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Abstract— We show that the joint spectral radius of a finite
collection of nonnegative matrices can be bounded by the
eigenvalue of a non-linear operator. This eigenvalue coincides
with the ergodic constant of a risk-sensitive control problem,
or of an entropy game, in which the state space consists of
all switching sequences of a given length. We show that, by
increasing this length, we arrive at a convergent approximation
scheme to compute the joint spectral radius. The complexity
of this method is exponential in the length of the switching
sequences, but it is quite insensitive to the size of the matrices,
allowing us to solve very large scale instances (several matrices
in dimensions of order 1000 within a minute). An idea of this
method is to replace a hierarchy of optimization problems,
introduced by Ahmadi, Jungers, Parrilo and Roozbehani, by
a hierarchy of nonlinear eigenproblems. We solve the latter
problems by a power type iteration, avoiding the recourse to
linear or semidefinite programming techniques, which allows
for scalability. This is also related to maxplus-type curse of
dimensionality attenuation schemes in dynamic programming.

Index Terms— Joint spectral radius, Nonlinear eigenproblem,
nonnegative matrices, iterative method.
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I. INTRODUCTION

A. Motivation

A fundamental issue, in optimal control, is to develop
efficient numerical schemes that provide globally optimal
solutions. Dynamic programming does provide a guaranteed
global optimum but it is subject to the well known curse
of dimensionality. Indeed, the main numerical methods,
including monotone finite difference or semi-Lagrangean
schemes [CL84], [CD83], [FF94], [CFF04], and the anti-
diffusive schemes [BZ07], are grid-based. It follows that the
time needed to obtain an approximate solution with a given
accuracy is exponential in the dimension of the state space.

Recently, some innovative methods have been introduced
in optimal control, which somehow attenuate the curse of
dimensionality, for structured classes of problems.

McEneaney considered in [McE07] hybrid optimal control
problems in which a discrete control allows one to switch
between different linear quadratic models. The max-plus type
method that he introduced approximates the value function
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by a supremum of quadratic forms. Its complexity, which is
exponential in some parameters, has the remarkable feature
of being polynomial in the dimension [MK10], [Qu14]. To
produce approximations of the value function as concise as
possible, the method makes an intensive use of semidefinite
programming [GMQ11].

A different problem consists in computing the joint spec-
tral radius of a finite set of matrices [Jun09]. This boils
down to computing an ergodic value function, known as
the Barabanov norm. Specific numerical methods have been
developed, which approximate the Barabanov ball by a
polytope [GZ14], or are of semi-Lagrangean type [Koz10].
Ahmadi, Jungers, Parrilo and Roozbehani [AJPR14a] devel-
oped a new method, based on a path complete automaton.
It approximates the Barabanov norm by a supremum of
quadratic norms. Whereas the worst case complexity esti-
mates in [AJPR14a] are still subject to a curse of dimension-
ality, in practice, the efficiency of the method is determined
by the complexity of the optimal switching law rather than
by the dimension itself. This allows one to solve instances
of dimension inaccessible by grid-based method.

In the max-plus method of McEneaney, and in the method
of Ahmadi et al., solving large scale semidefinite programs
appears to be the bottleneck, limiting the applicability range.

In our recent work [GS17], [Sto17], we introduced a
new method to approximate the joint spectral radius. We
replaced the solution of large scale SDP problems by the
solution of eigenproblems involving non-linear operators,
the “tropical Kraus maps”. The latter are the analogues of
completely positive maps, or of “quantum channels” acting
on the space of positive semidefinite matrices, the operation
of addition being now replaced by a multivalued supremum
operation in the Löwner order. To solve these eigenproblems,
we used iterative power type schemes, allowing us to deal
with large scale instances (the algorithm of [GS17], [Sto17]
could handle several matrices of order 500 in a few minutes).
The convergence of these iterative schemes, however, is
only guaranteed so far under restrictive assumptions, since
the “tropical Kraus maps” are typically nonmonotone and
expansive in some natural metrics.

B. Contribution

In this paper, we develop a non-linear fixed point approach
to approximate the joint spectral radius in the special case of
nonnegative matrices. We exploit a result of Guglielmi and
Protasov [GP13], showing that for nonnegative matrices, it
suffices to look for a monotone norm. We show here that
such a monotone norm can be approximated by a finite
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supremum of linear forms, which are found as the solution
of a non-linear eigenproblem. This is in contrast to earlier
polyhedral approximation schemes, relying for instance on
linear programming.

More precisely, we introduce a hierarchy of linear
eigenproblems, parametrized by a certain “depth”, inspired
by [AJPR14a], [GS17], and we show that, as the depth tends
to infinity, the non-linear eigenvalue does converge to the
joint spectral radius. We remark that the initial (“depth 0”)
bound in our hierarchy coincides with the bound of the joint
spectral radius introduced by Blondel and Nesterov [BN09].

The non-linear operator arising in our construction actu-
ally belongs to a known class: it can be identified to the
dynamic programming operator of an ergodic risk sensitive
control problems [AB15], or of a (one player) “entropy
game” [ACD+16], [AGGCG17]. This operator enjoys re-
markable properties, like log-convexity, monotonicity, non-
expansiveness with respect to Thompson’s part metric or
Hilbert’s projective metric. As a result, computing the non-
linear eigenvalue is a tractable problem. It is shown to be
polynomial time in [AGGCG17]. It can also be solved in a
scalable way by power-type schemes, like an adapted version
of Krasnoselskii-Mann iteration, as we do here.

We report numerical results on large scale instances, up
to dimension 5000, obtained by an OCaml implementation
of the present algorithm.

In summary, the present contribution may be thought of
as a “dequantization” of the non-linear fixed point approach
of [GS17]. By “dequantization”, we mean that we use here
operators acting on the standard orthant, whereas the operator
in [GS17] acts on the cone of positive semidefinite matrices.
Whereas the approach of [GS17] is more general, leading
to a convergent approximation scheme for any family of
matrices, the present algorithm only applies to families of
nonnegative matrices. However, it is experimentally faster,
and it has stronger theoretical convergence guarantees. This
suggests that the joint spectral radius problem is easier for
nonnegative matrices.

C. Organization of the paper

In Section II, we recall some basic results on Barabanov
norms of nonnegative matrices. In Section III, we introduce
the family of non-linear eigenproblems to approximate the
joint spectral radius. We show that these eigenproblems
are solvable, under an appropriate irreducibility condition.
In Section IV, we show that the non-linear eigenvalues in
this hierarchy do converge to the joint spectral radius. The
adapted version of Krasnoselskii-Mann iterative scheme is
presented in Section V. Benchmarks are presented in Sec-
tion VI.

The proofs will appear in an extended version of the
present work.

II. THE JOINT SPECTRAL RADIUS OF NONNEGATIVE
MATRICES

The joint spectral radius ρ(A) of a finite collection of n×n
real matrices A = {A1, . . . , Ap} is defined by

ρ(A) := lim
k→∞

max
16i1,...,ik6p

‖Ai1 · · ·Aik‖1/k .

When the set of matrices A is irreducible (meaning that
there is no nontrivial subspace of Rn that is left invariant
by all matrices), a fundamental result by Barabanov [Bar88]
shows that there is a norm ν on Rn such that

max
16i6p

ν(Aix) = λν(x) , ∀x ∈ Rn , (1)

for some positive real number λ. The scalar λ is unique and
coincides with the joint spectral radius ρ(A).

A norm that satisfies Equation (1) is called an in-
variant norm. A norm that only satisfies the inequality
max16i6p ν(Aix) 6 λν(x) for all vector x ∈ Rn is called
a λ-extremal norm. In that case, it is readily seen that
λ > ρ(A), so that λ-extremal norms provide safe upper
bounds of the joint spectral radius.

We now assume that the matrices in A are nonnegative,
i.e. their entries take nonnegative values. It is then readily
seen that all matrices in A leave the (closed) cone of
nonnegative vectors invariant. The latter cone, denoted by
Rn+, induces an ordering on Rn: we have x 6 y if and
only if y − x is nonnegative. We note that a vector belongs
to the interior of Rn+ if its entries are positive. Recall that
the cone Rn+ is self-dual, so that x 6 y if and only if
〈u, y − x〉 > 0 for all u ∈ Rn+. This cone also induces a
lattice structure on Rn, meaning that the supremum of two
vectors x, y always exists and is given coordinate-wise by[
sup(x, y)

]
i
= sup(xi, yi). A norm defined on Rn is called

monotone if 0 6 x 6 y implies ν(x) 6 ν(y).
When the matrices in A are nonnegative, the irreducibility

assumption on A can be weakened to positive-irreducibility,
meaning that there is no non-trivial face of the cone of
nonnegative vectors that is left invariant by all matrices in A.
A theorem by Guglielmi and Protasov [GP13] shows that, in
this setting, the norm in Equation (1) can be chosen to be
monotone.

Theorem 1 (Corollary 1 in [GP13]). A positively-irreducible
family of nonnegative matrices has a monotone invariant
norm.

We shall say that a map ν from Rn+ to R is a monotone
hemi-norm if it is convex and positively homogegenous of
degree 1, if 0 6 x 6 y implies ν(x) 6 ν(y), and if ν(x) = 0
with x > 0 implies x = 0. The term hemi-norm is borrowed
to [GV12], functions of this kind are also known as weak
Minkowski norms in metric geometry [PT09]

Note that a monotone hemi-norm ν defined on Rn+ can be
extended to a monotone norm on Rn by setting

ν̂(x) := inf{ν(y) ∨ ν(z) : x = y − z ,with y, z > 0} . (2)
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The norm ν̂ is a λ-extremal norm whenever ν is a monotone
λ-extremal hemi-norm on Rn+, meaning that:

max
16i6p

ν(Aix) 6 λν(x) , ∀x ∈ Rn+ .

In this way, it suffices to study monotone λ-extremal hemi-
norms defined on Rn+.

III. A HIERARCHY OF NON-LINEAR EIGENPROBLEMS

A. Definition of the operators

In the sequel, we consider a finite set of n × n nonneg-
ative matrices A = {A1, . . . , Ap}. We denote by [[p]] =
{1, . . . , p}.

The operator considered at the 0-level of the hierarchy is
given by

T 0(x) := sup
16a6p

ATa x .

Higher levels of the hierarchy are built by introducing a
memory process that keeps track of the past matrix products,
up to a given depth. More precisely, given an integer d, the
operator considered in the d-level is a self-map of the product
cone

∏
s∈[[p]]d Rn+. It maps the vector x = (xs)s∈[[p]]d , where

each xs ∈ Rn+, to the vector T d(x), whose s-component is
the vector of Rn+ given by

T ds (x) := sup
r,a : τd(r,a)=s

ATa xr .

Here, the map τd : [[p]]d × [[p]] → [[p]]d is the transition map
of the De Bruijn automaton of length d on p symbols: given
a word i1 · · · id ∈ [[p]]d, we have

τd(i1 · · · id, a) = i2 · · · ida .

In other words, the transition forgets the initial symbol of a
sequence, and concatenates the letter a representing the most
recent switch, to this sequence.

The map T d is monotone with respect to the cone∏
s∈[[p]]d Rn+, i.e., x 6 y =⇒ T d(x) 6 T d(y), and it is

(positively) homogeneous, meaning that T d(λx) = λT d(x)
holds for all positive λ.

B. Some results of non-linear Perron-Frobenius theory

Monotone and homogeneous maps are studied in non-
linear Perron-Frobenius theory. We recall some basic results
here, referring the reader to [Nus88], [LN12] for background.

The spectral radius of a monotone and homogeneous map
f defined on a cone C, denoted by r(f) is defined by:

r(f) := lim
k→+∞

‖fk(x)‖1/k

for x ∈ int C. This value is independent of the choice of x
and the norm ‖ · ‖, see [MPN02], [AGN11], [LN12].

We say that a monotone and homogeneous map f : Rn+ →
Rn+ is positively irreducible if it does not leave invariant
a non-trivial face of Rn+. A basic result of non-linear
Perron-Frobenius theory, which follows as a consequence of
Brouwer theorem, shows that a positively irreducible map
has an eigenvector in the interior of the cone. Then, the

associated eigenvalue λ coincides with the spectral radius
r(f). The same conclusion holds, in fact, under less demand-
ing assumptions [GG04], however, for the present class of
operators, positive irreducibility will suffice.

Nussbaum proved that the classical variational characteri-
zation of the Perron root of a nonnegative matrix carries over
to the non-linear setting. More precisely, the (non-linear)
spectral radius coincides with the infimum of all ”super-
eigenvalues” associated with a vector in the interior of the
cone, regardless of the positive-irreducibility of the map f :

Theorem 2 (Non-linear Collatz-Wielandt formula [Nus86]).
Given a continuous, monotone and homogeneous map f on
the cone Rn+, we have

r(f) = inf
{
ρ > 0: ∃u ∈ intRn+, f(u) 6 ρu

}
.

In particular, if the map f is not positively-irreducible, it
may be the case that f(u) = λu holds for some nonzero
vector u in the boundary of the cone Rn+. Then, we can only
conclude that λ 6 r(f). However, we do have r(f) = λ if
u belongs to the interior of Rn+.

C. Construction of the hierarchy

For every integer d > 0, the d-level of the hierarchy
consists in solving the non-linear eigenproblem:{

T d(u) = λdu

u ∈
∏
s∈[[p]]d Rn+ , u 6= 0

(Ed)

The first main result shows that every problem (Ed) has
a solution, and that a solution provides an upper bound on
the joint spectral radius ρ(A) and a corresponding monotone
λd-extremal hemi-norm.

Theorem 3. Suppose that the set of nonnegative matrices A
is positively-irreducible. Then Problem (Ed) has a solution.
Any such solution (λd, u) satisfies

ρ(A) 6 λd 6 r(T d) .

Moreover, the map ‖x‖u := maxs〈us, x〉 is a monotone λd-
extremal hemi-norm:

max
a
‖Aax‖u 6 λd‖x‖u ,∀x ∈ Rn+ .

By the Perron-Frobenius theorem, the equality λd =
r(T d) holds in Theorem 3 when the map T d is positively-
irreducible. The latter property can be decided by checking
whether a lifted version of the set of matrices A is positively
irreducible. In the following, the set {er : r ∈ [[p]]d} denotes
the canonical basis of the space Rpd and ⊗ is the Kronecker
product.

Proposition 1. The map T d is positively-irreducible if and
only if the set of matrices {(ereTs )⊗Aa : τd(r, a) = s, r, s ∈
[[p]]d , a ∈ [[p]]} is positively irreducible.

The term “hierarchy” for the sequence of problems (Ed)
is justified by the following proposition.

Proposition 2. Suppose that the set of nonnegative matrices
A is positively-irreducible. Then r(T d+1) 6 r(T d) for all d.
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IV. CONVERGENCE OF THE HIERARCHY OF NONLINEAR
EIGENPROBLEMS

The next theorem shows that the spectral radius of the
map T d approximates the joint spectral radius ρ(A) up to
a factor n1/(d+1). The proof of this result is inspired by
the ones found in [AJPR14b], [PEDJ16]. However, instead
of using the Löwner-John ellipsoid, we rely on the fact
that a monotone hemi-norm ν can be approximated by a
monotone linear map, up to a factor n. More precisely, the
vector c defined by ci = ν(ei) is positive and satisfies
ν(x) 6 〈c, x〉 6 nν(x) , ∀x > 0.

Theorem 4. Suppose that the set of nonnegative matrices A
is positively-irreducible. Then

r(T d) 6 n1/(d+1)ρ(A) .

We obtain as an immediate corollary of Theorems 3
and 4 that the hierarchy is convergent, in the sense that any
sequence of eigenvalues of the map T d converges towards
the joint spectral radius.

Corollary 1. Suppose that the set of nonnegative matrices
A is positively-irreducible. If λd denotes an eigenvalue of
the map T d for all d, then

lim
d→∞

λd = ρ(A) .

In particular, the sequence of spectral radii r(T d) is non-
increasing and its limit is equal to ρ(A).

V. SOLVING THE NON-LINEAR EIGENPROBLEM

Several numerical methods allow one to solve the non-
linear eigenproblem (Ed). First, the log-convexity property
of T d allows a reduction to convex programing, which
entails a polynomial time bound (see for instance the part
of [AGGCG17] concerning “Despot free” entropy games).
There are also algorithms, more efficient in practice, that
do not have polynomial time bounds. Protasov proposed
a “spectral simplex” algorithm [Pro16]. A policy iteration
scheme was proposed in [AGGCG17]. The spectral simplex,
like policy iteration, involve at each step the computation of
the spectral radius of a nonnegative matrix. For huge scale
instances, it seems more convenient to employ the following
iterative scheme, which is essentially a Krasnoselskii-Mann
iteration [Man53], [Kra55] in the space of rays of the cone:

vk+1 =
[ T d(vk)

G
[
T d(vk)

] ◦ vk]1/2 . (3)

where ◦ denotes the entrywise product of two vectors. and
G(x) = (x1 · · ·xn)1/n denotes the geometric means of the
components of the vector x. By comparison with the original
Krasnoselskii-Mann iteration, the arithmetic mean is replaced
by the geometric mean, and a normalization is introduced
to deal with the projective setting. We next show that this
scheme does converge.

Theorem 5. Assuming that the set of matrices {(ereTs ) ⊗
Aa : τ(r, a) = s} is positively-irreducible, the iteration

in Equation (3) initialized at any positive vector v0 ∈∏
s∈[[p]]d Rn+ converges towards an eigenvector of the map

T d.

Remark 1. The same iteration also converges under the
weaker assumption that A is positively-irreducible, but it
must be initialized with a vector belonging to the interior
of a minimal invariant face of the cone

∏
s∈[[p]]d Rn+.

Remark 2. We could also use the simpler power algorithm
xk+1 = T (xk)/‖T (xk)‖. As it lacks the “damping” of
Krasnoselskii-Mann iteration, the power iteration converges
in less general circumstances. However, explicit conditions,
with a geometric convergence rate, have been worked out.
Indeed, it is shown in [AGN16, Theorem 7.8] that the
asymptotic convergence rate of the power algorithm can
be bounded by a certain spectral radius rH(T ′v) of the
semidifferential map of T at an eigenvector v of T . More
precisely, it is shown there that limk→∞ dH(xk, v)1/k 6
rH(T ′v) (the spectral radius rH is defined there with respect
to Hilbert’s projective metric dH , it should not be confused
with the spectral radius used in the rest of this paper). In
particular, if T is differentiable at point v (a property which
is expected to hold under some genericity assumptions), the
semidifferential of T ′v can be identified to a nonnegative
matrix P . If r(P ) denotes the Perron root of this matrix, and
if λ denotes the second maximal modulus of an eigenvalue
of P , then, we have the explicit bound rH(T ′v) = |λ|/r(P )
for the convergence rate.

VI. BENCHMARKS

The present method has been implemented in OCaml and
has been run on one core of an 2.2 GHz Intel Core i7
processor with 8 Gb of RAM. We report two numerical
experiments, showing respectively the convergence of the
scheme and the gain in scalability.

A. Convergence of the hierarchy

We illustrate the convergent nature of the hierarchy on the
pair of matrices

A =


0 1 0 0 0
1 0 2 0 0
0 0 1 0 0
0 1 0 0 1
0 0 0 2 1

 B =


1 0 2 0 0
0 0 0 1 2
1 1 0 0 0
0 0 0 1 0
0 1 0 0 0

 .

This pair has a spectrum maximizing product of length
6 given by A2B4 yielding a joint spectral radius equal to
2.0273. We report in Table I the eigenvalue obtained by
solving the hierarchy (Ed) for 1 6 d 6 9 as well as the
computation time. We observe that the hierarchy is stationary
at d = 7 and that we recover the exact value of the joint
spectral radius. The last column indicates the relative error[
λd− ρ(A)

]
/ρ(A). Finally, we also observe the exponential

cost in computation time at the level d of the hierarchy.
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Level d CPU Time (s) Eigenvalue λd Relative error
1 0.01 2.165 6.8%
2 0.01 2.102 3.7%
3 0.01 2.086 2.9%
4 0.01 2.059 1.6%
5 0.02 2.041 0.7%
6 0.05 2.030 0.1%
7 0.7 2.027 0.0%
8 0.32 2.027 0.0%
9 1.12 2.027 0.0%

TABLE I
CONVERGENCE OF THE HIERARCHY ON 5× 5 MATRICES

Dimension n Level d Eigenvalue λd CPU Time
10 2 4.287 0.01 s

3 4.286 0.03 s
20 2 8.582 0.01 s

3 8.576 0.03 s
50 2 22.34 0.04 s

3 22.33 0.16 s
100 2 44.45 0.17 s

3 44.45 0.53 s
200 2 89.77 0.71 s

3 89.76 2.46 s
500 2 224.88 5.45 s

3 224.88 19.7 s
1000 2 449.87 44.0 s

3 449.87 2.7 min
2000 2 889.96 4.6 min

3 889.96 19.2 min
5000 2 2249.69 51.9 min

3 2249.57 2.9 h

TABLE II
COMPUTATION TIME FOR LARGE MATRICES

B. Scalability of the approach

We demonstrate the scalability of our method on quadru-
plets of matrices of increasing size, with random entries
between 0 and 0.9. We show in Table II the computation
time associated with each dimension. The iteration process
converges in less than 50 iterations in all examples, with
a 10−6 numerical stopping criterion. A monotone extremal
hemi-norm has been computed as the supremum of 16 or 64
linear forms (respectively for d = 2 and d = 3).

VII. CONCLUSION

We have proposed a new approach for computing a
convergent sequence of upper bounds of the joint spectral
radius of nonnegative matrices, by solving a hierarchy of
non-linear eigenproblems. At any level of this hierarchy, the
non-linear eigenvalue λ provides an upper bound for the joint
spectral radius, whereas the eigenvector encodes a monotone
λ-extremal norm. The non-linear eigenproblem is solved
efficiently by a variation of the Krasnoselskii-Mann iteration.
We have implemented this approach and numerical results
are witnesses of the scalability of this approach, compared to
other works based on the solution of optimization problems.

We finally point out one open problem. Guglielmi and
Protasov showed in [GP13] that when the joint spectral
radius is obtained for a unique periodic product, and when
this product has a unique dominant eigenvalue, then, there is

a polyhedral invariant norm. Each level of the present hierar-
chy generates a dictionary of linear forms, whose supremum
yields a polyhedral extremal norm. This dictionary becomes
richer when the level of the hierarchy is increased. Hence, we
may ask whether the hierarchy is exact, i.e., whether there
exist a level d such that r(T d) = ρ(A), under the same
assumption.
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