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MIN-PLUS LINEARITY AND STATISTICAL MECHANICS

J.P. QUADRAT AND MAX-PLUS WORKING GROUP

ABSTRACT. We revisit some results obtained recently in min-plus algebra fol-
lowing the ideas of statistical mechanics. Computation of geodesics in a graph
can be done by min-plus matrix products. A min-plus matrix isseen as a kind
of finite states mechanical system. The energy of this systemis the eigenvalue
of its min-plus matrix. The graph interpretation of the eigenvalue may be seen
as a kind of Mariotte law. The Cramer transform is introducedby statistics on
populations of independent min-plus linear systems seen asa kind of perfect gas.
It transforms probability calculus in what we call decisioncalculus. Then, dy-
namic programming equations, which are min-plus linear recurrences, may be
seen as min-plus Kolmogorov equations for Markov chains. Anergodic theorem
for Bellman chains, analogue of Markov chains, is given. Themin-plus coun-
terparts of aggregation, coherency, and reversibility of Markov chains are then
studied. They provide new decomposition results to computesolutions of dy-
namic programming equations. Finally, some links between Wentzell-Freidlin
asymptotics and min-plus algebra are described.

1. INTRODUCTION

Min-plus algebra, which is the set of real numbers endowed with the min and
the plus operations, has been studied for a long time mainly in operations re-
search. Within this mathematical structure, dynamic programming or Hamilton
Jacobi equations become linear equations (for example see [37, 36]).

This algebra has been used to describe, linearly, systems inwhich synchroniza-
tion is the main driving mechanism. Applications may be found in production
systems, transportation and parallel computations [11]. For example, to achieve a
task, in a production system, a machine and a part are needed.A task can start only
at the supremum of the availability times of the machine and the part.

Min-plus algebra appears also in asymptotic computations.Indeed

ǫn + ǫm ≃ ǫmin(n,m) ,

whenǫ is small. Large deviations to the law of large numbers [46, 24, 21], where
such kind of asymptotics are used, suggests a duality between probability calcu-
lus and optimization theory. In some recent studies this duality has been formal-
ized [43, 22, 23, 13, 6, 7, 1, 2]. Moreover, large deviations are related to statistical
mechanics (for example [24]).
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In this paper we revisit some results on min-plus linear systems following the
most elementary ideas used in statistical mechanics. We first recall the min-plus
terminology (Section 2.1) and a Perron Frobenius like theorem (Section 2.2). Then
we show that a min-plus system can be seen as a mechanical system and that the
min-plus eigenvalue corresponds to the energy. The graph characterization of this
eigenvalue is seen as a kind of Mariotte law, or, more precisely, as the adiabatic
invariant of a mechanical system (Section 2.3). Then, a collection of independent
min-plus systems with finitely many possible dynamics can beseen as a “perfect
gas” (Section 3.1) composed of different kind of “molecules”. Since the dynamic
of the complete system is the tensor min-plus product of the individual subsystems,
its eigenvalue is the sum of the individual eigenvalues. Then the Gibbs distribution
can be introduced as the most likely distribution of the population of min-plus
linear subsystems compatible with the observed eigenvalueof the complete system.
In a standard way, the Cramér transform appears in the computation of the Gibbs
distribution. The properties of the Cramér transform (Section 3.2) show clearly the
duality existing between probability calculus and optimization.

The min-plus analogue of probability calculus, called decision theory, is recalled
(Section 4.1). An ergodic theorem for the analogue of Markovchains, called Bell-
man chains, is given (Section 4.2). In Section 5, aggregation, coherency and re-
versibility of Bellman chains are introduced by analogy with Markov chains. When
some of these properties are true, it is possible to decompose the computation of
the eigenvector of the min-plus system when it is unique (that is, to decompose the
computation of corresponding value function). This, perhaps new result, illustrates
the interest of this duality.

Finally, in section 6, we briefly indicate how min-plus algebra naturally arises in
large deviation asymptotics. For instance, we show how the Perron eigen-elements
of matrices of the form(exp−(Ai j /ǫ)) converge in the large deviation sense, when
ǫ decreases to 0, towards the corresponding min-plus eigen-elements. Such results,
detailed in [5], suggest that deep connections exist between min-plus spectral the-
ory and Wentzell-Freidlin perturbation theory.

2. MIN-PLUS LINEARITY GEODESICS AND THERMODYNAMICS

2.1. MIN-PLUS STRUCTURES AND PATHS OF MINIMAL WEIGHT IN A GRAPH

A semiringK is a set endowed with two operations denoted⊕ and⊗ where⊕
is associative, commutative with zero element denotedε, ⊗ is associative, admits
a unit element denotede, and distributes over⊕; zero is absorbing (ε ⊗ a = a ⊗
ε = ε for all a ∈ K). This semiring iscommutativewhen⊗ is commutative.
A module on a semiring is called asemimodule. A dioid K is a semiring which is
idempotent (a⊕a = a, ∀a ∈ K). A [commutative, resp. idempotent]semifieldis a
[commutative, resp. idempotent] semiring whose nonzero elements are invertible.

The setR ∪ {+∞} endowed with the two operations⊕ = min, ⊗ = +, is
denotedRmin. This structure is traditionally called min-plus algebra.It is an idem-
potent semifield withε = +∞ ande = 0. The structureRmin, completed with
−∞, with the convention+∞ − ∞ = +∞, is a dioid denotedRmin.

We denoteMnp(K) the semimodule of(n, p)-matrices with entries in the semir-
ingK. Whenn = p,K = Rmin, we writeMn. It is a dioid and the matrix product
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inMn is

[ AB] i j
def= [ A ⊗ B] i j

def= min
k

[ Aik + Bkj ] .

All the entries of the zero matrix ofMn are+∞. The diagonal entries of the
identity matrix ofMn are 0, the other entries being+∞.

With a matrixC in Mn(K), we associate aprecedence graphG(C) with nodes
N (C) = {1,2, · · · ,n}, and arcsA(C) = {(x, y) | Cyx 6= ε}. Theweight of the
arc (x, y) is Cyx.

A path p of length l , with origin x and endy, is an ordered set of nodesp =
(u0 = x, · · · ,ul = y). The paths of length 0 can be identified with the nodes. The
weight of path p, denotedw(p), is the⊗-product of the weights of its arcs. A path
with the same origin and end is called acircuit. The set of all paths of lengthl
[resp. arbitrary length] with originx and endy is denotedP l

xy(C) [resp.Pxy(C)].
The set of all paths [resp. circuits] is denotedP(C) [resp. C(C)]. We have the
following interpretation of the matrix product.

PROPOSITION2.1. For C ∈ Mn we have

inf
p∈P l

xy(C)
w(p) = Cl

yx .

The matrixC∗ def=
⊕∞

i=0 Ci exists if we accept entries inRmin. The entryC∗
yx is

the infimum of the weights of the paths of arbitrary length connectingx to y.

PROPOSITION2.2. For all C ∈ Mn we have

inf
p∈Pxy(C)

w(p) = C∗
yx . (2.1)

Moreover if

Cxy = Cyx > 0, Cxx ≥ 0, ∀y 6= x ∈ N (C) ,
C∗

yx is a distance.

Proof. Equation (2.1) follows from the interpretation of the matrix product. It is
easy to check thatC∗

xx = 0 andC∗
yx ≤ C∗

yz + C∗
zx.

A path achieving the optimum in (2.1) is ageodesicjoining x to y in G(C).

2.2. EIGENVALUES AND TURNPIKE

An eigenvalueλ and aneigenvector Xare solution of

λX = C X, X 6= ε .

As soon asC is irreducible1 (see [28, 29] for the general reducible case) there
exists a unique eigenvalue. The eigenvalue has the following graph interpretation.

THEOREM 2.1. For C ∈ Mn, irreducible, one has that

λ = min
c∈C(C)

w(c)

l (c)
. (2.2)

Proof. See [11, Th.3.23].

1∀x, y ∈ N (C), Pxy(C) 6= ∅.
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Circuits achieving the optimum in (2.2) are calledcritical circuits. The subgraph
which is the union of the nodes and arcs of the critical circuits is calledcritical
graphand denotedGc. It may have several maximal strongly connected subgraphs
(m.s.c.s.)z1, · · · , zg calledcritical classes.

There may exist several eigenvectors associated with one eigenvalue. Let us
choose in each critical classzi a node denotedzi (called the representative) and

denoteZ
def= {z1, · · · , zg}. The eigen-semimodule of an irreducible matrixC is

generated by the eigenvectors{Xz def= [Cλ]∗.z, z ∈ Z} whereCλ
def= λ−1C (see [11,

Th.3.2]). These eigenvectors satisfyXz
z = e.

THEOREM 2.2. The vectors Xz, for z ∈ Z, form a minimal generating family of
the right eigen-semimodule of the irreducible matrix C.

Similarly the vectorsYz def= [Cλ]∗z., for z ∈ Z}, form a generating family of the
left eigen-semimodule.

PROPOSITION2.3. If C ∈ Mn is such that all its eigenvaluesλ are nonnegative,
then C∗ =

⊕n−1
i=0 Ci .

Proof. Any path of length larger thann contains a circuit with a nonnegative weight
thereforeCn ≥

⊕n−1
i=0 Ci .

If the eigenvalue of an irreducible matrixC is negative,Ck goes to−∞ whenk
goes to+∞ andC∗ is identically equal to−∞. We have the following precise
asymptotics.

THEOREM 2.3 (TURNPIKE). For C ∈ Mn irreducible

∃k0 ≥ 0, ρ > 0 : ∀k ≥ 0, q = ρ(k + k0), Cq = λq

(

⊕

z∈Z
XzYz

)

, (2.3)

whereZ denotes the set of the representatives of the critical classes, Xz and Yz are
respectively the generating families of the right and left eigen-semimodule of Cρ.

Proof. This follows from Th.3.104, 3.109 and 3.112 of [11].

When the critical graph has only one critical class, (2.3) becomes, in standard
notation,

Ck
yx = Xz

y + kλ+ Yz
x .

This result means that, fork large enough, the optimal path of lengthk joining x
to y can be decomposed in three optimal paths. The first path connects x to an
arbitrary nodez of the critical graph. The second is a circuit in the criticalgraph
starting and ending atz. The third connectsz to y.

This asymptotic result on the min-plus linear recurrencesXk+1 = C Xk can be
extended to the more general recurrences

Xk =
m−1
⊕

i=0

Ci Xk−i .

Using the delay operatorδ ((δX)k
def= Xk−1), this recurrence can be written

X = C(δ)X , (2.4)
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with

C(δ) =
m−1
⊕

i=0

δi Ci .

These recurrences are sometimes used to describe the dynamics of timed event
graphs (a special class of timed Petri nets such that each place has only one arc
upstream and one arc downstream, see [11, ch.2]). In this case, the vectorXk has
the interpretation of the numbers of transition firings up todatek.

We can associate a precedence graphG(C(δ))with the matrixC(δ). The weights
of its arcs are now min-plus polynomials inδ. Let us suppose that they are mono-
mials2 in δ. Then, the weight of a path is also a min-plus monomialw(p) = c⊗ δt

and we definewc(p)
def= c andwe(p)

def= t . We still call eigenvalueλ and eigenvector
X a pair satisfying

X = C(λ−1)X .

We have the following graph interpretation of the eigenvalue.

PROPOSITION2.4. An irreducible matrix C(δ), with monomial entries, whose cir-
cuitsγ ∈ G(C(δ)) satisfywe(γ ) > 0, admits the unique eigenvalue :

λ = inf
γ∈C(C(δ))

wc(γ )

we(γ )
. (2.5)

Proof. See [11, Th.3.28].

In the case of a strongly connected event graph, the eigenvalue is the number of fir-
ings by unit of time of an arbitrary transition. Equation (2.5) says that the “through-
put” is equal to the infimum, among all the circuits, of the number of tokens in the
circuit divided by the total amount of time that the tokens have to spend in the
places of the circuit (see [11, Sect.3.2.5]).

2.3. MECHANICAL ANALOGY

Let us make an attempt to connect the objects discussed previously with quan-
tities appearing, classically, in mechanics. Let us consider the one dimensional
harmonic oscillator with LagrangianL(ẋ, x) = (ẋ2 − x2)/2. Its Hamiltonian, de-
fined by H(p, x) = suṗx(pẋ − L(ẋ, x)), is H(p, x) = (p2 + x2)/2. We denote
by v(t, y) the extremum of the action

A(t, x()) =
∫ t

0
L(ẋ(s), x(s))ds+ φ(x(0)) ,

among the continuous piecewise derivable trajectories satisfying x(t) = y, for a
given initial costφ. It is solution of the Hamilton-Jacobi Bellman (HJB) equation :

∂v

∂t
+ H

(

∂v

∂x
, x

)

= 0, v(0, x) = φ(x) .

For t small enough,v is indeed the infimum of the action. Then we have

(Rtφ)(z)
def= v(t, z) =

⊕

y

r t (z, y)⊗ φ(y) ,

2In fact this assumption subsumes no loss of generality if we accept to change the realization of
the dynamical system.
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where

r t(z, y) =
x(t)=z
⊕

x(), x(0)=y

A(t, x()) .

Therefore,Rt is a min-plus linear operator. We haver t (y,0) = s(t)y2/2, wheres
is solution of the Riccati equation

ṡ = −(1 + s2), s(0) = +∞ .

Then,s(t) = cotant for 0 ≤ t < π . For t ≥ π andy 6= 0, r t(y,0) = −∞. The
solution of the HJB equation gives an extremum of the action but not an infimum
anymore. Nevertheless the effective trajectories follow the characteristic curves of
the HJB equation. The dynamics describing the extremal trajectories are given by
the Hamiltonian system

ẋ = ∂H(p, x)

∂p
= p ,

ṗ = −∂H(p, x)

∂x
= −x .

The trajectories in the phase space (the space of pairs(x, p), that isR2) are circles
centered in 0 with radius equal to

√
2E. The extremal trajectories arex(t) =√

2E sin(t + α) andp(t) =
√

2E cos(t + α), whereE is the energy of the system.
This energyE can be seen as the opposite of an eigenvalue of the HJB equation.
Indeed, if we search for a solution of the formv(t, x) = −Et +wE(x) to the HJB
equation, we have to solve

E = H

(

∂wE

∂x
, x

)

.

Two independent real eigenvectors exist,wE and−wE, with

wE(x) = Earccos
(

x/
√

2E
)

−
(
√

2E − x2
)

x/2 ,

which is defined only for−
√

2E ≤ x ≤
√

2E.
The action computed along an extremal circuit of energyE, in the phase space,

is 0. But A(E)
def=

∫ T
0 p(t)dx(t), where the integral is computed along the ex-

tremal curve of energyE, andT = 2π (the time to cover a circuit in the phase
space), is equal to 2πE (the surface of the circle of radius

√
2E). The integrand

p(t)dx(t)/dt is twice the kinetic energy and the integralA(E) has the unit of an
action. Therefore, we haveE = A/T which is analogous to the graph interpreta-
tion of the eigenvalue of an irreducible min-plus matrix (the unit of A corresponds
to the unit of the entries of the min-plus matrices). Fore more general situations we
haved A(E)/dE = T (see [9, Sect. 50]).

Consider a more general harmonic oscillator of Lagrangian

L(ẋ, x) = (m(t)ẋ2 − k(t)x2)/2 ,

wherem(t) andk(t)may vary with time, but, very slowly with respect to the speed
of the oscillator motion (for fixedm andk). In the phase space, the trajectories
look like ellipses varying slowly with the time. But,A(E(t)) stays constant in
first approximation with respect to the coefficient measuring the slowness of the
variation of m and k. It is called adiabatic invariant (see [9, ch.10, sect. E]).
This adiabatic invariant can be seen as a Mariotte law for oneparticle. This is
clearer on the example of a particle with massm, speedv, in a one dimensional
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box of lengthl with perfectly elastic walls. In this case, the motion in thephase
space is a rectangle and the adiabatic invariant is 2mvl which is equal to twice
the kinetic energy 1/2mv2 (which stays constant along the motion including the
impacts) multiplied byT = 2l/v (the time spent to cover the circuit in the phase
space). Therefore, we have 2E = A/T = l (2mv/T) where 2mv/T has the unit
of a force (corresponding to the pressure in the one dimensional case) exerted on
the wall. We note that the pressure times the volume is equal to a constant times
the kinetic energy of the particle, that is, its temperature.

In the case of event graphs, this adiabatic invariant appears when the transition
timings change while the number of tokens stays constant. The Mariotte law is the
graph interpretation of the eigenvalue during the variation. If the critical circuit
stays constant, we haveN = λT (with N the number of tokens of the critical
circuit, T the time spent in the critical circuit andλ the throughput of the event
graph). A thermodynamic theory may be developed based on this equality. For the
time being, the interest of this kind of thermodynamic theory is not clear.

3. STATISTICAL MECHANICS AND DUALITY BETWEEN PROBABILITY

AND OPTIMIZATION

If we think in terms of statistical mechanics, the previous section was concerned
with one particle. In this section, we consider the analogueof a system of inde-
pendent particles (perfect gas) by building a large min-plus system composed of
independent min-plus subsystems. Following standard methods of statistical me-
chanics, we give the Gibbs distribution of the min-plus subsystems. This leads
to introduce naturally the Cramér transform which plays animportant role in the
duality between probability calculus an optimization.

3.1. MIN-PLUS PERFECT GAS

The tensor product of two min-plus rectangular matricesA andB is the min-plus
tensor of order 4 denotedC = A⊙B with entriesC j j ′i i ′ = A j i ⊗B j ′i ′ = A j i +B j ′i ′ .
On the set of such tensors, we define the product [C ⊗ D] i i ′kk′ =

⊕

j j ′ Ci i ′ j j ′ ⊗
D j j ′kk′ .

PROPOSITION3.1. Given a set of m min-plus matrices Ai ∈ Mni such thatG(Ai )

are irreducible, denotingλi their eigenvalues and ei the identity matrix of dimen-
sion ni , we have

(⊙i Ai )(⊙i Xi ) = (⊗iλi )(⊙i Xi ) , (3.1)

⊕

i

[

(⊙i−1
k=1ek)⊙ Ai ⊙ (⊙m

k=i+1ek)
]

(⊙i Xi ) = (⊕iλi )(⊙i Xi ) ,

for all eigenvectors(Xi )i=1,n of (Ai )i=1,n.

Let us consider a system composed ofN independent subsystems (particles) of
k different kinds defined by their min-plus matricesAi , i = 1, · · · , k, which are
supposed to be irreducible with eigenvaluesλi .

The repartition(Ni , i = 1, · · · , k) (with
∑

i Ni = N) of the N subsystems
among thek possibilities defines the probability

p = (pi
def= Ni /N, i = 1, · · · , k) .
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The number of possible ways to achieve a given distributionp is

M
def= N!/(N1!N2! · · · Nk!) .

Using the Stirling formula, we have

S
def= (log M)/N ∼ −

k
∑

i=1

pi log pi , whenN → +∞ .

This gives the asymptotics (with respect toN) of the probability to observe the
empirical distributionp in a sample, of sizeN, drawn with the uniform law on
(1, · · · , k).

Let us suppose that we observe the eigenvalueE of the complete system (the
total energy of the complete system in the mechanical analogy). Thanks to (3.1), it
is given by:

E =
k
⊗

i=1

(λi )
Ni .

that is
∑

i

piλi = U
def= E/N . (3.2)

Then, in a standard way, theGibbs distributionis defined as the one maximizing
Samong all the distributions satisfying the constraint (3.2).

THEOREM 3.1. The Gibbs distribution is given by

pi (θ) = eθλi

∑

j eθλ j
, (3.3)

whereθ achieves the optimum in

max
θ

[θU − logE (eθλ)] .

whereλ is a random variable taking the valueλi with probability1/k.

Proof. The function p 7→ −S(p) is convex. Therefore we have to minimize a
convex function subject to linear constraints. Let us introduce the Lagrangian

L(θ, µ, p) =
∑

i

(pi log pi )+ µ

(

1 −
∑

i

pi

)

+ θ

(

U −
∑

i

piλi

)

.

The saddle point(θ, µ, p)∗ realizing maxθ maxµ minp L(θ, µ, p) gives the Gibbs
distribution. First solving maxµ minp L(θ, µ, p) we obtain (3.3).

To computeθ as a function ofU we have to maximize the Lagrangian with
respect toθ , that is

max
θ

[

θU − log

(

∑

i

eθλi

)]

,

which can be written as maxθ [θU − logE(eθλ )] − logk , if λ is a random variable
with uniform law on(λi )i=1,··· ,k.
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3.2. CRAMÉR TRANSFORM

TheCramér transformCr associates the convex function

cµ : U 7→ sup
θ

[θU − logEµ (e
θλ)]

with the probability lawµ of a random variableλ. It has appeared naturally (in
the special case whereµ is the uniform law) in computing the parameterθ of the
Gibbs distribution. Let us recall its well known, important, properties.

We remark that the Cramér transform can be writtenCr
def= F ◦ log◦L , whereL

is the Laplace transform andF the Fenchel transform defined by

[F(c)](θ)
def= sup

x
[θx − c(x)] .

Using the properties of the Laplace and Fenchel transforms,we have

Cr (µ ∗ ν) = Cr (µ) ⋆ Cr (ν) ,

where∗ denotes the convolution operator and⋆ the inf-convolution operator de-
fined by

[ f ⋆ g](y) = inf
x

[ f (x)+ g(y − x)] ,

for f andg two functions fromR into Rmin.
Letµ be the probability law of a random variableX with meanm and variance

v. From the involution property of the Fenchel transform on l.s.c. (lower semi
continuous) proper convex functions, we haveF(cµ) = log◦L(µ) , from which it
is easy to deduce that

cµ(m) = min
x

cµ(x), v = 1/c′′
µ(m) .

Moreover, if we denote

M

p
m,σ (x)

def= 1

p
(|x − m|/σ )p, p ≥ 1 ,

a simple calculation shows that

M

p
m,σ ⋆M

p
m̄,σ̄ = M

p
m+m̄,σ̂ ,

with
σ̂ = [σ p′ + σ̄ p′

]1/p′
, 1/p + 1/p′ = 1 .

These properties suggest the existence of a calculus similar to the probability
calculus, in the min-plus context.

4. ERGODIC THEOREMS FORBELLMAN CHAINS

From the previous remarks on the Cramér transform and the analogy between
Markov transition probabilities matrices and min-plus transition cost matrices, it is
clear that a duality exists between probability calculus and optimization. A min-
plus probability theory has been formalized and developed in [13, 23, 22, 6, 2, 7,
30]. It uses the theory idempotent measures and integrals ofMaslov [37] and is
based on probabilities with values in min-plus algebra, called cost measures. We
recall here basic definitions and results. Then, we give an ergodic theorem for finite
state Bellman chains which are the min-plus analogue of Markov chains.
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4.1. DECISION THEORY

DEFINITION 4.1. LetU be a topological space andG the set of its open sets. A
finite min-plus idempotent measure on(U,G) is an applicationK from G to Rmin

such that

1. K (∅) = ε

2. K (∪
n

Gn) = inf
n
K (Gn) for anyGn ∈ G.

It is a min-plus probability orcost measureif in additionK (U) = e.

Let c be a bounded function fromU to Rmin (that is, lower bounded, sinceε is
the maximal element ofRmin). Then,K (G) = infu∈G c(u) is a min-plus idempotent
measure. IfK has this form,c is called adensityof K . Any cost measureK on
(U,G) admits a minimal extensionK ∗ to the power setP(U) of U :

K ∗(A) = sup
G⊃A,G∈G

K (G).

If U is a separable metrizable space,K has necessarily a density. Its minimal
density is equal toc∗(x) = K ∗({x}) and is lower semicontinuous (l.s.c.) (see [1] or
[33] for a weaker result, see also the related results on capacities in [35]).

In the sequel,χA denotes the min-plus characteristic function of the setA :
χA(x) = e if x ∈ A andχA(x) = ε otherwise. Given any cost measureK on
(U,G), the Maslov integral with respect toK is the uniqueRmin-linear formV on
the set of lower bounded upper semicontinuous (u.s.c.) functions f : U → Rmin

such thatV( fn) decreases, and converges towardsV( f ) when fn decreases and
converges towardsf andV(χA) = K (A) for A ∈ U (see [37, 1]). The integral
V( f ) is called thevalueof f : it is one analogue of the expectation. When con-
fusion may occur, we denote itV

K

( f ) or simplyK ( f ). If the cost measureK has
a density andc∗ is its minimal density,V( f ) = infu∈U ( f (u)+ c∗(u)). Therefore,
the min-plus equivalent of the Dirac measure in pointx is the cost measure with
densityχx.

Using this formalism, weak convergence and tightness of cost measures is de-
fined as usual.

DEFINITION 4.2. We say thatK n weakly converges towardsK , (K n
w→ K ), if

K n( f )→n K ( f ) for any bounded continuous3 function f : U → Rmin.

DEFINITION 4.3. A setK of cost measures is tight iff

sup
Q

inf
K∈K

K (Qc) = ε = +∞ ,

whereQ are compact sets.

Equivalent definitions of weak convergence, together with compactness results
using tightness may be find in [35, 42, 41, 7]. These results are similar to that of
Billingsley [14] on the weak convergence of probabilities.Weak convergence of
cost measures is also related to the epiconvergence of theirdensities [7] (see [10]
for definitions and results on epiconvergence).

Since the minimal extension of a cost measure is a cost measure on the set of all
subsets ofU , the minimal extension of its integral exists and is equal tothe integral
with respect toK ∗ : it is defined, linear and continuous on all functionsf . We

3endowed with the topology defined by the order relation (i.e.by limn xn = x iff lim supn xn =
lim infn xn = x).
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denote it also byK or V. We will only consider minimal extensions and densities,
and omit the star.

These results allow us to define all the notions of probability theory; some-
times with a change of name. The analogue of conditional probability is called
conditional cost excess: K (A|B) = K (A∩ B)−K (B), for any setsA, B such that
K (B) 6= ε. A decision variable(d.v.) with values in a topological spaceE is any
applicationX from U to E. Its cost measureK X is the minimal extension of its
restriction to the topology ofE defined byK X (V) = K (X−1(V)). Its cost density
is the minimal densitycX of K X (when it exists). It is the l.s.c. envelope of the
function c̃X(x) = inf{c(u),u ∈ U andX(u) = x}. Independence of d.v. is defined
using open sets,conditional cost excessof a d.v. with respect to another is defined
using minimal densities bycX|Y(x, y) = cX,Y(x, y) − cY(y); clearly, whenX and
Y take a finite number of values,cX|Y(x, y) = K (X = x|Y = y). The conditional
value may be defined using the conditional cost. Weak convergence of decision
variables corresponds to that of their cost measures.

A negligible set is such that its cost is equal toε, that is to+∞. Then, a sequence
of decision variablesXn converges almost surelytowardsX iff Xn(u) → X(u)
for all u with finite costc(u) < +∞. Contrary to classical probability theory, this
convergence is implied by theconvergence in cost(the analogue of the convergence
in probability), which implies (resp. is equivalent to) theweak convergence when
the limit is tight (resp. a constant) [22, 1].

In addition to classical notions of probability, we define the optimumO (X) of
a d.v. X : O (X) = {x ∈ E, cX(x) = 0}. It is another (different from the
valueV) analogue of the expectation. Indeed, for a d.v.X which is the image
Cr(X′) by the Cramer transform of a random variableX′ (in the sense that the cost
density of X is the image of the law ofX′), the optimum ofX is equal to the
expectation ofX′ (see Section 3.2). Iff is continuous andX is tight (that is if
K X is tight), O ( f (X)) = f (O (X)) (O (X) is compact). Since the optimum of
a d.v. only depends on its cost measure, we can define theconditional optimum
O (X|Y) : y 7→ {x ∈ E, cX|Y(x, y) = 0}.

4.2. ERGODIC THEOREMS FORBELLMAN CHAINS

The analogue of a Markov chain is called aBellman chain. Let Xn be a Bellman
chain with values in a finite state spaceE, initial cost densityψ and conditional
cost excessK (Xn+1 = y|Xn = x) = Cyx. SinceEN endowed with the product
topology is a separable and metrizable topological space, we see that the decision
variable X = (X0, X1, . . . ) ∈ EN has a cost densitycX(x) =

∑∞
n=0 Cxn+1,xn +

ψ(x0), wherex = (x0, x1 . . . ) (the sum may be equal to+∞ which is the zero of
Rmin). Theinitial cost of a chain starting atx ∈ E isψ = χx .

We study here the ergodic mean of a function of a Bellman chainXn, using the
spectral min-plus theory recalled in Section 2.2. Proofs and generalization will be
given in [3]. Results about return time to a state will be given in [45].

For a circuitc = (x0, . . . , xl = x0) ∈ C(C) and a functionf : E → F with
values in a finite dimensional normed vector spaceF , we denote

c( f ) = f (x1)+ · · · + f (xl )

l
.

For a subgraphG of G(C), we denote

G( f ) = conv{c( f ), c ∈ C(G)} ,
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where conv(A) is the convex hull ofA ⊂ F .

THEOREM 4.1. Let Xn be a Bellman chain with values in a finite state space E,
starting at x ∈ E and with conditional cost C. If C irreducible, with a unique
critical classGc, then

f (X1)+ · · · + f (Xn)

n
w→ Z, whenn → +∞ ,

where Z is a d.v. with cost densityχ
Gc( f ) (this is the uniform cost onGc( f )),

independently of x.

In order to compare Theorem 4.1 with the ergodic theorem for Markov chains,
we need to relate the limitGc( f ) with some expectation off with respect to the
invariant cost measure of the Bellman chain. The unique invariant cost densityγ ,
which satisfiesCγ = γ , has the nodes ofGc as optimum. Indeed,γx = C∗

zx for
anyz ∈ Gc andγx > 0 whenx 6∈ Gc. If Y is a decision variable withcY = γ then
O ( f (Y)) = f (Gc) andGc( f ) ⊂ O ( f (Y)).

COROLLARY 4.1. Letγ be the unique invariant cost density of the Bellman chain
of Theorem 4.1. If Y , a d.v. of densityγ , is such thatO ( f (Y)) is reduced to one
point then

f (X1)+ · · · + f (Xn)

n
→ O ( f (Y)), whenn → +∞ ,

where the convergence holds weakly, in cost and almost surely.

A sequenceXn of independent d.v. with same cost measureψ is the partic-
ular case of Bellman chain whenCyx = ψy. The invariant cost measure isψ ,
O ( f (Y)) = O ( f (X1)) andGc( f ) = conv(O ( f (X1))). This leads to the follow-
ing law of large numbers which generalizes the results of [43, 7, 22], where the
optimum was supposed to be unique.

COROLLARY 4.2. Let Xn be independent d.v. taking a finite number of values in
F, and let Y be a d.v. with uniform cost onconv(O(X1)), then

X1 + · · · + Xn

n
w→ Y, whenn → +∞ .

Another case where the limit is “unique” is the following.

COROLLARY 4.3. If the critical graph of the Bellman chain Xn of Theorem 4.1 is
reduced to one circuit c, we have

f (X1)+ · · · + f (Xn)

n
→ c( f ), whenn → +∞ ,

where the convergence holds weakly, in cost and almost surely.

In this case, the setGc( f ) is reduced to one pointc( f ). Any optimal trajectory
of the Bellman chain starting atx, is deterministic after some finite time, and the
ergodic theorem is reduced to the classical ergodic theoremfor the “deterministic”
applicationxi 7→ xi+1 in the critical classc = (x0, . . . , xl ). The (classical) inva-
riant measure of this application is here the uniform measure onc.

However, when the critical graph has more than one circuit, an optimal trajec-
tory has to choose between several directions at each intersection of circuits. If we
assign a probability law to choose, at random, between thesedirections, the trajec-
tory becomes a Markov chain, and the ergodic theorem says that the limit is the
mean of f with respect to the invariant measure. Theorem 4.1 says thatthis mean
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is always an element ofGc( f ), but depends on the probability law assigned to the
directions.

If the Bellman chain is irreducible, but with at least two critical classes, the
invariant cost density is not unique, and the limit of the mean of f on the chain
depends on the initial point. The corresponding more difficult results will be given
in a forthcoming paper [3].

5. LUMPABILITY COHERENCY AND REVERSIBILITY OF BELLMAN

CHAINS

Statistical mechanics is useful to study very large systems. For moderate size
systems the only methods are aggregation or separation of variables. We study here
aggregation and separation of variables in the context of Bellman chains.

5.1. RESIDUATION, L INEAR PROJECTION, AGGREGATION AND COHERENCY

The only invertible min-plus matrices are the diagonal matrices multiplied by
permutation matrices. Fortunately, we can use the monotonicity properties of min-
plus linear operators to define a minimal supersolution of a linear min-plus system.

For A ∈ Mnp, B ∈ Mnq with entries inRmin, we define

X = A\B
def= min{X ∈ Mpq | AX ≥ B} ,

which does exist. We haveXlk = maxj (B j k − A j l ) .

For A ∈ Mpn, B ∈ Mqn, we define also

X = B/A
def= min{X ∈ Mqp | X A ≥ B} .

We haveXkl = maxj (Bkj − Al j ) .

Given B : R
p
min → R

n
min andC : R

n
min → R

q
min, we denote imB the image ofB

and define(kerC)x = C−1C(x) which yields a fibration ofR
n
min.

Theprojectionof x ∈ R

n
min on imB parallel to kerC, denotedPx, is defined by

im B ∩ (kerC)x when this set is nonempty and contains a unique element. In this
case we say that imB and kerC aretransverse.

A necessary and sufficient condition of transversality [17]is that

C B((C B)\C) = C, andB = (B/(C B))C B .

Then we have
P = B((C B)\C) = (B/(C B))C .

Given B [resp. C], there does not always existC [resp.B] such that imB and
kerC are transverse. There existsC [resp. B] iff B [resp.C] is regular, that is, if
there exists ageneralized inverse Xto B, which satisfies, by definitionB X B = B
[resp.C XC = C] (see [16, 17]).

We say thatA is aggregableby C if there existsAC such thatC A = ACC. In
this case, the dynamic systemXk+1 = AXk admits aggregate variablesYk = C Xk

satisfying a reduced order dynamicYk+1 = ACYk.

THEOREM 5.1. The matrix A is aggregable by the matrix C iff C A= (AC/C)C.
Moreover if C is regular, A is aggregable with C iff there exists B satisfying P A=
P AP, where P is the projector onim B parallel to kerC. Then, we have AC =
C A(B/(C B)).
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Proof. The first part follows directly from the definition of the residuation. Let us
prove the second part.

SinceC is regular, we know [17] that there existB and P such thatC P = C
andP B = B.

The sufficiency condition is obtained by left multiplyingP A = P AP by C. We
obtain

C P A= C P AP= C AP = C A(B/(C B))C .

The necessary condition is obtained by left multiplyingC A = ACC by (B/C B).
We obtain

P A = (B/(C B))C A = (B/(C B))ACC = (B/(C B))ACC P

= (B/(C B))C AP = P AP .

We say thatB is coherentwith A if there existsAB such thatAB = B AB. Then,
if X0 ∈ im B, the dynamical systemXk+1 = AXk admits coherent variablesUk

such thatXk = BUk. The coherent variables follow a reduced order dynamic
Uk+1 = ABUk.

THEOREM 5.2. The matrix A is coherent with the matrix B iff AB= B(B\AB).
Moreover, if B is regular, the matrix A is coherent with B iff there exists C satisfy-
ing AP = P AP, where P is a projector onim B parallel tokerC. Then, we have
AB = ((C B)\C)AB.

Proof. The proof is dual to the proof of the previous theorem.

All the results about lumpability and reversibility given in [20] can be extended
to the min-plus context because they are purely combinatorial results. We recall
them here because they give new results about aggregation and decomposition of
dynamic programming equations.

5.2. REVERSIBILITY

Let us consider an irreducible matrixA ∈ Mn with a unique critical class. The
eigen-semimodule associated to its unique eigenvalue is generated by only one
eigenvectorv. DenotingV = diagv, we havev = V E, whereE is then-vector
with entriese. We haveAV E = V E, thereforeV−1AV E = E which means that

Â
def= V A′V−1 hasE′ as left eigenvector. It is the transition matrix of a Bellman

chain.
The matrixA is saidreversiblewhen A = Â. A reversible matrices is normal-

ized. It is quite easy to compute the right eigenvector of a reversible matrix.

THEOREM 5.3. For a reversible matrix A (with right eigenvectorv) and a path p
from i to j we have

v j

vi
=

⊗

(k,k′)∈p

Ak′k

Akk′
.

Proof. The proof is immediate from the equalityAV = V A′ satisfied byA.
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5.3. LUMPABILITY AND COHERENCY

Let us consider a dynamic system with transition matrixA. Aggregation ofA
by the characteristic functionC of a partition of the states is called lumpability.

More precisely, if we denote the state space byE = {1, · · · ,n} and if we con-
sider a partitionU of the states, the characteristic functionU of the partitionU is
defined by

Ui J =
{

e if i ∈ J,
ε if i 6∈ J,

∀i ∈ E, J ∈ U .

The matrixA is saidlumpableif it is aggregable by the matrixC = U ′.
Let us consider a weight diagonal matrixW = diag(w1, · · · , wn), wherew is

normalized (that isE′w = e), with nonzero entries. Then, the matrixS = U ′WU
is diagonal. TakingB = WU S−1, we haveC B = e, thenB andC are transverse
andP = BC. We have the following easy result.

THEOREM 5.4. A is lumpable iff for all J, K ∈ U ,

ĀK J
def=
⊕

k∈K

Akj , (5.1)

is independent of the choice of j∈ J. Then, AC = Ā = C AB for all admissible
weightsw.

In the following section we will only consider coherency with the matrixB =
WU S−1. It is important to see that this matrix is a conditional costwith respect to
the partitionU . Indeed, we have

B j J = wUj J
def= w j
⊕

k∈J wk
, if j ∈ J, ε otherwise.

THEOREM 5.5. If A is normalized and coherent (with weightw and partitionU),
then there exists a right eigenvector q of A satisfying qU = wU .

Proof. If A is B coherent, we haveAB = B AB. Denotingq any eigenvector of
AB, we see thatq = Bq is an eigenvector ofA. The result follows fromqU =
B = wU .

DenotingÂ = W A′W−1, it is clear that:

• if A is C-aggregable then̂A is B-coherent,
• if A is B-coherent then̂A is C-aggregable,

• if AP = ÂP then Ā = ¯̂A and aggregability and coherency imply each other.

WhenA is simultaneously aggregable and coherent, it is possible to decompose
the computation of an eigenvector.

THEOREM 5.6. For A lumpable and coherent with respect to the partitionU and
the weightw, there exists an eigenvector q satisfying

q j = q̄JqJ
j , ∀ j ∈ J, ∀J ∈ U ,

q̄ = Āq̄, AJ JqJ
+ = ĀJ Jq

J
+ ,

where qJ
+ is the nonzero part of qJ , ĀJ J is defined by (5.1) and AJ J is the Jth

diagonal block of A (having the size the number of elements ofthe set J).
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Proof. We have only to prove thatAJ JqJ
+ = ĀJ JqJ

+. The other facts amount to
rephrasing Theorem 5.5. From the structure ofB, AB = B AB andqU = wU we
see thatAJ JqJ

+ = (AB)J JqJ
+. Thanks to the lumpability assumption we know that

the aggregate matrix is given by (5.1).

5.4. PARTIAL REVERSIBILITY

It is possible to compute in a decomposed way the eigenvector(supposed to
be unique) of a matrixA under another assumption. We say that the matrixA is
partially reversibleif it satisfiesAQU = Q A′U , with Q = diagq, for q = Aq.

PROPOSITION5.1. The following statements are equivalent:

1. A is partially reversible;
2.
⊕

j ∈J Akj q j =
⊕

j ∈J A j kqk, ∀J, k ;
3. AP = ÂP, with P= B(q)C.

Under partial reversibility, we can decompose the computation of q but the local
problems that we have to solve are different from those of theprevious section.

COROLLARY 5.1. The right eigenvector q of a partially reversible matrix A satis-
fies qj = q̄JqJ

j with Āq̄ = q̄ and AJ JqJ
+ = D JqJ

+, where DJ = diag(⊕ j ∈J A j k, k ∈
J).

Proof. This result is a rephrasing of statement 2 of the previous proposition.

The following result gives the relation existing between aggregability coherency
and reversibility.

THEOREM 5.7. Under partial reversibility of a matrix A, aggregability and co-
herency imply each other and the aggregate matrixĀ is reversible.

Under aggregability and coherency of the matrix A and the reversibility of the
aggregateĀ, we have

AP = P A = P AP = PÂP = ÂP = PÂ .

6. EPILOGUE: MIN -PLUS ALGEBRA AND LARGE DEVIATION

ASYMPTOTICS

In the above sections, we tried to set up connections betweenstatistical physics
and discrete event systems, and between probability calculus and decision calcu-
lus. These connections were mostly motivated byanalogies. As a conclusion,
we would like to point out different connections, motivatedby asymptotics. Such
connections are presented in detail in [5].

As pointed out in the introduction, min-plus algebra can be seen as an as-
ymptotic deformation of usual algebra. Formally, considerthe semifieldRǫ =
(R ∪ {+∞},⊕ǫ,+), with

a ⊕ǫ b = −ǫ log(e−a/ǫ + e−bǫ) .

This semifield was already introduced by Maslov in [37] (see [34] for a more re-
cent presentation) and by Pap in [39]. Clearly, for any non-zero value ofǫ, Rǫ is
isomorphic to the ordinary semifield of non-negative integers, (R+ ,+,×). How-
ever,

lim
ǫ→0+

a ⊕ǫ b = min(a,b) .
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Hence, the min-plus semifieldRmin can be seen as the limit of the semifieldRǫ .
This elementary observation supports the following general “principle”, that the
objects which appear in large deviation type asymptotics have min-plus algebraic
properties. As an illustration of this principle, we will show how min-plus spectral
theory can help us to determine the asymptotics of non-negative spectral elements
of non-negative matrices. A different illustration, whichrelates the large deviation
principle with weak convergence of⊕ǫ-additive measures in the family of semi-
fields{Rǫ }, is given in [4].

With a matrixA ∈ (R∪{+∞})n×n , that isirreducible in the min-plus sense (see
section 2.2), we associate the non-negative matrix

Aǫ = (e− Ai j
ǫ ) ,

and look for the normalized Perron eigenvectorUǫ and Perron eigenvalueλǫ, which
are defined by

AǫUǫ = λǫUǫ , ∀i ∈ {1, . . . ,n}, (Uǫ)i ≥ 0,
∑

1≤ j ≤n

(Uǫ) j = 1 .

In the sequel, we will use the notation logx
def= (log x1, . . . , logxn) for vectors.

Consider

U = lim
ǫ→0+

−ǫ logUǫ, λ = lim
ǫ→0+

−ǫ logλǫ . (6.1)

Such limits arise for instance in the study of low-temperature asymptotics of one-
dimensional Ising type models with transfer matrixAǫ . In this context,λ can be
interpreted as the free energy per site at zero temperature,andU is an “effective
potential”. See e.g. [12], and [15] for a direct max-plus algebraic approach.

The existence of the limits in (6.1) can be derived from the existence of a (gen-
eralized) Puiseux expansion forλǫ. Clearly,U andλ are solution of the min-plus
spectral problem:

A ⊗ U = λ⊗ U . (6.2)

Therefore, we obtain as a consequence of the min-plus spectral theorem (Theo-
rem 2.2) the following result.

THEOREM 6.1. Let A ∈ (R ∪ {+∞})n×n be an irreducible4 matrix. Then,λ =
limǫ→0+ −ǫ logλǫ is the unique min-plus eigenvalue of A.

The argument is detailed in [28, Ch.IV],[5].
If A has a uniquecritical class(see section 2.2), it has a unique eigenvector up

to a proportionality factor, thus, the limitU = limǫ→0+ −ǫ logUǫ is well character-
ized by (6.2), together with min1≤i≤n Ui = 0, which follows from the normalization
condition onUǫ. However (and this is probably the main difference between min-
plus spectral theory and Perron-Frobenius theory), an irreducible matrixA has in
general several non-proportional eigenvectors (see Theorem 2.2). This raises the
problem of deciding which particular min-plus eigenvectoris selected by the limit
procedure (6.1). The solution to this problem, given in [5],relies on an aggregation
procedure which is analogous to the cycle aggregation in Wentzell-Freidlin theory
(although specific technical difficulties arise due to the absence of “river networks”
explicit formulæ for the principal cofactors of the non-negative but non-Markov
matrix Aǫ ). At each aggregation level, a new spectral problem in min-plus algebra

4In the min-plus sense.
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has to be solved, and the eigenvectorU is finally obtained as a product of matrices,
whose columns are formed by solutions of these min-plus spectral problems.

THANKS. We thank a referee for the remarks he made about the paper. Clearly,
this paper is only a first attempt to connect min-plus theory with the most elemen-
tary notions of statistical mechanics. Deeper results and improvements of the point
of view are still to be done.
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