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Abstract

In this paper, we study the generd system of linear equations
inthe (max, +) adgebra We introduce a symmetrization of this
algebraand anew notion called balance which generalizes clas-
sical equations. Thisconstructionresultsinthelinear closure of
the (max, +) algebrainthe sensethat every non-degenerate sys-
tem of linear ba ances has a unique solution given by Cramer’s
rule.

I. Introduction

The (max, +) adgebraplaysacrucial roleinat least twofields:

+ path agebra (research of the path of maxima weight in a

graph).

» performance evaluation of Discrete Event Dynamic Sys-

tems (DEDS).

In this paper, we examine afundamental probleminthisalge-
bra: solving systems of linear equations.

Let us start by introducing the notation used throughout this
paper. We shall denotemax by & (i.e. max(a, b) isnoted a & b),
and use @ instead of the usua addition+ (eg. 2® 3 = 5). —©
(alsodenoted by ¢) isthenull element for & (#dH—oco = x) andis
absorbing for theproduct (—oo®x = —o0). 0 istheunit el ement:
0@r ==z (RU{-x}, &, ®)iscadledthe”(max, +) algebra’,
or simply R ,.x. Usua computational rules hold in R, (for
instancea @ (b c) = (bBe)@a = (b@a) ® (e®a)). Thisin
particular allows us to define and manipulate vectors and matri-
ces as usua. For simplicity, we sometimes omit ® (wewrite ab
instead of a @ b).

A general account of this kind of agebraic structures can be
found in Gondran and Minoux [7] for the graph theoretic point
of view and Cohen, Moller, Quadrat and Viot [4] for the Discrete
Event Systems point of view.

For more than thirty years, it has been known that theimplicit
vector equation z = A®z $ b (A beingan x n matrix) can
be solved by iteration, leading to the study of A* = Id® A @
A? @ .... Other vector equations of thetype H ©® = = b (H
not being necessarily a square matrix) also can be dealt with by
using residuationtheory (see Blyth[1]). But for themost genera
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system of n linear equationswith n unknowns
Az db=C@xdd (1)

where A and C' are n x n matrices with entriesin R, and
b,d are vectors of (Rm.x)”, no result existed until now to the
best of the authors' knowledge. In section 2, we first explain
why the genera equation (1) is essentid for the study of Dis-
crete Event Systems. Then, weembed the (max, +) algebrainto
asymmetrized algebra (cf. Section 3-B), wherethebalancerela
tion A playstheroleof equality (Definition3.1). Theorigina &-
ements are identified with positiveelementsin thisnew algebra.
We associate the system of balances (A © C)x A (d © b) with
system (1). Among the many solutionsbalances may have, are-
stricted class can be associated with solutionsinthe (max, +) a-
gebra: these are signed solutions(i.e. positive, negative, or null).
The main result of thispaper states that non-degenerate systems
of linear balances always have a unique signed solution, given
by Cramer’srule (Theorem 6.1). When thissolutionis positive,
it determines the unique solution of system (1).

Example 1.1 Find the solutions of:

{ max(z,y —4,1) = max(z — 1,y + 1,2) @

max(x + 3,y + 2, —5) = max(y + 2,7)

or in matrix form

e P 2 P I T I s B P D P
3 2 Yy 5| |- 2 Yy 7|
Thisproblemissolvedin Section 6-A. Before goinginto further

details, let us make asimpleremark: if « > b, theequation a =
r @ bisequivaenttoa = x. Thissuggeststhe

naverule “acb=a if a>¥". (3)

We can now try to “solve’ system (2) using thisnaiverule:
() (@) vo(-Dydl=(-lrdlyd?2
(1) 3xd2yd (-5)=2ya7
()= e(=Ne=[lo(4)ys (2c1)
= () r=1y®?2
("Yand (i7) = 3(ly@2) D2yd (—5) =2y D7
=> de202)y=T6(-H)6b=> dy=T= y=3.
Together with (i)', wegetx = 1®3@2 = 4, anditisimmediate
to check that (z, y) = (4, 3) isasolution of system (2).
Our goal isto make it clear when and why these cal culations
arevdid.



[I. Linear System Theory for Discrete Event Systems

To see why equations of type (1) are fundamenta in the
(max, +) agebra and its applications, we need to review some
of thework donein devel opingasystem theory inthisalgebra. In
the context of DEDS, Cohen, Dubois, Moller, Quadrat and Viot
(see [2], [4]) have developed a system theory, analogous to the
conventional system theory for linear differential and recurrent
equations. They have shown that a restricted class of determin-
istic Petri nets, timed event graphs, can be described by linear re-
current equationsin the R.,,,x algebra. This class can be used to
mode! flexibleworkshops, some distributed processing systems,
and in particular systemsinvolving synchronization constraints.
A complete study, leading to the concepts of state-space repre-
sentation and transfer function can be foundin [4].

The study of genera linear equations of type (1) appears to
be the theoretical background needed to deal with the following
interesting topics:

.0.a Notionsof rank. Many notions of rank and of linear de-
pendence in vector structures over the (max, +) agebra can be
found in the literature. The following is a conventional one.

Definition2.1: {u; };cr is free iff the canonicd map
{Xitier = ;e Aiui isoneto one.
Thisconditionispractically “never” fulfilled. Thefollowingno-
tion of weak independence has been studied by Moller [9] and
Wagneur [13].

Definition2.2: {w; };cr isweakly independent iff no vector w;
isspanned by the others {u; };;.

Weak independence has some “pathological” features: for in-
stance, there exists an infinite family weakly independent in
R3 . (see Cuninghame Green [5]).

From the early work of Gondran and Minoux [6], thereis a
more appealing definition of linear dependence, bearing astrong
resemblance with classical linear agebra:

Definition2.3: {u; };cr is dependent iff there exists a parti-
tion/ = J U K and anon-trivia family of scalars {A;} such
that @jEJ /\ju]' = @kEK /\kuk
Wehave: {u; } free=- {«; } non-dependent = {«; } weskly inde-
pendent. Inthe case of Definition 2.3, the column vector defined
by A = ();) issolution of an equation of thetype UA = U’'A
which isahomogeneous form of equation (1).

.0.b Controllability, Observability. It iswell known that the
only invertible matrices with entries in R ,,,x can be written as
M = DS where D isadiagond matrix with invertible entries
and S is a permutation matrix (see eg. [5]). This means that
endomorphismsof (R,.x)” are“never” invertible. As aconse-
guence, defining an effective notion of controllability or observ-
ability isfar from being obvious and the only notions studied so
far are structural (see [3]). A sharper theory should be based on
the notion 2.3 of dependence.

.0.c Minimaity. Some attempts (cf. Olsder [10]) have already
been made suggesting that minimal realizations may be related
to “two-sided” ARMA models:

Yn)@AfYn—1)@.. e A Yn-—koBUn) ®...
BB Un—Kk)=ATY(n-1)®.. A Y(n—k)®
BIUM)@...® BfU(n —k)

which clearly have the form of equation (1).

[11. Symmetrizing the (max, +) algebra

A natura approach to our problem may have been to embed
the (max, +) algebrainto a structure in which every non-trivia
scalar linear equation has at least one solution. Indeed, solving
a ® x = ¢ means symmetrizing «. Because max isidempotent
(i.e. a ® a = max(a, a) = a), thefollowing remark shows how
hopeless it is to adapt the classical symmetrization of monoids
(e.g. theway we build Z from IN) to the R ., context:

Proposition 3.1: Every idempotent group is reduced to the
null element.

Proof Assumethegroup (G, @) isidempotent with null element
¢. Let b bethesymmetricelementof « € G. Thena = a G ¢ =
a®(adb)=(aBa)db=adb=c. u

A. The algebra of pairs

Let us now consider the set of pairsR?2 . endowed with the

natural dioid® structure:

(l‘/, l‘//) D (y/’ y//) — (l‘/ @y, 2@ y//)
(l‘/, x//) ® (y/’ y//) — (l,/y/ @ x//y//’ x/y// @ x//y/)
with (g, €) asthenull dement and (0, ¢) asthe unit element.
Let z = (2/, 2") and definetheminussignas sz = (2", 2').
Theabsolutevalueof z isdencted by || = «'@®2". Thebalance
operator (-)* isdefined by #* = z © » = (||, |#]). Itisimme-
diate to check that | | and * are dioid morphisms (respectively
onto IR ,,.x and the diagonal of R2 ). In addition, we have the
following properties:

(i) a* = (Sa)*
(#4) idempotence a** =a*

(¢77) absorpsion ab® = (ab)* @)
(iv) involution S(5a) =a

(v) additivemorphism S(a & b) = (Sa) & (8)h)

(vi) signrule Sla®b)=(oa)®b.

In particular (iv) — (vi) dlow ustowriteas usual a & (©b) =
a&b.

B. Quotient structure

Definition3.1: [Balancereation] Let z = (2, 2"”) andy =
(¢y',y"). We say that « balances y (denoted by z A y) if and
onlyif2' ¢y’ =z" @y
It isfundamental to noticethat A isnot transitive. For instance,
consider (0,1) A (1,1), (1,1) A (1,0) but (0,1) X (1,0)!
Since A cannot be an equivalence relation, there is no point to
define the quotient structure of R2 by A (opposed to the con-
ventiona algebrainwhichIN?/A ~ 7). However, we can intro-
duce anew relation R onR2

max

l’/ # x//’y/ # y//’and l’/ @ y// —

(l’/, x//) R (y/’ y//) o x// @ y/

(z',2") = (v,y") otherwise
IRecall that adioid is aset D together with two laws ¢ and & such that (i):
(D, ) is associative, commutative, idempotent (i.e. Ya o & a = a), with
null element <, (ii): (D, ®) is associative with unit element e, (iii): product is
distributive over addition and (iv): the null element is absorbing(Va a ® € =

ce®a =e).



which isan egquivaencereation, stronger than A . Itiseasy to

check that R is compatiblewith thestructurelaws of R2 ., with

thebalancerelation A and asowiththeo, | | and * operators.
Definition3.2: We set Sp.x = RZ . /z and we cal it the

symmetrized algebra of R, ..

We distinguishthree kinds of equivalence classes:

(t,—o0) = {(t,2"); " <t} called postive
(—o0,t) = {(2',1); 2’ <t} cdlednegative
t,t) = {1} called bal anced.

By associating (¢, —oo) witht € Ry .y, We can identify R qx
with the subdioid of positive or null classes, Rmax The set of
) will be

negative or null classes (of the form &z for z € R

max

denoted by RS ..., the set of balanced classes (of theform «*) by
R? ... Thisyiddsthe decomposition
Smax Rgax U Rr?lax U Rronax (5)

¢ being the only element common to any two of these three sets.
This should be compared with Z = NT U N,

These conventionsallow ustowrite352 instead of (3, —o0)®
(—00,2). Wethushave3 © 2 = (3,2) = (3, —oc0) = 3. More
generaly, calculationsin S,,x can be summarized as follows

aOb=a ifa>b
boa=5a ifa>b (6)
aSa=a’

Thisincludes and generalizes the initiad naiverule (3).

Because of itsimportance, weintroducethe notation Y .. for
thesst R® URS . Theelementsof RY . are called signed
elements. They are either positive, negative or null. We have:

Proposition3.2: RY .\ {¢} = Spax\ RS, iStheset of al
invertible elements of S ax.

Prooft @ (—=t) = (6t) ® (&6 —t) = 0fort € Rpax \ {¢} Ob-
viously showsthat every non-null element of R Y, . isinvertible.
Moreover, formula(4 (iii)) showsthat R? __ isabsorbingfor the

product. Thus, z*y # Oforal y € SmaxSince0 ¢ R .. =

Remark 3.1 It can be proved that R isthe weskest equivalence
relation stronger than A . Inthissense R isnatural.

max

Remark 3.2 There is anicer algebraic way to introduce the re-
lationR. Let Sol (a) = {x € B2, ; = A a}, thenit can easily
be verified that

tRy <= Sol(z) = Sol (y) (7
which makesit clear that R isan equivaencerdation. Thisleads
to avery simple proof of the compatibility of R with addition.
Because the following propositionsare equival ent:

z €S0l (a® o)
rAadec
rOcAa
6 c e Sol(a)
Sal (a) =

Sol (b) impliesthat Sol (¢ & ¢) = Sol (b & ¢).

Remark 3.3 The equivaent formulation (7) allows extending
symmetrization to more general dioids than the (max, +) age-
bra. Infact, it isaways possibleto define the quotient of the ad-
ditivemonoid of pairs by themap @ — Sal («) , but thisquotient
may not be compatible with multiplication! What is specific to
thetotal order structure of IR .« iSthe decomposition (5). Since
our goal hereisto give an existence and uniquenesstheorem, we
only consider the case of atotally ordered multiplicative group,
the generic case of whichbeingthe (max, +) algebra. Butamore
general theory can be devel oped a ong the same lines.

V. Linear balances
A. General properties

Before solving generd linear balances, we need to explain
why balances in S, generalize equationsin R,,,,. Themain
algebraic features of balances are:

Properties 4.1:

i) alAa

it) aAbsbAa

i) aAb & aobAc

v) aAb cAd = adcAbpd
v) alAb = acAbe
Letusprove (v): a A b < aob € Ry andasR? _is
absorbing, (a © b)c = ac© be € RS, 1.€ ac A be. .

Although A is not trangitive, when some variables are
signed, we can mani pul ate balances in the same way as we ma
nipul ate equations:

Property 4.2: [Weak substitution]

xAa

(reflexivity)
(symmetry)

~—

andxreRY = caAb
cx Ab max
Proof We have z € RE orxz € RE... Assume for in-
stance tha = € R® .« = (2/,¢). With obvious notations:

r@ad =danddr ob’ =2 b, Addingce’ @ c’a” to
thelast equality,weget 'z’ @ c'a”’ "’ a”’ BV = "2’ ®cla”’ B
// // D b/ WhICh yleIdSC/a/ D C//a// D b// _ c”a’ D C/ 1" D b/
i.e. ca Ab. [
By taking ¢ = 0, theweak substitution property 4.2 becomes:
Property 4.3: [Weak transitivity]
aAz, z Abandz € RY = aAb
We concl ude by a simple remark which allows trandating bal-
ances into equalities:
Property 4.4: [Reduction of balances
rAyand(z,y) € (RY.)? =z=y
It isimmediate to extend balances to the vector case. Properties
(4.1, — v), 4.2, 4.3 and 4.4 ill hold when a,b, z, y and ¢ are
matrices with appropriate dimensions, provided we replace “ &
RY. .. by “every entry € R} _.". Therefore, we say avector is
signed iff every entry is signed.

B. From equationsto balances
We now consider asolutionz of theequation (1) inIR .. We
have Az @ b A Cx @ d (reflexivity), and by (4.1,:44):
(AcC)zd (bod) Ac. 8

Conversaly, assuming that = isapositive solution of (8), we get
Az b A CrodwithAz dbandCedde RO C RY

max max*

Using 4.4, weget Az d b= Cx @ d. So, we have:



Proposition 4.5: Theset of solutionsof thegenera linear sys-
tem of equations (1) in IR ., and the set of positive solutions of
the associated linear balance (8) in Syax CoOiNcide.

Thus, the origina problem reducesto studyinglinear balancesin

Smax-

Remark 4.1 The case where a solution « of (8) has some nega-
tive and some positive entriesis also of interest. We writez =
et oz~ witha™, 2~ € (RZ,,)". Partitioning the columns of
A and C according to the sign of the entriesof z: A = At @
A= C =Ct@ C~ (insuchaway that Ax = Atet © A=2~
and Cz = Ctzt © C~z7), we can affirm the existence of a
solution to the new problem

AtetT @ C 2~ db=A"e"dCT Tzt pd.

C. Thescalar linear balance

Theorem4.6: Leta € RY. .\ {s}anddb € RY__, thenthe
balance

ar ®bAc¢ 9)

has the unique signed solution: z* = ©a~'b.

Proof From properties4.1,v and 4.1,iii, az &b A ¢ isequivalent
tox A © a~'b. Using the reduction property 4.4 and ©a~'b €
RY ., wegetr=oa th. "

max’

Remark 4.2 Non-trivial linear bal ances always have solutionsin
Smax, thatiswhy S,.x may be considered asalinear closure of
Rmax-

Remark 4.3 We can describe all the solutionsof (9). For al ¢ €
IR max, We haveobviously at® A e. Addingthisbalanceto az’ 4
bAe wegeta(z $t*) @b A e Thus,

=2 ot (20)
issolution of (9). If t > |#'|, thenz;, = t* isbalanced. Con-
versaly, it can be checked that every solution of (9) may be writ-
ten asin (10). The uniquesigned solution = isaso theleast so-
[ution.

Remark 4.4 1f b ¢ R .., we lose uniqueness of signed solu-
tions. Every = such that |az| < |b] (i.e. |z| < |a~1b]) issolution

of balance (9).

Remark 451f a ¢ RY ., we again lose uniqueness. Assume
beRY .. (otherwise, the balance holdsfor al value of ), then

every « such that |ax| > |b| isasolution.

V. A fundamental identity

Before dealing with general systems, we need to extend the
determinant machinery to the Sy,ax context. We define the sign
of apermutation ¢ by sgn(c) = 0if o iseven and sgn(s) = &0
if o isodd. Then the determinant of an n x n matrix A = (a; ;)
isgiven (asusua) by

n

det A = P sgn(0) Q) ai (i) -

i=1

det remains an n-linear antisymmetric function of the rows (or
columns). det A isbalanced (but non-null ingenera) if tworows

(or columns) of the matrix A are identical. We denote by Al
the transpose of the matrix of cofactors ([A®]; ; = cof; ;(A4)),
and by Id the identity matrix (with 0 on the diagond and ¢ else-
where). Thefollowingisjust a“combinatoria” identity, that can
be shown by adapting a result by Reutenauer & Straubing [12]
or the usual demonstration:
Theorem5.1: AA™ A det A .ld.
Remark 5.1 The formulation of Reutenauer and Straubing con-
sistsin defininga“ positivedeterminant” det ™ A (wherethesum
is taken over al even permutations) and a “negative’ determi-
nant det™ A (odd permutations). Thematrix of “ positive” cofac-
torsis defined by
4], = { det™ A(jl)
2 det™ A(j]¢)

if i + 7 even
if i+ j odd

where A(i]j) denotes the matrix A from which row ¢ and col-
umn j are removed, and the matrix of “negative’ cofactors A%~
is defined similarly. With these notations, Theorem 5.1 can be
rewritten as follows:

AATt @ det” Ald = AAT~ 5 detT Ald .

This formula does not use the & sign and is valid in any semi-
ring. The symmetrized algebra appears as a natural way of han-
dling (and provingin an algebraic way) such identities.

V1. Solving systemsof linear balances
A. Cramer’srule

Because of the remarks of section 4, we only consider the so-
lutionsof balancesin (R ..)", that is signed solutions. We can
now state the fundamental result for the existence and unique-
ness of signed solutionsof linear systems:

Theorem 6.1 (Cramer system) Let A bean n x n matrix with

entriesinSpax and b € (Smax)” . Then every signed solution of

Ax Ab (12)
satisfies:

det A.x A AMp . (12)

Conversely, assume that A%b issigned and det A isinvertible,
then the “ Cramer solution” =* = (det A)~' A%} is the unique
signed solution of (11).

Proof Assume det A isinvertibleand A5 is signed. By right-
multiplying the identity AA® A det A 1d by (det A)~'b we
easily see that the Cramer signed solution z” satisfies (11). This
provestheconverseimplication. We shall consider thedirect im-
plication only when det A isinvertible. The proof is by induc-
tion on the size of the matrix. Let us prove (12) for thelast row,
i.e det Az, A (A™b),. Developing with respect to the last
column, det A = &5 _, ax nCofy ,,(A) we get that at least one
termisinvertible, say a; ,cof; ,,(A). Wenow partitionin an ob-

viousway A, b and z:
Al,l _ bl _ l‘/
| o=[5]- =]

[

a1.n

An,n



where A; ; isanl x (n — 1) matrix, A’ isan (n — 1) x (n — 1)
matrix, €etc...

A2 B arpzn Aby
Az @ Ay nzn AY

(@)
(5)

Since det A’ = (50)"*cof; ,,(A) isinvertible, we apply the
induction hypothesisto

() = () :
whichimpliesthat &’ A (det A")=*A"™ () & A, ,z,). Using

the weak substitution property 4.2, wereplace 2’ € (RY,, )"~1
in(«):

Az Ab <— {

Az Ab o Ap ntn

Alyl(det A/)_lA/adj(b/ o An,nl%) S a1 ntn A bl

[det A" .y, © A1,1A/aden,n]73n A
det A’ by & Ay A

Here, we recognize the developments of (©0)"*! det A and
(©0)"*+1(A™p),,. Thus

det Az, A (A%b),, .
Since the same result holds when devel oping with respect to any
column & other than n, this concludes the proof. ]

Remark 6.1 Let D,, be the determinant of the matrix obtained
by replacing the i-th column of A with b, then (4%98); = D,,.
Assume det A invertible, then the equation (12) isequiva ent to:

(Vi) o; A (det A)_le, .

If Ay c (RY_)?, thenz; = (det A)~' D,,, whichis exactly

the classica i-th Cramer formula.

Example 6.1 Let us go back to our origina problem (Example
1). The baance corresponding to equation (2) is

I 1+17]

with determinant D = 4 (invertible).

[ 0 ol (13)

3 2°

2 e o 2|
Dx_‘7 ! ‘_8, Dy_‘3 7‘_7

i D 8

adj; _ x _ % 2
(3] [3] e

So,#=Ls =8-4=4y="s = 7_4=3givestheunique

positivesolutionin S, of balance (13). Thus, it isthe unique
solution of equation (2) in R yax.

Example6.2 In thetwo dimensional case, the condition A5 ¢
(RY..)" has avery clear geometric interpretation. The follow-

max

ing picture represents the solutions to balances in the plane of

signed coordinates (IR,

max) ? "

From Theorem 6.1, we

easily see that the two Binon :

lines L; and L, meet \Qi e ly 42 /

a asingle point: (1,1). o

However, L}, which is B 62 6160 1 {2 pe
“pardle” to L, hasade- — ‘ -
generate inter- 50

section with L; because LaigOu by :

the second Cramer deter- .""""""@"2"2,.'""1:'@ NA 2
minant of system L, L, o ES

is balanced.

Remark 6.2 det A being invertibleis not a necessary condition
for system Az A b to have asigned solution for al values of b !

Consider
0 0 ¢
A=10 0 ¢

0 0 ¢
det A = . Lett € RY . suchthat |b;| < |¢| for al coordinate

i,andletz =[ ¢ ot ] Then Az Ab.

Remark 6.3 As aready noticed by Gondran and Minoux (see
[6]), determinants have a natural interpretation in terms of as-
signment problems. So the Cramer computations have the same
complexity asn + 1 assignment problems, which can be solved
using flow algorithms.

B. General case

We can even solve Az A b in some degenerate cases.
Theorem 6.2: Assume that det A # ¢ (but possibly
det A A ¢) thenfor al values of b there exists asigned solution
x of Az A bsuchthat |z| =|det A|~1|A%p|.
It isremarkable that the classical Gauss-Seidel and Jacobi algo-
rithms can be adapted to the S 1,,.x case, for which we have con-
vergence after n iterations(!). Thisin particular providesan al-
gorithmic proof of Theorem 6.2. Wewrite A = D@ U & L, with
U upper-triangular, L lower-triangular and D diagona. Let us
introducethe notation“z |A " for Ay and |z| = |y|. We now
state:
Theorem 6.3: [Jacobi algorithm] Assume the domination

property |det A| = | @i, a; ;| # ¢ then:
1/ There exists a (perhaps non-unique) sequence of signed vec-
tors {2} such that

(i) e=2<at<. ... <2P < ...

(it) DaPtL N &6 (U & L)a? &b .
2/ Such asequence isstationary after » iterations(z” = 2" 1! =
.. )and z" isasolutionof Az A b
3/ |2 | = | det A|~1| AXp|.
Sketch of proof 1/ can be shown by an induction argument
which is omited due to the lack of space. To understand why
oF is stationary, we introduce z¥ = |¢F|. (i) yields 2P +! =
M+t @ |D|= bl with M = |D|7'|U @ L|. Wehave #P+! =
(Ide M & ...4 MP)|D|~*|b|. The domination hypothesisim-
pliesthat M hasno circuitswithweight > 0, which impliesthat
theseries M™ = ldO M B M?@.. .o MPE. . . isdationary after
stepn—1,i.e 2" = "t = . (thisisaclassical result, cf. [7],
p.72, Theorem 1). Because z™ and z" ! aresigned, " < z"*!



and |2"| = |z" | imply 2™ = 2"+, Replacingin (ii), we get
Dz™ A & (U L)x” dbwhichisequivdentto Az™ A b. This
concludes the proof of 2/. Statement 3/ follows:

Lemma 6.4: (|D|~'|U @ L|)*|D|~" = | det A|~1|A%].
This can be deduced from atheorem dueto Yodi ([14], Theorem
4). ]

Example 6.3 We apply the Jacobi algorithm to

5 ©0 3 o cl
1 3 ol e | A 4
3 &2 1° T3 0
with |det A|7HAMp =0 1 2]".
5r1 1A ©1 sl=0-4
33 |A 4 = Cai=1
1%z3 1Al 0 vy =—lor & —1, say s = —1
5r7 1A 0z © 303 01 =02 P=05-3

305 1A Oloi D lei Pa=4 =<a5=1
1°23 1A ©351 D222 D0 =3 r3=20r0 2, sayxs =2

525 1A &5 z] =60
3x3 A 4 andzs > ol = {si=1
1°5 1A 3 o3 =2

Different choices for 23 and =3 yield another solution: 2§ =
0,23 = 1,23 = 02,

For the homogeneous system, the analogy with the classical sit-
uation is complete. The following result generalizes a theorem
of Gondran and Minoux [6]:

Theorem 6.5: [Homogeneous case] Let A beann x n matrix
with entriesin S,,,,x. Then the equation Az A ¢ has asigned
non-null solutionif and only if det A A «.
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Erratum and Further References

— Remark 3.1. Read congruence instead of equivalence rela-
tion.

—Remark 6.3. Theauthor isgrateful to Peter Butkovic for hav-
ing pointed out a serious error here. Given a square matrix
A with entries in S.,.x, the computation of |det A| is equiva
lent to an assignment problem. But, it is not clear whether or
not the sign (positive,negative balanced) of det A can be com-
puted in polynomia time. When A hasitsentriesin R .., Pe-
ter ButkoviC proved that the computation of det A reduces in
polynomial time to the detection of an even cycle in a digraph,
a problem which is not known to be polynomial (PB. Regular-
ity of Matricesin Min-Algebraand its Time complexity, preprint,
Sep. 1993).

— Thetheory initiated in this paper has been developed in:

1. Synchronization and Linearity, F. Baccelli, G. Cohen, G.J.
Olsder and J.P. Quadrat, Wiley, 1992.

2. Théoriedessystémeslinéairesdanslesdioides, S. Gaubert,
Thése de’ Ecole des Mines de Paris, July, 1992.



