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Resource Optimization and (min,+) Spectral Theory
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Abstract—We show that certain resource optimization problems relative to
Timed Event Graphs reduce to linear programs. The auxiliary variables which
allow this reduction can be interpreted in terms of eigenvectors in the (min,+)
algebra.
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I. INTRODUCTION

Timed Event Graphs (TEGs) are a subclass of timed Petri nets
which can be used to model deterministic discrete event dynamic
systems subject to saturation and synchronization phenomena:
typically, flexible manufacturing systems, multiprocessor sys-
tems, transportation networks [5], [1], [3], [2], [16], [17]. The
most remarkable result about TEGs [4], [3], [1] is certainly the
following: a TEG functioning at maximal speed reaches after a
finite time a periodic regime. More precisely, let denote the
counter function of a given transition of the graph. That is,
represents the number of firings of the transition up to time ,
usually the number of parts of a certain type produced up to time
, the number of messages sent up to time ...Then, there exists

a constant (the periodic throughput) and
such that

(1)

The denomination of periodic throughput is justified, because
we get from (1):

mean
number of events

time

We shall consider the case where some markings are unknown:
we assume that the initial markings (number of tokens) of some
places are given by some indeterminates . Typ-
ically, the indeterminate associated with place represents
an unknown quantity of resources (number of machines, pal-
lets, processors, storage places, buffers) which corresponds to
the (unknown) initial marking of this place (see the exam-
ple in IV below). Then, the periodic throughput be-
comes a (nondecreasing) function of the resource indeterminates

. Given a linear cost

(2)

( is the price of one unit of resource ) and a minimal required
periodic throughput , we consider the following resource opti-
mization problem:

which consists in minimizing the cost of the resources needed to
obtain (at least) the periodic throughput . A slightly different
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resource optimization problem was first considered by Cohen,
Dubois, Quadrat and Viot in [4] where an iterative algorithm was
given in order to find a minimal allocation of resources saturating
the bottleneck process. The particular problem ( ) has been
previously considered by Hillion and Proth [16], Laftit, Proth
and Xie [19], [17] and by the author in [12]. In [16], it was no-
ticed that is an integer linear programming problem, with
unfortunately as many constraints as elementary circuits in the
graph. In [19], [17], the authors obtained a nice reduction to an
auxiliary linear program —with real and integer variables— in-
volving essentially as many constraints as edges in the graph, so
that the exact solution can be obtained for much larger systems.
However, this result was only given for a restricted class of cost
functions and of TEGs. The purpose of this note is to extend the
results of [19], [17] to general TEGs and general cost functions:
the linear program that we give is exactly the same as in [19],
[17], but without undesirable restrictions. As a by product, using
the duality between holding times and initial markings in TEGs,
we obtain an analogous reduction for an extended resource opti-
mization problem (which involves the possibility of selecting a
higher performance equipment instead of buying more machines
with a given performance). The simple proof proposed here re-
lies on an elementary key result of the (min,+) spectral theory:
we show that the throughput constraint is equivalent
to the existence of a finite “sub-eigenvector” of a particular ma-
trix (sub-eigenvectors are analogous to potentials in scheduling
theory [2] and to excessive functions in potential theory). Then,
this potential inequality translates to a set of linear constraints.
These results are taken from the thesis of the author, up to some
subsidiary extensions. We also mention that the related problem
of the symbolic computation of the periodic throughput has
been dealt with in [12], [13].

II. A SUB-EIGENVECTOR LEMMA

We first recall some (min,+) spectral theory. The traditional
term “(min,+)-algebra” refers to the set equipped with

(denoted by ) and addition (denoted by ). The zero el-

ement is written def , and we set def for the unit. We
denote by this algebraic structure. There is a natural order
relation on given by

This is precisely the dual of the usual order (e.g. ). The
(min,+) notation extends to matrices in the obvious way. We
shall write for instance

and consequently ( times). The spectral
radius [14], [1], [6], [9] of a matrix with entries in



2

is defined by

(3)

tr (4)

the latest expression being written in the (min,+) algebra (so that
stands for in the usual algebra). The key of our ap-

proach is the following sub-eigenvector lemma which is reminis-
cent of Wielandt’s proof of the Perron-Frobenius theorem [10],
[18], [21]. This lemma is essentially one half of the (min,+) spec-
tral theorem [14], [1], [9]. It seems to have first appeared in [11],
[12]. Recall that is irreducible if

Lemma 1 (sub-eigenvector) Let be irre-
ducible, let . The following assertions are equivalent:

(i) there exists such that ,
(ii) there exists such that ,
(iii) .

Proof of Lemma 1: (i) (ii). We have

(5)

Take such that . Since is irreducible, such that
. Thus, we get from (5):

This implies that
(6)

(ii) (iii). It follows from (5) that

We get after cancellation of :

(7)

Summing all these inequalities:

tr (8)

(iii) (i). Let . We introduce the star of :

def
Id

which is well defined because (see [15,
Ch. 3, Th. 1] or [1, 3.17]). Since

we have

which means that any column of is a sub-eigenvector of .

III. APPLICATION TO THE RESOURCE OPTIMIZATION

PROBLEM

We show that the throughput constraints can be for-
mulated as a potential constraint (existence of a sub-eigenvector)
in the (min,+) algebra. We shall make certain assumptions which
do not restrain the generality but allow a simpler exposition. We
consider a TEG such that:

The holding times are put only on places (so that the firing
of the transitions are instantaneous).
The graph is strongly connected.
For all transitions , there is at most one place . This
allows us to denote by the unique place , when
it exists. We may reduce an arbitrary TEG to this form by
adding auxiliary transitions when there are arcs

.
We denote by the set of transitions. For

, we denote by the holding time of the place , and by
the initial marking (number of tokens). If the place does

not exist, by convention, . When the
initial marking of the place represents a resource with unknown
quantity , we have (otherwise, is a constant). We
shall write instead of to emphasize this dependency. We
are now in position to state the main result:

Theorem 1: The following assertions are equivalent:
(i)
(ii) , where the matrix is defined by

.
(iii) there exists a vector such that .

Condition (iii) rewrites as follows in the conventional algebra:

i.e.
(9)

We observe that the constraints which appear in (9) are linear
functions of and . Hence, we get from Theorem 1:

Corollary 1: For a strongly connected TEG, the resource op-
timization problem is equivalent to the following linear
programming problem with integer and real variables:

Proof of Theorem 1: (i) (ii). Given the matrix , we de-
fine the weight of the circuit as follows

As it is well known [4], [3], [1], the periodic throughput is given
by

circuit
(10)

The following assertions are clearly equivalent:

For all circuit , (by (10))
For all circuit ,
For all circuit ,
For all circuit ,

. (from (4)).
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We have shown (i) (ii). The equivalence of (ii) and (iii) is an
immediate consequence of the sub-eigenvector Lemma 1 applied
to the matrix .

We remark that the reduction of Corollary 1 also works for
some generalized resource optimization problems. It is well
known that there is a duality between holding times and initial
markings, e.g. the counter/dater duality exhibited in [1, Chap.
5]. In the same spirit, let us assume that the holding times

of certain places are also unknown (contrarily to the
resource quantity , the holding time need not be an integer,
we just require that ). We thus write . This
allows the modeling of certain optimization problems in which
we may select the processing times, for instance if we have the
choice between several machines with different speeds. Then,
depends both on the resources and on the processing times, and
we write . We consider a generalized cost function
of the form

where is defined as in (2) and measures the
“price” of the processing time . This particular structure of cost
is needed here for obvious duality reasons. It becomes meaning-
ful for instance if the task with duration can be performed by a
machine whose cost is a decreasing affine function of the pro-
cessing time, i.e. for some constant . This
leads us to consider the extended resource optimization problem:

We have the immediate extension of Corollary 1:
Corollary 2: The extended resource optimization problem

is equivalent to the following Linear Program

The effective resolution of linear problems of this type is out of
the scope of this paper. Some additional reductions can be found
in [19], [17].

IV. EXAMPLE

In order to illustrate this reduction, we consider a very sim-
ple example: a Kanban production line with two cells. See [7],
[8] for a more complete presentation of the Kanban policy. The
first cell is composed of machines working independently in
parallel on parts of the same type with a processing time of .
The description of the second cell is similar. Moreover, we as-
sume that kanbans are allocated to cell (the number
of kanbans limit the total number of jobs in process in a given
cell [7]). The number of machines and the number of kan-
bans are seen as unknown resources. We only consider the
autonomous regime (when the system is not delayed by a short-
age of raw materials or a lack of demand). Then, we obtain the
TEG of Figure 1. For instance, represents the entrance of a
new part in the first cell, the beginning of processing of this
part by one of the machines, , the end of processing, the
entrance of a part coming from cell 1 into cell2,...The matrix

of initial markings is given by:

where the absence of value at stands for . Simi-
larly,

where dually the absence of value at stands for . In
this particular case, the symbolic expression can be
immediately obtained from Formula (10) by a simple enumera-
tion of the elementary circuits:

(11)

Corollary 2 shows that the constraint is equiva-
lent to the existence of a vector

such that

(12)
In this particular case, the naive enumeration of circuits (11) is
simpler than writing the auxiliary linear program (12). However,
for large graphs, such an enumeration becomes practically im-
possible (for a complete graph with vertices, there is

elementary circuits, hence, a priori terms in
(11)) while the auxiliary program of Corollary 2 which contains
at most inequalities can always be written.
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