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Abstract. We model the behaviour of a surfer who makes a walk on the webgraph
favouring webpages with a high ranking.

With the growth of the World Wide Web, algorithms are needed to search
and to rank webpages. PageRank [3] is a well known ranking of the webpages,
which uses the graph structure of the web. Like other information retrieval
methods, it considers the web as a graph. Basically, the PageRank score at-
tributed to the webpages measures how often a given page would be visited
by a random walker on the webgraph.

Formally, let G = (V, E) denote a directed graph representing the web
or a portion of the web: V' = {1,...,n} represents the set of webpages, and
E C V xV represents the set of hyperlinks, meaning that (i,7) € E if there is
an hyperlink in page i pointing to page j. We assume for simplicity that G is
strongly connected. Let C' denote the adjacency matrix of G, so that C;; =1
if (i,j) € E and C;; = 0 otherwise. Imagine that, when visiting page 7, a
websurfer chooses randomly the next webpage he will visit, among the pages
pointed from page 4, with the uniform distribution. Then, the trajectory of
the websurfer is a Markov chain with transition matrix M = [M;;], given by

Ci;
Zk Cir

In its most basic version, the PageRank r is defined as the stationary distri-
bution of this random walk. Thus, r is the invariant measure of the matrix
M (which is unique because we assumed G to be strongly connected), i.e. the
unique stochastic vector such that

Mij =

r=rM .

The assumption that the websurfer makes uniform draws may seem unre-
alistic: a websurfer may have an a priori idea of the value of pages, favouring

C. Commault and N. Marchand (Eds.): Positive Systems, LNCIS 341, pp. 239-246, 2006.
© Springer-Verlag Berlin Heidelberg 2006



240 M. Akian, S. Gaubert, and L. Ninove

pages from “reputed” sites. Since the webrank influences the “reputation” of
a site, it may influence the behaviour of websurfers.

In this paper, we present a simple mathematical model of the behaviour
of a surfer who makes a walk on the webgraph, favouring webpages with a
high ranking. The following process is iterated. Let r(s) denote the stochastic
vector giving the webrank at step s € IN. The websurfer moves from page
1 to page j with probability proportional to Cij@r(s)j/ T where T > 0 is a
fixed positive parameter, that we call the temperature. Hence, the trajectory
of this websurfer is a Markov chain with transition matrix M (r(s)), where for
all vectors x,

Cij e*i /T

Y, Cigexk/T

The temperature T measures the randomness of the process. If T is small, with
overwhelming probability, the websurfer shall move from page 7 to one of the
pages j referenced by page i of best rank, i.e. maximizing r(s);, whereas if
T = oo, the websurfer shall draw the next page among the pages j referenced
by page ¢, with the uniform distribution, as in the standard webrank definition.

The updated webranking r(s + 1) is the invariant measure of the matrix
M (r(s)). Thus, r(s + 1) is the unique stochastic vector such that

M (x);;

r(s+1)=r(s+1)M(x(s)) .

Note that if r(0) is the uniform distribution, then r(1) is the classical PageR-
ank. We call T-PageRank the limit of r(s) when s tends to infinity, if it exists.
For T' = oo, the T-PageRank coincides with the classical PageRank, because
M(r(s)) = M.

We show that, for large enough values of T', the T-PageRank is independent
of the initial ranking, whereas for small values of T', several T-PageRanks exist,
depending on the choice of the initial ranking. In some cases, the T-PageRank
does nothing but validating the initial “belief” in the interest of pages given
by the initial ranking. This suggests that webusers should not rely too much
on PageRank type measures to assess the quality of pages.

We also give a simple iterative algorithm to compute the T-PageRank,
at least when the temperature 7T is large enough and when the matrix C' is
primitive. We show that the T-PageRank can be obtained as the limit of the
sequence T(s) defined by

r(s+1) =1(s)M(T(s)) , (1)

the initial condition ¥(0) being an arbitrary stochastic vector. This is similar
to applying the standard power algorithm.

This paper is organized as follows. We briefly introduce some preliminaries
in Section 1. Then, in Section 2, we analyse the convergence and the limit of
the algorithms described above. In Section 3, we show that even for small or
regular graphs, the T-PageRank can have a complex behaviour. In Section 4,
we consider a variant of the model, inspired by the standard PageRank model,
which allows us to deal with non strongly connected graphs. And finally, in
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Section 5, we experiment the T-PageRank algorithm on a “real-world exam-
ple”.

In this short version of the paper, proofs are omitted. They will be pre-
sented in a forthcoming paper. The results are obtained by studying the be-
haviour of the iterates of some nonlinear selfmaps on the positive cone. Finally,
we note that the general iteration (1) has been studied in the setting of in-
homogeneous products of nonnegative matrices (see for instance [1] and the
references therein). However, the main results of the present paper can not be
derived from these works.

1 Preliminaries

We denote by R>( the set of nonnegative numbers and by R the set of
positive numbers. The simplex ¥ = {x € R%,: > ,x; = 1} is the set of sto-
chastic vectors. Its relative interior is denoted by int(X) = SN RZ,. Hilbert’s
projective metric

dp: Ry xRy = Rxo: (x,y) — ma_xlnw )

1,7 YiX;

defines a distance on int(X) and is very useful for studying selfmaps on the
positive cone. The coefficient of ergodicity g, also known as Birkhoff’s con-
traction coefficient, is defined for a matrix A having no zero row as

T(A) = sup du(x4,y4) (x4,y4)

x,YERY o, x# Ny dH (X7 Y)

The coefficient 75(A) can be written explicitly as a function of the entries
of the matrix A, and it can be shown that 75(A) < 1 if and only if A is a
positive matrix. For background about iterated maps on the positive cone,
nonnegative matrices and Markov chains, see respectively [5], [2] and [6].

2 Fixed Points and Convergence

Let C be an irreducible n x n nonnegative matrix. For any T > 0, and any
x € X, let Mr(x) be the irreducible stochastic matrix such that

Cijexj/T

Mrp(x);; = 72]6 T

2.1 Fixed Points and Convergence of ur
Since C' is irreducible, we can define the map

ur: Ry, — X x—up(x) ,
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which sends x on the unique invariant measure ur(x) of Mr(x). Tutte’s Ma-
trix Tree Theorem [7, 4] enables us to express explicitly the invariant measure
ur(x) in terms of the entries of Mp(x):

ur(x), = pr(x) Y [ Mr(x)i

ReS(r) (i,5)ER

where pp(x) > 0 is a normalization factor such that up(x) € ¥, and S(r) is
the set of directed subtrees of G in which all nodes except r have an outde-
gree equal to one. The existence of fixed points for ur is then proved using
Brouwer’s Fixed Point Theorem.

Proposition 1. The map ur has at least one fized point in int(X). Moreover,
every fized point of ur is in int(X).

The uniqueness of the fixed point and the convergence of the orbits of ur for
a sufficiently large temperature T are proved using Theorems 2.5 and 2.7 of
Nussbaum in [5].

Theorem 1. If T > n, the map ur has a unique fized point xr, which belongs
to int(X). Moreover, if C is primitive, all the orbits of ur converge to this
fized point.

2.2 Fixed Points and Convergence of fr
We now consider the map
fr:¥—-Y:x—xMp(x) .

Theorem 2 shows that the iterates of f1 can be used in order to compute the
fixed point of the map urp, if T is sufficiently large.

Theorem 2. The fized points of ur and f1 are the same. Moreover, if C is
primitive, then, for T sufficiently large, all the orbits of f1 converge to the
fized point xp of ur.

For positive matrices C, another convergence criterion can be derived, de-
pending on Birkhoff’s coefficient of ergodicity.

Proposition 2. Assume that C is positive. If T > 2(1 — 75(C))~%, then fr
has a unique fized point xr € int(X) and all the orbits of £1 converge to this
fized point.

2.3 Existence of Multiple Fxed Points of ur and fr

Theorems 1 and 2 show that for a temperature T sufficiently large, the maps
ur and fr have a unique fixed point. We can naturally wonder about the
uniqueness of the fixed point for small 7": we show that, at least when C is
positive, multiple fixed points always exist.
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Proposition 3. Assume that the first column of C is positive. Then, there
exists a map x: Rso — int(X): T — x(T') such that for all T > 0, x(T) is a
fized point of £1 and limp_,ox(T) = e1, where ey is the first basis vector.

It follows from Proposition 3 that if the matrix C' is positive, self-validating

effects appear for small values of T: arbitrary close initial rankings can induce

totally different final rankings. For instance, if C' = (1 1), the point (3 1) is

2 2
a fixed point of up for all 7. But this fixed point is unstable if T' < %, and
two orbits starting respectively from (% %) + (¢ —e) will converge to each of

the two other fixed points of ur, which are stable, for any e # 0.

3 Estimating the Critical Temperature in Particular Cases

In this section, we consider some particular simple cases. We are interested
in temperatures for which the number of fixed points of ur changes. Such a
temperature is called critical temperature. The first critical temperature is
the largest one, and corresponds to a loss of uniqueness of the fixed point.

3.1 Matrices of Dimension 2

The case of a graph of two nodes can be studied as a one-dimensional problem.
For such graphs, the first critical temperature is always less than 1.

Proposition 4. Suppose that C' is an irreducible 2 x 2 matriz and T > 1.
Then ur has a unique fized point and all its orbits converge to this fized
point.

However, for any T' < 1, there exist 2 x 2 matrices such that the fixed point
of uy is not unique. Consider for instance C = (i i), with 0 <e < T~ 1 —1.
Then ur has an unstable fixed point (% %) and two stable fixed points.
Depending on the parameters o = C11/Ch2 and [ = Ca3/Ca1, the map
ur can have either 1 fixed point for all T', or 1 fixed point for large T and 3
for small T, or even 1, 3 and up to 5 fixed points for some values of T In this
latter case, ur can have up to three critical temperatures. Positive parameters
« and [ such that up has 5 fixed points for some 1" are depicted in Figure 1,

which has been obtained experimentally.

3.2 All Ones Matrix

Let us now consider the particular case where the graph is complete. Then, C'
is the nxn matrix of all ones. For this matrix, 2 (1...1) is a fixed point of uy for
all T. We are interested in the existence of other fixed points, depending on the
temperature 7. We know from Theorem 1 that the first critical temperature
is at most n. The following result shows that it may be of order (Inn)~*.

Proposition 5. Suppose that C' is the n X n matriz of all ones. If T >
2(Inn)~t, then ur has a unique fized point. But if T < (2In(n +1))7!, then
the map ur has at least two fized points.
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Fig. 1. For (o, 3) € R2, belonging to the coloured region, there exists some tem-
perature T' such that the corresponding map ur has 5 fixed points.

4 Variant of the Model

Since the graphs considered in the applications are not necessary strongly
connected, there is a need to cope with reducible matrices C. In their PageR-
ank algorithm, Brin and Page [3] propose to add a damping factor 0 < v < 1.
Now, at each step of his walk, either, with probability v, the websurfer follows
as usual the edges of the graph to move to one of the adjacent nodes, either,
with probability 1 — «, he moves with uniform probability to any node of the
graph. The matrix C is supposed to have no zero row, and the PageRank
vector r is now defined by r = rM,,, where M, € RZ§" is given by

Cij 1
M), 1—7)— .
(M) =7 5= + (17
We consider a similar variant for the T-PageRank, weighting the jump
probability according to the ranking vector. The positive transition matrix

My ~(x) is then defined as

C exj /T ) exj/T
Zk > Copexe/T A=) Sopek/T
with 7" > 0 and 0 < v < 1. The maps ur and fr, are defined as previously:

ur (x) is the unique invariant measure of Mr ., (x) and f7 (x) = x M7 ~(x).
Theorem 1 can be immediately adapted in the following way.

Mr.(x)s;

Proposition 6. For T' > 2n, the map ur, has a unique fived point X, in
Y. Moreover, all the orbits of ur .~ converge to this fized point.
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5 Application to a Subgraph of the Web

In this section, we briefly present our experiments of the T-PageRank on a
large-scale example. We consider a subgraph of the web with about 280000
nodes which has been obtained by S. Kamvar from a crawl on the Stan-
ford web?. The chosen damping factor is v = 0.85. We have computed the
T-PageRank from the recurrence (1) for various temperatures 7" and initial
rankings. As expected, when the temperature 7' is large, the T-PageRank is
very close to the classical PageRank, and when T approaches zero, arbitrary
close initial rankings can induce totally different T-PageRanks. The first crit-
ical temperature experimentally seems to be about 0.03. Figure 2 compares
the T-PageRank with the classical PageRank for a temperature T = 0.018,
the PageRank vector being taken as initial ranking. The two rankings are
globally similar, see Figure 2a. However, as we can see on Figure 2b, the two
best nodes are exchanged.
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Fig. 2. Comparison of PageRank and T-PageRank (7" = 0.018, PageRank taken as
initial ranking). The nodes are sorted according to the PageRank. a. Rankings for
every nodes. b. Rankings for the PageRank’s top ten nodes.





