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Abstract

In the modelling of timed discrete event systems, one tra-
ditionally uses dater functions, which give completion
times, as a function of numbers of events. Dater func-
tions are non-decreasing. We extend this modelling to
the case of multiform logical and physical times, which
are needed to model concurrent behaviors. We repre-
sent event sequences and time instants by words. A dater
is a map, which associates to a word a word, or a set
of words, and which is non-decreasing for the subword
order. The formal series associated with these general-
ized dater functions live in a finitely presented semiring,
which is equipped with some remarkable relations, due
to the monotone character of daters. The implementation
of this semiring relies on a theory of rational and recog-
nizable series whose coefficients form a non-decreasing
sequence in an idempotent semiring, that we sketch. Fi-
nally, we apply this formalism to the modelling and anal-
ysis of an elementary example of real time system.

Keywords
Max-plus algebra, real-time systems, rational series, per-
formance evaluation.

1 Introduction

In the classical max-plus algebraic modelling of timed
event graphs, the three following approaches are common
(see [7] and [1, Ch. 5]).

1. Time domain. With this modelling, the behavior of
a transition is represented by acounter variable, which
is a non-decreasing map1 x : N → N. The quantity
x(t) gives the number of the last firing of the transi-
tion occurring before, or exactly at, timet. The counter
variables associated with the different transitions of the
timed event graph satisfy linear recurrent equations over
the min-plus semiring, which can be analysed using min-
plus spectral theory (see e.g. [1,§3.7]). Equivalently, the
generating series of counter variables are rational series
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1 Modulo certain modelling precautions detailed in [1, Ch. 5],
we may define more generally a counter or dater function as a non-
decreasing mapZ∪ {±∞} → Z∪ {±∞}.

in a single indeterminate, usually denotedδ, with co-
efficients in the min-plus semiring. Then, performance
evaluation and verification issues can be dealt with us-
ing the efficient machinery of commutative rational ex-
pressions, see [8, Ch. 11] and its min-plus and max-plus
versions [11, Ch. VI,§1], [17, 12, 13].

2. Event domain. Dually, we can represent the behav-
ior of a transition by adater variable1, which is a non-
decreasing mapx : N → N, which to an integerk, asso-
ciates the time of the firing numberedk of the transition.
The analysis of dater variables uses linear systems over
the max-plus semiring, and rational series in a single in-
determinate, usually denotedγ , with coefficients in the
max-plus semiring.

3. Information domain. A synthesis of these two ap-
proaches was made in [7] and [1, Ch. 5], by introduc-
ing the notion ofinformation. The behavior of a tran-
sition is represented by a subsetL of N × N. An ele-
ment(n, t) ∈ L is interpreted as theinformationor con-
straint: “the firing numbern occurs at the earliest at time
t”. Then, the physical behavior of the transition is the
earliest that is compatible with the set of informationsL.
Algebraically, the information(n, t) can be denoted by
the monomialγ nδt , whereγ andδ are two commuting
indeterminates. Since the union of informations is repre-
sented by thesumof formal series, the following relations
hold2:

γ n ⊕ γ p = γ min(n,p) ∀n, p ∈ N ,(1a)

δs ⊕ δt = δmax(s,t) ∀s, t ∈ N .(1b)

TheMax
in [[γ, δ]] semiring3 is precisely the quotient of

the semiring of series with Boolean coefficients in two
commuting indeterminatesγ and δ, by the congruence
generated by the (eponymous) relations (1). The analy-
sis of timed event graphs reduces to the computation of
rational elements in this special semiring.

The isomorphism theorem stated in [1, Lemma 5.16], and
the discussion of [1,§ 5.5], show that, despite some subtle

2Indeed, a little thinking should convince the reader that for all t, the
two informations: (1): “eventn occurs at the earliest at timet and event
p occurs at the earliest at timet”; and (2): “event min(n, p) occurs
at the earliest at timet” are identical. This justifies rule (1a). A dual
argument can be invoked to justify rule (1b).

3In [1, Ch. 5], negative exponents ofγ andδ are allowed. But the
main theorem (Theorem 5.39) of [1, Ch. 5], which states the equiv-
alence of rational, realizable, and periodic series, requires a causality
assumption, which, in loose terms, is equivalent to the non-negativity
of the exponents. Hence, there is no real loss of generality in allowing
only non-negative exponents, as we will do throughout the paper.



differences, the time domain, event domain, and informa-
tion domain approaches to the modeling of timed event
graphs are essentially equivalent. The main argument in
favor of theMax

in [[γ, δ]] formalism is perhaps of an aes-
thetic nature: in this approach, the physical time (dating
events) and the logical time (counting events) play com-
pletely symmetric roles.

These three approaches agree on the fact that events
and time are measured by integers. However, in many
applications, and in particular, in order to represent con-
currency phenomena, it is desirable to associate time in-
stants with event sequences, which arewords. For in-
stance, a word may represent a particular execution of a
program, and two distinct executions with different in-
puts or environments, abstracted by different letters, may
have distinct completion times. Hence, theevent domain
approach was extended in [14] to the case of generalized
dater functions, which are maps6∗ → R∪{−∞}, where
6∗ is the set of words over a finite alphabet6. The
effective manipulation of these daters relies on the the-
ory of automata with multiplicities [10, Ch. VI] over the
max-plus semiring, or equivalently, of non-commutative
rational (or recognizable) series [5]. The modeling of dis-
crete event systems via max-plus automata was pursued
in [16, 15], where it was shown that max-plus automata
can represent “heaps of pieces”, i.e. systems with concur-
rent access to a set of resources. The same observation
was done independently in [19, 6].

Since to some extent, the event domain approach has
been extended to the case of a multiform logical time,
modeled by words, we ask:does an analogue of the
time domain or information domain approaches exist, for
concurrent systems ? We ask, in particular, whether
there exists an analogue of the notion ofcounterfunc-
tion, which, in this new context, should determine the
setof possible events, as a function of the physical time.
The importance of counter representations in the verifica-
tion and analysis of real time systems should be clear: a
number of verification issues reduce to checking whether
something (good, or bad) can happen within a time pe-
riod.

We show that there is a conceptually very simple an-
swer to these questions: a timed behavior can be de-
scribed by arational transduction[4], i.e. by a rela-
tion between two monoids, that can be represented by
a rational expression. The monotonicity of the behav-
ior can be expressed in terms of thesubwordor division
order (see [18, Ch. 6]). This answer can probably be
regarded as satisfactory, theoretically, and æesthetically.
This is less the case from the algorithmic point of view:
rational transductions are complex objects, by compar-
ison with the simple rational series ofMax

in [[γ, δ]], and
much additional work is needed to establish the dictio-
nary from practically relevant verification issues to alge-
braically tractable problems. We postpone these technical
questions to another paper, and we focus here on the basic
constructions and properties.

The second author is glad to acknowledge some joint
unpublished work with Alessandro Giua, in 1995, on the

modeling of discrete event systems via rational transduc-
tions: the notion of event-time transduction in§3 has been
inspired by this joint work.

2 Monotone Series with Coefficients in an
Idempotent Semiring

2.1 Preliminary Definitions

If 6 is a set (alphabet), the free monoid on6 is, by defini-
tion, the set6∗ of finite words with letters in6, equipped
with concatenation. A wordw ∈ 6∗ can be written as
a sequencew = a1 . . . ap, with a1, . . . , ap ∈ 6 and
p ∈ N. We denote by|w| = p the lengthof w. The
unit of 6∗ is the empty word (sequence of length 0). It is
denotede. A monoid is free (and finitely generated) iff it
is of the form6∗, for some (finite) alphabet6. If M1, M2
are monoids, theCartesian product M1 × M2 is the set of
couples(m1, m2) ∈ M1 × M2, equipped with the compo-
nentwise product:(m1, m2)(m′

1, m′
2) = (m1m′

1, m2m′
2).

In the sequel, unless otherwise stated,M will de-
note a finite Cartesian product of free, finitely gener-
ated, monoids. We will sometimes write explicitlyM =

6∗
1 × · · · × 6∗

k , where61, . . . , 6k are finite alphabets.
If w = (w1, . . . , wk) ∈ 6∗

1 × · · · × 6∗
k , we define the

lengthof w, |w| = |w1| + · · · + |wk|. Theset of gener-
ators of M, denoted byGM , is by definition, the set of
elements with length 1. The monoidM is equipped with
thedivisionor subwordorder: we say thatw is a subword
of w′, and we writew ≤ w′ iff there exists a factorization
w′ = a1b1a2 . . . apbpap+1, with a1, b1, . . . , bp, ap+1 ∈

M, andw = b1b2 . . . bp. Dually, we say thatw′ is a
supwordof w. The subword order is compatible with the
monoid structure ofM: u ≤ v H⇒ xuy ≤ xvy, for all
x, y, u, v ∈ M. Clearly, if w ≤ w′, then|w| ≤ |w′|.

Example 1.If k = 1, thenM = 6∗
1, and the subword

order onM is the usual subword or division order on6∗
1

(see [18, Ch. 6]). A subwordw ≤ w′ is obtained by
deleting letters ofw′, e.g. if61 = {a, b, c}, w = ab is a
subword ofw′ = accaacb.

Example 2.If 61 = {a1}, . . . , 6k = {ak} are one letter
alphabets, thenM = 6∗

1 × · · · × 6∗
k can be identified

to the additive monoidNk (the isomorphism sendse ×

. . . e × ai × e. . . × e to thei -th vector of the canonical
basis ofNk ). The subword order onM coincides with the
ordinary partial order on vectors ofNk .

LetD denote a semiring4 whose addition is idempo-
tent: a ⊕ a = a. We will equipD with thecanonicalor-
der relation:a ≤ b ⇐⇒ a ⊕ b = b, which is such that
a ⊕ b is the least upper bound of{a, b}. An idempotent
semiringD is completeif any non-empty setX ⊂ D ad-
mits a least upper bound, denoted supX or

⊕

x∈X x, and
if the right and left distributivity properties hold for arbi-
trary sums. IfD,D′ are complete idempotent semirings,

4A semiring is a setS equipped with two laws⊕ and⊗, such that
(S,⊕) is a commutative monoid (the zero element is notedε), (S,⊗) is
a monoid (the unit element is notede), the sum is left and right distribu-
tive over the product, and the zero element is absorbing. As usual, we
will omit ⊗ for the product, writingab instead ofa ⊗ b, for a, b ∈ S.



a morphism f : D → D′ is a morphism of semirings,
that preserves infinite sums (i.e.f (supX) = sup f (X),
for all X ⊂ D).

A series with coefficients inD and indeterminates in
M is simply a maps : M → D. The set of these series
is denoted byD〈〈M〉〉. We will represent a seriess by
a formal sums =

⊕

w∈M sww. If sw = ε, we need
not write the monomialsww in the sum. In particular,
we will identify an elementw ∈ M with the seriesew.
We will identify a subsetX ⊂ M to its indicator series:
⊕

w∈X w. If sw is zero for all but finitely many values of
w ∈ M, we say thats is apolynomial. The setD〈〈M〉〉,
equipped with the componentwise sum(s⊕ s′)w = sw ⊕

s′
w and Cauchy product(ss′)w =

⊕

uv=w sus′
v is clearly

a complete idempotent semiring. We will also use the
shuffle product∘, which can be defined inductively by
the following rule, which holds for allu, v,w ∈ M and
a, b ∈ GM ,

w ∘ e = e∘ w = w ,(2a)

au ∘ bv = a(u ∘ bv) ⊕ b(au∘ v) ,(2b)

and then for alls, s′ ∈ D〈〈M〉〉,

s ∘ s′ def
=

⊕

w,w′∈M

sws′
w′w ∘ w′ .(2c)

Contrary to the Cauchy product, the shuffle product is al-
ways commutative. Due to the idempotency of addition,
if M is commutative, the shuffle and Cauchy products co-
incide.

Example 3.If M = 6∗
1, the shuffle of two wordsw =

a1 . . . ap andw′ = b1 . . . bq is simply the sum of words
of the formc1 . . . cp+q, such thatw = ci1 . . . ci p for some
1 ≤ i1 < . . . < i p ≤ p + q, andw′ = c j1 . . . c jq , where
1 ≤ j1 < . . . < jq ≤ p + q denote the complementary
subsequence ofi1, . . . , i p in 1, . . . , p+ q. E.g., if61 =

{a, b, c}, a ∘ bc = abc⊕ bac⊕ bca.

Remark 4.If M is not a Cartesian product of free
monoids, it may be meaningless to define the shuffle
product by (2). Indeed, in this case, two elementsw

andw′ will have different factorizations as a product of
generators and the result of a recursive application of (2)
may depend of these factorizations. E.g., consider the
monoidM with generatorsa, b, c and relationac = ca.
Formally, M can be defined as the quotient of the free
monoid {a, b, c}∗ by the least congruence (equivalence
relation compatible with the monoid structure)∼ such
that ac ∼ ca. This is an example ofpartially com-
mutative monoid, or trace monoid[9]. In this monoid,
ac = ca, butabc 6= cba. An application of (2) yields:

ac∘ b = a(c ∘ b) ⊕ b(ac∘ e) = acb⊕ abc⊕ bac ,

ca ∘ b = c(a ∘ b) ⊕ b(ca ∘ e) = cab⊕ cba⊕ bca .

Sincecab= acb, bca = bac, butcba 6= abc, these two
series differ.

2.2 Non-decreasing Series

We say that a seriess ∈ D〈〈M〉〉 is non-decreasingif, for
all u, v ∈ M, u ≤ v H⇒ su ≤ sv (in the left hand

side,≤ denotes the subword order ofM, in the right hand
side,≤ denotes the canonical order ofD). We denote byD↑〈〈M〉〉 the set of non-decreasing series.

We will call non-decreasingenvelope of a seriess ∈D〈〈M〉〉 the seriess↑, which is defined by:

s↑
u =

⊕

v≤u

sv .

The proof of the following four results is detailed in [2].

PROPOSITION5. The series s↑ is the minimal non-
decreasing series that is above s. Moreover, s↑ = s∘ M.

PROPOSITION6. The set of non-decreasing seriesD↑〈〈M〉〉, equipped with sum and Cauchy product, is a
complete idempotent semiring.

PROPOSITION7. The map s7→ s↑ is a surjective mor-
phism of complete idempotent semiringsD〈〈M〉〉 →D↑〈〈M〉〉.

Let ≡min denote the congruence5 generated by the
relations: ∀a ∈ GM , e⊕ a = e.

THEOREM 8. The complete idempotent semiringsD↑〈〈M〉〉 andD〈〈M〉〉/ ≡min are isomorphic.

From the algorithmic point of view, we are inter-
ested in series which are produced by a suitable finite
device. The two following notions are instrumental. We
say that a seriess ∈ D〈〈M〉〉 is recognizableif there ex-
ists an integern, a morphism of multiplicative monoids
µ : M → Dn×n, a row vectorα ∈ D1×n and a column
vectorβ ∈ Dn×1 such thatsw = αµ(w)β. The triple
(α,µ, β) is called alinear representationof s. We denote
by Drec〈〈M〉〉 the set of recognizable series. Arational
expressionis obtained by a finite number of applications
of the grammar rule6:

X 7→ X ⊕ X, X X, X∗, λa ,(4)

whereX is a variable, andλ ∈ D, a ∈ GM are arbitrary
elements. A series isrational if it is given by a rational
expression. We denote byDrat〈〈M〉〉 the set of rational se-
ries. E.g., ifD = (N ∪{−∞}, max,+) andM = {a, b}∗,
the series 2a(a ⊕ 5b)∗ ⊕ 3a = 3a ⊕ 2a2 ⊕ 7ab⊕ . . . is
rational.

Classically, the Kleene-Schützenberger theorem [5]
states that whenM is finitely generated,Drec〈〈M〉〉 ⊂Drat〈〈M〉〉, and that the equality holds whenM is free.
We next state a non-decreasing analogue of this theorem,
whose (simple) proof is detailed in [2]. Asupword-closed
rational expression is defined as in (4), replacingλa by
λa ∘ M.

5A congruence of complete idempotent semiringS is an equiv-
alence relation∼ such that, for all (possibly infinite) families
{xi }i∈I , {yi }i∈I ⊂ S; if xi ∼ yi holds for all i ∈ I , then

⊕

i∈I xi ∼
⊕

i∈I yi ; and for allx, y, z ∈ S, x ∼ y implies xz ∼ yz andzx ∼ zy.
The congruence generated by a family of relationsu j = v j , j ∈ J,
is the intersection of the congruences that contain the couples (u j , v j ),
for all j ∈ J (we identify a relation to its graph, which is a subset ofS2).

6Recall that in any complete idempotent semiring, the star operation
s∗ = e⊕ s ⊕ s2 ⊕ · · · is well defined.



THEOREM 9. Let M denote a Cartesian product of free
monoids, and let s∈ D〈〈M〉〉, whereD is a complete
idempotent semiring. The following assertions are equiv-
alent:

1. s is rational and non-decreasing;

2. s can be written as a supword-closed rational expres-
sion;

3. s is non-decreasing, and there exists a rational series
in the equivalence class of s modulo≡min .

Moreover, if M is free and finitely generated, the above
conditions are equivalent to any of the following:

4. s is recognizable and non-decreasing;

5. s admits a linear representation(α,µ, β) such that for
all a ∈ GM , µ(a) ≥ I (where I denotes the identity
matrix);

6. s is non-decreasing, and there exists a recognizable se-
ries in the equivalence class of s modulo≡min .

2.3 Non-increasing Series

Dually, we say that a seriess ∈ D〈〈M〉〉 isnon-increasing
if for all u, v ∈ M, u ≤ v H⇒ su ≥ sv . The role
of the shuffle product byM will be played, in the case of
non-increasing series, by theMagnus transformation7 m
which is defined bym(a) = e⊕ a, for all generatorsa ∈

GM . It is extended to an elementw = a1 . . . ap ∈ M,
with a1, . . . , ap ∈ GM , by settingm(w) = m(a1) . . .m(ap) =

⊕

u≤w

u .(5a)

If s is a series, we definem(s) =
⊕

w∈M

swm(w) .(5b)

We next state the analogue of the results of section 2.2
(the proofs are similar).

PROPOSITION10. Let s∈ D〈〈M〉〉. The series

s↓
w =

⊕

w′≥w

sw′

is the minimal non-increasing series that is above s.
Moreover s↓ = m(s).

PROPOSITION11. The map s 7→ s↓ is a surjective
morphism of complete idempotent semiringsD〈〈M〉〉 →D↓〈〈M〉〉.

Let ≡max denote the congruence generated by the
relations: e⊕ a = a, ∀a ∈ GM .

THEOREM 12. The complete idempotent semiringsD↓〈〈M〉〉 andD〈〈M〉〉/ ≡max are isomorphic.

A subword closedrational expression is defined as
in (4), replacingλa bym(λa) = λ(e⊕ a).

7This transformation is borrowed to the theory of group presenta-
tions. In [18, Ch. 6], it is used to count subwords.

THEOREM 13. Let M denote a Cartesian product of free
monoids, and let s∈ D〈〈M〉〉, whereD is a complete
idempotent semiring. The following assertions are equiv-
alent:

1. s is rational and non-increasing;

2. s can be written as a subword-closed rational expres-
sion;

3. s is non-increasing, and there exists a rational series
in the equivalence class of s modulo≡max .

Note that there is an essential lack of symmetry here:
there is no natural non-increasing analogue of the second
half of Theorem 9, relative to recognizable series.

3 Event-Time Transductions

3.1 TheMax
in 〈〈E × T 〉〉 Semiring

Let E , T denote two finite Cartesian products of free,
finitely generated monoids. An elementw ∈ E will be
interpreted as asequence of events, an elementt ∈ T
will be interpreted as a completion time. We calltime
behavioror event-time transductionan arbitrary subset

x ⊂ E × T .

We will adopt the following semantics:(w, t) ∈ x rep-
resents the information: “the event sequencew is com-
pleted at the earliest at timet”.

In particular, if γ andδ denote two indeterminates,
and ifE = {γ }∗ ≃ N, T = {δ}∗ ≃ N, we obtain exactly
the semantics of [1]. For instance, ifx represents the
behavior of a transition of a timed event graph(γ n, δt ) ∈

x, with n, t ∈ N, simply mean: the firing numberedn of
the transition occurs at the earliest at timet.

We say that a time behaviorx ⊂ E × T is monotone
if

(w, t) ∈ x andw ≤ w′ H⇒ (w′, t) ∈ x ,(6a)

(w, t) ∈ x andt ≥ t ′ H⇒ (w, t ′) ∈ x .(6b)

These two assumptions are consistent with the above se-
mantics. Indeed, if the sequencew is completed at the
earliest at timet, a fortiori, we can say that it is com-
pleted at the earliest at any timet ′ ≤ t, which justifies the
second rule. A dual argument justifies the first rule.

Let B = {ε, e} denote the Boolean semiring. TheMax
in 〈〈E × T 〉〉 semiring is the quotient of the semiring

of formal seriesB 〈〈E × T 〉〉 by the congruence≡min
max

generated by the relations:

∀a ∈ GE , e⊕ a = e(7a)

∀t ∈ GT , e⊕ t = t .(7b)

In B 〈〈E × T 〉〉, we define the Magnus transformation, so
that it only affects theT -coordinate:

∀t ∈ GT ,m(t) = e⊕ t,∀a ∈ E,m(a) = a ,

and we extendm to series by (5b). The following result
establishes a bijective correspondence between monotone
behaviors and elements ofMax

in 〈〈E × T 〉〉.



THEOREM 14. A series s∈ B 〈〈E × T 〉〉 has a unique
monotone representative modulo≡min

max , namelym(s) ∘ E = m(s ∘ E) ,(8)

whereE is identified toE × e.

We are particularly interested in the following ques-
tions. 1). What is the setxd

w of execution time constraints
that an event sequencew carries ? Formally,

xd
w = {t ∈ T | (w, t) ∈ x} .

2). What is the set of eventsxc
t that are constrained at

time t? Formally,

xc
t = {w ∈ E | (w, t) ∈ x} .

We will identify as usual such subsets to their indi-
cator series. Then, using the canonical isomorphismsB 〈〈E × T 〉〉 ≃ (B 〈〈E〉〉)〈〈T 〉〉 ≃ (B 〈〈T 〉〉)〈〈E〉〉, it is eas-
ily seen that the functionsxc andxd are simply obtained
by ordering the seriesx in T andE , respectively:

x =
⊕

w∈E xd
ww ∈ (B 〈〈T 〉〉)〈〈E〉〉 ,

x =
⊕

t∈T xc
t t ∈ (B 〈〈E〉〉)〈〈T 〉〉 .

The following proposition is an elementary consequence
of the definition of monotone time behaviors.

PROPOSITION15. Let x ∈ B 〈〈E × T 〉〉 denote a mono-
tone time behavior.

1. For all t ∈ T , xc
t ∈ B↑ 〈〈E〉〉.

2. For all w ∈ E , xd
w ∈ B↓ 〈〈E〉〉.

3. The map xc : T → B↑ 〈〈E〉〉 is non-increasing.

4. The map xd : E → B↓ 〈〈E〉〉 is non-decreasing.

This allows us to identify a monotone time behavior
x (or equivalently, the element ofMax

in 〈〈E × T 〉〉 that x
represents) to the counterxc ∈ (B ↑ 〈〈E〉〉)↓〈〈T 〉〉 or to
the daterxd ∈ (B↓ 〈〈T 〉〉)↑〈〈E〉〉. Hence, the theory of
non-decreasing and non-increasing rational/recognizable
series, sketched in sections 2.2,2.3 above, can be applied
to elements ofMax

in 〈〈E × T 〉〉.

From Theorem 14, it is clear thatm(s) ∘E = m(s∘E)

is the maximal element in the equivalence class ofs
modulo ≡min

max. However, to implement the semiringMax
in 〈〈E × T 〉〉, i.e. to code its elements as economically

as possible, we rather need aminimalrepresentative. The
next section gives a partial answer to this problem.

3.2 Minimal Counter Representation of Monotone
Behaviors

We first recall a classical (and beautiful) order-theoretical
result, which can be found in [18, Ch. 6].

THEOREM 16 (HIGMAN ). Let E denote a free, finitely
generated, monoid. IfX is a subset ofE composed of
pairwise incomparable elements for the subword order,
then,X is finite.

COROLLARY 17 (MINIMAL REPRESENTATION).
For all x ∈ B 〈〈E × T 〉〉, there is a minimal function
y : T → B 〈〈E〉〉, such that

x ≡min

⊕

t∈T yt t ,(9)

and for all t ∈ T , yt is a polynomial.

This corollary, which needs no rationality or recog-
nizability hypotheses, states in particular that the con-
straints on the events at timet can always be represented
by a finite set. There is no simple analogue of this re-
sult for minimaldater representations, because there are
infinite increasing sequences for the subword order.

4 Application to Partial Order Automata
Models of Real Time Systems

Consider the partial order automaton depicted in Fig 1.
With the action labelsa, b, c are associated directed

Execution times:

X

Y

X

Y

S
1

S
2

c

a

b

X

Y

= δ

= δ2

b c

a

Figure 1: A (timed) partial order automaton.

graphs (partial orders), as shown on Fig. 1. With a word
w = u1 . . . up ∈ {a, b, c}p accepted by the automaton,
we associate a partial order, obtained by composing the
partial orders associated withu1, . . . , up, as illustrated
in Fig. 2 for w = abc. Black and gray events cost one
(δ) or two (δ2) units of time respectively. Theexecution
timeτ(w) of the runw is the maximal number of occur-
rences of aδ symbol, in a chain in this graph. E.g., we can
check by mere inspection of Fig. 2 thatτ(abc) = 6. As
detailed in [3], such partial order automata are a simple
model of real time computations: the Boolean automaton
describes the possible action sequences of the program,
and each action sets up a dependence relation between
data, which is abstracted by a partial order.

Y

X

Figure 2: Partial order associated withabc.

The execution time mapτ is recognized by the au-
tomaton with multiplicities over the max-plus semiring,
which is shown in Fig. 3, together with its linear represen-
tationα,µ, β, which is such thatτ(w) = αµ(w)β, for all
w ∈ {a, b, c}∗ (e.g.,τ(abc) = αµ(a)µ(b)µ(c)β = 6).
We have to take into account, however, the fact that only



(a ⊕ b ⊕ c)δ2

Y

(a ⊕ c)δ ⊕ b

aδ2

µ(b) =

[

2 −∞

−∞ 0

]

, µ(c) =

[

2 −∞

2 1

]

α = [0, 0], β = αT , µ(a) =

[

2 2
−∞ 1

]

cδ2

X

Figure 3: Max-plus automaton.

the sequences accepted by the automaton of Fig. 1 are of
interest. The natural way to do this is to compute theten-
sor productof this automaton by the max-plus automaton
of Fig. 3 (see [14,§VI] for details), which is depicted in
Fig. 4. The timed behavior of the system can be repre-
sented by the seriesx ∈ Max

in 〈〈{a, b, c}∗ × {δ}∗〉〉 which
is obtained by summing the weights of the paths of this
graph. Formally, the seriesx is given byα′(µ′)∗β ′, with
α′

i = e, for the initial nodesi = 1, 2,α′
i = ε, for i = 3, 4,

β ′
i = e, for the final nodesi = 1, 2, 3, 4, and

µ′ =









ε ε aδ2 aδ2

ε ε ε aδ

cδ2 ε bδ2 ε

cδ2 cδ ε b









.

Expanding(µ′)∗, or enumerating the paths in Fig. 4, we
obtain, thanks to the simplification rules (7),

x = α′(µ′)∗β ′ = e⊕ aδ2 ⊕ abδ2 ⊕ acδ3 ⊕ · · · ,

(10)

which means: that eventa is completed at the earliest at
time 2, that the event sequencesabandac are completed
at the earliest at times 2 and 3, respectively. We cannot
infer directly from (10) thata is completedexactlyat time
2, or thatab andac are completedexactlyat times 2 and
3, respectively, unless we know that there are no other
occurrences ofa, ab, ac (or of their subwords) as coeffi-
cients ofδ4, δ5, . . . in (10). This is the case fora which
does occur at time 2, but this is not the case forab and
ac. Indeed, pursuing the computation in (10), we get

x = e⊕ aδ2 ⊕ abδ2 ⊕ acδ3 ⊕ (ac⊕ ab)δ4 ⊕ · · ·

= e⊕ aδ2 ⊕ (ab⊕ ac)δ4 ⊕ · · · ,

which shows thatab andac occur at the earliest at time
4. In general, whenwδt appears in aminimalexpression
of x (which cannot be further simplified using (7)),t can
be interpreted as the effective execution time ofw.

1

2

3

4

aδ2
bδ2

cδ2

b

cδ2
aδ2

aδ

cδ

Figure 4: Tensor product automaton

This elementary example only illustrates the case
whenE = 6∗ andT = {δ}∗. The case of commutative

monoidsT andE was used in [11, Ch. IX] to compute
symbolically the throughput of a flexible workshop as a
function of the numbers of pallets (represented by differ-
ent commuting indeterminates). More generally, worst
case evaluation problems for partial order automata can
be reduced to the (much easier) commutative case. E.g.,
considering again the example of Fig. 1, we may wish
to compute the physical time elapsed, as a function of
the numbers of eventsa. This can be done by replacing
lettersb, c by the unite, and by making only states 3, 4
(which have an incominga) final in Fig. 4. We obtain
the seriesx = aδ2 ⊕ a2δ∗, which means that an observer
ignoring eventsb andc will see runs in whicha occurs
at time 2, and eventa2 occurs at an arbitrarily large time.
Such worst case evaluations can be done at a reasonable
algorithmic price [11, Ch. IX,App. B].
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Thèse,École des Mines de Paris, July 1992.

[12] S. Gaubert. On rational series in one variable over certain dioids.
Rapport de recherche 2162, INRIA, Jan. 1994.

[13] S. Gaubert. Rational series over dioids and discrete event systems.
In Proc. of the 11th Conf. on Anal. and Opt. of Systems: Discrete
Event Systems, number 199 in Lect. Notes. in Control and Inf. Sci,
Sophia Antipolis, June 1994. Springer.

[14] S. Gaubert. Performance evaluation of (max,+) automata. IEEE
Trans. on Automatic Control, 40(12), Dec 1995.

[15] S. Gaubert and J. Mairesse. Modelling and analysis of timed petri
nets using heaps of pieces. To appear in IEEE-TAC. Also techni-
cal report LITP 97/14. Abridged version in the proceedings of the
ECC’97, Bruxells, 1997.

[16] S. Gaubert and J. Mairesse. Task resource systems and (max,+)
automata. In J. Gunawardena, editor,Idempotency, Publications
of the Newton Institute. Cambridge University Press, 1998.(ac-
cepted in final form in Aug. 1995).

[17] D. Krob and A. Bonnier-Rigny. A complete system of identities
for one letter rational expressions with multiplicities inthe tropi-
cal semiring.J. Pure Appl. Algebra, 134:27–50, 1994.

[18] M. Lothaire. Combinatorics on Words. Encyclopedia of Math-
ematics and its applications. Addison-Wesley, 1983. Reprinted
1997, Cambridge University Press.

[19] J.M. Vincent. Some ergodic results on stochastic iterative discrete
events systems.DEDS: Theory and Applications, 7(2):209–233,
1997.


