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Abstract

In general semimodules, we say that the image of a linear
operatorB and the kernel of a linear operatorC are direct
factors if every equivalence class moduloC crosses the
image ofB at a unique point. For linear maps represented
by matrices over certain idempotent semifields such as the
(max,+)-semiring, we give necessary and sufficient con-
ditions for an image and a kernel to be direct factors. We
characterize the semimodules that admit a direct factor (or
equivalently, the semimodules that are the image of a lin-
ear projector): their matrices have a g-inverse. We give
simple effective tests for all these properties, in terms of
matrix residuation.

1 Introduction

Classical linear control theory is built on a firm algebraic
ground: vector spaces, and modules. There is some ev-
idence that the construction of a ‘geometric approach’
of (max,+)-linear discrete event systems, in the spirit
of Wonham [14], requires the analogue of module the-
ory, for semimodules over idempotent semirings, such as
the ‘(max,+) semiring’Rmax = (R ∪ {−∞},max,+).
By comparison with modules, the theory of semimodules
over idempotent semirings is an essentially fresh subject,
in which even the most basic questions are yet unsolved.

Clearly, the image of a linear mapF : X → Y
should be defined as usual: imF = {F(x) | x ∈ X }.
But what is thekernel of F? Some authors [7, 12] de-
fine kerF = {x ∈ X | F(x) = ε }, whereε is the zero
element ofY. This notion is essentially non pertinent for
Rmax-linear maps, since kerF is in general trivial, even
for ‘strongly’ non injective maps.

Consider now the following alternative definition

kerF = {(x, x′) ∈ X 2
∣∣ F(x) = F(x′)

}
. (1)

Clearly, kerF is a semimodule congruence, and we can
define the quotient semimoduleX / kerF . Now, triv-
ially, the canonical isomorphism theoremholds: imF '
X / kerF . Thus, in general semimodules, (1) seems to
be the appropriate definition. For control applications, it
is indeed appropriate, sinceF typically represents an ob-
servation map, by which we wish to quotient some state
space.

In this paper, we consider the linear projection problem.
Consider three semimodulesU ,X ,Y and two linear maps
B,C:

U B−→ X C−→ Y . (2)

We say that imB and kerC aredirect factorsif for all x ∈
X , there is a uniqueξ ∈ im B such thatCx = Cξ . When
it is the case: 1. the map5C

B : X → X , x 7→ z, which is
linear, satisfies(5C

B)
2 = 5C

B,5C
B B = B, C5C

B = C (5C
B

is theprojector ontoim B, parallel to kerC); 2. we have
the isomorphismX / kerC ' im B; in particular, ifU and
X are free finitely generated semimodules, then the linear
map B, which can be identified with a matrix, yields a
parametrization of the ‘abstract’ objectX / kerC.

In [5], a first answer to the projection problem was
given, in a nonlinear setting. IfU ,X ,Y are complete
lattices, and ifB,C are (possiblynonlinear) residuated
maps(see§ 2.2 below), it was shown that imB and kerC
are direct factors iff, setting5 = B ◦ (C ◦ B)] ◦C, (where
F] denotes the residuated map of a mapF), we have
C ◦5 = C and5 ◦ B = B. Even in the simplest case
of Rmax-linear operators over free finitely generatedRmax-
semimodules (that is, whenB and C are matrices with
entries inRmax), the operator5 = B ◦ (C ◦ B)] ◦C is a
complicated object (a min-max function in the sense of
Olsder and Gunawardena — see e.g. [10]), and the test
C ◦5 = C, 5 ◦ B = B, is computationally difficult (an
example of non trivial direct factors was given in [5], for
U = Y = (Rmax)

2, X = (Rmax)
3, the proof that imB

and kerC are direct factors involved a tedious computa-
tion of equivalence classes, together with a geometrical
argument).

In this paper, we give a much simpler test for matrices:
im B and kerC are direct factors iff there exist two matri-
cesL , K such thatB = LC B andC = C BK (we denote
with the same symbolB the matrixB and the linear map
x 7→ Bx). Then,5C

B = LC = BK. The existence of
the matricesK , L can be checked very simply (in polyno-
mial time) using residuation ofmatrices(and not of linear
maps).

As a by-product, we solve the following problem,
which was left open in [5]:given a matrixB, does there
exist a projector ontoim B?; or, equivalentlydoes there
exist a matrixC such thatim B andkerC are direct fac-
tors? The answer is positive iffB admits a g-inverse, that



is, iff B = B X B, for some matrixX. The existence of a
g-inverse can also be checked (simply) in polynomial time
using matrix residuation.

The proofs are critically based on alinear extension
theorem, which states that a linear formF on a finitely
generated subsemimodule of(Rmax)

n can be represented
by a row vectorG: F(x) = Gx. This result was
proved by Kim [8, Lemma 1.3.2] for matrices with en-
tries in the Boolean semiring. Cao, Kim and Roush [4,
Th. 4.7.4] proved a variant of this result for the semiring
([0, 1],max,×). As in the case of [8, 4], the proof con-
sists in proving that the maximal linear subextension is an
extension. This seems to require very strong properties on
the dioid (lattice distributivity, invertibility of product).

Note that certain results pertaining to kernels rely upon
a linear extension theorem whereas this theorem is not re-
quired to prove dual results on images

In §2, we introduce the algebraic notions used in the
paper. In§3, we prove the linear extension theorem, and
derive factorization theorems for linear maps. In§4, we
characterize direct factors. In§5, we relate the existence
of projectors to the existence of g-inverses.

2 Algebraic Preliminaries

We briefly and informally recall the few algebraic results
needed here. More details can be found in [1] for dioids
and ordered sets, and in [7] for semirings and semimod-
ules. A seminal reference in residuation theory is [3]. See
also [6].

A semiring is a setS equipped with two laws⊕, ⊗,
such that:(S,⊕) is a commutative monoid (the zero is de-
notedε); (S,⊗) is a (possibly noncommutative) monoid
(the unit is denotede); ⊗ is right and left distributive over
⊕; and the zero is absorbing. A semiring in which non
zero elements have an inverse is asemifield. A semiring
S is idempotentif ∀a ∈ S,a⊕ a = a. Idempotent semir-
ings are also calleddioids. In this paper, we will mostly
consider dioids such asRmax, which is also a semifield.

2.1 Order properties of dioids

A dioid (or more generally, an idempotent additive
monoid) is equipped with thenaturalorder relation:

a ≤ b ⇐⇒ a⊕ b = b . (3)

Then,a⊕ b coincides with the upper bounda ∨ b for the
natural order≤. Note thatε is the bottom element ofD:
∀x ∈ D, ε ≤ x.

Moreover, ifD is a semifield,(D,≤) is a lattice. In-
deed, for all non zeroa, b, a ∧ b = (a−1 ∨ b−1)−1 =
(a−1⊕b−1)−1; if a or b is zero,a∧b = ε. This shows that
(D,≤) is a lattice. We say that the idempotent semifieldD
is distributive if the lattice(D,≤) is distributive [1].

For the sake of symmetry, we will complete an idem-
potent semifieldD with a maximal element> (for “top”),
which satisfiesa⊕> = >, ∀a ∈ D ∪ {>}, anda⊗> =
>⊗a = >, ∀a ∈ (D∪{>})\{ε}. We denoteD = D∪{>}
this dioid, and we will call it thetop completionof D.

In D, the product also distributes with respect to∧:

∀a, b, c ∈ D, a(c∧ d) = ac∧ ad ,
(c∧ d)a = ca∧ da

(4)

(this property does not hold in general dioids).

2.2 Residuation

Definition 1. We say that a dioidD is residuatedif

1. for all a andb in D, {x ∈ D | ax ≤ b} admits a maxi-
mal element denoteda\b;

2. {x ∈ D | xa≤ b} admits a maximal element de-
notedb/a;

3. (D,≤) is a lattice.

Then, the maximal element of{x ∈ D | axc≤ b} ex-
ists and can be denoteda\b/c which can be read indiffer-
ently as(a\b)/c or a\(b/c).

The top completionS of an idempotent semifieldS is
residuated, witha\x = a−1x if a is invertible,ε\x = >,
and>\x = ε if x 6= >, >\> = > (similar formulæ
for /).

Consider the following linear equations inX:

AX = B , (5a)

XC = D , (5b)

AXC= F , (5c)

whereX, A, . . . are (possibly rectangular) matrices with
entries in a residuated dioidD.

We extend the·\· and·/· notation to matrices:

A\B def=
∨
{X | AX ≤ B } , (6a)

D/C
def=
∨
{X | XC ≤ D } , (6b)

A\F/C def=
∨
{X | AXC≤ F } . (6c)

Explicitly, we have the following formulæ, which relate
the residuation of matrices to the residuation of scalars:

(A\B)i j =
∧

k

Aki\Bkj , (7a)

(D/C)i j =
∧

l

Dil /Cjl , (7b)

(A\F/C)i j =
∧
kl

Aki\Fkl/Cjl . (7c)

To decide whether the matrix equations (5) have a so-
lution, it suffices to check that the maximal subsolution
satisfies the equality.



Proposition 2. Take five matricesA, B,C, D, F as
above, with entries in a residuated dioid. Then:

∃X, AX = B ⇐⇒ A(A\B) = B , (8a)

∃X, XC = D ⇐⇒ (D/C)C = D , (8b)

∃X, AXC= F ⇐⇒ A(A\F/C)C = F . (8c)

2.3 Semimodules

In this section,S denotes an arbitrary semiring. Aright
S-semimodule, or a right semimodule overS, is a com-
mutative monoid(E,⊕), together with an external law
E×S → E , (u, s) 7→ u.s, which satisfies, for allu, v ∈ E ,
s, t ∈ S, u.(st) = (u.s).t , (u ⊕ v).s = u.s ⊕ v.s,
u.(s⊕ t) = u.s⊕ u.t , ε.s= ε, u.ε = ε, u.e= u.

Left S-semimodules are defined dually. For simplicity,
we will simply speak ofsemimodulewhen the underlying
semiringS and the side (right vs. left) are clear from the
context.

In a semimodule over a dioid, addition is idempotent.
Indeed,a⊕ a = a.e⊕ a.e= a.(e⊕ e) = a.e= a.

A map F from a (rightS-) semimoduleE to a (right
S-) semimoduleF is linear if it is additive (∀u, v ∈
E, F(u ⊕ v) = F(u) ⊕ F(v)) and right-homogeneous
(∀u ∈ E, s ∈ S, F(u.s) = F(u).s). The set of linear
mapsE → F is denoted Hom(E,F).

A generating familyof a semimoduleE is a family
{ui }i∈I of elements ofE such that each elementv ∈ E
writes as a finite linear combinationv =⊕i∈I ui .si , with
si ∈ S (‘finite’ means that{i ∈ I | si 6= ε } is finite, even
if I is infinite). A generating family{ui }i∈I is a ba-
sis if

⊕
i∈I ui .si =

⊕
i∈I ui .ti , with {i ∈ I | si 6= ε } and

{i ∈ I | ti 6= ε } finite, impliessi = ti , for all i ∈ I . A
semimodule isfinitely generated(f.g., for short) if it has a
finite generating family. A semimodule isfree if it has a
basis.

The termfree for E arises from the following universal
property: given an arbitrary family{gi }i∈I of elements of
a semimoduleF , there is a unique linear mapF : E → F
such thatF(ui ) = gi , ∀i ∈ I .

All semimodules with a basis ofn elements are isomor-
phic toSn, equipped with the laws:∀u, v ∈ Sn, s ∈ S,
(u ⊕ v)i = ui ⊕ vi , (u.s)i = ui .s. A linear map
F : S p → Sn writes F(x) = Ax, whereA is a n × p
matrix with entries inS.

We will use the following notation, for matrices:

transpose: (AT )i j = Aji ,

kernel: kerA= {(x, y) ∈ (Sn)2 | Ax = Ay
}
,

image: imA= {Ax | x ∈ Sn } .
That is, matrixA is identified with the linear mapx 7→
Ax. We will use this convention systematically in the se-
quel.

3 Linear Extension Theorem and
Factorization of Linear Maps

Let us begin with an elementary and apparently innocent
property.
Proposition 3. LetS denote an arbitrary semiring. Con-
sider a freeS-semimoduleF , twoS-semimodulesG, H,
and two linear mapsF : F → H, G : G → H. The
following assertions are equivalent:

1. im F ⊂ im G;

2. there exists a linear mapH : F → G such thatF =
G ◦ H .

Proof. Clearly, (2) implies (1). Conversely, taking a basis
of F , {ui }i∈I , for all i ∈ I , there existshi ∈ im G such
that F(ui ) = G(hi ). SinceF is free, settingH(ui ) = hi ,
for all i ∈ I , we define a linear mapH : F → G, which
satisfiesF = G ◦ H .

The dual of Prop. 3 requires some conditions on the
semiring, as shown by the following counterexample.

Example 4. LetF ,G,H denote three free semimodules,
and consider two mapsF : H → F , G : H → G. The
inclusion kerG ⊂ kerF need not imply the existence of a
linear mapH : G → F such thatF = H ◦G. Consider
the semiringNmax= (N ∪ {−∞},max,+) equipped with
the laws⊕ = max,⊗ = +, F = G = H = Nmax,
G(x) = x + 2, F(x) = x + 1. We have kerG ⊂ kerF
(in fact, kerG = kerF = {(x, x) | x ∈ Nmax}) but there
exists no linear mapH such thatF = H ◦G. Indeed, any
linear mapH : Nmax→ Nmax writesH(x) = x+a where
a = H(0) ∈ Nmax. We obtainF(0) = 1 = 2 + a: a
contradiction.

We will derive the dual of Prop. 3 from the following
semimodule version of the Hahn-Banach theorem.

Theorem 5 (Linear Extension). Let S be a distributive
idempotent semifield. LetF ,G denote two free f.g.S-
semimodules, and letH ⊂ G be a f.g. subsemimodule.
For all F ∈ Hom(H,F), there existsG ∈ Hom(G,F)
such that∀x ∈ H, G(x) = F(x).

Proof. It suffices to prove the result whenG = Sn and
F = S. SinceH ⊂ G is f.g., we haveH = im H , for
someH ∈ Sn×p. Clearly, we can assume thatH has no
zero row. In this case, for all 1≤ i ≤ n,

L(i ) = { j
∣∣ 1≤ j ≤ p, Hi j 6= ε

} 6= ∅ .
Let H· j denote thej -th column ofH , and letF(H) denote
the row-vector whosej -th entry is F(H· j ). We have to
prove the existence of a row-vectorG ∈ S1×n such that

F(H) = G H . (9)



Using (8b), this is equivalent to

F(H) = (F(H)/H
)
H . (10)

Using (7b), we get:

((
F(H)/H

)
H
)

j
=
⊕

k

( ∧
l∈L(k)

F(H)l H
−1
kl

)
Hkj .

Using the distributivity of product with respect to∧
(see (4)), we obtain:((

F(H)/H
)
H
)

j
=
⊕

k

∧
l∈L(k)

F(H)l H
−1
kl Hk j . (11)

Let8 denote the set of mapsϕ : {1, . . . ,n} → ∪kL(k),
such thatϕ(k) ∈ L(k), for all k. Since the lattice(S,≤)
is distributive, we have:((

F(H)/H
)
H
)

j
=
∧
ϕ∈8

⊕
k

F(H)ϕ(k)H
−1
kϕ(k)Hkj

=
∧
ϕ∈8

⊕
k

F(H·ϕ(k))H−1
kϕ(k)Hkj

=
∧
ϕ∈8

F

(⊕
k

H·ϕ(k)H−1
kϕ(k)Hkj

)

(the last equality is by linearity ofF on imH ). To show
that (F(H)/H)H ≥ F(H) (the other inequality is triv-
ial), it remains to check that for allϕ and j ,⊕

k

H·ϕ(k)H−1
kϕ(k)Hkj ≥ H· j . (12)

If Hi j = ε, then the inequality (12) is plain. IfHi j 6= ε,
we choosek = i , and obtainHiϕ(i )H

−1
iϕ(i )Hi j = Hi j , which

shows that (12) holds and the proof is complete.

Corollary 6. Let S be an idempotent distributive semi-
field. LetF ,G,H denote three free f.g.S-semimodules,
and consider two mapsF : H → F , G : H → G. The
following assertions are equivalent:

1. kerG ⊂ kerF ;

2. there exists a linear mapH : G → F such thatF =
H ◦G.

Proof. Clearly, 2 implies 1. Conversely, assume that
kerG ⊂ kerF . Then, there exists a mapK ∈
Hom(im G,F) such thatK (G(x)) = F(x), for all x ∈
H. Indeed, for anyy = G(x) ∈ im G, defineK (y) =
F(x). Since kerG ⊂ kerF , the valueK (y) is indepen-
dent of the choice ofx such thaty = F(x). Clearly,
the mapK is linear. By Theorem 5,K admits a linear
extensionH ∈ Hom(G,F). For all x ∈ H, we have
H ◦G(x) = K (G(x)) = F(x), henceH ◦G = F .

4 Direct Factors in Semimodules
and Linear Projectors

Definition 7. Let X be a subset in a semimoduleX and
E be an equivalence relation inX . We say thatx in X has
aprojection onX parallel to E if there existsξ in X such
thatξ E x. We say thatX crossesE if there exists such
a projection for allx in X . We say thatX is transverse
to E if the projection of anyx is unique whenever it
exists. Finally, we say thatX and E aredirect factors if
existence and uniqueness of the projection is ensured for
all x in X .

In the previous definition, considerX = im B for B ∈
Hom(U ,X ) and E = kerC for C ∈ Hom(X ,Y),
whereU , X andY are semimodules over a semiringS.
If im B and kerC are direct factors,5C

B denotes the cor-
responding projector. It is straightforward to check that
5C

B ∈ Hom(X ,X ). Also, from the very definition, it
comes that

B = 5C
B B ; C = C5C

B . (13)

However, the existence of a linear projector5 (that is,
such that52 = 5) satisfying (13) is not a sufficient con-
dition for im B and kerC to be direct factors. Indeed, for
any B andC, the identity overX satisfies (13).

Theorem 8 (Existence).Let S denote an arbitrary
semiring. LetB ∈ Hom(U ,X ) and C ∈ Hom(X ,Y)
whereU , X , Y are free f.g.S-semimodules. The follow-
ing statements are equivalent:

1. there existsK ∈ Hom(X ,U) such that

C = C BK ; (14)

2. im C = im C B;

3. im B crosseskerC.

Moreover, ifS is a residuated dioid, a practical test for
checking that the above conditions hold true is by trying
the equality

C = C B
(
(C B)\C) . (15)

Proof.

1 ⇒ 2 The assumption implies that imC ⊂ im C B
but the converse inclusion is trivial. Hence equality holds
true.

2⇒ 3 From the assumption, it follows that for allx ∈ X ,
there existsu ∈ U such thatCx = C Bu. The projection
of x we are looking for isξ = Bu.

3⇒ 1 By assumption, for allx ∈ X , there existsu ∈ U
such thatCx = C Bu. That is to say, imC ⊂ im C B.
From Prop. 3, it follows that there existsK ∈ Hom(X ,U)
such thatC = C BK.



The practical test follows from statement 1, together
with (8a).

Theorem 9 (Uniqueness).The mappingsB andC are as
in the previous theorem. But nowS is an idempotent dis-
tributive semifield. The following statements are equiva-
lent:

1. im B is transverse tokerC;

2. kerB = kerC B;

3. there existsL ∈ Hom(Y,X ) such that

B = LC B . (16)

A practical test for checking that they hold true is by trying
the equality

B = (B/(C B)
)
C B . (17)

Proof.

1 ⇒ 2 By assumption, if there existu andu′ such that
C Bu= C Bu′, sincex = Bu has a unique projection on
im B parallel to kerC, it should be thatBu = Bu′. This
means that kerC B⊂ kerB. But the converse inclusion is
trivial, hence equality holds true.

2⇒ 3 If ker B = kerC B, from Cor. 6, there existsL ∈
Hom(Y,X ) such thatB = LC B.

3 ⇒ 1 For somex, suppose there exist two projections
Bu and Bu′ on imB parallel to kerC. Then C Bu =
C Bu′, henceLC Bu = LC Bu′, thusBu = Bu′ and the
projection is unique.

The practical test follows from statement 1, together
with (8b).

Corollary 10. If im B andkerC are direct factors, then

5C
B = LC = BK = (B/(C B)

)
C = B

(
(C B)\C) . (18)

Proof. If B andC are direct factors, then (14) and (16)
both hold true. Consider5 = BK. From (16),5 =
LC BK, and then from (14),5 = LC. Thus,5 = BK =
LC = 52. In addition, this shows that, for anyx, 5x
belongs to imB and, moreover, (14) shows thatC5x =
Cx, which means that the projection on imB is parallel to
kerC. Thus this projector5 is indeed5C

B. The last two
expressions in (18) result from the choice of maximalL
andK previously mentioned.

Remark 11. Gathering the results in (15) on the one
hand, of (13) and (18) on the other hand, one has that

C = C B
(
(C B)\C) = C

(
B/(C B)

)
C . (19a)

Similarly, with (17) on the one hand, (13) and (18) again
on the other hand, one obtains

B = (B/(C B)
)
C B= B

(
(C B)\C)B . (19b)

However, while the pair of leftmost equations have been
proved to be a test that imB and kerC are direct factors,
there is no evidence at this moment that the other pairs of
equations can play the same role.

Remark 12 (Duality). If S is an idempotent distributive
semifield, by transposition, it is straightforward to check
that imB crosses kerC if, and only if, imCT is transverse
to kerBT . Likewise, imB is transverse to kerC if, and
only if, im CT crosses kerBT . Finally, imB and kerC
are direct factors if, and only if, imCT and kerBT are
so. In this case,

(
5C

B

)T = 5BT

CT (in general,(M/N)T =
NT\MT ).

5 Direct Factors and g-Inverses

In this section, we answer the question of when a semi-
module imB admits a direct factor kerC. Unlike in the
case of usual linear spaces, this question cannot receive a
positive answer for any linear operatorB. An explicit test
is given to characterize homomorphisms such that their
images admit a direct factor.
Definition 13. LetU ,X denote two semimodules over an
arbitrary semiringS. Let B ∈ Hom(U ,X ).

1. An elementF ∈ Hom(X ,U) such thatBFB = B is
called ag-inverseof B;

2. whenB admits a g-inverse, it is calledregular;

3. a g-inverseF which satisfiesFBF = F is called a
reflexive g-inverse;

4. whenS is a dioid1, an elementF ∈ Hom(X ,U) such
that BFB ≤ B is called ag-subinverseof B.

Theorem 14. LetU ,X denote free f.g. semimodules over
a residuated dioidD. Then:

1. AnyB ∈ Hom(U ,X ) admits a maximal g-subinverse.
It is denotedBg. In matrix terms:Bg = B\B/B.

2. WhenB is regular, Bg is the greatest g-inverse and
Br, defined byBgB Bg, is the greatest reflexive g-inverse
of B.

Proof.

1. This is an immediate consequence of (8c).

2. If Bg is a g-inverse, thenBr is the maximal reflexive
g-inverse: indeed,Br is a reflexive g-inverse since

B Br B = (B BgB)BgB = B BgB = B ,

Br B Br = Bg(B BgB)BgB Bg = Bg(B BgB)Bg

= BgB Bg = Br .

1In this case, the monoid(Hom(U ,X ),⊕) is naturally ordered by
F ≤ G iff F ⊕ G = G.



It is maximal since, ifF is another reflexive g-inverse,
then F ≤ Bg becauseBg is the maximal g-inverse. It
follows that

F = FBF ≤ BgB Bg = Br .

Finally, if B is regular, thenB Br B = B and Br B Br =
Br.

Theorem 15. Let S be a distributive semifield,U , X be
free f.g.S-semimodules, andB ∈ Hom(U ,X ). This B is
regular iff im B admits a direct factorkerC, whereC ∈
Hom(X ,Y) andY is a free f.g.S-semimodule. One can
take forC any reflexive g-inverse ofB.

Proof. Let Bρ be any reflexive g-inverse ofB. Then the
statements of Theorems 8 and 9 are satisfied withY = U ,
C = Bρ , L = B, K = Bρ , and kerBρ is the direct factor
we are looking for.

Conversely, if imB admits a direct factor kerC, by
(16), B = LC B, and then by (18),B = BK B, which
shows thatB is regular.

Remark 16. WhenB is put in the form

P

(
D ε

ε ε

)
Q ,

where P and Q are permutation matrices andD has no
zero rows and columns, it is easy to check thatDg — and a
fortiori Dr ≤ Dg — have no> entries and that a particular
reflexive g-inverse ofB is

B′ = Q−1

(
Dr ε

ε ε

)
P−1 .

Remark 17. The maximal reflexive g-inverse does not al-
ways coincides with the maximal g-inverse. For example,
takeS = Rmax, and consider

B =
(

0 1 0
0 2 1
0 0 0

)
, Bg =

( −1 −2 0
−2 −2 −2
−1 −2 −1

)
6= Br =

( −1 −2 0
−2 −2 −2
−2 −2 −1

)
.

Example 18. The following matrix with entries inRmax,

B =
(

0 n 0
0 0 n
n 0 0

)
,

is regular whenevern ≥ 0 and not regular otherwise:

Bg =
( −2n −2n −n
−n −2n −2n
−2n −n −2n

)
if n ≥ 0 and

(
n n n
n n n
n n n

)
if n < 0 .

regular case nonregular case

Observe that the image of any homomorphism being in-
variant by translation along the first diagonal, it is enough
to represent imB by its projection on any plane orthogo-
nal to that diagonal (see figure).
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