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Abstract

In general semimodules, we say that the image of a linear
operatorB and the kernel of a linear operatGrare direct
factors if every equivalence class mod@ocrosses the
image ofB at a unique point. For linear maps represented
by matrices over certain idempotent semifields such as the
(max +)-semiring, we give necessary and sufficient con-
ditions for an image and a kernel to be direct factors. We
characterize the semimodules that admit a direct factor (or
equivalently, the semimodules that are the image of a lin-
ear projector): their matrices have a g-inverse. We give
simple effective tests for all these properties, in terms of
matrix residuation.

1 Introduction

Classical linear control theory is built on a firm algebraic
ground: vector spaces, and modules. There is some ev-
idence that the construction of a ‘geometric approach’
of (max +)-linear discrete event systems, in the spirit
of Wonham [14], requires the analogue of module the-
ory, for semimodules over idempotent semirings, such as
the ‘(max +) semiring’ Rmax = (R U {—o0}, max +).
By comparison with modules, the theory of semimodules
over idempotent semirings is an essentially fresh subject,
in which even the most basic questions are yet unsolved.

Clearly, theimage of a linear mapF : X — Y
should be defined as usual: fn= {F(X) | x € X}.
But what is thekernelof F? Some authors [7, 12] de-
fine kerF = {x € X | F(X) = ¢}, where¢ is the zero
element of). This notion is essentially non pertinent for
Rmaxlinear maps, since két is in general trivial, even
for ‘strongly’ non injective maps.

Consider now the following alternative definition

kerF ={(x,x) e X* |[F)=F(x)} . (1)

Clearly, kerF is a semimodule congruence, and we can
define the quotient semimodul®/kerF. Now, triv-
ially, the canonical isomorphism theoreholds: imF =~
X/kerF. Thus, in general semimodules, (1) seems to
be the appropriate definition. For control applications, it
is indeed appropriate, sinde typically represents an ob-
servation map, by which we wish to quotient some state
space.
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In this paper, we consider the linear projection problem.
Consider three semimodulés X', ) and two linear maps
B, C:

u-sx Sy, )

We say that inB and keIC aredirect factorsif for all x

X, there is a uniqué € im B such thalCx = C¢. When

itis the case: 1. the mafi§ : X — X, X > z, which is
linear, satisfiesI15)? = 1§, I$B = B, CII§ = C (11§

is theprojector ontoim B, parallel tokerC); 2. we have
the isomorphisnd’/ kerC ~ im B; in particular, if./ and

X are free finitely generated semimodules, then the linear
map B, which can be identified with a matrix, yields a
parametrization of the ‘abstract’ objett/ kerC.

In [5], a first answer to the projection problem was
given, in a nonlinear setting. W, X', ) are complete
lattices, and ifB, C are (possiblynonlinea residuated
maps(sees 2.2 below), it was shown that it and keiC
are direct factors iff, settingl = B (C - B)* - C, (where
F* denotes the residuated map of a miap we have
Co.IT = CandIl.B = B. Even in the simplest case
of Rmax-linear operators over free finitely generai®gay-
semimodules (that is, wheB and C are matrices with
entries iNRmay), the operatodl = B-.(C-B)*-Cis a
complicated object (a min-max function in the sense of
Olsder and Gunawardena — see e.g. [10]), and the test
C.IT = C, 1. B = B, is computationally difficult (an
example of non trivial direct factors was given in [5], for
U =Y = Rmnad? X = Rmad®, the proof that inB
and kerC are direct factors involved a tedious computa-
tion of equivalence classes, together with a geometrical
argument).

In this paper, we give a much simpler test for matrices:
im B and kerC are direct factors iff there exist two matri-
cesL, K such thaB = LCB andC = CBK (we denote
with the same symbdB the matrixB and the linear map
X — BX). Then,IT§ = LC = BK. The existence of
the matrice, L can be checked very simply (in polyno-
mial time) using residuation ahatrices(and not of linear
maps).

As a by-product, we solve the following problem,
which was left open in [5]given a matrixB, does there
exist a projector ontam B?; or, equivalentlydoes there
exist a matrixC such thatim B and kerC are direct fac-
tors? The answer is positive ifB admits a g-inverse, that



is, iff B = BXB, for some matrixX. The existence of a
g-inverse can also be checked (simply) in polynomial time
using matrix residuation.

The proofs are critically based onliaear extension
theorem, which states that a linear foffmon a finitely
generated subsemimodule @,a0" can be represented
by a row vectorG: F(X) = Gx. This result was
proved by Kim [8, Lemma 1.3.2] for matrices with en-
tries in the Boolean semiring. Cao, Kim and Roush [4,
Th. 4.7.4] proved a variant of this result for the semiring
([0, 1], max x). As in the case of [8, 4], the proof con-
sists in proving that the maximal linear subextension is an
extension. This seems to require very strong properties on
the dioid (lattice distributivity, invertibility of product).

Note that certain results pertaining to kernels rely upon
a linear extension theorem whereas this theorem is not re-
quired to prove dual results on images

In §2, we introduce the algebraic notions used in the
paper. In§3, we prove the linear extension theorem, and
derive factorization theorems for linear maps. §fh we
characterize direct factors. Kb, we relate the existence
of projectors to the existence of g-inverses.

2 Algebraic Preliminaries

We briefly and informally recall the few algebraic results
needed here. More details can be found in [1] for dioids
and ordered sets, and in [7] for semirings and semimod-
ules. A seminal reference in residuation theory is [3]. See
also [6].

A semiringis a setS equipped with two lawsp, ®,
such that(S, @) is acommutative monoid (the zero is de-
notede); (S, ®) is a (possibly noncommutative) monoid
(the unit is denoted); ® is right and left distributive over
@; and the zero is absorbing. A semiring in which non
zero elements have an inverse isanifield A semiring
S isidempotentf Va € S, a ® a = a. Idempotent semir-
ings are also calledioids. In this paper, we will mostly
consider dioids such &ax Which is also a semifield.

2.1 Order properties of dioids

A dioid (or more generally, an idempotent additive
monoid) is equipped with theatural order relation:

a<b < aeb=>Db. 3

Then,a @ b coincides with the upper bouradv b for the
natural order<. Note thate is the bottom element db:
VX e D, e <X.

Moreover, if D is a semifield,(D, <) is a lattice. In-
deed, for all non zera, b, anb = (@tvb 1 =
(@ teb -1l if aorbis zeroasb = e. This shows that
(D, <) is a lattice. We say that the idempotent semifield
is distributive if the latticaD, <) is distributive [1].

For the sake of symmetry, we will complete an idem-
potent semifield with a maximal element (for “top”),
which satisflea® T =T,Vae DU {T},anda® T =
T®a=T,Vae (DU{T}H\{e}. We denoteD = DU{T}
this dioid, and we will call it theop completiorof D.

In D, the product also distributes with respectto

acAad,
canda

aicand) =

Ya,b,ceD, cArd)a =

(4)

(this property does not hold in general dioids).

2.2 Residuation
Definition 1. We say that a dioid® is residuatedf

1. forallaandbin D, {x € D | ax < b} admits a maxi-
mal element denoteal\b;

2. {xe D | xa<b} admits a maximal element de-
notedb/a;

3. (D, <) is alattice.

Then, the maximal element ¢k € D | axc< b} ex-
ists and can be denotedb/c which can be read indiffer-
ently as(a\b)/c ora\(b/c).

The top completiorsS of an idempotent semifield is
residuated, witl\x = a~x if a is invertible,e\x = T,
and T\x = ¢ if x £ T, T\T = T (similar formulae
for /).

Consider the following linear equations Xt

AX=B, (5a)
XC=D, (5b)
AXC=F, (5¢)

whereX, A, ... are (possibly rectangular) matrices with
entries in a residuated dioid.
We extend the\- and-/- notation to matrices:

A\B dzef\/{x | AX < B}, (6a)
D/CE\/{X | XC <D}, (6b)
A\F/C dzef\/{x | AXC<F} . (6C)

Explicitly, we have the following formulee, which relate
the residuation of matrices to the residuation of scalars:

(A\B)jj = /\Aki\Bkj , (7a)
K

(D/C)ij = /\ Dii/Cji » (7b)
|

(A\F/C)ij = /\ A\Fu/Cji . (7¢)
ki

To decide whether the matrix equations (5) have a so-
lution, it suffices to check that the maximal subsolution
satisfies the equality.



Proposition 2. Take five matricesA, B,C,D,F as
above, with entries in a residuated dioid. Then:

IX, AX=B <= A(A\B)=B, (8a)
IX, XC=D «= (D/C)C =D, (8b)
IX, AXC=F <= A(A\F/C)C=F. (8c)

2.3 Semimodules

In this sectionS denotes an arbitrary semiring. ght
S-semimoduleor aright semimodule ove§, is a com-
mutative monoid(&, @), together with an external law
ExS — £, (u,s) — u.s, which satisfies, forall, v € &£,
s,t € S, u.(st) = (US).t, (UP v).S = USD v.S,
u.(set)=usput,es=¢Ue =¢Uue=LuU.

Left S-semimodules are defined dually. For simplicity,
we will simply speak oBemimodulevhen the underlying
semiringS and the side (right vs. left) are clear from the
context.

In a semimodule over a dioid, addition is idempotent.
Indeedad@a=aedae=a.(ede) =ae=a.

A map F from a (rightS-) semimodulef to a (right
S-) semimoduleF is linear if it is additive (vu,v €
E, Fu®v) = Fu) @ F(v) and right-homogeneous
Vu € £, € §,F(u.s) = F(u).s). The set of linear
maps€ — F is denoted HongE, F).

A generating familyof a semimodulef is a family
{ui}ie) of elements of€ such that each element € &£
writes as a finite linear combinatian= p, _, u;.s, with
s € S (finite’ means thatli € | | § # ¢} is finite, even
if 1 is infinite). A generating family{u; }ic, is a ba-
sisif @i Uui.s = P uiti, with{i el |s #e}and
{i €l |t ¢} finite, impliess = t, foralli € I. A
semimodule idinitely generatedf.g., for short) if it has a
finite generating family. A semimodule feeeif it has a
basis.

The termfreefor £ arises from the following universal
property: given an arbitrary familig; }ic, of elements of
a semimoduleF, there is a unique linear mdp: £ — F
such that~(u;j) = g;, Vi € I.

All semimodules with a basis of elements are isomor-
phic toS", equipped with the lawsyu,v € S",s € S,
U v = u ® v, (US); = u.s. A linear map
F :SP —» S"writes F(x) = Ax, whereAisan x p
matrix with entries inS.

We will use the following notation, for matrices:

transpose: (AT)jj = Aji ,
kernel: kerA={(x,y) € (S"? | Ax= Ay} ,
image: imA={Ax | xeS"} .

That is, matrixA is identified with the linear mag —
Ax. We will use this convention systematically in the se-
quel.

3 Linear Extension Theorem and
Factorization of Linear Maps

Let us begin with an elementary and apparently innocent
property.

Proposition 3. LetS denote an arbitrary semiring. Con-
sider a freeS-semimoduleF, two S-semimoduleg;, H,

and two linear map$ : F - H, G : G - H. The
following assertions are equivalent:

1. imF CcimG;

2. there exists a linear mapl : 7 — G such thatF =
GoH.

Proof. Clearly, (2) implies (1). Conversely, taking a basis
of F, {ui}ie, foralli € I, there existd; € imG such
thatF (uj) = G(h;). SinceF is free, settingH (u;) = h;,
foralli € I, we define a linear mapl : 7 — G, which
satisfiesF = Go H. O

The dual of Prop. 3 requires some conditions on the
semiring, as shown by the following counterexample.

Example 4. Let F, G, H denote three free semimodules,
and considertwo maps : H - F,G: H — G. The
inclusion kerG c kerF need not imply the existence of a
linear mapH : G — F such thatF = H - G. Consider
the semiringNmax = (NU {—o0}, max +) equipped with
the laws® = max,® = +, F = G = H = Nmax
GX) = x+2,F(X) = x+ 1. We have keG C kerF
(in fact, kerG = kerF = {(X, X) | X € Nnax}) but there
exists no linear mapl such that- = H - G. Indeed, any
linear mapH : Nyax — NpaxwritesH (X) = x+a where

a = H@O) € Nyax. We obtainF(0) =1=2+a: a
contradiction.

We will derive the dual of Prop. 3 from the following
semimodule version of the Hahn-Banach theorem.

Theorem 5 (Linear Extension). Let S be a distributive
idempotent semifield. Lek, G denote two free f.9.5-
semimodules, and 16 c G be a f.g. subsemimodule.
For all F € Hom(H, F), there exist$s € Hom(G, F)
such thatyx € H, G(X) = F(x).

Proof. It suffices to prove the result wheh = S" and
F = S. SinceH c G is f.g., we haveH = imH, for
someH € S"™P. Clearly, we can assume thHt has no
zero row. In this case, forall X i <n,

Liy={j|1<j<p Hj#e}#02.

Let H.; denote the -th column ofH, and letF (H) denote
the row-vector whosg-th entry isF(H.;). We have to
prove the existence of a row-vectre S™*" such that

F(H)=GH. (9)



Using (8b), this is equivalent to
F(H)=(F(H)/H)H . (10)

Using (7b), we get:

((Fery/HH) =EB</\ F(H)lHkll) "

k leL (k)

Using the distributivity of product with respect to
(see (4)), we obtain:

((F(H)/H)H)i — P A\ FHIHG M. (A1)

k leLk)

Let ® denote the set of maps: {1,...,n} — UkL(k),
such thatp(k) € L(k), for all k. Since the latticé€S, <)
is distributive, we have:

((Fe/H)H), = A\ €D FHum Hilo Hi

ped Kk

= /\ €D F(Hyo) Hiyy H

ped k

= /\F (@ H.y0 Higtio Hki)
k

ped

(the last equality is by linearity of on imH). To show
that (F(H)/H)H > F(H) (the other inequality is triv-
ial), it remains to check that for afl and j,

@ H-go(k) Hk_goj(-k) ij > H.j . (12)
k

If Hij = ¢, then the inequality (12) is plain. H;; # s,
we choosé = i, and obtairH; Hi;(li) Hij = Hij, which
shows that (12) holds and the proof is complete. [

Corollary 6. Let S be an idempotent distributive semi-
field. LetF, G, H denote three free f.gS-semimodules,
and considertwo maps : H - F,G: H — G. The
following assertions are equivalent:

1. kerG c kerF;

2. there exists a linear mapl : G — F such thatF =
H-.G.

Proof. Clearly, 2 implies 1. Conversely, assume that
kerG < kerF. Then, there exists a magK e
Hom(m G, F) such thatk (G(x)) = F(x), for all x €

H. Indeed, for anyy = G(x) € imG, defineK(y) =
F(x). Since keiG C kerF, the valueK (y) is indepen-
dent of the choice ok such thaty = F(x). Clearly,
the mapK is linear. By Theorem 5K admits a linear
extensionH € Hom(G, 7). For allx € H, we have
HoG(x) = K(G(X)) = F(X),henceH .G = F. O

4 Direct Factors in Semimodules
and Linear Projectors

Definition 7. Let X be a subset in a semimodulé and

€ be an equivalence relation iti. We say thak in X has
aprojection onX parallel to € if there exists in X such
thaté € x. We say thatX crossesé€ if there exists such

a projection for allx in X. We say thatX is transverse

to & if the projection of anyx is unique whenever it
exists. Finally, we say thaX and & aredirectfactors if
existence and unigueness of the projection is ensured for
all x in X.

In the previous definition, considet = imB for B €
Hom@, X) and & = kerC for C € Hom(X,)),
wherel/, X and) are semimodules over a semirisg

If im B and keIC are direct factors[1§ denotes the cor-
responding projector. It is straightforward to check that
l‘[g € Hom(X, X). Also, from the very definition, it
comes that

B=TI$B; C=CI. (13)

However, the existence of a linear projectadr(that is,
such thatlT? = IT) satisfying (13) is not a sufficient con-
dition for im B and kelC to be direct factors. Indeed, for
any B andC, the identity ovelY satisfies (13).

Theorem 8 (Existence).Let S denote an arbitrary
semiring. LetB € Hom(/, X) andC € Hom(X, ))
whereld, X, Y are free f.g.S-semimodules. The follow-
ing statements are equivalent:

1. there exist& € Hom (X', /) such that
C=CBK:; (14)

2. imC =imCB;
3. im B crossekerC.

Moreover, ifS is a residuated dioid, a practical test for
checking that the above conditions hold true is by trying
the equality

c=C B((C B)\C) . (15)
Proof.

1 = 2 The assumption implies that iGh ¢ iIMCB
but the converse inclusion is trivial. Hence equality holds
true.

2 = 3 Fromthe assumption, it follows that for alle X,
there existal € U such thalCx = CBu. The projection
of x we are looking for i = Bu.

3 = 1 By assumption, for akk € X, there existsI € U
such thatCx = CBu. That is to say, in€ C imCB.
From Prop. 3, it follows that there exidts e Hom (X, i)
such thalC = CBK.



The practical test follows from statement 1, together
with (8a). O

Theorem 9 (Unigueness).The mapping®8 andC are as

in the previous theorem. But nafvis an idempotent dis-
tributive semifield. The following statements are equiva-
lent:

1. im B is transverse t&kerC;
2. kerB = kerCB;
3. there existd € Hom (), X) such that
B=LCB. (16)

A practical test for checking that they hold true is by trying
the equality

B = (B/(CB))CB. a7
Proof.

1 = 2 By assumption, if there exist andu’ such that
CBu = CBU, sincex = Bu has a unique projection on
im B parallel to kelC, it should be thaBu = BU'. This
means that ke€ B C ker B. But the converse inclusion is
trivial, hence equality holds true.

2 = 3 If kerB = kerCB, from Cor. 6, there existk <
Hom (), X) such thatB = LCB.

3 = 1 For somex, suppose there exist two projections
Bu and Bu on imB parallel to kelC. ThenCBu =
CBU, henceLCBu = LCBU, thusBu = Bu and the
projection is unique.

The practical test follows from statement 1, together
with (8b). O

Corollary 10. If im B andkerC are direct factors, then
M§ =LC =BK = (B/(CB))C =B((CB)\C). (18)

Proof. If B andC are direct factors, then (14) and (16)
both hold true. Considell = BK. From (16),I1 =
LCBK, and then from (14)[1 = LC. Thus,I1 = BK =
LC = I1% In addition, this shows that, for any, TIx
belongs to inB and, moreover, (14) shows th@llx =
Cx, which means that the projection on Bris parallel to
kerC. Thus this projectofl is indeedl‘[‘é. The last two
expressions in (18) result from the choice of maxirhal
andK previously mentioned. O

Remark 11. Gathering the results in (15) on the one
hand, of (13) and (18) on the other hand, one has that

C =CB((CB)\C) =C(B/(CB))C. (19a)

Similarly, with (17) on the one hand, (13) and (18) again
on the other hand, one obtains

B = (B/(CB))CB = B((CB)\C)B. (19b)

However, while the pair of leftmost equations have been
proved to be a test that iB and keIC are direct factors,
there is no evidence at this moment that the other pairs of
equations can play the same role.

Remark 12 (Duality). If S is an idempotent distributive
semifield, by transposition, it is straightforward to check
that imB crosses ke€ if, and only if, inCT is transverse
to kerBT. Likewise, imB is transverse to keZ if, and
only if, imCT crosses keB'. Finally, imB and keIC
are direct factors if, and only if, il87 and kerBT are
so. In this case(l‘[%)T = Mg (in general (M/N)" =
NT\MT).

5 Direct Factors and g-Inverses

In this section, we answer the question of when a semi-
module imB admits a direct factor ke&Z. Unlike in the
case of usual linear spaces, this question cannot receive a
positive answer for any linear operat®r An explicit test

is given to characterize homomorphisms such that their
images admit a direct factor.

Definition 13. Letl/, X denote two semimodules over an
arbitrary semiringS. Let B e Hom(U, X).

1. An elementr € Hom(X', /) such thatBFB = B is
called ag-inverseof B;

2. whenB admits a g-inverse, it is calladgular;

3. a g-inverseF which satisfiesFBF = F is called a
reflexive g-inverse

4. whenS is a dioid, an elemenf € Hom(X, if) such
thatBFB < B is called ag-subinversef B.

Theorem 14. Leti/, X denote free f.g. semimodules over
a residuated dioid>. Then:

1. AnyB € Hom(/, &) admits a maximal g-subinverse.
It is denotedB9. In matrix terms:BY = B\B/B.

2. WhenB is regular, B? is the greatest g-inverse and
B', defined byB?B BY, is the greatest reflexive g-inverse
of B.

Proof.
1. This is an immediate consequence of (8c).

2. If BY is a g-inverse, theB' is the maximal reflexive
g-inverse: indeedB' is a reflexive g-inverse since

BB'B = (BBYB)BYB = BBYB = B,
B'BB' = BY(BBYB)BYBBY = BY(BBIB)BY
— BYBBY = B'.

1in this case, the monoitHom U4, X), @) is naturally ordered by
F<Giff F&G=G.



It is maximal since, ifF is another reflexive g-inverse,
thenF < BY becauseB? is the maximal g-inverse. It
follows that

F=FBF <BYBBY=B".

Finally, if B is regular, therBB'B = B andB'BB" =
B'". ]

Theorem 15. Let S be a distributive semifield/, X be
free f.g.S-semimodules, anB € Hom (4, X). ThisB is
regular iff im B admits a direct factokerC, whereC ¢
Hom (X, Y) and) is a free f.g.S-semimodule. One can
take forC any reflexive g-inverse @.

Proof. Let B” be any reflexive g-inverse @. Then the
statements of Theorems 8 and 9 are satisfied With I/,
C = B”,L = B, K = B”, and kerB” is the direct factor
we are looking for.

Conversely, if imB admits a direct factor keZ, by
(16), B = LCB, and then by (18)B = BKB, which
shows thaB is regular. O

Remark 16. WhenB is put in the form

D ¢
P(2 9)e.

where P and Q are permutation matrices arial has no
zero rows and columns, it is easy to check that— and a
fortiori D" < D9 — have ndT entries and that a particular
reflexive g-inverse oB is

D" ¢
/I _ -1 -1
B'=Q (8 8>P .

Remark 17. The maximal reflexive g-inverse does not al-

ways coincides with the maximal g-inverse. For example,

takeS = Rmax, and consider

B=<8%(1)>,Bg=( 2 2);168r (Z%:g—oz),
000 1-2-1 2-2-1

Example 18. The following matrix with entries ifR ;ax,

OnoO
B:(OOn),
noo

is regular whenevan > 0 and not regular otherwise:

—-2n —=2n —n .
Bg— -n -2n 2n |fn>0and nnn) ifn<O.
n—n72n nn

P

)
nonregular case

regular case

Observe that the image of any homomorphism being in-
variant by translation along the first diagonal, it is enough
to represent inB by its projection on any plane orthogo-
nal to that diagonal (see figure).
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