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MIN-PLUS LINEARITY AND STATISTICAL MECHANICS

J.P. QUADRAT AND MAX-PLUS WORKING GROUP

ABSTRACT. We revisit some results obtained recently in min-plus ladgdol-
lowing the ideas of statistical mechanics. Computationeafdgsics in a graph
can be done by min-plus matrix products. A min-plus matrigéen as a kind
of finite states mechanical system. The energy of this sysahe eigenvalue
of its min-plus matrix. The graph interpretation of the eiggue may be seen
as a kind of Mariotte law. The Cramer transform is introdubgdstatistics on
populations of independent min-plus linear systems searkiml of perfect gas.
It transforms probability calculus in what we call decisicaiculus. Then, dy-
namic programming equations, which are min-plus lineaumences, may be
seen as min-plus Kolmogorov equations for Markov chainsefgodic theorem
for Bellman chains, analogue of Markov chains, is given. Tiie-plus coun-
terparts of aggregation, coherency, and reversibility affldv chains are then
studied. They provide new decomposition results to compatations of dy-
namic programming equations. Finally, some links betweamt2éll-Freidlin
asymptotics and min-plus algebra are described.

1. INTRODUCTION

Min-plus algebra, which is the set of real numbers endowet thie min and
the plus operations, has been studied for a long time mainlgperations re-
search. Within this mathematical structure, dynamic @ogning or Hamilton
Jacobi equations become linear equations (for example33e86]).

This algebra has been used to describe, linearly, systemisialn synchroniza-
tion is the main driving mechanism. Applications may be fibun production
systems, transportation and parallel computations [1d{.ekample, to achieve a
task, in a production system, a machine and a part are neAdasdk can start only
at the supremum of the availability times of the machine &eddart.

Min-plus algebra appears also in asymptotic computatibmeed

en +Em ~ 6mln(n,m) ’

whene is small. Large deviations to the law of large numbers [46,224, where
such kind of asymptotics are used, suggests a duality batpyesbability calcu-
lus and optimization theory. In some recent studies thidityuzas been formal-
ized [43, 22, 23, 13, 6, 7, 1, 2]. Moreover, large deviatioresralated to statistical
mechanics (for example [24]).
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In this paper we revisit some results on min-plus linearesyst following the
most elementary ideas used in statistical mechanics. Wediall the min-plus
terminology (Section 2.1) and a Perron Frobenius like thiofSection 2.2). Then
we show that a min-plus system can be seen as a mechaniahsgst that the
min-plus eigenvalue corresponds to the energy. The graatacterization of this
eigenvalue is seen as a kind of Mariotte law, or, more priciss the adiabatic
invariant of a mechanical system (Section 2.3). Then, a&ctitin of independent
min-plus systems with finitely many possible dynamics caisden as a “perfect
gas” (Section 3.1) composed of different kind of “molectileSince the dynamic
of the complete system is the tensor min-plus product ofrttliwidual subsystems,
its eigenvalue is the sum of the individual eigenvalues.ntthe Gibbs distribution
can be introduced as the most likely distribution of the paton of min-plus
linear subsystems compatible with the observed eigenvdlilie complete system.
In a standard way, the Cramér transform appears in the daipu of the Gibbs
distribution. The properties of the Cramér transform (®ec3.2) show clearly the
duality existing between probability calculus and optiatian.

The min-plus analogue of probability calculus, called dieci theory, is recalled
(Section 4.1). An ergodic theorem for the analogue of Maitwains, called Bell-
man chains, is given (Section 4.2). In Section 5, aggregatioherency and re-
versibility of Bellman chains are introduced by analogyhwitarkov chains. When
some of these properties are true, it is possible to decoen@scomputation of
the eigenvector of the min-plus system when it is uniquet {th@o decompose the
computation of corresponding value function). This, ppghaew result, illustrates
the interest of this duality.

Finally, in section 6, we briefly indicate how min-plus algelnaturally arises in
large deviation asymptotics. For instance, we show how émeoR eigen-elements
of matrices of the forniexp—(Aj; /€)) converge in the large deviation sense, when
€ decreases to 0, towards the corresponding min-plus eigemeats. Such results,
detailed in [5], suggest that deep connections exist betwda-plus spectral the-
ory and Wentzell-Freidlin perturbation theory.

2. MIN-PLUS LINEARITY GEODESICS AND THERMODYNAMICS
2.1. MIN-PLUS STRUCTURES AND PATHS OF MINIMAL WEIGHT IN A GRAPH

A semiringK is a set endowed with two operations denodnd® where®
is associative, commutative with zero element denetexl is associative, admits
a unit element denotegl and distributes oveb; zero is absorbings(® a = a ®
¢ = ¢ forall a € K). This semiring iscommutativewhen ® is commutative.
A module on a semiring is calledssemimoduleA dioid £ is a semiring which is
idempotentida = a, Va € K). A[commutative, resp. idempoterggmifields a
[commutative, resp. idempotent] semiring whose nonzexmehts are invertible.

The setR U {+o00} endowed with the two operatior® = min, ® = +, is
denotedRnin. This structure is traditionally called min-plus algebitds an idem-
potent semifield withe = +o00 ande = 0. The structuréRnin, completed with
—o00, with the conventiontoo — 0o = 400, is a dioid denote® ;.

We denoteM,,,(K) the semimodule ofn, p)-matrices with entries in the semir-
ing IC. Whenn = p, K = Rnin, We write M. It is a dioid and the matrix product
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in My is
def

[AB]i; = [A® BJj o min[ Ay + Byl -

All the entries of the zero matrix oM,, are +co. The diagonal entries of the
identity matrix of M, are 0, the other entries beirg.

With a matrixC in M, (K), we associate precedence grapf(C) with nodes
N(C) ={1,2,---,n}, and arcsAd(C) = {(X,y) | Cyx # ¢}. Theweight of the
arc (X, y) is Cyy.

A path p of lengthl, with origin x and endy, is an ordered set of nodgs =
(up =X, --- ,u = y). The paths of length 0 can be identified with the nodes. The
weight of path pdenotedw(p), is the®-product of the weights of its arcs. A path
with the same origin and end is callectiacuit. The set of all paths of length
[resp. arbitrary length] with origix and endy is denotedD)'(y(C) [resp. Pyy(C)].
The set of all paths [resp. circuits] is denotBdC) [resp. C(C)]. We have the
following interpretation of the matrix product.

PropPoOsITION2.1. For C € M, we have

inf =C .
PEPLy(C) w(P) = Cyx

The matrixC* def DB, C' exists if we accept entries Rpy,. The entryCy, is
the infimum of the weights of the paths of arbitrary lengthrestingx to y.

ProPoOSITION2.2. For all C € M,, we have

inf =C:, . 2.1
pe%)rly(mw(p) Cyx (2.1)

Moreover if
Cyy=Cyx>0, Cix>0, Vy #x e N(C),
Cy« is a distance.

Proof. Equation (2.1) follows from the interpretation of the matproduct. It is
easy to check th&;, = 0 andCy, < Cy, + CJ,. O

A path achieving the optimum in (2.1) isggodesiqgoining X to y in G(C).

2.2. BGENVALUES AND TURNPIKE
An eigenvalue. and areigenvector Xare solution of
AX=CX, X#¢.

As soon asC is irreducible* (see [28, 29] for the general reducible case) there
exists a unique eigenvalue. The eigenvalue has the foltpgiaph interpretation.

THEOREM2.1. For C € M,, irreducible, one has that
A= min — . (2.2)
ceCc(©) 1(c)

Proof. See [11, Th.3.23]. O

 lyx,y € N(C), Puy(C) £ 1.
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Circuits achieving the optimum in (2.2) are calledgtical circuits. The subgraph
which is the union of the nodes and arcs of the critical ctecig calledcritical
graphand denoted.. It may have several maximal strongly connected subgraphs
(m.s.c.s.)zy, - - - , Zg calledcritical classes

There may exist several eigenvectors associated with genelue. Let us
choose in each critical clag a node denoted; (called the representative) and

denoteZ def {z1,---, 2g}. The eigen-semimodule of an irreducible mat@xs

generated by the eigenvectc{ti&‘zdéf [C.]%, z € Z} whereC, -1 (see [11,

Th.3.2]). These eigenvectors satisfy = e.
THEOREM 2.2. The vectors X for z € Z, form a minimal generating family of
the right eigen-semimodule of the irreducible matrix C.

Similarly the vectorsy? aef [C.];, for z € Z}, form a generating family of the
left eigen-semimodule.
ProPOSITION2.3. If C € M, is such that all its eigenvaluesare nonnegative,
then C =@, C'.

Proof. Any path of length larger thamcontains a circuit with a honnegative weight
thereforeC" > ", C'. O

If the eigenvalue of an irreducible matri is negative CX goes to—oo whenk
goes to+oo and C* is identically equal to-oo. We have the following precise
asymptotics.

THEOREM 2.3 (TURNPIKE). For C € M, irreducible

a%zQp>o:wqu:pw+m,c%ﬂﬁ&gﬂw), (2.3)

2eZ

whereZ denotes the set of the representatives of the critical egs¥ and Y* are
respectively the generating families of the right and lefea-semimodule of C

Proof. This follows from Th.3.104, 3.109 and 3.112 of [11]. O
When the critical graph has only one critical class, (2.3)obees, in standard
notation,

Cly = XZ+ki+ Y7
This result means that, fdrlarge enough, the optimal path of lendthoining x
to y can be decomposed in three optimal paths. The first path ctswédo an
arbitrary nodez of the critical graph. The second is a circuit in the critigedph
starting and ending & The third connectgto y.

This asymptotic result on the min-plus linear recurrenggs; = C Xy can be
extended to the more general recurrences

m—-1
XV:GBQXFL
i=0

Using the delay operatdr((5 X)kd§f Xk_1), this recurrence can be written

X =C@)X, (2.4)
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with
m—1 ]
ce =dpsc.
i=0

These recurrences are sometimes used to describe the dgnafitimed event
graphs (a special class of timed Petri nets such that eack pks only one arc
upstream and one arc downstream, see [11, ch.2]). In thés tas vectorXy has
the interpretation of the numbers of transition firings uplatek.

We can associate a precedence gi@a@b(s)) with the matrixC(8). The weights
of its arcs are now min-plus polynomialsdn Let us suppose that they are mono-
mialg® in §. Then, the weight of a path is also a min-plus monomigb) = c ® &

and we definev.(p) e andwe(p) 2. We still call eigenvalue. and eigenvector
X a pair satisfying
X=ChhHX.
We have the following graph interpretation of the eigenealu
ProPOSITION2.4. Anirreducible matrix @§), with monomial entries, whose cir-
cuitsy € G(C($)) satisfywe(y) > 0, admits the unique eigenvalue :
) — we(y)
yeC(C®) we(y)

Proof. See [11, Th.3.28]. O

(2.5)

In the case of a strongly connected event graph, the eigenisathe number of fir-
ings by unit of time of an arbitrary transition. Equationy@says that the “through-
put” is equal to the infimum, among all the circuits, of the fugmof tokens in the
circuit divided by the total amount of time that the tokenseénto spend in the
places of the circuit (see [11, Sect.3.2.5]).

2.3. MECHANICAL ANALOGY

Let us make an attempt to connect the objects discussedpsyiwith quan-
tities appearing, classically, in mechanics. Let us carstie one dimensional
harmonic oscillator with Lagrangian(x, x) = (X2 — x?)/2. Its Hamiltonian, de-
fined by H(p, X) = sup(px — L(X, X)), is H(p, X) = (p? + x?)/2. We denote
by v(t, y) the extremum of the action

t
A(t, x() = /0 L(X(s), X(s))ds+ ¢ (x(0)) ,

among the continuous piecewise derivable trajectoriasfgiaig x(t) = vy, for a
given initial costp. It is solution of the Hamilton-Jacobi Bellman (HJB) eqoatt

ot aX
Fort small enoughy is indeed the infimum of the action. Then we have

w4 <8_”,x) —0, v(0.X) = $(xX) .

def

(RDZ=v(t.2) =Pz y) @ ¢(y) .
y

2|n fact this assumption subsumes no loss of generality if eeejt to change the realization of
the dynamical system.
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where
X(t)=z

nzy)= @ Atx0).
X0, X(0)=y
Therefore,R; is a min-plus linear operator. We haugy, 0) = s(t)y?/2, wheres
is solution of the Riccati equation

§=—(1+45%, s(0) =+oc0.

Then,s(t) = cotant for0 <t < &. Fort > 7 andy # 0, r¢(y,0 = —oo. The
solution of the HJB equation gives an extremum of the actigmbt an infimum
anymore. Nevertheless the effective trajectories follogev¢haracteristic curves of
the HJIB equation. The dynamics describing the extremaddtajies are given by
the Hamiltonian system
. dH(p,x)
X=— =
ap
aH(p, X)
ax
The trajectories in the phase space (the space of paifs, that isR?) are circles
centered in 0 with radius equal tg2E. The extremal trajectories argt) =
V2E sin(t + «) and p(t) = +/2E cogt + «), whereE is the energy of the system.
This energyE can be seen as the opposite of an eigenvalue of the HIB eguatio
Indeed, if we search for a solution of the fourtt, X) = —Et + wg(X) to the HIB
equation, we have to solve

E:H<%£J>.
X
Two independent real eigenvectors exisg, and—wg, with

WE(X) = Earccos(x/\/i) - <\/2E — xz) X/2

which is defined only for-+/2E < x < +/2E.
The action computed along an extremal circuit of endfgyn the phase space,

is 0. But A(E) def fOT pt)dx(t), where the integral is computed along the ex-
tremal curve of energ¥, andT = 27 (the time to cover a circuit in the phase
space), is equal tor2E (the surface of the circle of radiug2E). The integrand
p(t)dx(t)/dt is twice the kinetic energy and the integi® E) has the unit of an
action. Therefore, we havé = A/T which is analogous to the graph interpreta-
tion of the eigenvalue of an irreducible min-plus matrixe(timit of A corresponds
to the unit of the entries of the min-plus matrices). Foreeng@neral situations we
haved A(E)/dE =T (see [9, Sect. 50]).

Consider a more general harmonic oscillator of Lagrangian

L(X, X) = (M(t)X? — k(t)x?)/2,

wherem(t) andk(t) may vary with time, but, very slowly with respect to the speed
of the oscillator motion (for fixedn andk). In the phase space, the trajectories
look like ellipses varying slowly with the time. Buf\(E(t)) stays constant in
first approximation with respect to the coefficient measutime slowness of the
variation ofm andk. It is called adiabatic invariant (see [9, ch.10, sect. E]).
This adiabatic invariant can be seen as a Mariotte law formarécle. This is
clearer on the example of a particle with massspeedv, in a one dimensional

’
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box of lengthl with perfectly elastic walls. In this case, the motion in fitease
space is a rectangle and the adiabatic invariantmsl 2vhich is equal to twice
the kinetic energy 22mv? (which stays constant along the motion including the
impacts) multiplied byT = 2| /v (the time spent to cover the circuit in the phase
space). Therefore, we hav&E2= A/T = |(2mv/T) where 2nv/ T has the unit
of a force (corresponding to the pressure in the one dimeakitase) exerted on
the wall. We note that the pressure times the volume is egualcbnstant times
the kinetic energy of the particle, that is, its temperature

In the case of event graphs, this adiabatic invariant agpghen the transition
timings change while the number of tokens stays constar.Mdriotte law is the
graph interpretation of the eigenvalue during the vanmtitf the critical circuit
stays constant, we hawd = AT (with N the number of tokens of the critical
circuit, T the time spent in the critical circuit andthe throughput of the event
graph). A thermodynamic theory may be developed based s thiality. For the
time being, the interest of this kind of thermodynamic tlyeemot clear.

3. STATISTICAL MECHANICS AND DUALITY BETWEEN PROBABILITY
AND OPTIMIZATION

If we think in terms of statistical mechanics, the previoest®n was concerned
with one particle. In this section, we consider the analogiua system of inde-
pendent particles (perfect gas) by building a large mirsgystem composed of
independent min-plus subsystems. Following standard adstbf statistical me-
chanics, we give the Gibbs distribution of the min-plus sgbsms. This leads
to introduce naturally the Cramér transform which playsmportant role in the
duality between probability calculus an optimization.

3.1. MIN-PLUS PERFECT GAS

The tensor product of two min-plus rectangular matridemdB is the min-plus
tensor of order 4 denote@l = A® B with entriesC;iir = Aji ® Bji» = Aji +Bjiir.
On the set of such tensors, we define the prodGa®[D]Jii'kk = EB”, Ciirjj ®
Djj/kk/.

PropoOsITION3.1. Given a set of m min-plus matrices & My, such thaiG(A;)
are irreducible, denoting.; their eigenvalues and ¢he identity matrix of dimen-
sion n, we have

GiA) (G X)) = (Rir) (O Xi) , (3.1)

Plecie) © A © (OFL,180] (@i X)) = @iM) (@I X)) ,

|
for all eigenvectorgX;)i—1.n of (A)i=1.n.

Let us consider a system composed\bindependent subsystems (particles) of
k different kinds defined by their min-plus matricés, i = 1, --- , k, which are
supposed to be irreducible with eigenvalugs

The repartition(N;,i = 1,---,k) (with > ; Ni = N) of the N subsystems
among thek possibilities defines the probability

p=pPEN/Ni=1 K.
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The number of possible ways to achieve a given distribufids

M B NT/(NGING! - - N

Using the Stirling formula, we have

K
Sdif(log M)/N ~ —Z pi log pi, whenN — +o0 .
i=1

This gives the asymptotics (with respectNy of the probability to observe the
empirical distributionp in a sample, of sizé\, drawn with the uniform law on
& k.

Let us suppose that we observe the eigenvaluaf the complete system (the
total energy of the complete system in the mechanical agalddnanks to (3.1), it
is given by:

k
E=@&0n" .
i=1
that is

Y pr=ULE/N. (3.2)

Then, in a standard way, tl&&bbs distributionis defined as the one maximizing
Samong all the distributions satisfying the constraint 3.2

THEOREM 3.1. The Gibbs distribution is given by

Ai

pi(6) = o (3.3)
J

wheref achieves the optimum in
m0a>{9U — logE(e™)] .
where) is a random variable taking the valug with probability 1/k.

Proof. The functionp — —S(p) is convex. Therefore we have to minimize a
convex function subject to linear constraints. Let us idtice the Lagrangian

L©. 1w, p) =) (plogp) +p (1— > pi> +0 (U -3 pm) :
i i i
The saddle poingd, u, p)* realizing max max, min, L (0, «, p) gives the Gibbs

distribution. First solving mgxmin, L (6, i, p) we obtain (3.3).
To computed as a function oflU we have to maximize the Lagrangian with

respect t@, that is
o O
m@ax |:0U log ( Ei € >:| ,

which can be written as mgoU — log E(€”*)] — logk , if A is a random variable
with uniform law on(;)i=1.... k. O
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3.2. ORAMER TRANSFORM
The Cramér transformC, associates the convex function
¢, : U suddU — logE, ()]
%

with the probability lawu of a random variablé.. It has appeared naturally (in
the special case wheyeis the uniform law) in computing the parameteof the
Gibbs distribution. Let us recall its well known, importaptoperties.

We remark that the Crameér transform can be WritI(aclete:f FologoL , wherel
is the Laplace transform ar#l the Fenchel transform defined by

[F(©]©) % sugox — cx)] .

Using the properties of the Laplace and Fenchel transforredave

Cr(u*v) =Cr () *Cr (v)

wherex denotes the convolution operator anthe inf-convolution operator de-
fined by

[f»gl(y) =inf[ () +9(y = )] ,

for f andg two functions fromR into Rpin.

Let u be the probability law of a random variab¥ewith meanm and variance
v. From the involution property of the Fenchel transform ancl. (lower semi
continuous) proper convex functions, we have,) = logoL(u) , from which it
is easy to deduce that

c,(m) = mxincu(x), v=1/c/(m).

Moreover, if we denote

1
MP 0% S(x=mi/o), p=1,

a simple calculation shows that
MR o * Mr%,& = Mr?wrm,& ’
with
6 =[P +&P1¥", 1/p+1/p =1.
These properties suggest the existence of a calculus sitoithe probability
calculus, in the min-plus context.

4. ERGODIC THEOREMS FORBELLMAN CHAINS

From the previous remarks on the Cramér transform and thlogy between
Markov transition probabilities matrices and min-plusgifion cost matrices, it is
clear that a duality exists between probability calculugd aptimization. A min-
plus probability theory has been formalized and developdd3, 23, 22, 6, 2, 7,
30]. It uses the theory idempotent measures and integrdisaefov [37] and is
based on probabilities with values in min-plus algebraledatost measures. We
recall here basic definitions and results. Then, we givegodit theorem for finite
state Bellman chains which are the min-plus analogue of Mackains.
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4.1. DECISION THEORY

DEFINITION 4.1. LetU be a topological space affithe set of its open sets. A
finite min-plus idempotent measure @dd, G) is an applicatiorK from G to Ryn
such that

1. K@) =¢

2. K(LnJ G = iqf K(G,) foranyG, € G.

It is a min-plus probability ocost measurd in addition K(U) = e.

Let ¢ be a bounded function frotd to Ry (that is, lower bounded, sinceis
the maximal element ®&,i,). Then,K(G) = infycg c(u) is a min-plus idempotent
measure. IfK has this formc is called adensityof K. Any cost measur& on
(U, G) admits a minimal extensioK, to the power seP(U) of U :

K.(A) = sup K(G).
GDOA,Geg
If U is a separable metrizable spaé&,has necessarily a density. Its minimal
density is equal ta*(x) = K, ({x}) and is lower semicontinuous (l.s.c.) (see [1] or
[33] for a weaker result, see also the related results onciggsin [35]).

In the sequel,xa denotes the min-plus characteristic function of the Aet
xa(X) = eif x € Aand xa(X) = ¢ otherwise. Given any cost measufeon
(U, §), the Maslov integral with respect 1§ is the uniqueRmin-linear formV on
the set of lower bounded upper semicontinuous (u.s.c)timef : U — Ryin
such thatV( f,) decreases, and converges towa¥dd ) when f,, decreases and
converges toward$ andV(xa) = K(A) for A € U/ (see [37, 1]). The integral
V(f) is called thevalueof f : it is one analogue of the expectation. When con-
fusion may occur, we denoteWg (f) or simplyK( f). If the cost measur& has
a density and* is its minimal densityV( f) = inf,cy (f (U) + ¢*(u)). Therefore,
the min-plus equivalent of the Dirac measure in poirig the cost measure with
density x.

Using this formalism, weak convergence and tightness df messures is de-
fined as usual.

DEFINITION 4.2. We say thaK, weakly converges towardg, (K, = K, if
Kn () =, K(f) for any bounded continuotigunction f : U — Ruin.

DEFINITION 4.3. A setK of cost measures is tight iff

fK C: =
sgpﬂégc (Q°) =e=+00,

whereQ are compact sets.

Equivalent definitions of weak convergence, together witinpgactness results
using tightness may be find in [35, 42, 41, 7]. These resuéisamilar to that of
Billingsley [14] on the weak convergence of probabilitie&eak convergence of
cost measures is also related to the epiconvergence ofdiwesities [7] (see [10]
for definitions and results on epiconvergence).

Since the minimal extension of a cost measure is a cost measuhe set of all
subsets oU, the minimal extension of its integral exists and is equah&integral
with respect toK, : it is defined, linear and continuous on all functiohs We

3endowed with the topology defined by the order relation Byelimn xn = x iff lim SuUppy Xn =
liminfy Xn = X).
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denote it also byK or V. We will only consider minimal extensions and densities,
and omit the star.

These results allow us to define all the notions of probgbilieory; some-
times with a change of nhame. The analogue of conditional giitity is called
conditional cost excessK(A|B) = K(AN B) —K(B), for any setsA, B such that
K(B) # ¢. A decision variablgd.v.) with values in a topological spaéeis any
applicationX from U to E. Its cost measur&y is the minimal extension of its
restriction to the topology o defined byKy (V) = K(X~1(V)). Its cost density
is the minimal densitycy of Ky (when it exists). It is the I.s.c. envelope of the
function€x (x) = inf{c(u), u € U and X (u) = x}. Independence of d.v. is defined
using open setgonditional cost excessf a d.v. with respect to another is defined
using minimal densities bgxy (X, ) = Cx v(X, y) — cy(Y); clearly, whenX and
Y take a finite number of valuesyy (X, y) = K(X = x|Y = y). The conditional
value may be defined using the conditional cost. Weak coawery of decision
variables corresponds to that of their cost measures.

A negligible set is such that its cost is equat {dhat is to+oo. Then, a sequence
of decision variablesX,, converges almost suretpwards X iff X,(u) — X(u)
for all u with finite costc(u) < +o0. Contrary to classical probability theory, this
convergence is implied by tlnvergence in cogthe analogue of the convergence
in probability), which implies (resp. is equivalent to) tweak convergence when
the limit is tight (resp. a constant) [22, 1].

In addition to classical notions of probability, we define tptimumO(X) of
adv. X: OX) = {x € E, cx(X) = 0}. Itis another (different from the
value V) analogue of the expectation. Indeed, for a dX.which is the image
C:(X) by the Cramer transform of a random varialle(in the sense that the cost
density of X is the image of the law oK’), the optimum ofX is equal to the
expectation ofX’ (see Section 3.2). If is continuous andX is tight (that is if
Ky is tight), O (f (X)) = f (O(X)) (O(X) is compact). Since the optimum of
a d.v. only depends on its cost measure, we can defineahditional optimum
OX[Y) 1y {xeE, cxy(X,y) =0}.

4.2. ERGODIC THEOREMS FORBELLMAN CHAINS

The analogue of a Markov chain is calleBallman chain Let X, be a Bellman
chain with values in a finite state spakg initial cost densityyy and conditional
cost excesX(Xny1 = Y[Xn = X) = Cyx. Since EN endowed with the product
topology is a separable and metrizable topological spaeesaeg that the decision
variable X = (Xo, X1,...) € EN has a cost densitgx(X) = Y o Cxyixa +
¥ (Xo), wherex = (Xg, X1 ...) (the sum may be equal tboo which is the zero of
Rmin)- Theinitial cost of a chain starting at € Eisy = xx .

We study here the ergodic mean of a function of a Bellman cKairusing the
spectral min-plus theory recalled in Section 2.2. Proofs generalization will be
given in [3]. Results about return time to a state will be giue[45].

For a circuitc = (Xg, ... , X = Xg) € C(C) and a functionf : E — F with
values in a finite dimensional normed vector spkc¢eve denote

f(xp) +---+ f(x)
| .

c(f) =

For a subgraplg of G(C), we denote
G(f) =convc(f),ceC()},
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where conyA) is the convex hull ofA C F.

THEOREM4.1. Let X, be a Bellman chain with values in a finite state space E,
starting at x € E and with conditional cost C. If C irreducible, with a unigue
critical classgG., then

f(X o4+ f(X
(Xo) + . + 1 ”)ﬂz, whenn — +o0 ,

where Z is a d.v. with cost densifi,r, (this is the uniform cost oG (f)),
independently of x.

In order to compare Theorem 4.1 with the ergodic theorem farlkgv chains,
we need to relate the limif.(f) with some expectation of with respect to the
invariant cost measure of the Bellman chain. The uniqueriemticost densityy,
which satisfie€Cy = y, has the nodes @ as optimum. Indeedy, = Cj, for
anyz € G. andy, > 0 whenx ¢ Gc. If Y is a decision variable withy = y then
OCf(Y)) = f(Ge) andGe(f) C O(F(Y)).

COROLLARY 4.1. Lety be the unique invariant cost density of the Bellman chain
of Theorem 4.1. If Y, a d.v. of density is such thatO( f (Y)) is reduced to one
point then

f(X) 4+ -+ F(Xp)
n
where the convergence holds weakly, in cost and almostysurel

A sequenceX,, of independent d.v. with same cost meastirés the partic-
ular case of Bellman chain wheby, = vy. The invariant cost measure s,
O(f(Y)) = O(f(Xy) andGe(f) = conuO( f (X1))). This leads to the follow-
ing law of large numbers which generalizes the results of 422], where the
optimum was supposed to be unique.

COROLLARY 4.2. Let X, be independent d.v. taking a finite number of values in
F,and let Y be a d.v. with uniform cost oanv(Q(X,)), then

Xr 4o X
%g{ whenn — +o0 .

Another case where the limit is “unique” is the following.

COROLLARY 4.3. If the critical graph of the Bellman chain pof Theorem 4.1 is
reduced to one circuit ¢, we have

f(X) +---+ F(Xp)
n
where the convergence holds weakly, in cost and almostysurel

In this case, the séf.(f) is reduced to one poirtt( f). Any optimal trajectory
of the Bellman chain starting &t is deterministic after some finite time, and the
ergodic theorem is reduced to the classical ergodic thetwethe “deterministic”
applicationx; — X, in the critical clas = (Xo, ... , X). The (classical) inva-
riant measure of this application is here the uniform measuc.

However, when the critical graph has more than one circaip@imal trajec-
tory has to choose between several directions at eachdatans of circuits. If we
assign a probability law to choose, at random, between tiliesetions, the trajec-
tory becomes a Markov chain, and the ergodic theorem sayshindimit is the
mean of f with respect to the invariant measure. Theorem 4.1 saysHisatnean

— O(f(Y)), whenn —» +oo,

— ¢(f), whenn —» +o0,
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is always an element @f.(f), but depends on the probability law assigned to the
directions.

If the Bellman chain is irreducible, but with at least twotical classes, the
invariant cost density is not unique, and the limit of the me& f on the chain
depends on the initial point. The corresponding more diffie@sults will be given
in a forthcoming paper [3].

5. LUMPABILITY COHERENCY AND REVERSIBILITY OF BELLMAN
CHAINS

Statistical mechanics is useful to study very large systelrts moderate size
systems the only methods are aggregation or separatiomiables. We study here
aggregation and separation of variables in the context thfra@ chains.

5.1. RESIDUATION, LINEAR PROJECTION AGGREGATION AND COHERENCY

The only invertible min-plus matrices are the diagonal mag multiplied by
permutation matrices. Fortunately, we can use the mormtgmiroperties of min-
plus linear operators to define a minimal supersolution ofesak min-plus system.

For A € Mpp, B € Mnq With entries inRpn, we define

X = A\BY min{X € Mpq | AX > B},

which does exist. We havk, = max; (Bjx — Aji) .
For A € Mpn, B € Mqn, we define also

= B/AY min{X € Mqp | XA> B}.

We haveXy = maxJ (BkJ Aj) .
GivenB : ]Rmm — ]Rmm andC : R, = ]Rmm, we denote inB the image ofB
and defingkerC), = C~ lC(x) which yields a fibration oRmm
Theprojectionof x e Rmm on im B parallel to ketC, denotedP x, is defined by
im B N (kerC), when this set is nonempty and contains a unique elementidn th
case we say that if@ and kelC aretransverse

A necessary and sufficient condition of transversality [j$Zhat
CB((CB)\C) =C, andB = (B/(CB))CB.

Then we have
P =B({(CB)\C) = (B/(CB))C.

Given B [resp. C], there does not always exi€t [respB] such that imB and
kerC are transverse. There exi€€qresp. B] iff B [resp.C] is regular, that is, if
there exists generalized inverse X B, which satisfies, by definitioB X B = B
[resp.C XC = C] (see [16, 17]).

We say thatA is aggregableby C if there existsAc such thatC A = AcC. In

this case, the dynamic systeXa 1 = AXy admits aggregate variabl&g = C X,
satisfying a reduced order dynam¥g,; = Ac Yk.
THEOREM5.1. The matrix A is aggregable by the matrix C iff CGA(AC/C)C.
Moreover if C is regular, A is aggregable with C iff there &si8 satisfying P A=
P AP, where P is the projector am B parallel tokerC. Then, we have A=
CA(B/(CB)).
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Proof. The first part follows directly from the definition of the rdsation. Let us
prove the second part.

SinceC is regular, we know [17] that there exiBtand P such thatCP = C
andPB = B.

The sufficiency condition is obtained by left multiplyirfgA = P AP by C. We
obtain

CPA=CPAP=CAP=CA(B/(CB))C.

The necessary condition is obtained by left multiplyibg = AcC by (B/C B).
We obtain

PA=(B/(CB))CA= (B/(CB))AcC = (B/(CB))AcCP

— (B/(CB))CAP= PAP.
O

We say thatB is coherentwith A if there existsAg such thatAB = B Ag. Then,

if Xo € im B, the dynamical systerXy,1 = AXyx admits coherent variablddy
such thatXy = BUy. The coherent variables follow a reduced order dynamic
Uks1 = AgUk.

THEOREM5.2. The matrix A is coherent with the matrix B iff AB B(B\ AB).
Moreover, if B is regular, the matrix A is coherent with B ffete exists C satisfy-
ing AP = P AP, where P is a projector om B parallel tokerC. Then, we have
Ag = ((CB)\C)AB.

Proof. The proof is dual to the proof of the previous theorem. O

All the results about lumpability and reversibility givem[R0] can be extended
to the min-plus context because they are purely combirsdtoesults. We recall
them here because they give new results about aggregatibdegomposition of
dynamic programming equations.

5.2. REVERSIBILITY

Let us consider an irreducible matrik € M,, with a unique critical class. The
eigen-semimodule associated to its unique eigenvaluensrgied by only one
eigenvector. DenotingV = diagv, we havev = V E, whereE is then-vector

with entriese. We haveAV E = V E, thereforeV 1AV E = E which means that

A% v AV-1 hasE' as left eigenvector. It is the transition matrix of a Bellman

chain.
The matrixA is saidreversiblewhen A = A. A reversible matrices is normal-
ized. It is quite easy to compute the right eigenvector olvangble matrix.

THEOREM 5.3. For a reversible matrix A (with right eigenvecto) and a path p
fromi to j we have

vj Ack

U wkep A

Proof. The proof is immediate from the equaliV = V A satisfied byA. O
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5.3. LUMPABILITY AND COHERENCY

Let us consider a dynamic system with transition ma#ixAggregation ofA
by the characteristic functio@ of a partition of the states is called lumpability.

More precisely, if we denote the state spacefby {1, --- , n} and if we con-
sider a partitiori/ of the states, the characteristic functidnof the partition/ is
defined by

uuz{e'f'el VieS del.

e if i¢gd,
The matrixA is saidlumpableif it is aggregable by the matri€ = U’.
Let us consider a weight diagonal matkit = diag(ws, - - - , wn), wherew is

normalized (that i€'w = €), with nonzero entries. Then, the mat&= U'WU
is diagonal. Takingd = WU S, we haveC B = e, thenB andC are transverse
andP = BC. We have the following easy result.

THEOREM5.4. Ais lumpable iff for all JK € U,
~  def
AKJ g @ Ak] ’ (51)

keK
is independent of the choice ofg) J. Then, A = A = CAB for all admissible
weightsw.

In the following section we will only consider coherency wihe matrixB =
WU S Itis important to see that this matrix is a conditional ceith respect to
the partitionl{. Indeed, we have

y def

Bjs = wiy = if j € J, ¢ otherwise.

i B

@keJ Wk

THEOREM5.5. If A is normalized and coherent (with weightand partitionZ(),
then there exists a right eigenvector q of A satisfyiffg=gw.

Proof. If Ais B coherent, we havAB = B Ag. Denotingg any eigenvector of
Ag, we see that] = B{ is an eigenvector of. The result follows frong =
B = w". O
DenotingA = W AW, itis clear that:
e if Ais C-aggregable thed is B-coherent,
o if Ais B-coherent therd is C-aggregable,
e if AP = APthenA = A and aggregability and coherency imply each other.

When A is simultaneously aggregable and coherent, it is possidetompose
the computation of an eigenvector.

THEOREM5.6. For A lumpable and coherent with respect to the partitiéand
the weightw, there exists an eigenvector q satisfying

9 =0a), ¥Yjed Viel,
d=Aq, AVq] =A;0],

where ¢ is the nonzero part of Y4 A;; is defined by (5.1) and 'R is the Jth
diagonal block of A (having the size the number of elemerttseddet J).
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Proof. We have only to prove thad’Jq] = A;;q’. The other facts amount to
rephrasing Theorem 5.5. From the structurdBpfAB = B Ag andg” = w" we
see thatA? g} = (Ag);,07. Thanks to the lumpability assumption we know that
the aggregate matrix is given by (5.1). O

5.4. RARTIAL REVERSIBILITY

It is possible to compute in a decomposed way the eigenvéstmposed to
be unique) of a matriXA under another assumption. We say that the marig
partially reversibleif it satisfiesAQU = Q AU, with Q = diagq, for g = Ag.
PrROPOSITIONS.1. The following statements are equivalent:

1. Ais partially reversible;

2. Djes Al = Djea Akl VI K

3. AP = AP, with P= B(q)C.

Under partial reversibility, we can decompose the comjartaif q but the local
problems that we have to solve are different from those opthegious section.

COROLLARY 5.1. The right eigenvector g of a partially reversible matrix Aisa
fiesq = g;q7 with A = gand A”q] = D’q/, where D’ = diag(®;cs Ak, k €
J).

Proof. This result is a rephrasing of statement 2 of the previoupgsition. [

The following result gives the relation existing betweergragability coherency
and reversibility.

THEOREM5.7. Under partial reversibility of a matrix A, aggregability dnco-
herency imply each other and the aggregate madiis reversible.

Under aggregability and coherency of the matrix A and thersibility of the
aggregateA, we have

AP=PA=PAP=PAP=AP=PA.

6. EPILOGUE: MIN-PLUS ALGEBRA AND LARGE DEVIATION
ASYMPTOTICS

In the above sections, we tried to set up connections betstaéintical physics
and discrete event systems, and between probability cal@nd decision calcu-
lus. These connections were mostly motivatedamalogies As a conclusion,
we would like to point out different connections, motivatagdasymptotics Such
connections are presented in detail in [5].

As pointed out in the introduction, min-plus algebra can bensas an as-
ymptotic deformation of usual algebra. Formally, consitter semifieldR, =
(R U {400}, &, +), with

a®. b= —cloge® +e®) .

This semifield was already introduced by Maslov in [37] (S&4] for a more re-
cent presentation) and by Pap in [39]. Clearly, for any nersz/alue ofe, R, is
isomorphic to the ordinary semifield of non-negative intsgéR*, +, x). How-
ever,

lim a®, b=min(a, b) .

e—0t
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Hence, the min-plus semifie®,, can be seen as the limit of the semifidd.
This elementary observation supports the following gdrgmanciple”, that the
objects which appear in large deviation type asymptotie® main-plus algebraic
properties. As an illustration of this principle, we will@k how min-plus spectral
theory can help us to determine the asymptotics of non-ivegspectral elements
of non-negative matrices. A different illustration, whiaates the large deviation
principle with weak convergence &.-additive measures in the family of semi-
fields{R.}, is given in [4].

With a matrixA € (RU {+00})"™*", that isirreduciblein the min-plus sense (see
section 2.2), we associate the non-negative matrix

A
A=(€"),
and look for the normalized Perron eigenvedtiprand Perron eigenvalue, which
are defined by

AU =2U., Vie{l...,n, U)i=0 > Uy =1.
1<j<n
In the sequel, we will use the notation Ilszzg?if (log X, ... ,logx,) for vectors.
Consider
U= €|Ln3+ —clogU,, A= e"jc}+ —clogi, . (6.1)

Such limits arise for instance in the study of low-tempa®isymptotics of one-
dimensional Ising type models with transfer matfx. In this context,. can be
interpreted as the free energy per site at zero temperatndd) is an “effective
potential”. See e.g. [12], and [15] for a direct max-plusshigaic approach.

The existence of the limits in (6.1) can be derived from thistexce of a (gen-
eralized) Puiseux expansion foy. Clearly,U anda are solution of the min-plus
spectral problem:

AU =10U . (6.2)

Therefore, we obtain as a consequence of the min-plus spéstrorem (Theo-
rem 2.2) the following result.

THEOREMG.1. Let A € (R U {+o00})™" be an irreduciblé matrix. Theni =
lim._.o+ —€log A, is the unique min-plus eigenvalue of A.

The argument is detailed in [28, Ch.IV],[5].

If A has a uniqueritical class(see section 2.2), it has a unique eigenvector up
to a proportionality factor, thus, the limit = lim._,o+ —¢ log U, is well character-
ized by (6.2), together with mjn; -, U; = 0, which follows from the normalization
condition onU.. However (and this is probably the main difference betweanr m
plus spectral theory and Perron-Frobenius theory), adunible matrixA has in
general several non-proportional eigenvectors (see €ne@:2). This raises the
problem of deciding which particular min-plus eigenvedsoselected by the limit
procedure (6.1). The solution to this problem, given in [Blies on an aggregation
procedure which is analogous to the cycle aggregation intx&8s-reidlin theory
(although specific technical difficulties arise due to theegize of “river networks”
explicit formulae for the principal cofactors of the non-atige but non-Markov
matrix A.). At each aggregation level, a new spectral problem in nhis-plgebra

4In the min-plus sense.



18 J.P. QUADRAT AND MAX-PLUS WORKING GROUP

has to be solved, and the eigenvedtois finally obtained as a product of matrices,
whose columns are formed by solutions of these min-plustsgdgmoblems.

THANKS. We thank a referee for the remarks he made about the papeti\zl
this paper is only a first attempt to connect min-plus theaith the most elemen-
tary notions of statistical mechanics. Deeper results mapavements of the point
of view are still to be done.
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