XSl = Xs2 (i2C EB YS2 52C ~ I
Xs2 = Xs, 52A @ Xs2 ~2B
YSl=YS2 5 C @ I
YS2 = Xs, ~2A @ Ys~ ~A G Ys2 B

3.3 Model l ing mul t i fo rm t ime elapsing

In this subsection, we revisit the example of the preceding section. Now we wish
to consider that events involving flow X and events involving flow Y are measured
using different time units. For instance, we may know that these two types of
events take different amount of time, but we don't know yet how much each
one would take. Thus the idea is to take different symbols to measure time
for different flows. This is an example of dealing with multiform time. This is
illustrated in Figure 4. Referring to Figure 2, just model time subsumption for
grey and block patches via two independent symbols 5x and 5y respectively. This

381

leads to the timed diagram with multiform time below. As a justification, replace
in A4 (,U, 6) the single symbol J by a finite time alphabet A (= {Jx, Jr} in our
example). Then replace in formula (3) the domain s _> t for the ~ by a _ /3,
for computing in Ix] the coefficient associated with symbol /3w E A* x s
Theorem 1 can be easily extended to this case.

~yC

Fig. 4. Multiform time fixpoint equations as flow graphs in j~ia~Xn (~, 6).

3.4 From fixpoint equations to regular expressions
We will only discuss uniform time case, the extension to multiform time being
immediate.

Looking carefully at the above example, it is clear that model (7) is too
verbose : the system matrix in (7) is very sparse, involving mostly O's. In the same
vein, this representation explicitly uses states, while is it known that Kleene-
Schfitzenberger formal power series for regular languages don't. Thus we should
be able to do the same. In fact, this is easy.

Decompose ~ in (7) as

 9 ~ -= [-~-1 -~-2] , where, for i = 1 , 2 : ~ i = [Xs, Ys,]

We can rewrite fixpoint equation (7) as follows :

r 2c o 1 1]
 9 '=-1 = .=.2 La2C, <fc'J

~ 2 = ~ 1 [0 ~AJ 9 .--.2

Substituting (9) in (8) and using the star operator twice yields :

=init =init [1 1] and "~'1 = '--dl .A, where -1 =

(s)

(9)

t~A J [(~2 C =def (A6B;C&)* , (10)

where A6, etc., denote the corresponding polynomial matrices involved in for-
mula (10).

382

The intuitive interpretation of these equations is the following. Assuming ini-
tial and terminal state is $1, as before, the language corresponding to automaton
of the Figure 2 is (AB*C)*. Getting the corresponding timed model is performed
by 1/associating with each action, say A, its corresponding timed version in the
form of polynomial matrix A6, and, 2/substituting A by A~, and so on, in the
regular expression defining the considered language of actions.

It is easy to derive from (10) a rational expression for the different entries of
E. In fact, the above discussion is merely an illustration of the weak version of
the Kleene-Schiitzenberger theorem [5] that holds in the semiring/2: the series
that code the timed behavior of graph automata are exactly the rational series
in Z:, i.e. the series given by finite expressions involving the operators @, | *
and monomials.

4 A p p l i c a t i o n s : e x c h a n g i n g a c t i o n s a n d t i m e

This technique relies on the automaton of Figure 3, for which we have the fol-
lowing theorem :

T h e o r e m 2 (ret iming) . Both diagrams of Figure 5 represent the same tran-
sition matrix.

Fig. 5. The basic rule of retiming. Labels S, T, U, V, ~ represent elements of J~ian x (2, ~)
attached to the associated branches of the diagrams.

The proof is obvious, as both diagrams represent the same transition matrix
from source to sink states of the diagram.

Representation (7) of transition matrix .A has the following particular fea-
ture: each entry in ~tt has degree exactly one in the ~ action alphabet. This
means that it is easy to read on (7) how much time it costs to perform an action
or a sequence of actions.

If it is wanted to answer the symmetric question: how many actions can
I perform per unit of time, or per 10 units of time, then the form (7) is no
longer suitable, and we have, so to say, to "symmetrize" it. This will be achieved
by exhibiting another representation, equivalent to (7), i.e., having the same
solution for associated fixpoint equation, but whose entries are, either 0, or have
exactly degree one wrt. symbol ~. This can be achieved by adding new states in
the diagram as shown in Figure 6 (equivalent to Figure 3), in which we again
use retiming.

The technique used here is clearly general. Indeed, a series x E /2 can be
identified to a subset of ~* • X*, namely X = {~ftw I xt,w - 1}. Then, such

383

~C

Fig. 6. Exchanging time and actions in the diagram of Figure 3. 1/Check on diagram
of Figure 3 which labels have degree zero wrt. ~: there is exactly one, attached to the
bottom right circle and action B. 2 /Sh i f t symbol B one step backward along the paths of
the directed graph, and concatenate it to the corresponding labels. 3 /Remove arrows with
no label. All arrows of the resulting diagram are labelled with power series in J~i~ x (• , ~) of
degree 1 with respect to ~ : the diagram represents what actions can be performed within
one time unit, starting from any state of the machine. In particular, so-called time bounded
safety properties ("nothing bad can happen within 10 time units") can be checked in this
way.

a subset can be identified either to a function Z* --~ 7~(5"), X ' (w) = {5 t I
xt,w = 1}, which to an event w, associates the set of legal time constraints, or
to the (inverse) function X " : 5" ~ P (Z*) , X ' (5 t) = {w I xt,w = 1}, which
to a time instant, associates the set of legal event constraints at this time. Our
problem simply consists in computing effectively X " from x. When the series
x E s is rational, which is the case if x is produced by a graph automaton model,
the series X " is recognizable [5] over the semiring of ordinary rational subsets
of E*, i.e. we can find a matr ix p, a row vector A, and a column vector "y with
compatible sizes, whose entries are ordinary rational expressions in Z*, such that
X " -- A(pS)*7. In particular, the set of admissible event constraints at t ime t is
nothing but the coefficient of this series at 5 t, namely Apt3 ,. As discussed before,
this is a basic tool for performing so-called bounded time safety properties, i.e.,
checking if "nothing bad" can happen within e.g. 10 units of time.

5 Structural modell ing of mixed dataflow/state based
t imed systems

In this section, we introduce a useful model of mixed dataflow/state-based sys-
tems, which is essentially derived from [15] (similar efforts are currently un-
derway around Ptolemy's group [12], but with a slightly different semantics).
Then we show how to perform a structural translation of a t imed version of such
models into our formalism.

5.1 H i e r a r c h i c a l M o d e M a c h i n e s (hMM)

Mode machines mix in a simple way dataflow diagrams and automata [15] [12].
A hierarchical mode machine (hMM) has the form shown in Figure 7.

384

/ \
comb

latch

Fig. 7. A view ofhMM, hMM are nested dataflow diagrams and automata. At the lowest
level (right hand side) we simply consider simple dataflow diagrams equivalent to syn-
chronous circuits: the circuit has a (circuitfree) combinational part, in feedback loop with
a set of latches. Then, the diagram on the left hand side shows how successive levels are
refined. In particular, the mid-diagram shows that a box of a dataflow diagram is refined
into a state machine, and that, in each state, a dataflow diagram of lower level is acti-
vated, meaning that the input/output map specified by the top-box is refined into different
diagrams, for each different state of the automaton.

hMM'S Can be flatened and expanded into a single (huge) synchronous circuit,
see [15] for how to derive a LUSTRE program out of an hMM. Actually, as we
only rely, for our coding into timed diagrams, on the partial orders of events
specified by such hMM'S, we can as well consider a token based dataflow semantics
following [12].

Our aim is to show that timed hMM have a nice structural coding into our
framework. For this we first need to slightly adapt our use of timed diagrams.

5.2 C a p t u r i n g ac t ions , c o u n t e r s , a n d d a t e r s

Until now, only actions and time were considered. In this model however, it
appears a new concept: the notion of logical time implemented by latches and
captured by counters. Our situation is the following. We have:

- a finite set of f lows , denoted X, Y,. . . . To flow X we attach
 9 a coun t ing symbol #x, and
 9 a dat ing symbol 5x. The alphabet of the #x'S, where X ranges over some

collection X of flows, is denoted by]Ax or simply ~ , while the alphabet
of the (ix is denoted by Ax, or simply A.

- a finite alphabet of ac t ions as before, we denote it by A.

As flow occurrences are bound to the actions performed, we handle actions and
counters in the same way, by considering the product alphabet S = A x ~ . Hence
we are back to our general framework and thus shall work in dioid Mia~ (~V', A)
as before. An example of how to use this framework is shown in Figure 8.

385

82C1~x

~ Cgy

Fig. 8. Capturing actions, counters, and daters on the example of figure 3.

5.3 S t r u c t u r a l m o d e l l i n g o f t i m e d hMM

We use the framework of subsection 5.2. We first model the primitives, and then,
by structural induction, whole systems. To avoid the burden of generic notations,
we show one illustrative example for each case, see figures 9 to 12. In each figure,
we depict both the hMM model in consideration, and its structural translation
into a timed diagram. What counter/act ion and dater symbols should be used in
the resulting model can be inferred from refinements shown in figures 9 (where
dater symbols are introduced), 10 (where counter symbols are introduced), and
11 (where action symbols are introduced).

X1 m

X2 "~" Y2

Fig. 9. Encoding a combinational circuit. Square boxes indicate "computations". Labels
1 and 2 in the boxes refer to the corresponding latency for each box, evaluated in clock
cycles. The translation into a timed diagram is shown on the right hand side, where symbol

is used to date events according to clock cycles.

"1 F | .0
Fig. 10. Encoding the latch Vn : Y,~ = X n - 1 . Time index "n" is shared by the two
flows X,Y. Corresponding counting symbol /~ counts successive occurrences for X or Y,
equivalently.

6 Rela ted work

As our model captures concurrency, we shall only discuss relations with other
approaches having this feature also.

386

.y .ou i l

c3

F ig . 11. Refining an automaton. Labels cl, c2, c3 denote actions that trigger state tran-
sitions. Labels Q, i2 denote actions which specify in which state the automaton is entered
when activated. Note that we have refined output formal power series into three series, one
for each different state. Thus Xo,t = [XoS~, XoutS2 XoutS3].

l s l I Svl,, Svl,w'[z'v~.(. ~//Tv~,z
k-2~ Tw,z kS)

Fig. 12. Refining a datafiow diagram. Symbols T~, S, T refer to matrices of appropriate
dimensions, the entries of which are regular expressions. These matrices are partitioned as
indicated on the top right hand side of the picture. Corresponding refined timed diagram
is shown on the bottom diagram.

As timed Petri Nets are first natural candidates, it is worth discussing rela-
tions to such models. It is known that the mutual exclusion mechanism in PN's
cannot be directly captured via maxplus algebra. Indeed~ the widest class of
timed PN considered so far is restricted to the case of free choice nets [16], han-
dled with a combination of two heterogeneous maxplus theories. Our model does
not capture mutual exclusion either, it is however fitted to capture performance
evaluation of systems involving concurrency; on the other hand, our maxplus
algebra is homogeneous as it involves a unique dioid, not a combination of two
different ones.

Another interesting related work is the more recent one [17] [18]. In this
work timed (and actually hybrid) automata are considered together with com-
position rules defined via general synchronisation modes for timed actions. Such
general modes involve the and-synchronisation (i.e., conjunction), the max-
synchronisation, and the min-synchronisation as particular cases. Our model
corresponds to the particular case of the max-synchronisation : as compared to
the above reference, we provide an algebraic setting for this subclass, something
not considered in the referred papers.

387

7 Conclusion and discussion

We have introduced a linear algebraic framework for a certain class of timed
systems models. In contrast to more usual timed automata, which are dedicated
to the specification and verification of timing properties of discrete systems, our
framework has performance evaluation in its objectives.

We have illustrated how our framework can be used to address different
problems related to performance evaluation. As this framework is new, we have
only sketched a few tentative applications.

The interest of linking discrete system timing evaluation to "maxplus" type of
approaches is manifold. First, we inherit the representation of timed transition
systems via matrices in our dioid A4ian x (~?, if) of formal power series. As such
matrices can be in particular multiplied to represent iterates of such transition
systems, this gives rise to reachability analysis via symbolic techniques involving
regular expressions in our algebra. This yields a more compact representation
than via state enumeration, and not subject to approximation such as those
recently proposed via polyhedron approximation techniques [14]. Efficiency of
our technique has to be further explored.

Second, we hope to take advantage of the techniques developed in [1, 7-9,
11] for the asymptotic performance analysis of timed systems 1, which use in
particular the max-plus spectral theory. Indeed, the rational series o f / : are
special (monotone) recognizable (or rational) dater functions in the sense of [7],
hence the performance evaluation techniques of [7] can be applied to this case. In
particular, worst case measures of performance can be computed in a time that is
polynomial in the size of the defining automaton. We should stress, however, that
by comparison with [7], the dioid fl4i ~x (E, if) implements the new simplification
rule (5), hence some additional work is needed to incorporate this rule, in order
to obtain improved algorithms. The exact location of this new dioid in the Max-
Plus mathematical scenery is detailed in [3].

Third, we have proposed a graphical notation on which many interesting
questions translate as simple graphical manipulations. How this advantage can
be turned into efficient algorithms has to be further investigated.

References

1. F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization and Linearity.
Wiley, 1992.

2. A. Benveniste, G. Berry. Real-Time systems design and programming. Another look
at real-time programming, special section of Proc. of the IEEE, 9(9):1270-1282, sep
1991.

3. A. Benveniste, S. Gaubert, and C. Jard. Algebraic techniques for timed systems :
monotone rational series and max-plus models Rapport de recherche, INRIA, July
1998. In preparation.

4. J. Berstel. Transductions and context-free languages, Teubner, 1979.

1 including, for example, maximal throughput.

388

5. J. Berstel, C. Reutenauer. Les s~ries rationnelles et leurs langages, Etudes et
recherches en informatique, Masson, Paris, 1984.

6. G. Cohen, P. Moiler, J-P. Quadrat, and M. Viot. Algebraic Tools for the Performance
Evaluation of Discrete Event Systems. Proc. of the IEEE, 1989.

7. S. Gaubert. Performance evaluation of (max,+) automata. IEEE Trans. on Auto-
matic Control, 40(12), Dec 1995.

8. S. Gaubert. Resource optimization and (rain,+) spectral theory. IEEE Trans. on
Automatic Control, 40(11), Nov. 1995.

9. S. Gaubert and J. Mairesse. Task resource systems and (max,+) automata. In J. Gu-
nawardena, editor, Idempotency, Publications of the Newton Institute. Cambridge
University Press, 1996.

10. S. Gaubert, J. Mairesse. Modelling and Analysis of Timed Petri Nets using Heaps
of Pieces, Submitted. Abridged version in the proc. of the ECC'97, Bruxelles, 1997.

11. S. Gaubert and Max Plus. Methods and applications of (max,+) linear algebra.
Rapport de recherche 3088, INRIA, Jan 1997.

12. Alain Girault, Bilung Lee, and E. A. Lee, A Preliminary Study of Hierarchical
Finite State Machines with Multiple Concurrency Models, Memorandum UCB/ERL
M97/57, Electronics ResearchLaboratory, U. C. Berkeley, August 1997.

13. N. Halbwachs. Synchronous programming of reactive systems,. Kluwer Academic
Pub., 1993.

14. N. Halbwachs, Y.E. Proy and P. Roumanoff. Verification of real-time systems using
linear relation analysis. Formal Methods in System Design, 11(2): 157-185, Aug
1997.

15. F .Maraninchi, Y. R~mond Mode-Automata: About Modes and States in Reactive
Systems. Research Report, Verimag, 1997.

16. F. Baccelli, S. Foss and B. Gaujal, Free-choice Petri Nets - - an algebraic approach,
IEEE Trans. on Automatic Control, vol AC-41, No12, Dec 1996, 1751-1778.

17. J. Sifakis and S. Yovine, Compositional specification of timed systems. In 13th
annual symposium on Theoretical Aspects of Computer Science, STACS'96, 347-
359. LNCS 1046, Springer-Verlag, 1996.

18. S. Bornot and J. Sifakis, Relating time progress and deadlines in hybrid systems.
In Int. Workshop HART'97, 286-300, Grenoble, France, March 1997. LNCS 1201,
Springer-Verlag.

19. Handbook of TCS. Jan Van Leeuwen, editor. Volume B. Formal models and se-
mantics. Chap. 3. Formal languages and power series, by A. Salomaa.

