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Abstract

In this paper, we study the general system of linear equations
in the (max;+) algebra. We introduce a symmetrization of this
algebra and a new notion called balance which generalizes clas-
sical equations. This construction results in the linear closure of
the (max;+) algebra in the sense that every non-degenerate sys-
tem of linear balances has a unique solution given by Cramer’s
rule.

I. Introduction

The (max;+) algebra plays a crucial role in at least two fields:
� path algebra (research of the path of maximal weight in a

graph).
� performance evaluation of Discrete Event Dynamic Sys-

tems (DEDS).
In this paper, we examine a fundamental problem in this alge-

bra: solving systems of linear equations.
Let us start by introducing the notation used throughout this

paper. We shall denotemax by� (i.e. max(a; b) is noted a�b),
and use
 instead of the usual addition+ (e.g. 2
 3 = 5). �1
(also denoted by ") is the null element for� (x��1 = x) and is
absorbing for the product (�1
x = �1). 0 is the unit element:
0
x = x. (R[f�1g;�;
) is called the “(max;+) algebra”,
or simply R

max

. Usual computational rules hold in R
max

(for
instance a
 (b� c) = (b� c)
 a = (b
 a)� (c
 a)). This in
particular allows us to define and manipulate vectors and matri-
ces as usual. For simplicity, we sometimes omit 
 (we write ab
instead of a
 b).

A general account of this kind of algebraic structures can be
found in Gondran and Minoux [7] for the graph theoretic point
of view and Cohen, Moller, Quadrat and Viot [4] for the Discrete
Event Systems point of view.

For more than thirty years, it has been known that the implicit
vector equation x = A
x � b (A being a n � n matrix) can
be solved by iteration, leading to the study of A� = Id � A �

A

2

� : : :. Other vector equations of the type H
 x = b (H
not being necessarily a square matrix) also can be dealt with by
using residuation theory (see Blyth [1]). But for the most general
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system of n linear equations with n unknowns

A
x � b = C
x � d (1)

where A and C are n � n matrices with entries in R
max

and
b,d are vectors of (R

max

)

n, no result existed until now to the
best of the authors’ knowledge. In section 2, we first explain
why the general equation (1) is essential for the study of Dis-
crete Event Systems. Then, we embed the (max;+) algebra into
a symmetrized algebra (cf. Section 3-B), where the balance rela-
tion� plays the role of equality (Definition 3.1). The original el-
ements are identified with positive elements in this new algebra.
We associate the system of balances (A 	 C)x � (d	 b) with
system (1). Among the many solutions balances may have, a re-
stricted class can be associated with solutions in the (max;+) al-
gebra: these are signed solutions (i.e. positive, negative, or null).
The main result of this paper states that non-degenerate systems
of linear balances always have a unique signed solution, given
by Cramer’s rule (Theorem 6.1). When this solution is positive,
it determines the unique solution of system (1).

Example 1.1 Find the solutions of:
�

max(x; y � 4; 1) = max(x� 1; y + 1; 2)

max(x+ 3; y + 2;�5) = max(y + 2; 7)

(2)

or in matrix form
�

0 �4

3 2

�




�

x

y

�

�

�

1

�5

�

=

�

�1 1

�1 2

�




�

x

y

�

�

�

2

7

�

:

This problem is solved in Section 6-A. Before going into further
details, let us make a simple remark: if a > b, the equation a =

x� b is equivalent to a = x. This suggests the

naive rule: “a	 b = a if a > b”. (3)

We can now try to “solve” system (2) using this naive rule:

(2),

�

(i) x� (�4)y � 1 = (�1)x � 1y � 2

(ii) 3x� 2y � (�5) = 2y � 7

(i) ) [0	 (�1)]x = [1	 (�4)]y � (2	 1)

) (i

0

) : x = 1y � 2

(i

0

) and (ii) ) 3(1y � 2)� 2y � (�5) = 2y � 7

) (4� 2	 2)y = 7	 (�5) 	 5) 4y = 7) y = 3 :

Together with (i)0, we get x = 1
3�2 = 4, and it is immediate
to check that (x; y) = (4; 3) is a solution of system (2).

Our goal is to make it clear when and why these calculations
are valid.
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II. Linear System Theory for Discrete Event Systems

To see why equations of type (1) are fundamental in the
(max;+) algebra and its applications, we need to review some
of the work done in developing a system theory in this algebra. In
the context of DEDS, Cohen, Dubois, Moller, Quadrat and Viot
(see [2], [4]) have developed a system theory, analogous to the
conventional system theory for linear differential and recurrent
equations. They have shown that a restricted class of determin-
istic Petri nets, timed event graphs, can be described by linear re-
current equations in theR

max

algebra. This class can be used to
model flexible workshops, some distributed processing systems,
and in particular systems involving synchronization constraints.
A complete study, leading to the concepts of state-space repre-
sentation and transfer function can be found in [4].

The study of general linear equations of type (1) appears to
be the theoretical background needed to deal with the following
interesting topics:

.0.a Notions of rank. Many notions of rank and of linear de-
pendence in vector structures over the (max;+) algebra can be
found in the literature. The following is a conventional one.

Definition 2.1: fu
i

g

i2I

is free iff the canonical map
f�

i

g

i2I

7!

L

i2I

�

i

u

i

is one to one.
This condition is practically “never” fulfilled. The followingno-
tion of weak independence has been studied by Moller [9] and
Wagneur [13].

Definition 2.2: fu
i

g

i2I

is weakly independent iff no vectoru
i

is spanned by the others fu
j

g

j 6=i

.
Weak independence has some “pathological” features: for in-
stance, there exists an infinite family weakly independent in
R

3

max

(see Cuninghame Green [5]).
From the early work of Gondran and Minoux [6], there is a

more appealing definition of linear dependence, bearing a strong
resemblance with classical linear algebra:

Definition 2.3: fu
i

g

i2I

is dependent iff there exists a parti-
tion I = J [ K and a non-trivial family of scalars f�

i

g such
that

L

j2J

�

j

u

j

=

L

k2K

�

k

u

k

.
We have: fu

i

g free)fu

i

g non-dependent)fu

i

gweakly inde-
pendent. In the case of Definition 2.3, the column vector defined
by � = (�

i

) is solution of an equation of the type U� = U

0

�

which is a homogeneous form of equation (1).

.0.b Controllability, Observability. It is well known that the
only invertible matrices with entries in R

max

can be written as
M = DS where D is a diagonal matrix with invertible entries
and S is a permutation matrix (see e.g. [5]). This means that
endomorphisms of (R

max

)

n are “never” invertible. As a conse-
quence, defining an effective notion of controllability or observ-
ability is far from being obvious and the only notions studied so
far are structural (see [3]). A sharper theory should be based on
the notion 2.3 of dependence.

.0.c Minimality. Some attempts (cf. Olsder [10]) have already
been made suggesting that minimal realizations may be related
to “two-sided” ARMA models:

Y (n) �A

+

1

Y (n � 1)� : : :�A

+

k

Y (n � k) �B

�

0

U(n) � : : :

: : :� B

�

k

U(n� k) = A

�

1

Y (n� 1)� : : :�A

�

k

Y (n � k)�

�B

+

0

U(n)� : : :� B

+

k

U(n � k)

which clearly have the form of equation (1).

III. Symmetrizing the (max;+) algebra

A natural approach to our problem may have been to embed
the (max;+) algebra into a structure in which every non-trivial
scalar linear equation has at least one solution. Indeed, solving
a � x = " means symmetrizing a. Because max is idempotent
(i.e. a� a = max(a; a) = a), the following remark shows how
hopeless it is to adapt the classical symmetrization of monoids
(e.g. the way we buildZfromN) to theR

max

context:
Proposition 3.1: Every idempotent group is reduced to the

null element.
Proof Assume the group (G;�) is idempotent with null element
". Let b be the symmetric element of a 2 G. Then a = a� " =

a� (a� b) = (a� a)� b = a� b = ". �

A. The algebra of pairs

Let us now consider the set of pairsR2

max

endowed with the
natural dioid1 structure:

(x

0

; x

00

) � (y

0

; y

00

) = (x

0

� y; x

00

� y

00

)

(x

0

; x

00

)
 (y

0

; y

00

) = (x

0

y

0

� x

00

y

00

; x

0

y

00

� x

00

y

0

)

with ("; ") as the null element and (0; ") as the unit element.
Let x = (x

0

; x

00

) and define the minus sign as 	x = (x

00

; x

0

).
The absolute value ofx is denoted by jxj = x

0

�x

00. The balance
operator (�)� is defined by x� = x	 x = (jxj; jxj). It is imme-
diate to check that j j and � are dioid morphisms (respectively
ontoR

max

and the diagonal of R2

max

). In addition, we have the
following properties:

(i) a

�

= (	a)

�

(ii) idempotence a

��

= a

�

(iii) absorpsion ab

�

= (ab)

�

(iv) involution 	(	a) = a

(v) additive morphism 	(a� b) = (	a) � (	b)

(vi) sign rule 	(a
 b) = (	a) 
 b :

(4)

In particular (iv) � (vi) allow us to write as usual a � (	b) =

a	 b.

B. Quotient structure

Definition 3.1: [Balance relation] Let x = (x

0

; x

00

) and y =

(y

0

; y

00

). We say that x balances y (denoted by x � y) if and
only if x0 � y

00

= x

00

� y

0.
It is fundamental to notice that � is not transitive. For instance,
consider (0; 1) � (1; 1), (1; 1) � (1; 0) but (0; 1) 6� (1; 0)!
Since � cannot be an equivalence relation, there is no point to
define the quotient structure ofR2

max

by � (opposed to the con-
ventional algebra in whichN2=� 'Z). However, we can intro-
duce a new relationR onR2

max

(x

0

; x

00

) R (y

0

; y

00

),

8

<

:

x

0

6= x

00

; y

0

6= y

00

; and x0 � y

00

=

x

00

� y

0

(x

0

; x

00

) = (y

0

; y

00

) otherwise

1Recall that a dioid is a set D together with two laws � and 
 such that (i):
(D;�) is associative, commutative, idempotent (i.e. 8a a � a = a), with
null element ", (ii): (D;
) is associative with unit element e, (iii): product is
distributive over addition and (iv): the null element is absorbing ( 8a a
 " =

"
 a = ").
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which is an equivalence relation, stronger than � . It is easy to
check thatR is compatible with the structure laws ofR2

max

, with
the balance relation � and also with the	, j j and � operators.

Definition 3.2: We set S
max

= R

2

max

=

R

and we call it the
symmetrized algebra ofR

max

.
We distinguish three kinds of equivalence classes:

(t;�1) = f(t; x

00

); x

00

< tg called positive
(�1; t) = f(x

0

; t); x

0

< tg called negative
(t; t) = f(t; t)g called balanced.

By associating (t;�1) with t 2 R
max

, we can identifyR
max

with the subdioid of positive or null classes, R�
max

. The set of
negative or null classes (of the form 	x for x 2 R�

max

) will be
denoted byR	

max

, the set of balanced classes (of the form x

�) by
R

�

max

. This yields the decomposition

S

max

= R

�

max

[R

	

max

[R

�

max

(5)

" being the only element common to any two of these three sets.
This should be compared withZ= N

+

[N

�.
These conventions allow us to write 3	2 instead of (3;�1)�

(�1; 2). We thus have 3 	 2 = (3; 2) = (3;�1) = 3. More
generally, calculations inS

max

can be summarized as follows

a	 b = a if a > b

b	 a = 	a if a > b

a	 a = a

�

:

(6)

This includes and generalizes the initial naive rule (3).
Because of its importance, we introduce the notationR_

max

for
the set R�

max

[ R

	

max

. The elements of R_
max

are called signed
elements. They are either positive, negative or null. We have:

Proposition 3.2: R_
max

n f"g = S

max

n R

�

max

is the set of all
invertible elements ofS

max

.
Proof t 
 (�t) = (	t) 
 (	 � t) = 0 for t 2 R

max

n f"g ob-
viously shows that every non-null element ofR_

max

is invertible.
Moreover, formula (4,(iii)) shows thatR�

max

is absorbing for the
product. Thus, x�y 6= 0 for all y 2S

max

since 0 62 R�
max

. �

Remark 3.1 It can be proved that R is the weakest equivalence
relation stronger than � . In this sense R is natural.

Remark 3.2 There is a nicer algebraic way to introduce the re-
lationR. Let Sol (a) = fx 2 R

2

max

; x � ag, then it can easily
be verified that

x R y () Sol (x) = Sol (y) (7)

which makes it clear thatR is an equivalence relation. This leads
to a very simple proof of the compatibility of R with addition.
Because the following propositions are equivalent:

x 2 Sol (a � c)

x � a� c

x	 c � a

x	 c 2 Sol (a)

Sol (a) = Sol (b) implies that Sol (a � c) = Sol (b� c).

Remark 3.3 The equivalent formulation (7) allows extending
symmetrization to more general dioids than the (max;+) alge-
bra. In fact, it is always possible to define the quotient of the ad-
ditive monoid of pairs by the map a 7! Sol (a) , but this quotient
may not be compatible with multiplication! What is specific to
the total order structure ofR

max

is the decomposition (5). Since
our goal here is to give an existence and uniqueness theorem, we
only consider the case of a totally ordered multiplicative group,
the generic case of which being the (max;+) algebra. But a more
general theory can be developed along the same lines.

IV. Linear balances

A. General properties

Before solving general linear balances, we need to explain
why balances inS

max

generalize equations in R
max

. The main
algebraic features of balances are:

Properties 4.1:
(i) a � a (reflexivity)
(ii) a � b, b � a (symmetry)
(iii) a � b , a	 b � "

(iv) a � b; c � d ) a� c � b� d

(v) a � b ) ac � bc

Let us prove (v): a � b , a 	 b 2 R

�

max

and as R�
max

is
absorbing, (a 	 b)c = ac	 bc 2 R

�

max

, i.e. ac � bc. �

Although � is not transitive, when some variables are
signed, we can manipulate balances in the same way as we ma-
nipulate equations:

Property 4.2: [Weak substitution]
�

x � a

cx � b

and x 2 R_
max

) ca � b

Proof We have x 2 R

�

max

or x 2 R

	

max

. Assume for in-
stance that x 2 R

�

max

, x = (x

0

; "). With obvious notations:
x

0

� a

00

= a

0 and c0x0� b

00

= c

00

x

0

� b

0. Adding c0a00� c

00

a

00 to
the last equality, we get c0x0�c0a00�c00a00�b00 = c

00

x

0

�c

0

a

00

�

c

00

a

00

� b

0, which yields c0a0 � c

00

a

00

� b

00

= c

00

a

0

� c

0

a

00

� b

0,
i.e. ca � b. �

By taking c = 0, the weak substitution property 4.2 becomes:
Property 4.3: [Weak transitivity]

a � x; x � b and x 2 R_
max

) a � b

We conclude by a simple remark which allows translating bal-
ances into equalities:

Property 4.4: [Reduction of balances]
x � y and (x; y) 2 (R

_

max

)

2

) x = y

It is immediate to extend balances to the vector case. Properties
(4.1,i � v), 4.2, 4.3 and 4.4 still hold when a; b; x; y and c are
matrices with appropriate dimensions, provided we replace “2
R

_

max

” by “every entry 2 R_
max

”. Therefore, we say a vector is
signed iff every entry is signed.

B. From equations to balances

We now consider a solutionx of the equation (1) inR
max

. We
have Ax� b � Cx� d (reflexivity), and by (4.1,iii):

(A 	C)x� (b	 d) � " : (8)

Conversely, assuming that x is a positive solution of (8), we get
Ax � b � Cx � d with Ax � b and Cx� d 2 R

�

max

� R

_

max

.
Using 4.4, we get Ax� b = Cx� d. So, we have:
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Proposition 4.5: The set of solutionsof the general linear sys-
tem of equations (1) inR

max

and the set of positive solutions of
the associated linear balance (8) inS

max

coincide.
Thus, the original problem reduces to studying linear balances in
S

max

.

Remark 4.1 The case where a solution x of (8) has some nega-
tive and some positive entries is also of interest. We write x =

x

+

	 x

� with x+; x� 2 (R

�

max

)

n. Partitioning the columns of
A and C according to the sign of the entries of x: A = A

+

�

A

�,C = C

+

� C

� (in such a way that Ax = A

+

x

+

	 A

�

x

�

and Cx = C

+

x

+

	 C

�

x

�), we can affirm the existence of a
solution to the new problem

A

+

x

+

�C

�

x

�

� b = A

�

x

�

�C

+

x

+

� d :

C. The scalar linear balance

Theorem 4.6: Let a 2 R_
max

n f"g and b 2 R

_

max

, then the
balance

ax� b � " (9)

has the unique signed solution: x[ = 	a

�1

b.
Proof From properties 4.1,v and 4.1,iii, ax�b � " is equivalent
to x � 	 a

�1

b. Using the reduction property 4.4 and 	a�1b 2
R

_

max

, we get x = 	a

�1

b. �

Remark 4.2 Non-trivial linear balances always have solutions in
S

max

, that is whyS
max

may be considered as a linear closure of
R

max

.

Remark 4.3 We can describe all the solutions of (9). For all t 2
R

max

, we have obviouslyat� � ". Adding this balance to ax[�
b � ", we get a(x[ � t

�

) � b � ". Thus,

x

t

= x

[

� t

� (10)

is solution of (9). If t � jx

[

j, then x
t

= t

� is balanced. Con-
versely, it can be checked that every solution of (9) may be writ-
ten as in (10). The unique signed solutionx[ is also the least so-
lution.

Remark 4.4 If b 62 R_
max

, we lose uniqueness of signed solu-
tions. Every x such that jaxj � jbj (i.e. jxj � ja�1bj) is solution
of balance (9).

Remark 4.5 If a 62 R_
max

, we again lose uniqueness. Assume
b 2 R

_

max

(otherwise, the balance holds for all value of x), then
every x such that jaxj � jbj is a solution.

V. A fundamental identity

Before dealing with general systems, we need to extend the
determinant machinery to theS

max

context. We define the sign
of a permutation � by sgn(�) = 0 if � is even and sgn(�) = 	0

if � is odd. Then the determinant of an n� n matrix A = (a

i;j

)

is given (as usual) by

detA =

M

�

sgn(�)
n

O

i=1

a

i;�(i)

:

det remains an n-linear antisymmetric function of the rows (or
columns). detA is balanced (but non-null in general) if two rows

(or columns) of the matrix A are identical. We denote by A

adj

the transpose of the matrix of cofactors ([Aadj
]

i;j

= cof
j;i

(A)),
and by Id the identity matrix (with 0 on the diagonal and " else-
where). The following is just a “combinatorial” identity, that can
be shown by adapting a result by Reutenauer & Straubing [12]
or the usual demonstration:

Theorem 5.1: AA

adj
� detA :Id :

Remark 5.1 The formulation of Reutenauer and Straubing con-
sists in defining a “positive determinant”det+A (where the sum
is taken over all even permutations) and a “negative” determi-
nant det�A (odd permutations). The matrix of “positive” cofac-
tors is defined by

[A

adj+
]

i;j

=

�

det

+

A(jji) if i+ j even
det

�

A(jji) if i+ j odd

where A(ijj) denotes the matrix A from which row i and col-
umn j are removed, and the matrix of “negative” cofactorsAadj�

is defined similarly. With these notations, Theorem 5.1 can be
rewritten as follows:

AA

adj+
� det

�

A:Id = AA

adj�
� det

+

A:Id :

This formula does not use the 	 sign and is valid in any semi-
ring. The symmetrized algebra appears as a natural way of han-
dling (and proving in an algebraic way) such identities.

VI. Solving systems of linear balances

A. Cramer’s rule

Because of the remarks of section 4, we only consider the so-
lutions of balances in (R

_

max

)

n, that is signed solutions. We can
now state the fundamental result for the existence and unique-
ness of signed solutions of linear systems:

Theorem 6.1 (Cramer system) Let A be an n�n matrix with
entries inS

max

and b 2 (S

max

)

n. Then every signed solution of

Ax � b (11)

satisfies:
detA :x � A

adj
b : (12)

Conversely, assume that Aadj
b is signed and detA is invertible,

then the “Cramer solution” x[ = (detA)

�1

A

adj
b is the unique

signed solution of (11).
Proof Assume detA is invertible and Aadj

b is signed. By right-
multiplying the identity AAadj

� detA Id by (detA)

�1

b we
easily see that the Cramer signed solution x[ satisfies (11). This
proves the converse implication. We shall consider the direct im-
plication only when detA is invertible. The proof is by induc-
tion on the size of the matrix. Let us prove (12) for the last row,
i.e. detAx

n

� (A

adj
b)

n

. Developing with respect to the last
column, detA =

L

n

k=1

a

k;n

cof
k;n

(A) we get that at least one
term is invertible, say a

1;n

cof
1;n

(A). We now partition in an ob-
vious way A, b and x:

A =

�

A

1;1

a

1;n

A

0

A

n;n

�

; b =

�

b

1

b

0

�

; x =

�

x

0

x

n

�
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where A
1;1

is an 1� (n� 1) matrix,A0 is an (n� 1)� (n� 1)

matrix, etc...

Ax � b ()

�

A

1;1

x

0

� a

1;n

x

n

� b

1

(�)

A

0

x

0

�A

n;n

x

n

� b

0

(�)

Since detA

0

= (	0)

n+1cof
1;n

(A) is invertible, we apply the
induction hypothesis to

(�) , (�

0

) : A

0

x

0

� b

0

	 A

n;n

x

n

which implies that x0 � (detA

0

)

�1

A

0

adj
(b

0

	 A

n;n

x

n

). Using
the weak substitution property 4.2, we replace x0 2 (R

_

max

)

n�1

in (�):

A

1;1

(detA

0

)

�1

A

0

adj
(b

0

	 A

n;n

x

n

)� a

1;n

x

n

� b

1

i.e.

[detA

0

:a

1;n

	A

1;1

A

0

adj
A

n;n

]x

n

�

detA

0

:b

1

	A

1;1

A

0

adj
b

0

:

Here, we recognize the developments of (	0)

n+1

detA and
(	0)

n+1

(A

adj
b)

n

. Thus

detA :x

n

� (A

adj
b)

n

:

Since the same result holds when developing with respect to any
column k other than n, this concludes the proof. �

Remark 6.1 Let D
x

i

be the determinant of the matrix obtained
by replacing the i-th column of A with b, then (A

adj
b)

i

= D

x

i

.
Assume detA invertible, then the equation (12) is equivalent to:

(8i) x

i

� (detA)

�1

D

x

i

:

If Aadj
b 2 (R

_

max

)

n, then x
i

= (detA)

�1

D

x

i

, which is exactly
the classical i-th Cramer formula.

Example 6.1 Let us go back to our original problem (Example
1). The balance corresponding to equation (2) is

�

0 	1

3 2

�

� �

x

y

�

�

�

2

7

�

(13)

with determinant D = 4 (invertible).

D

x

=

�

�

�

�

2 	1

7 2

�

�

�

�

�

= 8; D

y

=

�

�

�

�

0 2

3 7

�

�

�

�

= 7

A

adj
b =

�

D

x

D

y

�

=

�

8

7

�

2 (R

_

max

)

2

:

So, x =

D

x

D

= 8�4 = 4; y =

D

y

D

= 7�4 = 3 gives the unique
positive solution inS

max

of balance (13). Thus, it is the unique
solution of equation (2) inR

max

.

Example 6.2 In the two dimensional case, the conditionAadj
b 2

(R

_

max

)

n has a very clear geometric interpretation. The follow-
ing picture represents the solutions to balances in the plane of

signed coordinates (R_
max

)

2.
From Theorem 6.1, we
easily see that the two
lines L

1

and L

2

meet
at a single point: (1; 1).
However, L

0

2

, which is
“parallel” toL

2

has a de-
generate inter-
section with L

1

because
the second Cramer deter-
minant of system L

1

; L

0

2

is balanced.

R

�

max

R

	

max

	1

L

2

: x	 y � 0

"

0

1

R

�

max

	2

	0

L

1

: x� 1y � 2

R

	

max

	2 	1	0 0 1 2

L

0

2

: x	 y � 2

Remark 6.2 detA being invertible is not a necessary condition
for system Ax � b to have a signed solution for all values of b !
Consider

A =

2

4

0 0 "

0 0 "

0 0 "

3

5

detA = ". Let t 2 R_
max

such that jb
i

j � jtj for all coordinate
i, and let x =

�

t 	t "

�

t

. Then Ax � b.

Remark 6.3 As already noticed by Gondran and Minoux (see
[6]), determinants have a natural interpretation in terms of as-
signment problems. So the Cramer computations have the same
complexity as n+ 1 assignment problems, which can be solved
using flow algorithms.

B. General case

We can even solve Ax � b in some degenerate cases:
Theorem 6.2: Assume that detA 6= " (but possibly

detA � ") then for all values of b there exists a signed solution
x of Ax � b such that jxj =j detAj�1jAadj

bj.
It is remarkable that the classical Gauss-Seidel and Jacobi algo-
rithms can be adapted to theS

max

case, for which we have con-
vergence after n iterations (!). This in particular provides an al-
gorithmic proof of Theorem 6.2. We writeA = D�U�L, with
U upper-triangular, L lower-triangular and D diagonal. Let us
introduce the notation “x j�j y” for x�y and jxj = jyj. We now
state:

Theorem 6.3: [Jacobi algorithm] Assume the domination
property j detAj = j

N

n

i=1

a

i;i

j 6= " then:
1/ There exists a (perhaps non-unique) sequence of signed vec-
tors fxpg such that
(i) " = x

0

� x

1

� : : : � x

p

� : : :

(ii) Dx

p+1

j�j 	 (U � L)x

p

� b :

2/ Such a sequence is stationary after n iterations (xn = x

n+1

=

: : :) and xn is a solution of Ax � b

3/ jxnj = j detAj�1jAadj
bj.

Sketch of proof 1/ can be shown by an induction argument
which is omited due to the lack of space. To understand why
x

p is stationary, we introduce x̂p = jx

p

j. (ii) yields x̂p+1 =

Mx̂

p+1

� jDj

�1

jbjwith M = jDj

�1

jU �Lj. We have x̂p+1 =
(Id�M � : : :�M

p

)jDj

�1

jbj. The domination hypothesis im-
plies that M has no circuits with weight> 0, which implies that
the series M�

= Id�M�M

2

�: : :�M

p

�: : : is stationary after
step n�1, i.e. x̂n = x̂

n+1

= : : : (this is a classical result, cf. [7],
p.72, Theorem 1). Because xn and xn+1 are signed, xn � x

n+1



6

and jxnj = jx

n+1

j imply xn = x

n+1. Replacing in (ii), we get
Dx

n

� 	 (U �L)x

n

�b which is equivalent toAxn � b. This
concludes the proof of 2=. Statement 3= follows:

Lemma 6.4: (jDj

�1

jU � Lj)

�

jDj

�1

= j detAj

�1

jA

adj
j.

This can be deduced from a theorem due to Yoeli ([14], Theorem
4). �

Example 6.3 We apply the Jacobi algorithm to
"

5 	0 3

1 3 	1

3 	2 1

�

#"

x

1

x

2

x

3

#

�

"

	1

4

0

#

with jdetAj�1jAadj
bj =

�

0 1 2

�

t

.

8

>

<

>

:

5x

1

1

j�j 	 1

3x

1

2

j�j 4

1

�

x

1

3

j�j 0

)

8

>

<

>

:

x

1

1

= 	� 4

x

1

2

= 1

x

1

3

= �1 or 	 �1; say x

1

3

= �1

8

>

<

>

:

5x

2

1

j�j 0x

1

2

	 3x

1

3

	 1 = 	2

3x

2

2

j�j 	 1x

1

1

� 1x

1

3

� 4 = 4

1

�

x

2

3

j�j 	 3x

1

1

� 2x

1

2

� 0 = 3

)

8

>

<

>

:

x

2

1

= 	� 3

x

2

2

= 1

x

2

3

= 2 or	 2; sayx2
3

= 2

8

>

<

>

:

5x

3

1

j�j 	 5

3x

3

2

j�j 4

1

�

x

3

3

j�j 3

and x3
3

� x

2

3

)

8

>

<

>

:

x

3

1

= 	0

x

3

2

= 1

x

3

3

= 2

Different choices for x1
3

and x

2

3

yield another solution: x3
1

=

0; x

3

2

= 1; x

3

3

= 	2.

For the homogeneous system, the analogy with the classical sit-
uation is complete. The following result generalizes a theorem
of Gondran and Minoux [6]:

Theorem 6.5: [Homogeneous case] LetA be an n�n matrix
with entries in S

max

. Then the equation Ax � " has a signed
non-null solution if and only if detA � ".
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Erratum and Further References

— Remark 3.1. Read congruence instead of equivalence rela-
tion.

—Remark 6.3. The author is grateful to Peter Butkovič for hav-
ing pointed out a serious error here. Given a square matrix
A with entries in S

max

, the computation of j detAj is equiva-
lent to an assignment problem. But, it is not clear whether or
not the sign (positive,negative,balanced) of detA can be com-
puted in polynomial time. When A has its entries in R

max

, Pe-
ter Butkovič proved that the computation of detA reduces in
polynomial time to the detection of an even cycle in a digraph,
a problem which is not known to be polynomial (P.B. Regular-
ity of Matrices in Min-Algebra and its Time complexity, preprint,
Sep. 1993).

— The theory initiated in this paper has been developed in:

1. Synchronization and Linearity, F. Baccelli, G. Cohen, G.J.
Olsder and J.P. Quadrat, Wiley, 1992.

2. Théorie des systèmes linéaires dans les dioı̈des, S. Gaubert,
Thèse de l’École des Mines de Paris, July, 1992.


