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Abstract

In the modelling of timed discrete event systems, one tra-
ditionally uses dater functions, which give completion
times, as a function of numbers of events. Dater func-
tions are non-decreasing. We extend this modelling to
the case of multiform logical and physical times, which
are needed to model concurrent behaviors. We repre-
sent event sequences and time instants by words. A dater
is a map, which associates to a word a word, or a set
of words, and which is non-decreasing for the subword
order. The formal series associated with these general-
ized dater functions live in a finitely presented semiring,
which is equipped with some remarkable relations, due
to the monotone character of daters. The implementation
of this semiring relies on a theory of rational and recog-
nizable series whose coefficients form a non-decreasing
sequence in an idempotent semiring, that we sketch. Fi-
nally, we apply this formalism to the modelling and anal-
ysis of an elementary example of real time system.

Keywords
Max-plus algebra, real-time systems, rational series, per-
formance evaluation.

1 Introduction

In the classical max-plus algebraic modelling of timed
event graphs, the three following approaches are common
(see[7] and [1, Ch. B]).

1.Time domain With this modelling, the behavior of

a transition is represented bycaunter variable which

is a non-decreasing max : N — N. The quantity
X(t) gives the number of the last firing of the transi-
tion occurring before, or exactly at, tinte The counter
variables associated with the different transitions of the
timed event graph satisfy linear recurrent equations over
the min-plus semiring, which can be analysed using min-
plus spectral theory (see e.g. §B.7]). Equivalently, the
generating series of counter variables are rational series
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1 Modulo certain modelling precautions detailed in [1, Ch, 5]
we may define more generally a counter or dater function asna no
decreasing mafi U {+o0} — 7 U {£o0}.

in a single indeterminate, usually denotédwith co-
efficients in the min-plus semiring. Then, performance
evaluation and verification issues can be dealt with us-
ing the efficient machinery of commutative rational ex-
pressions, see [8, Ch. 11] and its min-plus and max-plus
versions [11, Ch. Vk1],[17, 12, 13].

2. Event domain Dually, we can represent the behav-
ior of a transition by aater variablé, which is a non-
decreasing map : N — N, which to an integek, asso-
ciates the time of the firing number&adf the transition.

The analysis of dater variables uses linear systems over
the max-plus semiring, and rational series in a single in-
determinate, usually denoted with coefficients in the
max-plus semiring.

3. Information domain A synthesis of these two ap-
proaches was made in [7] and [1, Ch. 5], by introduc-
ing the notion ofinformation The behavior of a tran-
sition is represented by a subdetof N x N. An ele-
ment(n, t) € L is interpreted as thmformationor con-
straint “the firing numbem occurs at the earliest at time
t”. Then, the physical behavior of the transition is the
earliest that is compatible with the set of informatidns
Algebraically, the informatior(n, t) can be denoted by
the monomialy"st, wherey ands are two commuting
indeterminates. Since the union of informations is repre-
sen(};d by theumof formal series, the following relations
hold:

(1a)
(1b)

min(n, p)

yheyP
S st

vn,peN |,
Vs,te N .

Y
5max(s,t)

The M [y, 5]l semiring® is precisely the quotient of
the semiring of series with Boolean coefficients in two
commuting indeterminateg and§, by the congruence
generated by the (eponymous) relations (1). The analy-
sis of timed event graphs reduces to the computation of
rational elements in this special semiring.

The isomorphism theorem stated in [1, Lemma 5.16], and
the discussion of [1§ 5.5], show that, despite some subtle

2Indeed, a little thinking should convince the reader thaafbt, the
two informations: (1): “event occurs at the earliest at timend event
p occurs at the earliest at tint&; and (2): “event mirin, p) occurs
at the earliest at timé” are identical. This justifies rule (1a). A dual
argument can be invoked to justify rule (1b).

3In [1, Ch. 5], negative exponents gfands are allowed. But the
main theorem (Theorem 5.39) of [1, Ch. 5], which states thaiveq
alence of rational, realizable, and periodic series, megua causality
assumption, which, in loose terms, is equivalent to the megativity
of the exponents. Hence, there is no real loss of generaligfiowing
only non-negative exponents, as we will do throughout thpepa



differences, the time domain, event domain, and informa-
tion domain approaches to the modeling of timed event
graphs are essentially equivalent. The main argument in
favor of theM([y, 8]] formalism is perhaps of an aes-
thetic nature: in this approach, the physical time (dating
events) and the logical time (counting events) play com-
pletely symmetric roles.

These three approaches agree on the fact that events
and time are measured by integers. However, in many
applications, and in particular, in order to represent con-
currency phenomena, it is desirable to associate time in-
stants with event sequences, which amrds For in-
stance, a word may represent a particular execution of a
program, and two distinct executions with different in-
puts or environments, abstracted by different letters, may
have distinct completion times. Hence, neent domain
approach was extended in [14] to the case of generalized
dater functions, which are maps* — RU{—o0}, where
¥* is the set of words over a finite alphabBEt The
effective manipulation of these daters relies on the the-
ory of automata with multiplicities [10, Ch. VI] over the
max-plus semiring, or equivalently, of non-commutative
rational (or recognizable) series [5]. The modeling of dis-
crete event systems via max-plus automata was pursued
in [16, 15], where it was shown that max-plus automata
can represent “heaps of pieces”, i.e. systems with concur-
rent access to a set of resources. The same observation
was done independently in [19, 6].

Since to some extent, the event domain approach has
been extended to the case of a multiform logical time,
modeled by words, we askdoes an analogue of the
time domain or information domain approaches exist, for
concurrent systems ? We ask, in particular, whether
there exists an analogue of the notionocofunterfunc-
tion, which, in this new context, should determine the
setof possible events, as a function of the physical time.
The importance of counter representations in the verifica-
tion and analysis of real time systems should be clear: a
number of verification issues reduce to checking whether
something (good, or bad) can happen within a time pe-
riod.

We show that there is a conceptually very simple an-
swer to these questions: a timed behavior can be de-
scribed by arational transduction[4], i.e. by a rela-
tion between two monoids, that can be represented by
a rational expression. The monotonicity of the behav-
ior can be expressed in terms of thebwordor division
order (see [18, Ch. 6]). This answer can probably be
regarded as satisfactory, theoretically, and seesthetically.
This is less the case from the algorithmic point of view:
rational transductions are complex objects, by compar-
ison with the simple rational series di{[y, &]], and
much additional work is needed to establish the dictio-
nary from practically relevant verification issues to alge-
braically tractable problems. We postpone these technical
guestions to another paper, and we focus here on the basic
constructions and properties.

The second author is glad to acknowledge some joint
unpublished work with Alessandro Giua, in 1995, on the

modeling of discrete event systems via rational transduc-
tions: the notion of event-time transductior§i®has been
inspired by this joint work.

2 Monotone Series with Coefficients in an
Idempotent Semiring

2.1 Preliminary Definitions

If ¥ is a set (alphabet), the free monoidBrnis, by defini-
tion, the se®* of finite words with letters irk2, equipped
with concatenation. A wordv € ¥* can be written as
a sequencev = aj...ap, With az,...,ap € ¥ and
p € N. We denote byyw| = p thelengthof w. The
unit of * is the empty word (sequence of length 0). Itis
denotece. A monoid is free (and finitely generated) iff it
is of the formXZ*, for some (finite) alphabét. If M1, M2
are monoids, th€artesian product M x M is the set of
couplesimz, mp) € M1 x M, equipped with the compo-
nentwise product{my, mp)(my, m,) = (mymj, mams).

In the sequel, unless otherwise statdd,will de-
note a finite Cartesian product of free, finitely gener-
ated, monoids. We will sometimes write explicithf =
X] x .- x X¢, whereX, ..., Xk are finite alphabets.
If w= (w1,...,wk) € X x --- x X, we define the
lengthof w, |w| = |w1| + - -+ + |wk|. Theset of gener-
ators of M, denoted byGu, is by definition, the set of
elements with length 1. The monoM is equipped with
thedivisionor subwordorder: we say thab is a subword
of w’, and we writew < w’ iff there exists a factorization
w = aba... apbpap+l, with ag, by, ..., bp, ap+1 €
M, andw = biby...bp. Dually, we say thai’ is a
supwordof w. The subword order is compatible with the
monoid structure oM: u < v = Xxuy < xvy, for all
X,Y,U,v € M. Clearly, ifw < w’, thenjw| < |[w/].
Example 1.If k = 1, thenM = XJ, and the subword
order onM is the usual subword or division order aif
(see [18, Ch. 6]). A subwordh < w’ is obtained by
deleting letters ofv’, e.g. if £1 = {a, b, c}, w = abis a
subword ofw’ = accaach
Example 2.1f 1 = {a1}, ..., Xk = {ak} are one letter
alphabets, theM = X7 x --- x X¢ can be identified
to the additive monoid¥ (the isomorphism sends x
...ex g x e...x eto thei-th vector of the canonical
basis ofN¥). The subword order oM coincides with the
ordinary partial order on vectors 6.

Let D denote a semirifywhose addition is idempo-
tent:a @ a = a. We will equipD with the canonicalor-
derrelationla <b <= a® b = b, which is such that
a @ b is the least upper bound ¢4, b}. An idempotent
semiringD is completaf any non-empty seK c D ad-
mits a least upper bound, denoted 3upr &, . x X, and
if the right and left distributivity properties hold for arbi-
trary sums. IfD, D" are complete idempotent semirings,

4A semiring is a sefS equipped with two lawsp and®, such that
(S, @) is acommutative monoid (the zero element is nefedsS, ®) is
a monoid (the unit element is notey] the sum is left and right distribu-
tive over the product, and the zero element is absorbing. shsluwe
will omit ® for the product, writingabinstead ola® b, fora,b € S.



amorphism f: D — D’ is a morphism of semirings,
that preserves infinite sums (i.é.(supX) = supf (X),
forall X c D).

A series with coefficients i and indeterminates in
M is simply a maps : M — D. The set of these series
is denoted byD((M)). We will represent a series by
a formal sums = @, v Sww. If s, = ¢, we need
not write the monomias, w in the sum. In particular,
we will identify an elemeniw € M with the serieew.
We will identify a subseX < M to its indicator series:
B, cx w. If s, is zero for all but finitely many values of
w € M, we say thas is apolynomial The setD((M)),
equipped with the componentwise sis® '), = S, ®
s,, and Cauchy produgss).,, = P,_,, S, is clearly
a complete idempotent semiring. We will also use the
shuffle producbt, which can be defined inductively by
the following rule, which holds for alli, v, w € M and
a, be G|\/|,

(2a)
(2b)

and then for alk, s’ € D((M)),

@ SwS,wow .

w,w'eM

woe = eow=w ,

auobv = a(uobv)®b(@uov) ,

(2¢) sos =

Contrary to the Cauchy product, the shuffle product is al-
ways commutative. Due to the idempotency of addition,
if M is commutative, the shuffle and Cauchy products co-
incide.

Example 3.If M = X7, the shuffle of two wordsy =
ai...ap andw’ = by...bq is simply the sum of words
ofthe forme; ... ¢pq, suchthaw = ¢, . .. ci, for some
l1<i1<...<ip=p+gq,andw =cj...cj,, where
1< j1<...< jg = p+qdenote the complementary
subsequence @f, ... ,ipinl, ..., p+q. E.g.,if%; =

{a, b, c},aobc=abco bace bca

Remark 4.If M is not a Cartesian product of free
monoids, it may be meaningless to define the shuffle
product by (2). Indeed, in this case, two elemeints
andw’ will have different factorizations as a product of
generators and the result of a recursive application of (2)
may depend of these factorizations. E.g., consider the
monoidM with generators, b, ¢ and relationac = ca.
Formally, M can be defined as the quotient of the free
monoid {a, b, c}* by the least congruence (equivalence
relation compatible with the monoid structure) such
thatac ~ ca. This is an example opartially com-
mutative monoidor trace monoid9]. In this monoid,

ac = ca, butabc# cba An application of (2) yields:

acob=a(cob)®b(acoe) =ach® abce bac,
caob=c(aob)®b(caoe) =cab®chagbca .

Sincecab = ach, bca= bac butcba# abc these two
series differ.

2.2 Non-decreasing Series

We say that a seriese D((M)) is hon-decreasing, for
alu,ve M, u<v = g <s, (inthe left hand

side,< denotes the subword order BfF, in the right hand
side, < denotes the canonical order®). We denote by
DT ((M)) the set of non-decreasing series.

We will call non-decreasingnvelope of a series €
D((M)) the series', which is defined by:

si=@Ds -

v=<u
The proof of the following four results is detailed in [2].

PROPOSITION5. The series & is the minimal non-
decreasing series that is above s. Moreovér=sso M.

PROPOSITIONG6. The set of non-decreasing series
DT ((M)), equipped with sum and Cauchy product, is a
complete idempotent semiring.

PROPOSITION7. The map s— s’ is a surjective mor-
phism of complete idempotent semirinfg(M)) —
DI ((M)).

Let =min denote the congruentgenerated by the
relations: Vae Gy, e®a=e.

THEOREM8. The complete idempotent
DT ((M)) andD((M))/ =min are isomorphic.

semirings

From the algorithmic point of view, we are inter-
ested in series which are produced by a suitable finite
device. The two following notions are instrumental. We
say that a series € D{(M)) is recognizablaf there ex-
ists an integen, a morphism of multiplicative monoids
w: M — D™ arow vectorr € D" and a column
vectorg € D" 1 such thats, = au(w)B. The triple
(o, w, B) is called dinear representationf s. We denote
by Drec((M)) the set of recognizable series. rational
expressions obtained by a finite number of applications
of the grammar ruf&

(4)

whereX is a variable, and € D, a € Gy are arbitrary
elements. A series istional if it is given by a rational
expression. We denote [B4:((M)) the set of rational se-
ries. E.g., ifD = (NU{—o0}, max, +) andM = {a, b}*,
the series @(a® 5b)* @ 3a=3ad@ 2a’d 7abd ... is
rational.

X X@ X, XX, X*, ra,

Classically, the Kleene-Schiitzenberger theorem [5]
states that whem is finitely generatedDyec((M)) C
Drat{(M)), and that the equality holds whem is free.

We next state a non-decreasing analogue of this theorem,
whose (simple) proofis detailed in [2]. #upword-closed
rational expression is defined as in (4), replaciagby

rao M.

5A congruence of complete idempotent semirigis an equiv-
alence relation~ such that, for all (possibly infinite) families
{XiYicl, {Yitier € S;if xi ~yj holds foralli € I, then@j| xi ~
Dic vi;and forallx,y, ze S, x ~ yimpliesxz~ yzandzx ~ zy.
The congruence generated by a family of relatiops= vj, j € J,
is the intersection of the congruences that contain thelesup;, vj),
forall j € J (we identify a relation to its graph, which is a subset of
S2).

6Recall that in any complete idempotent semiring, the steratjpn
sf=e@s®s?@--- is well defined.



THEOREM9. Let M denote a Cartesian product of free
monoids, and let == D((M)), whereD is a complete
idempotent semiring. The following assertions are equiv-
alent:

1. s is rational and non-decreasing;

2.s can be written as a supword-closed rational expres-
sion;

3. s is non-decreasing, and there exists a rational series
in the equivalence class of s modutenp, .

Moreover, if M is free and finitely generated, the above
conditions are equivalent to any of the following:

4. s is recognizable and non-decreasing;

5. s admits a linear representati@a, 1, 8) such that for
alla € Gy, u(@ > | (where | denotes the identity
matrix);

6. s is non-decreasing, and there exists a recognizable se-
ries in the equivalence class of s modugyn

2.3 Non-increasing Series

Dually, we say that a serisse D((M)) isnon-increasing
ifforaluve M, u<v = s >s5s,. Therole
of the shuffle product byv will be played, in the case of
non-increasing series, by thdagnus transformatiohm
which is defined byn(a) = e ® a, for all generators: €

Gwm. ltis extended to an element = a;...ap € M,
with a, ... ,ap € G, by setting
(5a) m(w) =m(a) ... m@p) = Pu .

u<w

If sis a series, we define

m(s) = P sumw) .

weM

(Sb)

We next state the analogue of the results of section 2.2
(the proofs are similar).

PROPOSITION10. Let se D((M)). The series
= @ s
w'>w

is the minimal non-increasing series that is above s.
Moreover 8 = m(s).

PROPOSITION11. The map s+~ st is a surjective
morphism of complete idempotent semiriiggM)) —
DY((M)).

Let =mnax denote the congruence generated by the
relations: e®@ a=a, Va e Gy.

THEOREM12. The complete idempotent semirings
DY ((M)) andD((M))/ =max are isomorphic.

A subword closedational expression is defined as
in (4), replacingha by m(ra) = A(e ® a).

"This transformation is borrowed to the theory of group prése
tions. In [18, Ch. 6], it is used to count subwords.

THEOREM13. Let M denote a Cartesian product of free
monoids, and let ss D((M)), whereD is a complete
idempotent semiring. The following assertions are equiv-
alent:

1. s is rational and non-increasing;

2. s can be written as a subword-closed rational expres-
sion;

3. s is non-increasing, and there exists a rational series
in the equivalence class of s modutenay

Note that there is an essential lack of symmetry here:
there is no natural non-increasing analogue of the second
half of Theorem 9, relative to recognizable series.

3 Event-Time Transductions
3.1 TheMT((E x T)) Semiring

Let £, T denote two finite Cartesian products of free,
finitely generated monoids. An elemente £ will be
interpreted as @aequence of eventan element € 7T
will be interpreted as a completion time. We ctithe
behavioror event-time transductioan arbitrary subset

XCEXT .

We will adopt the following semanticgw, t) € x rep-
resents the information: “the event sequencé com-
pleted at the earliest at tint&

In particular, ify ands denote two indeterminates,
andifé = {y}* ~ N, T = {§}* ~ N, we obtain exactly
the semantics of [1]. For instance, »frepresents the
behavior of a transition of a timed event grapt', ') e
X, with n, t € N, simply mean: the firing numberedof
the transition occurs at the earliest at tilme

We say that a time behaviarc £ x 7T is monotone
if
(6a)
(6b)

These two assumptions are consistent with the above se-
mantics. Indeed, if the sequeneeis completed at the
earliest at timet, a fortiori, we can say that it is com-
pleted at the earliest at any tirtfe< t, which justifies the
second rule. A dual argument justifies the first rule.

(w,t) exandw <w — (W', t) e x ,
(w,t) exandt >t = (w,t)ex .

Let B = {e, e} denote the Boolean semiring. The
ME((E x T)) semiring is the quotient of the semiring
of formal seriesB((£ x T)) by the congruenc&—mg‘x
generated by the relations:

(7a) Vae Gg, eda
(7b) Vte G, edt

InB{((& x T)), we define the Magnus transformation, so
that it only affects thg -coordinate:

= e
= t.

Vte Gr,m() =edt,Vae &, m@ =a ,

and we extenahn to series by (5b). The following result
establishes a bijective correspondence between monotone
behaviors and elements dE((E x T)).



THEOREM14. A series se B(( x T)) has a unique
monotone representative modud | namely

(8)

wheref is identified tof x e.

m(s)o& =m(sof) ,

We are particularly interested in the following ques-
tions. 1). What is the set! of execution time constraints
that an event sequenaecarries ? Formally,

xff):{teTI (w,t) e x} .

2). What is the set of eventg’ that are constrained at
timet? Formally,

xX={wef| (wt)ex}.

We will identify as usual such subsets to their indi-
cator series. Then, using the canonical isomorphisms
B(E x T)) =~ BUEN T ) = BUT)INED), itis eas-

ily seen that the functions® andx® are simply obtained

by ordering the seriesin 7 and&, respectively:

x =P xqw e BUTINUE)

we

x = @Dt e BUEMT)) -
teT

The following proposition is an elementary consequence
of the definition of monotone time behaviors.

PROPOSITION15S. Let x € B((£ x T)) denote a mono-
tone time behavior.

1. Forallt e T, x¢ e BT ((£)).
2.Forallw e &, x4 e BY((£)).
3. Themap %: 7 — B! ((£))
4. Themap &: & — B ((£))

is non-increasing.
is non-decreasing.

This allows us to identify a monotone time behavior
x (or equivalently, the element Gf(X((€ x 7)) thatx
represents) to the countgf e (B ((E))Y((T)) or to
the datexd e (B' ((TH))1((£)). Hence, the theory of
non-decreasing and non-increasing rational/recognizable
series, sketched in sections 2.2,2.3 above, can be applied
to elements oM (€ x T)).

From Theorem 14, itis clear thai(s) o £ = m(sc &)
is the maximal element in the equivalence class ®f
modulo =M . However, to implement the semiring
MI(E x T)), i.e. to code its elements as economically
as possible, we rather needénimalrepresentative. The
next section gives a partial answer to this problem.

3.2 Minimal Counter Representation of Monotone
Behaviors

We first recall a classical (and beautiful) order-theoretical
result, which can be found in [18, Ch. 6].

THEOREM 16 (HIGMAN). Let £ denote a free, finitely
generated, monoid. Wt is a subset of composed of
pairwise incomparable elements for the subword order,
then, X is finite.

COROLLARY 17 (MINIMAL REPRESENTATION.
For all x € B((£ x T)), there is a minimal function
y: T — B((£)), such that

9) X =min @Ytt )

teT

andforallte 7, y is a polynomial.

This corollary, which needs no rationality or recog-
nizability hypotheses, states in particular that the con-
straints on the events at tinbean always be represented
by afinite set. There is no simple analogue of this re-
sult for minimaldaterrepresentations, because there are
infinite increasing sequences for the subword order.

4 Application to Partial Order Automata
Models of Real Time Systems

Consider the partial order automaton depicted in Fig 1.
With the action labelsa, b, c are associated directed

~_ Yo —@ e

¢ Execution times:
IR
Y Y ®=9

Figure 1: A (timed) partial order automaton.

graphs (partial orders), as shown on Fig. 1. With a word
w = Ur...Up € {a,b,c}P accepted by the automaton,
we associate a partial order, obtained by composing the
partial orders associated witln, ... , up, as illustrated

in Fig. 2 forw = abc Black and gray events cost one
(8) or two (52) units of time respectively. Thexecution
time t (w) of the runw is the maximal number of occur-
rences of & symbol, in a chain in this graph. E.g., we can
check by mere inspection of Fig. 2 thatabc) = 6. As
detailed in [3], such partial order automata are a simple
model of real time computations: the Boolean automaton
describes the possible action sequences of the program,
and each action sets up a dependence relation between
data, which is abstracted by a partial order.

X
SN
Figure 2: Partial order associated wébc.

The execution time map is recognized by the au-
tomaton with multiplicities over the max-plus semiring,
which is shown in Fig. 3, together with its linear represen-
tationa, w, B, whichis such that (w) = au(w)p, forall
w € {a, b, c}* (e.g.,tr(@abo) = au@)u(b)u(c)s = 6).

We have to take into account, however, the fact that only



(a® b c)s?

CJ
® a=pop-dTu@=| 2 7]
cs2 as2 ) )
—0 —
adcdadb

Figure 3: Max-plus automaton.

the sequences accepted by the automaton of Fig. 1 are of
interest. The natural way to do this is to computettre

sor productof this automaton by the max-plus automaton
of Fig. 3 (see [14§VI] for details), which is depicted in

Fig. 4. The timed behavior of the system can be repre-
sented by the series € M(({a, b, c}* x {§}*)) which

is obtained by summing the weights of the paths of this
graph. Formally, the seriesis given bya’(u/)*g’, with

o] = e, forthe initial nodes = 1, 2,«] = ¢, fori = 3, 4,

B/ = e, for the final nodes = 1, 2, 3,4, and

e e as? as?
; & & & as
=1 c?2 & bs? ¢
82 ¢cs e b

Expanding(i')*, or enumerating the paths in Fig. 4, we
obtain, thanks to the simplification rules (7),

(10)
X=d(W)'B =edas’dabs®’dacs’® - ,

which means: that eveatis completed at the earliest at
time 2, that the event sequenedsandac are completed

at the earliest at times 2 and 3, respectively. We cannot
infer directly from (10) that is completedxactlyat time

2, or thatab andac are complete@xactlyat times 2 and

3, respectively, unless we know that there are no other
occurrences of, ab, ac (or of their subwords) as coeffi-
cients ofs%, §°, ... in (10). This is the case fax which
does occur at time 2, but this is not the casedbrand

ac. Indeed, pursuing the computation in (10), we get

x=ed®as’®abs?@acs® @ (ac®ab)s*@ - --
—edas’® (@abdaos?ed- -

which shows thaab andac occur at the earliest at time
4. In general, whems' appears in aninimal expression
of x (which cannot be further simplified using (7))¢an
be interpreted as the effective execution timevof

Figure 4: Tensor product automaton

This elementary example only illustrates the case
whené = ¥* and7 = {§}*. The case of commutative

monoids7 and& was used in [11, Ch. 1X] to compute
symbolically the throughput of a flexible workshop as a
function of the numbers of pallets (represented by differ-
ent commuting indeterminates). More generally, worst
case evaluation problems for partial order automata can
be reduced to the (much easier) commutative case. E.g.,
considering again the example of Fig. 1, we may wish
to compute the physical time elapsed, as a function of
the numbers of events This can be done by replacing
lettersb, ¢ by the unite, and by making only states 3
(which have an incoming) final in Fig. 4. We obtain

the seriex = as2 @ a2s*, which means that an observer
ignoring events andc will see runs in whicha occurs

at time 2, and evera? occurs at an arbitrarily large time.
Such worst case evaluations can be done at a reasonable
algorithmic price [11, Ch. IX,App. B].
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