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Abstract—We show that certain resource optimization problemsrelative to
Timed Event Graphsreducetolinear programs. Theauxiliary variableswhich
allow thisreduction can be interpreted in terms of eigenvectorsin the (min,+)
algebra.
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|. INTRODUCTION

Timed Event Graphs (TEGS) are a subclass of timed Petri nets
which can be used to model deterministic discreteevent dynamic
systems subject to saturation and synchronization phenomena:
typically, flexible manufacturing systems, multiprocessor sys-
tems, transportation networks [5], [1], [3], [2], [16], [17]. The
most remarkable result about TEGs [4], [3], [1] is certainly the
following: a TEG functioning at maximal speed reaches after a
finite time a periodic regime. More precisaly, let = denote the
counter function of a given transition of the graph. That is, ()
represents the number of firings of the transition up to time ¢,
usually the number of parts of a certain type produced up to time
t, the number of messages sent up to timet...Then, there exists
aconstant A (the periodic throughput) and ¢ € N\{0},7 € N
such that

t>T=x(t+c)=cx A+z(t) . Q)

The denomination of periodic throughput is justified, because
we get from (1):

number of events

A= lim M = mean -
t time

We shall consider the case where some markings are unknown:
we assume that theinitial markings (number of tokens) of some
places are given by some indeterminates g , . .., gz € N. Typ-
ically, the indeterminate ¢; associated with place P; represents
an unknown quantity of resources (number of machines, pal-
lets, processors, storage places, buffers) which corresponds to
the (unknown) initial marking of this place P; (see the exam-
plein §IV below). Then, the periodic throughput A = A(q) be-
comes a (hondecreasing) function of the resourceindeterminates
q1. - .-, qg. Givenalinear cost

J@) =g+ + prax 2

(pi isthe price of one unit of resource 7) and aminimal required

periodic throughput A, we consider the following resource opti-

mization problem:
(RO)  min{J(q)| ¢ €N*, A(g) > A} .

which consistsin minimizing the cost of the resources needed to

obtain (at least) the periodic throughput A. A dlightly different
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resource optimization problem was first considered by Cohen,
Dubois, Quadrat and Viot in[4] wherean iterative algorithm was
giveninorder tofind aminimal allocation of resources saturating
the bottleneck process. The particular problem (RO) has been
previously considered by Hillion and Proth [16], Laftit, Proth
and Xie[19], [17] and by the author in [12]. In[16], it was no-
ticed that (RO) isan integer linear programming problem, with
unfortunately as many constraints as elementary circuits in the
graph. In[19], [17], the authors obtained a nice reduction to an
auxiliary linear program —with real and integer variables— in-
volving essentially as many constraints as edgesin the graph, so
that the exact solution can be obtained for much larger systems.
However, this result was only given for arestricted class of cost
functions and of TEGs. The purpose of thisnoteisto extend the
results of [19], [17] to general TEGs and general cost functions:
the linear program that we give is exactly the same asin [19],
[17], but without undesirablerestrictions. Asaby product, using
the duality between holding timesand initial markingsin TEGs,
we obtain an analogous reduction for an extended resource opti-
mization problem (which involves the possibility of selecting a
higher performance equipment instead of buying more machines
with a given performance). The simple proof proposed here re-
lies on an elementary key result of the (min,+) spectral theory:
we show that the throughput constraint A(q) > X is equivalent
to the existence of afinite“ sub-eigenvector” of a particular ma-
trix (sub-eigenvectors are analogous to potentialsin scheduling
theory [2] and to excessive functionsin potential theory). Then,
this potential inequality translates to a set of linear constraints.
These results are taken from the thesis of the author, up to some
subsidiary extensions. We also mention that the related problem
of the symbolic computation of the periodic throughput A(¢) has
been dealt within [12], [13].

Il. A SUB-EIGENVECTOR LEMMA

We first recall some (min,+) spectral theory. The traditional
term*“ (min,+)-algebra’ referstotheset RU{+oc } equipped with
min (denoted by ¢) and addition (denoted by &). The zero el-
ement iswritten e & +oc, and weset e & 0 for the unit. We
denote by IR ,,;,, thisalgebraic structure. Thereisa natural order
relation on R ,;,, given by

a=%b < a@b=min(a,b)=b <= a>b

Thisis precisely the dual of the usual order (e.g. 2 > 3). The
(min,+) notation extends to matrices in the obvious way. We
shall writefor instance

(AB)ij = (A@ B)i; = €D Au © By = min(Aix + Byy) .
k

and consequently A* = A® --- @ A (k times). The spectral
radius p(C) [14], [1], [6], [9] of anxn matrix C' with entriesin



R i is defined by

Cisi, + Ciyis + -+ Cliyiy

p(C) = 121?2,”'3?% - ©)
= P ()
k=1

thelatest expression being written in the (min,+) algebra (so that
z* standsfor L x x inthe usual agebra). The key of our ap-
proachisthefollowing sub-eigenvector lemmawhichisreminis-
cent of Wielandt’s proof of the Perron-Frobenius theorem [10],
[18],[21]. Thislemmaisessentially onehalf of the (min,+) spec-
tral theorem[14], [1], [9]. It seemsto havefirst appearedin[11],
[12]. Recall that A isirreducibleif Vij, 3k, Afj +e .

Lemmal (sub-eigenvector) Let A € (Rpin)"*" be irre-
ducible, let A € R,,;,,. Thefollowing assertions are equivalent:
(i) thereexistsu € R}, \{e} suchthat Au < Au,
(ii) thereexistsu € (Rmin\{c})" suchthat Au < Au,
(ifi) p(4) = A,

Proof of Lemma 1. (i)=-(ii). We have

Yk, AFu =< Mu . (5)

Take i suchthat u; # . Since A isirreducible, V4, 3k such that
A¥, # e. Thus, we get from (5):

Vi Tk, e =< Afui = (AFu); < Ny
Thisimplies that
Vi.u; #e¢ . (6)
(ii)=-(iii). It followsfrom (5) that
Vi k  Afu; =< My
We get after cancellation of u; # &:
Viok (Af)F <A (7)

Summing all these inequalities:

p(4) = Plrat)s = Pan = . (8)

k=1
(iii)=(i). Let A = A~ A. Weintroduce the star of A:

I ¥dgdg g

which is well defined because p(A4) = A~ 1p(A) < e (see[15,
Ch. 3, Th. 1] or[1, 3.17]). Since
ATTAA = AA = Ag A%q - < A,

we have
AA* < AA*

which means that any column of A* isasub-eigenvector of 4.l

I1l. APPLICATION TO THE RESOURCE OPTIMIZATION
PROBLEM

We show that the throughput constraints A(¢) > A can befor-
mulated asapotential constraint (existenceof asub-eigenvector)
inthe (min,+) algebra. We shall make certain assumptionswhich
do not restrain the generality but allow asimpler exposition. We
consider a TEG such that:

+ The holding times are put only on places (so that the firing

of the transitions are instantaneous).

+ Thegraphisstrongly connected.

« Foradltransitionsi, j, thereisat most oneplacej — i. This
alows us to denote by (i) the unique place j — i, when
it exists. We may reduce an arbitrary TEG to this form by
adding £ — 1 auxiliary transitionswhenthereare k > 2 arcs
Jj— i

Wedenoteby {1,...,n} theset of transitions. For 1 < i,j <
n, we denote by T;; the holding time of the place (i5), and by
N;; theinitial marking (number of tokens). If theplace (i5) does
not exist, by convention, 7;; = —oc, N;j; = +oc. When the
initial marking of the place representsaresource! with unknown
quantity ¢;, wehave N;; = ¢; (otherwise, N;; isaconstant). We
shall write N (¢) instead of N to emphasizethis dependency. We
are now in position to state the main result:

Theorem 1. The following assertions are equivalent:

(i) Alg) > A

(i) p(C(q)) = e, where the matrix C(q) is defined by
Cij(q) = Nij(q) — ATi;.

(iii) thereexistsavector u € R" suchthat C'(q) ® u < u.

Condition (iii) rewrites as followsin the conventional algebra

Vi, min(Ci;(q) + uj) > u;
Fi

i.e
Vi, i, Nijlq) = ATij +uj > u; ©
We observe that the constraints which appear in (9) are linear
functions of «; and ¢;. Hence, we get from Theorem 1:
Coroallary 1: For astrongly connected TEG, the resource op-
timization problem (RO) is equivalent to the following linear
programming problem with integer and real variables:

. q € Nk, u € R7?,
mm{J(q)‘ Vi.j. Nij(q) — XTij + uj > }
Proof of Theorem 1: (i)<(ii). Given the matrix B, we de-
finethe weight wp () of thecircuit a = (i1, . .., i) asfollows

wp(a) = By, + -+ Bii, + Bigi,

Asitiswell known[4], [3], [1], the periodic throughput is given
by

wn ()

M) = iy (a) (10
The following assertions are clearly equivalent:

Mg) > X
For all circuit o, ZITV((E)) > A (by (10))
Foral circuite,  wy(a) > Awr(a)
For al circuita, wx(a) — Awr(a) >0
For all circuit «, we(a) >0

p(C) > 0. (from (4)).



We have shown (i)<(ii). The equivalence of (ii) and (iii) isan
immedi ate consequence of the sub-eigenvector Lemma applied
to the matrix C. n

We remark that the reduction of Corollary 1 also works for
some generalized resource optimization problems. It is well
known that there is a duality between holding times and initial
markings, e.g. the counter/dater duality exhibited in [1, Chap.
5]. In the same spirit, let us assume that the holding times
qi, ..., q; of certain places are also unknown (contrarily to the
resource quantity ¢;, the holding time ¢; need not be an integer,
wejust require that ¢; > 0). Wethuswrite T;; = T;;(¢’). This
allows the modeling of certain optimization problemsin which
we may select the processing times, for instance if we have the
choice between several machineswith different speeds. Then, A
depends both on the resources and on the processing times, and
wewrite A = A(q, ¢'). We consider ageneralized cost function
of theform

k l
Ta.q') = pigi—>_rvid} .
i=1 i=1

where p;, > 0 isdefined asin (2) and p; > 0 measures the
“price” of theprocessingtimeg;. Thisparticular structureof cost
isneeded here for obvious duality reasons. It becomes meaning-
ful for instanceif the task with duration ¢} can be performed by a
machine whose cost C; isadecreasing affine function of the pro-
cessing time, i.e. C; = C? — plq} for some constant C?. This
leads usto consider the extended resource optimization problem:
(ERO)  min{J(g.¢")| Ag.q") > X}

We have the immediate extension of Corollary 1:

Corollary 2: The extended resource optimization problem
(ERO) isequivaent to the following Linear Program

. N geNF ¢ e (RT) . uweR,
mm{J(q’q ) Vi.j. Nij(q) = ANTi5(q") + vy > }
The effective resolution of linear problems of this type is out of
the scope of this paper. Some additional reductions can befound
in[19], [17].

V. EXAMPLE

In order to illustrate this reduction, we consider a very sim-
ple example: a Kanban production line with two cells. See[7],
[8] for a more compl ete presentation of the Kanban policy. The
first cell is composed of ny machines working independently in
parallel on parts of the same type with a processing time of ¢;.
The description of the second cell is similar. Moreover, we as-
sumethat K; kanbans are allocated to cell i = 1, 2 (the number
of kanbans limit the total number of jobs in processin a given
cell [7]). The number of machines n; and the number of kan-
bans K; are seen as unknown resources. We only consider the
autonomous regime (when the system is not delayed by a short-
age of raw materials or alack of demand). Then, we obtain the
TEG of Figure 1. For instance, z; represents the entrance of a
new part in the first cell, 2 the beginning of processing of this
part by one of then; machines, 2/, theend of processing, z» the
entrance of apart coming from cell 1into cell2,...The matrix N

of initial markingsis given by:

1 xq Ty P Ty Zq 3

I ]\71

N(n,K)= s 0

where the absence of value at ¢j stands for N;; = +oc. Simi-
larly,

zy @) oz we zh 2 w3

where dually the absence of value at ¢j standsfor 7;; = —oc. In
this particular case, the symbolic expression A(K, n, t) can be
immediately obtained from Formula (10) by a simple enumera-
tion of the elementary circuits:

. ony K
Zleg mm(ﬂ, ?) . (12)
Corollary 2 shows that the constraint A(n, K,t) > X isequiva-
lent to the existence of a vector

/ " ! " T 7
U:[;El,;l‘l,l‘l,;l‘Q,I?,.l‘Q,;l‘S] eRr

such that
T > @ T2 >
Aty 42y > a2f Ao+ a2y > 2
zy > X ny + Yy > @
mtel S > o
Ky + 2z > oz Ky + 23 > T3

(12)
In this particular case, the naive enumeration of circuits (11) is
simpler thanwriting theauxiliary linear program (12). However,
for large graphs, such an enumeration becomes practically im-
possible (for a complete graph with n vertices, thereis O((n —
1)!) elementary circuits, hence, a priori O((n — 1)!) termsin
(11)) while the auxiliary program of Corollary 2 which contains
at most n2 inequalities can always be written.
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