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ABSTRACT
We propose a new approach to optimize the deployment
and the sampling rates of network monitoring tools, such
as Netflow, on a large IP network. It reduces to solving a
stochastic sequence of Second Order Cone Programs. We
validate our approach with experiments relying on real data
from a commercial network.

Categories and Subject Descriptors: C.2.3 [Network
Operations]: Network monitoring

General Terms: Measurement.

1. INTRODUCTION
Internet providers collect traffic measurements for multi-

ple purposes, such as traffic engineering, performance, secu-
rity or billing. In the present paper, we address the problem
of optimizing the measurements for the estimation of the
traffic matrix of a large backbone network, which describes
the volume of traffic between each two nodes (routers). We
believe that this approach might also be of some interest
for other purposes, since it indicates which routers or inter-
faces meet a maximal proportion of the traffic. Moreover,
we will see that this approach leads to a nice mathematical
formulation and to scalable algorithms.

We consider measurements collected by a network-moni-
toring tool such as Netflow, a technology of Cisco. Activat-
ing Netflow everywhere on the network yields an extensive
knowledge of the Origin-Destination (OD) flows. However,
it is of great interest to optimize the use of this tool, because
it sends heavy records of the sampled packets through the
network, which causes an overhead in terms of CPU utiliza-
tion and bandwidth consumption.

2. THE MODEL AND OUR ALGORITHM
We denote by x the vector of the traffic flow volumes over

a given time window. Netflow records contain the IP ad-
dress of the source and the destination of the sampled pack-
ets. This can be used together with the internal routing ta-
bles of the network to find to find the “internal destination”
of the packets, i.e. the router through which they will exit
the network of interest. By contrast, finding the “internal
source” of the sampled packets is a challenging issue, and so
we assume that Netflow measurements break out the flows
traversing a given interface according to their (internal) des-
tination [1]. On the interface k, this results in a observation
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yk, whose entry d is the sum of the flows traversing k which
have destination d (up to a sampling noise):

yk = Akx + εk. (1)

In [1] we show that both the problem of finding an opti-
mal set of locations for Netflow and the problem of setting
optimal sampling rates in the monitoring system can be for-
mulated in the form:

max
w∈W

Φ(M(w)), where M(w) :=
X

k∈[s]

wkAT
k Ak, (2)

and Φ is an information function from the optimal experi-
mental design theory. A typical choice for Φ is the A−opti-
mality criterion, ΦA : X 7→ trace(X−1), which has been
used for an optimal sampling problem in [3]. For the opti-
mal deployment problem, the variable w is a 0/1− vector
which indicates on which interface we activate Netflow, and
for the optimal sampling problem, w is the vector of sam-
pling rates. The set W reflects some constraints imposed
by the operator for the use of Netflow. In this short paper,
we restrain ourselves to the case of a single linear constraint
pT w ≤ b, but we point out that our model was extended
in [1] to handle more realistic, per-router constraints, which
consist in a set of linear inequalities of the form Rw ≤ b,
and to take into accounts the link measurements (SNMP).

While semidefinite programming (SDP) can be used to
solve the A−optimal design problem [3], it becomes intract-
able by the state-of-the-art solvers when the network grows
in dimension (the typical limit is around n = 15 nodes, be-
cause the variable of this SDP is a n2×n2 matrix). Instead,
we propose to solve a succession of c−optimal design prob-
lems, which are usually well-suited if we want to estimate
a linear combination cT x of the elements of the traffic ma-
trix. The c−optimal design problem is defined through the
information function Φc : X 7→ cT X†c, where † denotes
the Moore-Penrose inverse. We next show that this problem
can be solved by Second Order Cone Programming (SOCP),
which can be done very efficiently by interior point codes.

Theorem 1. Let w∗ be the optimal solution of the con-
tinuous c−optimal design problem:

min
w≥0

cT M(w)†c s.t. pT w ≤ b, M(w) =
X

k∈[s]

wkAT
k Ak.

And let h∗, (µ∗, z∗) be a pair of primal and dual solution of
the SOCP given in primal and dual form:

max
h∈Rm

cT h min
µ>0,(zi)i∈[s]

X

i∈[s]

µi

∀i ∈ [s], ‖Aih‖ ≤
r

pi

b

X

i∈[s]

p

b/piA
T
i zi = c

∀i ∈ [s], ‖zi‖ ≤ µi.



Figure 1: Spatial distribution of the L2−error for the opti-

mal sampling problem on Opentransit.

Setting T =
P

i∈[s] µ
∗
i , the following relations hold :

∀i ∈ [s] w∗
i = µ∗

i b/(piT ), cT M(w∗)†c = T 2

This theorem is proved in [2]. We propose here to solve the
SOCP of Theorem 1 for several vectors c, and then to com-
bine the resulting c−optimal designs by taking the mean.
An interesting choice is to draw the vectors c from a nor-
mal distribution N (0, I) ; in this case our algorithm is a
Monte-Carlo approximation of the vector

E[argminw∈W cT M(w)†c]. (3)

We denote this scheme by SCOD (Successive c−optimal de-
signs). Permuting the expectation operator E[·] with argmin(·)
is not permitted in general, but if we do so we end up with
the A-optimal design problem, by noticing that E[ccT ] = I:

min
w∈W

trace(E[ccT ]M(w)−1) = min
w∈W

trace M(w)−1,

We do not claim that our algorithm converges to a A−optimal
design, but the latter remark somehow gives sense to the
SCOD process. Moreover, it was observed on several exam-
ples that the SCOD “converges” rapidly to a design which
is close to the A−optimal design (see Table 1). We also de-
fine a weighted process (WSCOD), where the vectors c are
drawn with respect to the law N (0, diag(x̂)), where x̂ is a
prior estimate of the flow vector x.

Design SCOD SCOD A-optimal
(×10−1) (N = 10) (N = 50) (SDP)
CPU (sec.) 3.72 18.7 492.6
w1 (Atlanta) 0.559 0.779 0.749
w3 (Denver) 1.721 1.592 1.510
w5 (Indiana) 1.458 1.291 1.361
w7 (LA) 0.556 0.572 0.657
w10 (Seattle) 0.000 0.002 0.000

Table 1: Comparison of the A-optimal design and SCOD

computed by averaging N = 10 and N = 50 c−optimal designs,

for a deployment instance on the Abilene Network with the

constraint
P

i wi ≤ 1 (5 out of 11 routers are displayed).

3. VALIDATION
We use real data from the commercial Opentransit net-

work of France Telecom, which consists in 116 nodes, 13456
OD pairs, and 436 links. We simulate the measurements.
Our experimental setting is completely described in [1]. We
evaluate the deployment of Netflow by the Relative L2−error

Figure 2: Temporal and Spatial L2−Error on Opentransit,

when Netflow is activated on 16 (out of 116) routers, selected

by the greedy algorithm (red) or by the largest coordinates

of the design found by SCOD (blue) and WSCOD (green).

of the estimation of the traffic flow volumes over a period
of 20 time steps, which is defined as ‖x‖−1

2 ‖x − x̂‖2 for a
vector x and its estimate x̂. In Figure 2, we plot the tem-
poral evolution of this error, when we deploy Netflow on 16
routers, either selected by the greedy algorithm, or as cor-
responding to the largest coordinates of the design w found
by (W)SCOD (20 vectors c were drawn for this experiment).
We have also plotted the spatial distribution of the errors,
by sorting the relative L2−errors of the 13456 OD time se-
ries, and reporting them on a graph with the proportion of
traffic on the x−axis.

In Figure 1, we plot the distribution of the L2 spatial
error for the optimal sampling problems, with the simple
constraint

P

i wi ≤ 0.01. Since we are not aware of any
other sampling selection scheme that can be used on a net-
work of this size, we only compare our estimate with the
naive sampling rates (wi = 0.01/116 for each router). For
smaller instances, a comparison with the A-optimal design
in a filtering context of [3] is carried out in [1].

4. CONCLUSION
In this paper, we have proposed a new method to opti-

mize the traffic measurement, based on the estimation of a
sequence of linear combinations of the flows, rather than on
the estimation of the full vector of flows. This method re-
mains tractable for very large instances, and it allows one
to identify the traffic accurately.
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