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A b s t r a c t .  Performance evaluation is a central issue in the design of 
complex real-time systems. In this work, we propose an extension of so- 
called "Max-Plus" algebraic techniques to handle more realistic types of 
real-time systems. In particular, our framework encompasses graph or 
partial order automata, and more generally abstract models of real-time 
computations (including synchronous programs running over distributed 
architectures). To achieve this, we introduce a new dioid of partially 
commutative power series (transductions), whose elements encode timed 
behaviors. This formalism extends the traditional representation of timed 
event graphs by (rational) commutative transfer series with coefficients 
in the Max-Plus semiring. We sketch how this framework can be used to 
symbolically solve several problems of interest, related to real-time sys- 
tems. Then we illustrate the use of this framework to encode a nontrivial 
mixed formalism of dataliow diagrams and automata. 

1 M o t i v a t i o n s  

Performance evaluation is a central issue in the design of complex real-time 
systems. The general situation we consider in this paper  can be described as 
follows : 1 / T h e  real-time system in consideration consists of a finite collection 
of tasks. Tasks are triggered by events originating from both the environment and 
the system itself, depending on its internal state. 2/  Tasks can be concurrent 
or serialized, depending on their causality interactions. And this may change 
dynamically depending on the s tate  of the environment and of the system itself. 
3/  Tasks need resources for their completion, and they wait until all resources 
needed axe available. 

Restrictions axe listed next : 1 / B o t h  system and environment states can take 
a f in i te  number  of values. If  this is not the case, then some kind of abstract ion 
is needed to enforce this situation (e.g., values of integer s tate  variables are 
abstracted).  2/  State transitions are not triggered by the await ing/reception 
of resources, i.e., watchdog/ t imeout  mechanisms axe not modelled. Again, if 
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watchdog/timeout are involved, then they need to be abstracted, typically in 
the form of a possible nondeterministic exception, prior to enter our framework. 

The general term of "real-time computing" refers to the type of comput- 
ing that can be embedded on a real-time system with bounded memory and 
bounded response time requirements. Here our aim is to model the behaviour 
of real-time computing running on a given architecture with a given degree of 
available concurrency or parallelism. Basic real-time computations often have 
the form of single-clocked machines performing identical computations at each 
instant. The more general situation can be abstracted as a finite set of basic real- 
time computations having two-sided interaction with some finite state machine 
(the computations being performed depend on some discrete state of the system, 
and in turn can trigger discrete state transitions) [2, 13]. In this context, ques- 
tions of interest include: latency, throughput, bounded time safety properties 
(guaranteing that some property will occur within some given bounded period 
of time). 

These applications motivated us for developing a general algebraic frame- 
work. In the modelling of timed discrete event systems, one traditionally uses 
dater functions, which give completion times, as a function of numbers of events 
(see [6] and [1, Ch. 5]). Dater functions are non-decreasing. We extend this mod- 
elling to the case of multiform logical and physical times, which are needed to 
model concurrent behaviors. We represent event sequences and time instants by 
words. A dater is a map, which associates to a word a word, or a set of words, 
and which is non-decreasing for the subword order. The formal series associated 
with these generalized dater functions live in a finitely presented semiring, which 
is equipped with some remarkable relations, due to the monotone character of 
daters. 

The systematic study of the underlying algorithmic problems is beyond the 
scope of this paper, and the adapted software tools remain (mostly) to be devel- 
oped. Our aim here is only to illustrate the interest of the formalism, by showing 
how the model fits the above mentioned particular applications. Questions of 
effectiveness and complexity are deferred to a subsequent paper. 

2 D i s c u s s i n g  m o d e l s  o f  r e a l - t i m e  c o m p u t a t i o n  

To introduce our model we shall discuss informally the case of real-time com- 
putation. Figure 1 depicts a simple example of a "basic computation", in which 
the same computation is repeated each cycle indefinitely. 

Of course, in more realistic situations, different computations would be per- 
formed for different discrete states of the control of the program. Using the same 
notations for graph concatenation as in Figure 1, a simple prototype example of 
such a model for computation is given in Figure 2, using an order-automaton. 

We assume that performing any event (thick bullet) takes an integer number 
of cycles (time units). Our aim is to model the timing behaviour of this machine. 
Let us first concentrate on action A. Denote by dx and dv some current date 
attached to the flows X and Y respectively, and by d~ and d~ corresponding dates 
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Fig. 1. C o m p u t a t i o n :  V n  yn = y ,~- i  + un ,  m o d e l e d  as a graph  a u t o m a t o n .  The first 
diagram depicts the abstraction of the computation Vn : y,~ = y n - 1  + un  in the form 
of an infinite string of dependence graphs. In this formula, u and y are flows, i.e., infi- 
nite sequences of data. In the second diagram, small bullets indicate the switching from 
one instant n to the next one. These small bullets are used as "pins" which glue each 
instantaneous dependency graph to its predecessor and successor: this yields a notion of 
concatenation. This notion of concatenation is usecl in the third diagram to construct the 
"language" a ~, where a is the symbol consisting of the graph sitting as label for the unique 
transition of the depicted automaton. 

A 

S l S~ B A B C 

c 

, Example: 

*  9 O = ~2 

:Fig. 2. The main example. The top left diagram depicts the automaton. Its action labels 
A, B,  C are directed graphs connecting flow occurrences. These directed graphs are shown 
on the right hand side, they are interpreted as labelled partial orders. Pins are depicted 
by small bullets, while actual elementary computations (called "events" in the sequel) 
are depicted by thicker bullets. Black and gray events cost one (5) or two (5 2 ) units 
of time respectively. Since concatenation is performed on a flow-by-flow basis, with pins 
subsequently erased, the resulting partial order is shown on the bottom left diagram. In 
this diagram, symbol  9 denotes the star operator, it applies in a nested way, both to the 
innermost event on flow labelled X, as well as to the whole partial order shown. 

after completing action A. One has d~ = dx + 2 and d~ = max (dx + 2 , dy + 1). 
This equation is linear over the max-plus semiring (see w below). Indeed, 
introducing the delay operator 5 : 5x = x + 1, and using the max-plus notation 
a q~ b -- max(a, b), we can write: d~ -- 52dx and d~ = 52dx ~ 5dy. 

In order to express such relations, we propose to abstract order-automata,  
as illustrated in Figure 3, by counting the dates on each flow and taking into 
account the inter-flow dependencies due to the obliques in the patterns. Each 
pat tern may be represented by the timed-dependence-graphs shown in the left of 
Figure 3. The execution times of the events (one or two units) are materialized 
by delays operators (5 or 52). Notice that  a dependency edge can be of 0-delay 
and will only propagate the dependency without increasing the delay. We equip 
the name of each involved flow with an at tr ibute consisting of the states of the 
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transition relation of the automaton.  We also note on each dependency edge the 
name of the pa t te rn  from which it is defined. 

Merging these graphs, we obtain the timed diagram of Figure 3 (right). As 
usual, to each state S we can associate a set of runs (a t rajectory)  which can be 
executed from the initial s ta te  of the au tomaton  to s tate  S. 

x's l  ~2A ~ x's2 ~:c 

Y, sl Y "s2 ~s 

x,S2 ~ - c )  x,S~ 
F y , S 2 ~ ' / ,  y,St 5C 
~c  

Fig. 3. A timed diagram. Each pattern A,B and C of the order-automaton of Figure 2 is 
abstracted as the left figure. The "union" of these graphs forms the timed diagram of the 
right. This diagram defines a family of orders, described by words (trajectories) of patterns 
A,B and C. For each trajectory, we want to compute the time at which it is completed at 
the earliest. From this diagram, we can infer that action A is completed at the earliest at 
the time 2 (max(6,5~)) and that the words AB and AC are completed at the earliest at 
time 4 (max(53, 64)). 

We think tha t  all the useful information about  propagat ion of delays along 
the sequences of actions is captured in this representation. The question now is 
to equip such a graph with a mathemat ica l  semantics. 

Let us consider an edge of a trajectory. I t  is labeled with words of events, 
possibly interleaved with the delay symbol 5. For modelling the elapsed time, we 
decide tha t  delays and events commute.  Edges are thus labelled with symbols 
(~t w .  

What  we seek for is tha t  symbol 5tw should encode the information 

5tw : "w is completed at the earliest at time t ." (1) 

This is equivalently rephrazed as 

- when w is completed, one cannot have a date s, s < t, 
- at  t ime s < t, one cannot have performed more than w, where performing 

more than w means performing some v such tha t  w is a subword of v, writ ten 
w E v , i.e., w is obtained by replacing in v some symbols by the empty  
word. 

Note tha t  we consider a subword w, not a prefix:, the reasons for this will become 
clear soon. 

The next section presents the encoding of the trajectories into an algebraic 
framework. This will provide semantics for our t imed diagrams. Its presentation 
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(as usual for automata)  consists in writing a system of equations in some suitable 
formal power series domain. The central question is to define which domain of 
formal power series must be used : 1 / W h a t  is the domain of Xs? 2 / W h a t  do 
addition and multiplication mean? 

3 A n e w  f o r m a l  p o w e r  s e r i e s  d o m a i n  

3.1 A glimpse of dioid algebra 

A semiring is a set S, equipped with two laws @, | such that  (S, ~)  is a 
commutative monoid (the zero element will be noted 0), (S, | is a monoid (the 
unit element will be noted 1), the law | is right and left distributive over ~,  
and 0 is absorbing. A semiring whose addition is idempotent (a ~ a = a) is a 
dioid. Dioids are canonically ordered by the relation a ~ b iff b -- a @ b. We will 
consider two particular dioids. The max-plus semiring Zmax is the set ZU {-cx~}, 
equipped with: a @ b = max(a, b), a | b = a + b, 0 = - c~ ,  1 = 0, and the order 
relation < is the ordinary one. The boolean semiring B can be identified to the 
subsemiring {0,1} of Zmax. In any semiring, the matrix product  can be defined 
as  usua l :  

(A @ B)ij  : d e f  ~ Aik | Bkj 
k 

where A, B are matrices with compatible dimensions. We shall write AB instead 
of A | B,  as usual. 

3.2 Modell ing t ime elapsing 

A rough dioid of formal power series. Consider the set A/t (Z,  5) of formal power 
series 

- with coefficients belonging to the boolean dioid {B, @, | - -  in the sequel, 
to be consistent with our generic dioid notations, we write {0, 1} instead of 
{0, 1}; 

- with variables 5 to encode the dates, and ~ = {A, B, C} to encode the moves 
of the automaton. 
Variables A, B, C do not commute, a word built with these variables shall 
be denoted by the generic letter w. On the other hand, w and ~ globally 
commute:  w5 = ~w . 

Following the usual notation [19, 5], such formal power series are written 

x =  o r  

fEZ, wEE* fEZ, wE,U* 

for convenience, where x~,w denotes the coe1~cient of x at the monomial 5tw. The 
set J~ (Z,  5) inherits the following dioid structure from that  of its coefficients 
domain : 
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- x ~ y is obtained by taking the @ componentwise. 
- x| is the Cauchy product defined by (x | Y)t,w = I~r+s=t, uv=w (xr,u | ys,v) 

We shall denote again by 0 the element of A/[ (,U, 6), which has all its coefficients 
equal to 0. 

The idea is that  formal series x models timed runs, or trajectories i.e., lan- 
guages together with the time needed to complete words. For x E A4 (Z, 6), 

x,,~ = 1 iff word w is completed at time t for trajectory x. (2) 

The zero series 0 E ~4 (Z, 6) represents the trajectory with no event at all. Note 
at this point that  statement (2) is different from requirement (1), thus J~t (E, 6) 
is not our desired domain and further work is needed. 

The quotient dioid ,~r (Z ,  6). Here we follow the beautiful idea [6, 1] of Cohen, 
Moller, Quadrat and Viot to derive symmetric codings for event graphs (the case 
considered in [6, 1] corresponds to our situation for the particular case in which 
the automaton has a single action label). 

We are now ready to formally construct the quotient dioid which provides 
the semantics requested in (1). For 

x =  ~ x t , ~ . g t w  we set [x]= ( ~  
fEZ, wEE* , 6 Z ,  wEE* 

6 ' w .  ( ~  x~,v (3) 
s > t  
y e w  

Note that  (3) formally encodes statement (1), by attaching a I to 6'w as soon 
as some xs,v = 1 for s > t (first rephrazing of (1)) or v E w (second rephrazing 
of (1)). Then, the following holds : 
T h e o r e m  1 ( the  JP[i~ (~7, 6) q u o t i e n t  d io id) .  

1. The following holds : 
[=  9 y] = [=]  9 [y],  [= | y] = [=] | [y] 

which implies that the equivalence relation ,.~ (x ,,, y iff [x] = [y]) is com- 
patible with the dioid structure of s~4 (Z ,  6). Thus we can consider the dioid 
J~4i ax (Z ,  6) obtained by taking the quotient of dioid M (Z,  6) by the ,~ equiv- 

. 

. 

alence relation. 
The following formula holds : 

[6tw] = 6S v . 

s<_t  
v ~ w  

In the quotient dioid }~4ia~ ( Z ,  6), the monomials obey the following rules : 

[a'v]  9 [6'w] = [6' min(v,w)] (5) 

if one of the words v, w is a subword of the other one, and min(v, w) denotes 
this subword. 
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COMMENT: Points 2 and 3 of theorem 1 enlight that  dioid Az[i~ (~ ,  5) really 
implements specification (1), if one interprets monomials as in]ormations or con- 
straints (see (1)), and addition as logical conjunction. Indeed, the rule (4) simply 
means that  the conjunction of the informations "w occurs at the earliest at time 
s" and "w occurs at the earliest at time t" is "w occurs at the earliest at time 
max(s, t)". The interpretation of (5) is dual. 

Proof: For the first formula, [x • y] = ~ t  ,~ ~tw " ~ > t  ,r-~ ( xs,,  @ Y~,v ) = 
[x] @ [y] just because @ is associative componentwise. Th~swas the easy part.  
Now comes the subtle one, as well as the justification for considering "subwords" 
instead of "prefixes". 

for  

t , w  r -Jr S = t 

U V ~ W  

then it holds thai, [x| = ~)t,,,, 5tw. (~ t' _> t ( ~ r '  + s' = t' [ x,.,,,, | y,, ,,, ] = 
?1) s [~_ W Ut?}  s ~ W t 

[x] | [y] where the last equality follows from the fact that  the following two sets 
a reequa l :{ (u ' ,v ' )  : u ' v ' U w } =  {(u' ,v ' )  : u ' C u , v ' E v , u v = w }  

Note that  this latter property would be false if we had chosen "is prefix of" 
instead of "is a subword of". 

We move to points 2 and 3. We have: 

[5,w] = @SSv @ (5'w)ro 
s~v r ~___ $ 

u E v  

= @ S S v . ( i f t > s a n d w E v ,  then l else 0) = 5Sv, 
8~V 

@ 
s < t  

v ~ _ w  

since (Stw)r,~ = 1 i f f t  = r and w = u . 
From this, rules (4,5) follow easily. This finishes the proof of this fundamental 

theorem. [] 

Notation. From now on we shall work with quotient dioid .h//i~ (5:, 5) and simply 
write x instead of Ix]. With this in mind, for x E Man (Z,  5) a trajectory, 

Xt,w = 1 iff word w is completed at the earliest at time t for t rajectory x. (6) 

This is in agreement with requirement (1) (compare with (2)). 
As a t rajectory of a timed diagram is represented by an element of JVli ax (E,  5), 

the next question is : how to encode all the trajectories of this automaton in a 
finitary manner ? This is addressed next. 
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Modelling elapsed time for graph automata. This coding is based on the following 
simple remarks : 

(i) Given x E .h/Ii~nX (E, (i), then y = (ix is the unique element of 21/[~ (2,  (i) such 
t h a t y t + l , w = l  iff xt,w = 1  
meaning that (pre- or post-)multiplying an element of .Mi~ (2~, (i) by (i 
amounts to delaying time by one unit. 

a x  (ii) Given x e Mi~ (E:,(i), then y = x.v is the unique element of Min (2,(i) 
such t h a t y t , w . = l  iff x , ,~o=l  
meaning that postmultiplying an element of )vlia~ (Z, (i) by v amounts to 
postfixing the trajectory by word v without incrementing the date. 

(iii) We denote by 0 the unique element of Mi~ (,U, (i) having all its coefficients 
equal to 0, 0 E Mia~ (~, (i) encodes the trajectory with no event at all. Also 
we denote by 1 the unique element of Mi~ x (Z, (i) having a coefficient 1 for 
its monomial (i0r (~ being the empty word), and 0 otherwise. 

With this in mind, we are ready to proceed on our coding. Consider the following 
row vector of formal power series in 2PIi~ (~, (i): .~. = [Xs, Ys, Xs2 Ys2 ] , 

where the entries Xs,, YSl, Xs2, Ys2 E A/[~ (~, (i) encode the trajectories of 
flows X and Y when hitting states $1 and $2 respectively, cf. (6). 

Keeping points (i), (ii), and (iii) in mind, we get that ~ is solution of the 
following fixpoint equation in J~4i~ (~, (i) (the constant vector codes the initial 
state of the system) : 

0 0 
0 0 

(i2C 0 
[.(i2C (iC 

(i2A ~2A] 

~2B 
0 

( ~  [1 1 00] (7) 

Expanding (7), we obtain: 

I XSl = Xs2 (i2C EB YS2 52C ~ I 
Xs2 = Xs, 52A @ Xs2 ~2B 
YSl=YS2 5 C @ I  
YS2 = Xs, ~2A @ Ys~ ~A G Ys2 B 

3.3 Model l ing  mul t i fo rm t ime  elapsing 

In this subsection, we revisit the example of the preceding section. Now we wish 
to consider that events involving flow X and events involving flow Y are measured 
using different time units. For instance, we may know that these two types of 
events take different amount of time, but we don't know yet how much each 
one would take. Thus the idea is to take different symbols to measure time 
for different flows. This is an example of dealing with multiform time. This is 
illustrated in Figure 4. Referring to Figure 2, just model time subsumption for 
grey and block patches via two independent symbols 5x and 5y respectively. This 
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leads to the timed diagram with multiform time below. As a justification, replace 
in A4 (,U, 6) the single symbol J by a finite time alphabet A (= {Jx, Jr} in our 
example). Then replace in formula (3) the domain s _> t for the ~ by a _ /3, 
for computing in Ix] the coefficient associated with symbol /3w E A* x s 
Theorem 1 can be easily extended to this case. 

~yC 

Fig. 4. Multiform time fixpoint equations as flow graphs in j~ia~Xn (~, 6). 

3.4 From fixpoint equations to regular expressions 
We will only discuss uniform time case, the extension to multiform time being 
immediate. 

Looking carefully at the above example, it is clear that  model (7) is too 
verbose : the system matrix in (7) is very sparse, involving mostly O's. In the same 
vein, this representation explicitly uses states, while is it known that  Kleene- 
Schfitzenberger formal power series for regular languages don't. Thus we should 
be able to do the same. In fact, this is easy. 

Decompose ~ in (7) as 

 9 ~ -=  [-~-1 -~-2] , where, for i =  1 , 2 :  ~ i  = [Xs, Ys, ] 

We can rewrite fixpoint equation (7) as follows : 

r 2c o 1 1] 
 9 '=-1 = .=.2 La2C,  <fc'J 

~ 2 = ~ 1 [  0 ~AJ  9 .--.2 

Substituting (9) in (8) and using the star operator twice yields : 

=init =init [1 1] and "~'1 = '--dl .A, where -1  = 

(s) 

(9 )  

t~A J [(~2 C =def (A6B;C&)* , (10) 

where A6, etc., denote the corresponding polynomial matrices involved in for- 
mula (10). 
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The intuitive interpretation of these equations is the following. Assuming ini- 
tial and terminal state is $1, as before, the language corresponding to automaton 
of the Figure 2 is (AB*C)*. Getting the corresponding timed model is performed 
by 1/associating with each action, say A, its corresponding timed version in the 
form of polynomial matrix A6, and, 2/substituting A by A~, and so on, in the 
regular expression defining the considered language of actions. 

It is easy to derive from (10) a rational expression for the different entries of 
E. In fact, the above discussion is merely an illustration of the weak version of 
the Kleene-Schiitzenberger theorem [5] that holds in the semiring/2: the series 
that code the timed behavior of graph automata are exactly the rational series 
in Z:, i.e. the series given by finite expressions involving the operators @, | * 
and monomials. 

4 A p p l i c a t i o n s :  e x c h a n g i n g  a c t i o n s  a n d  t i m e  

This technique relies on the automaton of Figure 3, for which we have the fol- 
lowing theorem : 

T h e o r e m  2 (ret iming) .  Both diagrams of Figure 5 represent the same tran- 
sition matrix. 

Fig. 5. The basic rule of retiming. Labels S, T, U, V, ~ represent elements of J~ian x (2, ~) 
attached to the associated branches of the diagrams. 

The proof is obvious, as both diagrams represent the same transition matrix 
from source to sink states of the diagram. 

Representation (7) of transition matrix .A has the following particular fea- 
ture: each entry in ~tt has degree exactly one in the ~ action alphabet. This 
means that it is easy to read on (7) how much time it costs to perform an action 
or a sequence of actions. 

If it is wanted to answer the symmetric question: how many actions can 
I perform per unit of time, or per 10 units of time, then the form (7) is no 
longer suitable, and we have, so to say, to "symmetrize" it. This will be achieved 
by exhibiting another representation, equivalent to (7), i.e., having the same 
solution for associated fixpoint equation, but whose entries are, either 0, or have 
exactly degree one wrt. symbol ~. This can be achieved by adding new states in 
the diagram as shown in Figure 6 (equivalent to Figure 3), in which we again 
use retiming. 

The technique used here is clearly general. Indeed, a series x E /2 can be 
identified to a subset of ~* • X*, namely X = {~ftw I xt,w - 1}. Then, such 
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~C 

Fig. 6. Exchanging time and actions in the diagram of Figure 3. 1/Check on diagram 
of Figure 3 which labels have degree zero wrt. ~: there is exactly one, attached to the 
bottom right circle and action B. 2 /Sh i f t  symbol B one step backward along the paths of 
the directed graph, and concatenate it to the corresponding labels. 3 /Remove arrows with 
no label. All arrows of the resulting diagram are labelled with power series in J~i~ x (• ,  ~) of 
degree 1 with respect to ~ : the diagram represents what actions can be performed within 
one time unit, starting from any state of the machine. In particular, so-called time bounded 
safety properties ("nothing bad can happen within 10 time units") can be checked in this 
way. 

a subset can be identified either to a function Z* --~ 7~(5"), X ' (w)  = {5 t I 
xt,w = 1}, which to an event w, associates the set of legal time constraints, or 
to the (inverse) function X "  : 5" ~ P (Z*) ,  X ' ( 5  t) = {w I xt,w = 1}, which 
to a time instant, associates the set of legal event constraints at this time. Our 
problem simply consists in computing effectively X "  from x. When the series 
x E s is rational, which is the case if x is produced by a graph automaton model, 
the series X "  is recognizable [5] over the semiring of ordinary rational subsets 
of E*, i.e. we can find a matr ix p, a row vector A, and a column vector "y with 
compatible sizes, whose entries are ordinary rational expressions in Z*, such that  
X "  -- A(pS)*7. In particular, the set of admissible event constraints at t ime t is 
nothing but the coefficient of this series at 5 t, namely Apt3 ,. As discussed before, 
this is a basic tool for performing so-called bounded time safety properties, i.e., 
checking if "nothing bad" can happen within e.g. 10 units of time. 

5 Structural modell ing of mixed dataflow/state based 
t imed systems 

In this section, we introduce a useful model of mixed dataflow/state-based sys- 
tems, which is essentially derived from [15] (similar efforts are currently un- 
derway around Ptolemy's group [12], but with a slightly different semantics). 
Then we show how to perform a structural translation of a t imed version of such 
models into our formalism. 

5.1 H i e r a r c h i c a l  M o d e  M a c h i n e s  (hMM) 

Mode machines mix in a simple way dataflow diagrams and automata  [15] [12]. 
A hierarchical mode machine (hMM) has the form shown in Figure 7. 
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/ \ 
comb 

latch 

Fig. 7. A view ofhMM, hMM are nested dataflow diagrams and automata. At the lowest 
level (right hand side) we simply consider simple dataflow diagrams equivalent to syn- 
chronous circuits: the circuit has a (circuitfree) combinational part, in feedback loop with 
a set of latches. Then, the diagram on the left hand side shows how successive levels are 
refined. In particular, the mid-diagram shows that a box of a dataflow diagram is refined 
into a state machine, and that, in each state, a dataflow diagram of lower level is acti- 
vated, meaning that the input/output map specified by the top-box is refined into different 
diagrams, for each different state of the automaton. 

hMM'S Can be flatened and expanded into a single (huge) synchronous circuit, 
see [15] for how to derive a LUSTRE program out of an hMM. Actually, as we 
only rely, for our coding into timed diagrams, on the partial orders of events 
specified by such hMM'S, we can as well consider a token based dataflow semantics 
following [12]. 

Our aim is to show that  timed hMM have a nice structural coding into our 
framework. For this we first need to slightly adapt our use of timed diagrams. 

5.2 C a p t u r i n g  ac t ions ,  c o u n t e r s ,  a n d  d a t e r s  

Until now, only actions and time were considered. In this model however, it 
appears a new concept: the notion of logical time implemented by latches and 
captured by counters. Our situation is the following. We have: 

- a finite set of f lows ,  denoted X, Y,. . . .  To flow X we attach 
 9 a coun t ing  symbol #x, and 
 9 a dat ing symbol 5x. The alphabet of the #x'S, where X ranges over some 

collection X of flows, is denoted by ]Ax or simply ~ ,  while the alphabet 
of the (ix is denoted by Ax,  or simply A. 

- a finite alphabet of ac t ions  as before, we denote it by A. 

As flow occurrences are bound to the actions performed, we handle actions and 
counters in the same way, by considering the product  alphabet S = A x ~ .  Hence 
we are back to our general framework and thus shall work in dioid Mia~ (~V', A) 
as before. An example of how to use this framework is shown in Figure 8. 



385 

82C1~x 
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Fig. 8. Capturing actions, counters, and daters on the example of figure 3. 

5.3 S t r u c t u r a l  m o d e l l i n g  o f  t i m e d  hMM 

We use the framework of subsection 5.2. We first model the primitives, and then, 
by structural induction, whole systems. To avoid the burden of generic notations, 
we show one illustrative example for each case, see figures 9 to 12. In each figure, 
we depict both the hMM model in consideration, and its structural translation 
into a timed diagram. What  counter/act ion and dater symbols should be used in 
the resulting model can be inferred from refinements shown in figures 9 (where 
dater symbols are introduced), 10 (where counter symbols are introduced), and 
11 (where action symbols are introduced). 

X1 m 

X2 "~" Y2 

Fig. 9. Encoding a combinational circuit. Square boxes indicate "computations". Labels 
1 and 2 in the boxes refer to the corresponding latency for each box, evaluated in clock 
cycles. The translation into a timed diagram is shown on the right hand side, where symbol 

is used to date events according to clock cycles. 

"1 F | .0 
Fig. 10. Encoding the latch Vn : Y,~ = X n - 1 .  Time index "n" is shared by the two 
flows X,Y. Corresponding counting symbol /~ counts successive occurrences for X or Y, 
equivalently. 

6 Rela ted  work 

As our model captures concurrency, we shall only discuss relations with other 
approaches having this feature also. 
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.y  .ou i l  

c3 

F ig .  11. Refining an automaton. Labels cl, c2, c3 denote actions that trigger state tran- 
sitions. Labels Q, i2 denote actions which specify in which state the automaton is entered 
when activated. Note that we have refined output formal power series into three series, one 
for each different state. Thus Xo,t = [XoS~, XoutS2 XoutS3 ]. 

l s l  I Svl,, Svl,w'[z'v~.(. ..... ~//Tv~,z 
k-2~ Tw,z kS) 

Fig. 12. Refining a datafiow diagram. Symbols T~, S, T refer to matrices of appropriate 
dimensions, the entries of which are regular expressions. These matrices are partitioned as 
indicated on the top right hand side of the picture. Corresponding refined timed diagram 
is shown on the bottom diagram. 

As timed Petri Nets are first natural candidates, it is worth discussing rela- 
tions to such models. It is known that  the mutual exclusion mechanism in PN's 
cannot be directly captured via maxplus algebra. Indeed~ the widest class of 
timed PN considered so far is restricted to the case of free choice nets [16], han- 
dled with a combination of two heterogeneous maxplus theories. Our model does 
not capture mutual exclusion either, it is however fitted to capture performance 
evaluation of systems involving concurrency; on the other hand, our maxplus 
algebra is homogeneous as it involves a unique dioid, not a combination of two 
different ones. 

Another interesting related work is the more recent one [17] [18]. In this 
work timed (and actually hybrid) automata are considered together with com- 
position rules defined via general synchronisation modes for timed actions. Such 
general modes involve the and-synchronisation (i.e., conjunction), the max-  
synchronisation, and the min-synchronisation as particular cases. Our model 
corresponds to the particular case of the max-synchronisation : as compared to 
the above reference, we provide an algebraic setting for this subclass, something 
not considered in the referred papers. 
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7 Conclusion and discussion 

We have introduced a linear algebraic framework for a certain class of timed 
systems models. In contrast to more usual timed automata, which are dedicated 
to the specification and verification of timing properties of discrete systems, our 
framework has performance evaluation in its objectives. 

We have illustrated how our framework can be used to address different 
problems related to performance evaluation. As this framework is new, we have 
only sketched a few tentative applications. 

The interest of linking discrete system timing evaluation to "maxplus" type of 
approaches is manifold. First, we inherit the representation of timed transition 
systems via matrices in our dioid A4ian x (~?, if) of formal power series. As such 
matrices can be in particular multiplied to represent iterates of such transition 
systems, this gives rise to reachability analysis via symbolic techniques involving 
regular expressions in our algebra. This yields a more compact representation 
than via state enumeration, and not subject to approximation such as those 
recently proposed via polyhedron approximation techniques [14]. Efficiency of 
our technique has to be further explored. 

Second, we hope to take advantage of the techniques developed in [1, 7-9, 
11] for the asymptotic performance analysis of timed systems 1, which use in 
particular the max-plus spectral theory. Indeed, the rational series o f / :  are 
special (monotone) recognizable (or rational) dater functions in the sense of [7], 
hence the performance evaluation techniques of [7] can be applied to this case. In 
particular, worst case measures of performance can be computed in a time that  is 
polynomial in the size of the defining automaton. We should stress, however, that  
by comparison with [7], the dioid fl4i ~x (E, if) implements the new simplification 
rule (5), hence some additional work is needed to incorporate this rule, in order 
to obtain improved algorithms. The exact location of this new dioid in the Max- 
Plus mathematical scenery is detailed in [3]. 

Third, we have proposed a graphical notation on which many interesting 
questions translate as simple graphical manipulations. How this advantage can 
be turned into efficient algorithms has to be further investigated. 
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